GENERALIZED CAPELLI IDENTITIES AND
BOUNDARY VALUE PROBLEMS FOR GL(n)

TosHio OsSHIMA
Dedicated to Professor Hikosaburo Komatsu on the occasion of his 60th birthday

ABSTRACT. The Capelli identity is extended to the case of minors. The operators appearing in
the generalized identities give the annihilator of the degenerate principal series for GL(n) and
characterizes the image of the Poisson transform of the hyperfunctions on several boundaries of
GL(n). Hypergeometric functions are defined through realizations of some special sections of
the degenerate principal series and the realizations on boundaries of GL(n) generalize Gelfand’s
hypergeometric functions. Related Radon transforms for Grassmannians are discussed.

0. Introduction

The Capelli identity [C1] is an important fundamental tool in the classical invariant
theory (cf. [We]). It should be remarked that the differential operator given in the identity
is an invariant differential operator on GL(n).

In this note, we first generalize the Capelli identity to the case of minors. In §3 the
corresponding non-invariant differential operators will be shown to characterize the repre-
sentations of GL(n,R) belonging to the degenerate principal series.

Any simultaneous eigenfunction of invariant differential operators on a Riemannian sym-
metric space G/K of a non-compact type has a Poisson integral representation of a hyper-
function section of a line bundle over the maximal boundary G/ P of a semisimple Lie group
G. This was conjectured by [H2] and then [K-] solved it in general by formulating it as
boundary value problems with regular singularities (cf. [KO]) under a smooth realization
(cf. [02]) of G/K.

A similar boundary value problem is naturally formulated for the general boundary G/ Pg
with any parabolic subgroup Pg of G. Combining the result [K-] with [KR], it is easy to
see that the image of the Poisson transform of hyperfunction sections of a line bundle over
a general boundary G/Pg is characterized by a suitable system of differential equations.
Hence the main problem is to give an explicit description of the nice generators of the
system.

In [O1] we gave nice generators of the system in the case of a certain boundary of GL(n,R)
and a conjecture for general semisimple Lie groups. On the other hand, [J1] and [J2] gave
the generators in a less explicit way for general boundaries G/Pg in the case of trivial
line bundle over G/Pg. There are many related works for Shilov boundaries of bounded
symmetric domains (cf. [BV], [KM], [L], [Sn]).

In §5 we will generalize [O1] and show that the generalized Capelli operators give the
generators of the system in the case of the general boundary G/Pg of GL(n,R) by using
the fact that the regular representation on the solution space is isomorphic to a represen-
tation belonging to degenerate spherical principal series of GL(n,R). These operators are
closely connected with the operators given in [Sh| to characterize a singular representation
of U(n,n) realized on sections of a certain line bundle over U(n,n)/U(n) x U(n).
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Lastly we will consider a special vector in a realization of the representation characterized
by a finite-dimensional representation of a certain subgroup of G. For example, a fixed vector
under the action of the maximal compact subgroup K of G is a zonal spherical function if
we consider the spherical representation, that is, the representation on the function space on
G/K. If the subgroup is the diagonal matrices of GL(n,R) and if we consider representations
of a certain degenerate principal series realized on boundaries, the functions coincide with
Gelfand’s hypergeometric functions.

In §6 we will define hypergeometric functions on a general reductive Lie group G and
give some examples when G = GL(n,R), which are a generalization of Gelfand’s hyperge-
ometric functions introduced by [G] and equations defined in [GG]. Then Corollary 6.8 is
fundamental for their analysis, which characterize the image of Radon transforms on real
Grassmann manifolds (cf. Remark 7.4 ii)).

In §3 we will restrict ourself to the case when G = GL(n,R). The similar arguments
can be applied to GL(n,C) or its other real forms (cf. [OSn]). The study in this note is
also restricted to the case of GL(n) but we try to explain our results explicitly by using the
coordinates of GL(n,R). Generalizations of our results including the study in the case of
other classical groups and further studies of hypergeometric functions will be discussed in
other papers.

1. Capelli identities

The classical Capelli identity can be considered as a quantization of the formula det !AB =
det A - det B in the linear algebra. We quantize more general identities

Z det (%j) 1<i<m - det (ng‘) 1<i<m
1<j<m

1< < <vm<n 1<j<m

1.1 det( Tyi V») i<m
(1.1) > iy 1i<m

v=1 >
for 2mn commutative variables x,; and y,; with 1 <i <m and 1 < v <n (cf. [Si, IT §5
Theorem 9]), where the left hand side of (1.1) is zero if m > n, and we get

Theorem 1.1. (Generalized Capelli identities) Let I = {ix}1<i<m and J = {ji}1<o<m be
sequences of positive integers. Then

- 0
1.2 d vip - ] m
( ) et (Vzlx k al'yj,z + (m 6)5 k]e)lﬁkﬁ

1<t<m

0
Z det (priq>1§p§m - det (%>1<p<m Zf m S n,

1<g<m 1<g<m

- 1<vi < <vm<n
0 if m>n.

Here §;; is the Kronecker symbol and for a matrix A = (4;;) = (Aij) 1<i<m With (4, 7)
1<j<m
components A;; in an associative algebra, we define

(13) det A = Z Sgn(J)Ao(l)lAU(2)2 o 'Aa(m)nu
eSS,

where G,,, is the m-th symmetric group.

Proof of Theorem 1.1. First note that Theorem 1.1 is equivalent to (1.1) if I NJ = (. We
will reduce the theorem to (1.1) by the induction on m.
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The theorem is trivial when m = Suppose m > 1. Denoting det (xypiq)1§p<m

1
1<q<m
and 0/0z,; by det(x(y, .. v} {ir,... im}) @a0d Oyj, respectively, from the hypothesis of the
induction we deduce

det( Z Zyi, Ovj, + (M — f)5zug> 1<k<m

1<i<m

=) sgn(a)(z Tuiy ) Ovjy + (M = 1), 5,)
v=1
(14) e (Z l‘l/iu(m) al/j»m_ + (m - m)éio(vn)jm)
v=1

= Z(—l)k_l(z xyikauj1 + (m - 1)5%11)
k=1

v=1

Z det(x{l/mm W M1 =10k — 150 ,im}) ’ det(a{w,m Vi iz ,jm})'

1<vo < <vm<n

If j1 ¢ 1, (1.4) equals
m

(15) k ! Z Z xl/ik det(‘r{ljg7...,l/m}{i1,...,’I;}cfl,ikJﬁl,..wim})

v=11<vo< - <vm<n

w
,_.

“Oujy At (Ofus,... v} zee jm})

and the theorem follows from the corresponding equation in the commutative case (1.1).
Suppose there exists i, with i, = j;. Then the difference of (1.5) from (1.4) equals

Z (m - 1)(_1)6_1 det(x{VQ,‘.. ,Vm}{il,..‘ ,’L'g_l,ig_‘_l,... ,Zm})

1<ve <<y, <n

-det(a{l,% wm {2, ~:jm})

DD b v e
1<vp < <vm <n 1<k<m v=1

’ [8uiz7 det(x{lfzw. B 7% & L2 FIRPRN NI Y AN SO 7im})] det(a{l’%m Vm iz, Jm})‘
Note that if v ¢ {va,... , v}, then

I:al/iz’ det(x{uz,... ,Vm}{il,... ,’L’kfl,ik+1,... ,lm})] = O

On the other hand, putting Jy = {vo,... ,UN—1,UN41,--. ,Vm} for N =2,... m, we have

NE

(_1)k_1xVNik [aVNiZ’ det(w{llg... ,l/m}{il,.‘. 7ik—1,ik+17~-- ,lm})]

£
Il

1
-1

E+N+6—1,,
§ :<_1) Tynir det(xJN{il,m ik — 1,k 1see 58015004150 - 7im})
=1
m

k+N+/£
+ E (_1) Ly det(xJN{i17~~7il—17i£+17-~~7ik—1:ik+17~--7i'rrL})
k=4+1

£
- (_1) det(x{l/an 7V7n}{i17--' ,i2717i£+1,~~ 7i7rL})'

Hence we can conclude that (1.6) is identically zero and we have the theorem as in the case
when j; ¢ I. O



Corollary 1.2. Under the notation in Theorem 1.1, we have

(1.7)
det (Z o 8 . +(n+1-— €)5zkg¢)1é/z;$
0 .
Z det (7)1§p§m - det (ffupiq)lgpgm if m<n,
= 1< < <vm<n axl’qu l=q=m Isqsm
0 if m>n
and
(1.8) det (zn:xmka + (m—ﬂ)éikﬂ)1<k<m
=1 81:ng 1<t<m

Proof. Let W denote the algebra generated by z;; and 3 6 , which is called a Weyl algebra.

Applying the anti-automorphism of W to (1.2) defined by x;j > x;; and am - — a:?. , We

ij

have

Z det ( — ai)gpgm -det (xupiq)lgpgm

1<v1 << <n Lvpjq/ 1<q<m 1<g<m

= X o) (3 gt 0= )

ceG,

n 0
(Z _%x”iom = (m = 1) 0))
v=1

= (_1)m Z Sgn fouzo(m) o + néia(m)jm)

ceG,, Tvim

n
0
( E Lvig )y o - + (n —m+ 1)51'0(1)]'1)‘
v=1 Vi1

Reversing the order of the indices in the above, we have (1.7).
Consider the automorphism of W defined by z;; +— %
ij

follows from (1.2) and (1.7) that

det < Z Tyjp 7 6
Tyi,

0
= Z det (.%'ijq> 1<p<m * det (%) 1<p<m

1<1 < <vm<n 1<g<m 1<g<m

—x;j. Then it

(m — f)%m) 1<k<m
1<l<m

= (1) det ( 3 —%

= det (Zwl’“(?

+(n+1-— E)(Szk]z)l<k§m
1<0

<e<m

+ (€~ 1)5z‘kje)1§k§m-

Lyiy, 1<t<m



Combining this with Theorem 1.1 and exchanging I and J, we have (1.8). O
Remark 1.3. If m = n, Theorem 1.1 is reduced to the Capelli identity (cf. [C1])

1<j<n 1<5<n 05/ 1<j<n

det <§::1xmafw + (m— j)di_j) 1<i<n = det (:U”> 1<i<n - det ( 9 )195”‘

In general, we have the m-th order Capelli identity (cf. [C2])

(1.9) Z det (;xwk&iu + (m—é)ékg)lgkgm

1<iy < <im<n 1<f<m

)
- dt(i-) m~dt< ) .
Z O\ Tirje J1<k<m - d@ By, ) 1ShS

1§i1<"'<i77LSn lgggm 1§£Sm
1<j1 < <Jm<n

2. Capelli operators

Definition 2.1. Let E;; be the nxn matrix whose (u, ) element equals d;,6;,, and consider
E;; as an element of g = gl(n,C). Let I = {i,}i<u<m and J = {j, }1<v<m be sequences of
m positive integers with 1 <1, <mn and 1 < j, <n. Then define
IJ
Duu = Eipju’
D) =D (N =Ei j, + A+m—v)d,;,,

Dy = D[J()\) = det <D£i>1SM§m'

1<v<m

Here )\ is an indeterminate which commutes with elements of g and Dy;()\) is an element
of 4 =U(g) ® C[\], where U(g) is the universal enveloping algebra of g.

We naturally identify E;; with the left invariant vector filed on G = GL(n,C). Then E;;
is of the form

(2.1) Ey; = Zn:xm-i

under the coordinates <azm> 1<i<n € G and the left hand side of (1.2) is identified with
1520
Dr;(0). Hence we call Dy and Dy;(0) generalized Capelli operators.

Lemma 2.2. Put 7(I) = {ir(u) }1<p<m and 7/(J) = {jr o) hi<v<m for 7, 7" € &, Then
Dry(A) = sgn(7) sgn(7') D (1yr () (A)-

Proof. We can prove the lemma by a direct calculation but we remark that it is a corollary
of Theorem 1.1. In fact, by the identification (2.1), it follows from Theorem 1.1 that
Dr(0) = sgn(7) sgn(7") D (1)~ ()(0). Then applying an automorphism of U(g) defined by

(2.2) S)\ : U(g) > Eij — Eij + )‘51'3'

to this equality, we have Lemma 2.2 for any A € C. [

This lemma immediately implies



Corollary 2.3. If there exist integers k and £ with 1 < k < £ < m which satisfy iy, = ig or
jk = jg, then D[J()\) =0.

Proposition 2.4. Suppose I = {i }i<u<m and J = {j,}i<v<m satisfy i, # i, and
Jo # g for 1 <pu<p <mandl <v <v <m. Let k and ¢ be positive integers with
1<k<nandl1l<{¢<n. Then

[Exe, Drj(A)] = D1 — Do

with
0 if £¢ 1,
Dy ={ viel
D{ily---viu—lakviu—kla---:im}J()\) if EZZ#’
0 f k¢ J
D, :{ vkl
Dl{jla---7ju717€7ju+17---7jm}()\) Zf k=g,

Proof. We may assume ¢ € I and k € J because otherwise the lemma is clear from the rela-
tion [Eye, Bij] = 0ieEyj — 01 Ese and the definition of Dy ;. Suppose i,y = £ and j, ) = k.
Puttlng I' = {ih ce- 7@1(@)717 k7iu(£)+l7 s 7im}7 J = {jh s aju(k)717€7ju(k)+1a s ajm}7
I" = {ila ce aiu(ﬁ)flviu(f)+17 s aZm} and J" = {jla cee aju(k)flvju(k)Jrla cee ajm}a we have

[Eke, D1j] = det (Df;‘] —(A+m— j)%(zﬁjy(m) 1<i<m
1<j<m
— det (D{j]/ —(A+m-— j)5w(e)5ju(k)) 1<i<m
1<j<m
= (Dry - (=1)HO+ R (X 4 — v(k))Dypryn)
— (Drgr — (=) E (X 4 m — v(k)) Dy yr)
=Dpy—Dry
and the proposition. [
Lemma 2.2, Corollary 2.3 and Proposition 2.4 imply
Corollary 2.5. i) Put

(2.3) Jm,N) = Y CDpy it et (V).

1<ii < <im<n
1<ji<-<m<n

Then [gl(n,C), J(m, )] C J(m, ).
ii) [f@ ¢ I and k ¢ J, then [Ekg,D[J()\)] = 0.
iii) IfkeINJ and l € INJ, then [Eye, Dry(\)] = 0.

Proposition 2.6. i) Under the above notation

(2.4) Jm+1,X) CcUJ(m, ) NUT(m,A+1) for m=1,... ,n—1.

i) Let I = {ir,-.. yim} and J = {j1, ... ,jm} with1 < iy < - <ipm <n and 1 < j; <
< gm <o Put INJ ={ipy, iy} ={0vs s Jun y with 1 < < -+ < pp <n and
1< <---<vp <n. Then

L
(25)  DrgN) = DrgA=1) =" Dy i i iro i} Gt o i st i} V-
k=1
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iii) Under the anti-automorphism a of U(g) satisfying X — —X for X € g, Drj(X\)
changes into (—1)" Dy (1 —m — \) with m = #1.

iv) Under the automorphism t of U(g) satisfying E;j — —Ej; for1 <i<nand1 < j <
n, Drj(A\) changes into (—1)™D (1 —m — \) with m = #1.

Proof. Note that Corollary 2.5 shows UJ(m, A+1) = J(m, A+1)U. The Laplace expansions

with respect to the first and the last columns of J(m + 1,\) imply i). ii) is clear from
Lemma 2.2 with

a((Bi, i+ N +m =18, 5,) - (Ei i + A+ m—m)d;_ . 5.))
= (_Ei(r(m)jm + O‘ +m— m)(sio'(m>j’rn) T (_Ei(r(l)jl + ()‘ +m— 1)5i0(1)j1)
= (_1)m(Eia<m)jm + ((1 —m— )‘) +m— 1)5ia<m)jm)
. (Eiou)jl +((1=m—=X)+m-— m)éio(lﬂ-l).

Put Df;(\) = det (E;,;, + (A+m —q— ¢})d;,;j,) 1<p<m, where ¢} = 1if ¢ < k and 0
1<g<m
otherwise. Then it easily follows from (1.3) that D5 1(\) — D¥,(\) are summands of the
right hand side of (2.5) and hence we have iii).

By (1.8) we have

> (“Ejiva, + (1 =1850,0) (= Ejin iy + (L= m)851, )
UEGm

= (=)™ E:(Enmh+%WV—UQMMDW'4Euth+U”—”ﬂ%wam)
UGGTYL

Applying S1_,,— given in (2.2) to this, we get iv). O

Definition 2.7. (Harish-Chandra homomorphism) Put a = CEy; + --- + CE,,, 0 =
di<icj<nCEyjand n =37, . CE;;. For D € U we define elements 7'(D) and (D)
of U(a) ® C[A] so that D —+/(D) € tn + nil and y(D) = ¢,(7/(D)). Here ¢, is an algebra
endomorphism of U(a) ® C[A] which satisfies ¢,(\) = X and 1,(E;;) = Ey; +1 — 25

Lemma 2.8. For I = {i,}1<u<m and J = {j, }i<v<m we put

Er;=EijEiyj, - E

brm
Then v(Ery) =0 if o(I) # J for any o € G,,.

Proof. We will prove the lemma by the induction on m.
Suppose there exists k& which satisfies 7, < ji and i, > j, for p > k. If & = m, the
lemma is clear. If £ < m,
Ei1j1 e Eikjk E; o Eik+1jk+1Ei
+ 5ik+1jkEi1j1 e Eikjk+1 B -0

imim

kjk T Einbj'm,

Eij - B

Te+1Jk

k:+1jk+1 T Ei'nbj'rn = Eiljl :
ikdri B
and the lemma is proved by the induction on the lexicographic order of (m,m — k).

On the other hand, if there exists k with 5, > ji and i, < j, for p < k, we have similarly
the lemma by the induction on (m, k).

Since the assumption of the lemma assures the existence of k with iy # ji, we have the
lemma. [



PI‘OpOSitiOIl 2.9. Let] = {iu}lﬁuém and J = {ju}lgygm withl < i1 <ig < -+ < b, <M
and 1 < j1 <jo < -+ <jm <n. Then y(Dr;(N\) =0 if I # J and

m

Y(Drr(N)) = H(Emu +A+i,+m—v—

v=1

n+1
2 ):

Proof. The definition of D;; and Lemma 2.8 implies v(D;;) = 0 if I # J. Note that

Dir = Z SgH(O’)Dﬁm'”Dﬁm)m
UEGm

and that Dﬂl)l = Ei, i, €nif o(1) # 1. Hence we have

D = Z sgn(o)(Eiyi, + A +m — 1)D(If{2)2 . -Dé{m)m mod nil
€S, o(l)=1
= (Biyiy T A+m = 1)Dyiy i i insis, o im}
= H(Eiuiu +A+m—v) mod ni
v=1

by the induction on m and we have the proposition. [

The following result is well-known.

Corollary 2.10. i) Regard Dyq,.. ny{1,... n}(A) as a polynomial function of X and denote it

by D(X\). Then the coefficients of the terms ¥ in D()\) for k =1,... ,n generate the center
of U(g) and

n

YD) = [[(Bi+ A+

=1

n—+1

).

ii) The m-th order Capelli operator (1.9), which will be denoted by Dy, is in the center
of U(g) and satisfies

Y(Dm) = Z H(Eiyiy+iy—v+m—n+1).

) . 2
1<i1 < <im<nrv=1
The operators D1, ... ,D,, generate the center of U(g).
Changing the indices in Proposition 2.9 by (711 nil T), we have

Corollary 2.11. Under the notation in Proposition 2.9

Dryentdl+Un if I #J,

Dir= [[(EBii, + A+ v —1) mod asl.

v=1

Here mod nil may be replaced by mod iUn.

Lastly we remark



Lemma 2.12. If D € U(g) satisfies v(D) = v([X, D]) =0 for any X € g, then D = 0.

Proof. Let g* and a* be the dual spaces of g and a, respectively, and identify g* with g by
the Killing form of g. Let S(g) be the symmetric algebra of g, which is identified with the
space of polynomial functions on g*. Denote by S(™)(g) the set of polynomials in S(g) with
degree at most m. Let A be the map of symmetrization of S(g), which maps the element
X1 X € S(g) with X; € 910 Y oes miXo) Xowm) € U(9)-

Suppose D # 0. Let m be the smallest number with A='(D) € S(™(g) and let D be
the non-zero homogeneous element in S (g) with A=1(D) — D € S~V (g). Since A is
Ad(g)-equivariant, the assumption implies Ad(g)D|.- = 0 for ¢ € G. Hence by denoting
U = Uyeg Ad(g)a*, we have D|y = 0 and D = 0 because U is open dense in g*, which

leads a contradiction. [

3. Degenerate principal series

In this section we will see that the generalized Capelli operators define the annihilators
of degenerate principal series representations of G, where G is GL(n,C) or its real form.
For simplicity we assume G = GL(n,R) hereafter in this note if otherwise stated. Then
K = O(n) is a maximal compact subgroup of G.

Given a positive integer L and a sequence of positive integers © = {nq,... ,np} with
0=ng <ni <---<n;=n, we define a parabolic subgroup

w0

* 92
(3.1) Po=<qp=1 . . . € GL(n,R); gx € GL(ng — nk—1,R)

* * gr.

Note that the subgroup Py .. ) = {(zi5) € G;zi; = 0 if i < j} is a minimal parabolic
subgroup of G, which will be simply denoted by P.

The space B(G) of hyperfunctions on G is a left G-module by G x B(G) > (g, f(z)) —
(mg(f))(z) = f(g~'z). The space A(G) of real analytic functions on G and the space C*°(G)
of C*°-functions on G are G-submodules of B(G).

For pu= (p1,... ,pur) € CY and e = (e1,... ,e1) € {0,1}¥, we define a G-submodule

(3.2) B(G/Pe; ) = {f € B(G); f(xp) = Tuc(p™ ") f(x) for p € Po}
belonging to degenerate principal series of GG, where
(3.3) Tu,e(p) = sgn(det g1)° | det g1 | #* - - -sgn(det g1,)°% | det gr,| ¥ for p € Pg

is a character of Pg under the expression of p in (3.1).
Note that U(g) is a subalgebra of the ring of differential operators on G which satisfies
g x B(G) > (D, f) — (Df)(z) = 4 f(zexptD)|i—o. Then we have

Theorem 3.1. For u € C* we define an algebra homomorphism xe.,. of U(a) to C so that

.o on+1 )
xXo.u(Ejj) = pr +J — if np—1 <j<ng.
Then for u € B(G/Peoj; i, €)
(3.4) Dpu = xeo,u(v(Dpn))u for m=1,... ,n

9



and

(35) DIJ(—,uk—nk,l)uzo
for #Fl =#J =n—np+ng_1+1and k=1,...,L

under the notation in Corollary 2.10.

Proof. For simplicity, we put V,, = B(G/Pe; 1, €) in this proof. Let consider the function

he(w™") = sgn (det (z)1i2m) | det (i) s<ion
SJsm SJsn
---sgn (det (a:”) 1§z‘§nL)€L | det (.7}1]) 1<i<nr, ‘gL
1<j<ng 1<j<ng

with —p = (&4 +&0, 62+ +&L, ... ,&L). If Re&y is sufficiently large for k =1,... | L,
he(z) is a sufficiently differentiable N-invariant function in V},, where N = exp (>, RE;).

For any D € U(a) and D € D+aU(g)+U(g)n, we denote by D, the image of D under the
algebra homomorphism of U(a) to C with (Ej;)¢ = (; for i = 1,... ,m by putting (; = p
if ng_1 < j < ng. Then we have

Dhg(ﬁ) = Dchg(ﬁ) forne N

and it follows from Corollary 2.11 that DH()\)C =110, (G, +A+v—1) i T ={i1,... ,im}
with 1 <4 < ... <%y <n. Putm =n—ng +ni_1 +1. Since np_1 < ip, ,+1 <
n—(m— (ng—1 + 1)) = ng, we have ¢;, + (—pr —ng—1) +v —1 =0 when v = ni_1 + 1,
and therefore bu(—uk —ng—1)c =0if #I =#J =m.

Suppose DY, ..., DY, are elements of U(g) which holomorphically depend on p and satisfy

N
Dihe(n) =0 and Ad(g)D} € Y U(g)D! fork=1,...,N, n€ NandgeG.

J
Jj=1

Then if we prove D}V, = 0, we have (3.4) and similarly (3.5) from Corollaries 2.5 and 2.10.

Note that Dihe(ip) = 0 for p € Pg because Dhe(np) = 7,.-(p~')(Ad(p)Dhe)(n) for
D € U(g). Since NPg is open dense in G, Dithe = 0 if Re¢y, is sufficiently large for
k=1,...,L. If moreover  are generic, V, is an irreducible G-module and hence in this
case we have D'u = 0 for any u € V,,. For any fixed y/ € CL and a real analytic function
u € Vs, we can define v, € V, with u,|x = u|x. Since u, holomorphically depends on
p € CL, we have Diu, = 0 for any u € CL. Since A(G) NV, is dense in V,,, we have

D’,j’u =0foranyueVy,. O
Proposition 3.2. i) If

(i +ni) — (pj +njo14+1) € {0,1,2,... ,ng —ni—1+nj—nj_1 —2} for 1<i<j<L,

then
L
(3.6) D = Xo.u(¥(Dim)) € > UJ(n — ng +np_1 + 1, =k — 1),
k=1

i) For an integer m with 0 < m < n, the system of differential equations

Drj0)u=0 for #I=#J=m
10



on G is equivalent to

0

81‘1‘]‘ )iel,jGJ

det( w=0 for #I—=4J=m.

Proof. Theorem 1.1 proves ii) because det (det(l’i‘j)iELjeJ)
#J =m and N = #

IJ = det(a:ij)N 75 0 with #I ==

(n—m)"
Proposition 2.6 i) and Corollary 2.10 show that the right hand side of (3.6) contains
D(—pr —ng—1—v)u=0fork=1,...,Land v =0,... ,ng —ng_1 — 1 under the notation

there, which is equivalent to D(A)u = 0 for any A € C and we have (3.6) because the relation

{(i +v5) — (pj +vj)inica +1<v; <ng, nj_1 +1<v; <n;}

3.7
3.7) ={(pi+mni)) = (uj+nj—1+1)—v;0<v<n; —ni—1 +n; —n;_1 — 2}

shows that the numbers —u; — ni_1 — v are different to each other. [

4. Intertwining operators

Other realizations of degenerate principal series we will investigate are given by some
G-homomorphisms, namely, by intertwining operators, which are integral operators with
kernel functions because G/Pg is compact. We will review them in this section.

Retain the notation in §3 and define Lie subalgebras of g:

L L L
ne=%. Y REj;fe=Y >  RE;le=» Y RE;

k=1ng_1<i<ng k=1ng_1<i<ng k=1 ng_1<i<ng
J<nk-_1 Jj<ng_1 nE—1<j<ng

Then Lie(Pg) = lo@®ne is a Levi decomposition. We put Ng = exp(ng) and Ng = exp(fig).
If © = {1,2,... ,n}, then Pg, ne, flg, No and Ng are simply denoted by P, n, i, N, N,
respectively.

Let af be the complex dual of a, which equals Z?:l Ce; by denoting e;(E;;) = d;;. Let
p and pe be elements of ai corresponding to the restrictions of %traee(ad) on n and neg,
respectively, and put p(©) = p — pg. Then we have

p=y O e =D0- "t e,

1<i<j<n j=1
1& L n +ng+1
k—1 k
Wy AO=1Y Y (ee=Y Y - merEmEl

k=1nj_1<i<j<ng k=1ng_1<€<ng

L L

. Ng—1+nNg —n . Np—1+ng—n
I M
k=1ng_1<l<ng k=1

by denoting

o= ). e

np—1<l<ng

We identify A = (A1,...,A\n) € C" and pu = (p1,...,ur) € CF with the elements
Y Aje; € af and Y p fir € ag, respectively.
Putting A(G/Pe; i1, e) = A(G) N B(G/Pe; p, e) and

(4.2) po =—p—2peo=M—ng—n1—p1,... ,n—NLp_1 —NL — [L),
11



we have a G-invariant bilinear form

(43)  BG/Poine) x A(G/Poisis,2) 3 (1,0) = (.8)o = [ ()

with the normalized Haar measure dk on K, which follows from the G-invariant integral
(14) B(G/Poi=20.0)2 f = [ 1(bdk

For a close subgroup @ of G and an irreducible finite dimensional representation (7, V;) of
@, we have an associated representation space

(4.5) B(G/Q;7) ={f € B(G) @ Vy; f(zq) =7(¢ ") [ () for g € Q}.
Then for an element T' € B(G/Po; j1,€) ® V satisfying

(4.6) T(gr) = 7(q)T(x) forqe@,

we have a GG-homomorphism

(A1) BG/Peine)3 £ (TH@) = [ FT( Rk € BG/Q:7).
Here we note that (7 f)(x) = (f,7(T))g = (ma=1(f), T)e = [x [( k)dk.

It is natural to choose @ so that Q\G/P has an open orbit because the d1mension of the
intertwining operators of any irreducible Harish-Chandra module of G to B(G/Q;7) is of
finite dimension (cf. [O3]).

Suppose @ is also a parabolic subgroup. Since

(4.8) B(G/Pe;u,e) C B(G/P;(,€')
if
L L
(4.9) Zﬂkfk = Zgneg and €, =€ for mny_1 <k < mny,
k=1 (=1

the intertwining operators in the case when Pg = @ = P are fundamental. There exist
standard intertwining operators (cf. [Kn, Chap. 7]) parametrized by the Weyl group W of
G or equivalently by the double cosets P\G/P, which is isomorphic to the n-th symmetric
group &,,.

Fix w € W >~ &,, and identify w with the representative in G whose (3, j)-component
equals d,,(;);. Hence w(:vij)w_l = (ww(i)w(j)) for (%) € G. By denoting N, = w ' Nw N
N, we have
(4.10) Nw = {(3?2]> 1<i<n € G;a:ij = 62‘]’ if i< j or 'wfl(i) < wil(j)}.

1<j<n
Consider the integral

(4.11) (T f)(x / f(xwngy, )dng,

with the normalized Haar measure dn,, on N,,, which is a constant multiple of the usual
measure || dz;; under the coordinates in (4.10). If Re(ur—1 — px) is sufficiently large, this
integral converges for any continuous function f € B(G/P;pu,e) and its kernel function
defines the intertwining operator

(4.12) Tw : B(G/P;p,e) — B(G/P; i, &)

with

po=w(p+p) = p= (w1 Tw (1) =1, 1y +w ' (0) —n),
e = (€w-1(1)s+++ 1 Ew-1(n))-

This intertwining operator 7,, is defined for any p € C™ by the analytic continuation of the
kernel function.

(4.13)

12



5. Poisson transforms

In this section we study the realization of degenerate principal series on the Riemannian
symmetric space G/K. First introduce the Poisson kernel

PG (2) = O, ()% - Oy, ()0,

(5.1) @)= 3

1< < <vm<n

det <$iuj> 1<i<m

1<j<m

I

26k = (pk +ng—1) — (P41 + ngg1) fork=1,... ,L—1,
26 = pp +np_1.

It is easy to see that
P (prk) = 70,4z ()P (x) forp € Po and k € K
and therefore we have a G-homomorphism

Pe 1 B(G/Poip) 3 f — (P&f)(@ /kadk—/f k)L (k) dk
€ B(G/K)

(5.2)

as was stated in §5. This is called the Poisson transform. Here for simplicity we put
B(G/Pe;p) = B(G/Po; p,¢e) if e ={0,...,0}.

The map P4 was studied in [H2], [H3] and [K-] when Pg is a minimal parabolic subgroup
and it was proved that 73{(17.“ n) is injective if and only if e(¢) # 0 and in this case the image
is the totality of the real analytic functions u on G/K which satisfy

(5.3) Dpu=x¢(Dp)u for m=1,... n.

Here e(¢)™! corresponds to the denominator of Harish-Chandra’s c-function given by

(=TI F(Cj —Ci+j—i+3)*1r(é“j —Ci+j—i+1>*1

11 4 4
1<i<j<n

(cf. [H2]) and e(¢) # 0 if and only if

(G +i)— (G +7) ¢ {1,3,5,7,...} forl<i<j<n.
Hence it follows from (4.8), (4.9) and (3.7) that P is injective if
(5.4) (i + 1) — (j +njy +1) ¢ {1,2,3,4,...} for1<i<j<L.

Theorem 5.1. i) Any u € ImP§ is real analytic and satisfies (3.4) and (3.5).
ii) If the condition

(5.5) (i +mi) — (pj +nj—1+1)¢{0,1,2,3,4,...} for1<i<j<L

holds, P& is a topological G-isomorphism onto the subspace of C°(G/K) which is the
totality of solutions of the system of equations (3.5).

13



Example 5.2. Suppose G = SL(2,R) and P = { (: 2) € G}. Then the natural action
on PL = (C? —{0})/C* > [2] is given by the left multiplication. The fixed point group
with respect to i = 21 /22 equals SO(2) and the symmetric space G/SO(2) is identified with

the upper half plane H, = { [mtyz} € P¢;y > 0}. Since

A =
0 7 1
we have U1 = (\/§)2+ (%)2 = mQ’yLyQ. Hence if p1 = po = 0, we get the usual Poisson kernel
@?172} = ﬁ for Hy and Theorem 5.1 says the isomorphism of the space of harmonic
functions on H, onto that of hyperfunctions on the circle G/P ~ R U {oc} C P{.
Example 5.3. Suppose © = {n}. Then Pg = G and B(G/Peo; ) = C|det z|* for generic
u € C and we have the equality corresponding to (3.4):

VB + 5

7 1

- |::E+y2:| €H+ CP%:,

Diy,mne. myW)l etz = (u+ M) (p+ A +1) - (p+ A+ n — 1) det z|".

If we put A =0 and p = s + 1, this corresponds to Cayley’s formula

det( 0

D, ) 1<i<n(det ) = (s +1)(s +2) - (s + n)(det 2)°

1<j<n
in view of the Capelli identity. Note that this equality defines the b-function of detx

and hence g is the meromorphic parameter of |detz|* and its poles are contained in
{-1,-2,-3,...} (cf. [B], [Sm]).

Proof of Theorem 5.1. Since the Poisson kernel @ is real analytic, any u € Im P§ is also real
analytic. For ¢ € C, Ad(g)J(m,c) = J(m,c) (cf. Corollary 2.5) and the condition Du = 0
for any D € J(m,c) is equivalent to m,pyu = 0 for any D € J(m,c) (cf. Proposition 2.6 iii)
and note that 7 is the left regular representation). Hence i) follows from Theorem 3.1 and
the G-equivariance of Pg.

Put A(G/K;() = {u € A(G);u(gk) = u(g) and Dypu = xq1,... n},c(V(Dm))u for k € K
and m = 1,...,n}. Then ,Pfl,...,n} is a topological G-isomorphism of B(G/P;() onto
A(G/K; (). This is proved in [K-] by constructing a map 3¢ of taking the boundary values,
which gives the inverse of P{Cl,... ) Here we note that xe, . = X{1,... n}.¢-

Suppose u € A(G/K;() satisfies (3.5). Since 3¢ is G-equivariant, Corollary 2.5 i) assures
Dry(—pr —np—1)3%(u) =0 for #1 = #J =n—np+np_1+1and k =1,... , L. Fix k with
nk —ng—1 > 1, choose i, and j, with ng_1 < i, < jo, <ngand put I ={n,n—1,... ,nx +
lyig,ng—1,nk-1—1,..., 1} and J={n,n—1,... ;ng+1,jo,ng—1,n,-1—1,... ,1}. Then
it is clear from the definition of D that

n

D[J(—/Lk—nkf]_) = H (Eyu_ﬂk_nk+y) 'Eiojo

v=ng+1
ng—1
. H (Eyy — i —ng—1 +v—1) mod U(g)n
v=1
and for ¢ € B(G/P;() we have
Dry(=pr — nk—1)0
n NEg—1
= II @—m—n+v)-Eij - [ (G —m—na+v-1)0.
v=ng+1 v=1

14



If¢<kandng—y <v<mny then {, —pp —ng—1+v—1=(ue+v)— (g +nr_1+1)#0,
which follows from (5.5) because of (3.7). Similarly if £ > k and ny, < v < my4q, then
G — e — g +v = —((e + i) — (pe1 +v)) # 0. Hence E; ; 8¢(u) = 0. Thus we have
XB3%(u) = 0 for any X € Lie(Po) N f, which means 8%(u) € B(G/Pe;p) and we have the
theorem from Proposition 3.2 1). O

Remark 5.4. i) Theorem 5.1 in the case © = {1,n} is given in [O1], where it is conjectured
that in general there exists a system of operators D satisfying a suitable condition for (D)
and characterizing the image of the Poisson transform. When G = GL(n,R), the conjecture
corresponds to Theorem 5.1 and Corollary 2.11.

ii) If Rep; < Repjqp1 +1for j=1,...,L —1, then (5.5) is valid.

iii) In [J1] and [J2] some differential equations characterizing Im Pg are given, which are
less explicit than ours.

iv) Let wg € &,, with Ad(we)n Nn = Lie(Pg) Nn. As is remarked in [O1], ImP5 =
Im P{C; ) with ¢} = Cue () + we(j) — j and hence for n € C", it is interesting to study
the system of differential equations characterizing Im 77?17‘“ n}

6. Hypergeometric functions

In general, suppose G is a linear reductive Lie group and moreover suppose that we are
given three closed subgroups Pg, Q1 and (5 of GG and their finite dimensional representations
(1o, Vo), (11,V1) and (72, V3), respectively, which satisfy the conditions
(6.1) Pg is a parabolic subgroup of G,

(6.2) the double cosets Q;\G/Pg have open cosets for j = 1 and 2.

Define the degenerate principal series as in §3:

B(G/Po;1e) = {¢(9) € B(G) ® Vo ¢(gp) = Te(p~")d(g) for p € Po}.

Let Po = LgNg be a Levi decomposition of Pg. Fix a Cartan involution 6 of G with
8(Le) = Le. Then K = {g € G;0(g) = g} is a maximal compact subgroup of G. Let VJ
be the dual space of Vg and let 7 be the representation of Pg on Vg such that

(63)  B(G/Poite) X A(G/Poits) 3 (6.1) — (6 )e = /K (6(k), w(k))dk € C

defines a G-invariant bilinear form. Note that (7§, V) is the tensor product of the contra-
gredient representation of 7¢ and the character det(Ad) of Pg on ng = Lie(Ng), and that
if (¢(k),v(k)) is an integrable function on K,

(6.4) (6 0) = [ (6tn),v(w))dn

Ne

with a suitably normalized Haar measure dn on Ng = 6(Neg).
Definition 6.1. For given functions ¢ € B(G/Peo;7¢) ® Vi and ¢ € B(G/Po;78) ® Va
satisfying

d(qrz) = mi(q)o(x) for g1 € Q1,
Y(gez) = T2(q2)¥(z) for g2 € Q2,

we call a V] ® Va-valued function

(6.5)

(6.6) By y(3) = /K (é(k), (k) dk
15



on G a hypergeometric function.

By the G-invariance of the bilinear form we have

(6.7) Dy (q1zqe) = T1(q1)72(5 ) f(@) for (q1,q2) € Q1 X Q2

and for elements D of the universal enveloping algebra U(g) of C ® Lie(G)
(6.8) 7I‘D(<I’¢7¢,) =0 if 7TD(d)) = 0.

Note that the following map defines a G-homomorphism (cf. (4.7)):

(6.9) B(G/Poito) 5 f — (Tuf)(x) = /K(f(xk),w(k))dk € B(G/Qo: 7).

Example 6.2. Suppose Pg is a minimal parabolic subgroup. If )1 and ()2 are maximal
compact subgroups, the integral representations of the corresponding hypergeometric func-
tions are Eisenstein integrals. In particular, if 71 and 7 are trivial representations, we have
the integral representations of zonal spherical functions.

If the parameter of the representation becomes degenerate, the zonal spherical function
satisfies more differential equations (cf. [Kr] for an example). When G = GL(n,R) and the
parameter corresponds to the degenerate principal series for Py ), it satisfies equations
(3.5) with #I = #J = 2 (cf. Theorem 5.1) and the radial part of this zonal spherical
function is given by Lauricella’s Fp (cf. [E]).

Now we will consider the case where G = GL(n,R) and furthermore Pg and )2 are
parabolic subgroups. In particular, we examine the case where they are maximal, namely,
© = {{,n} and Q2 = Py ). Suppose £ < k < n and n = ml with a positive integer m
satisfying m > 1. To assure the existence of the nontrivial intertwining operator (6.9), we

assume Tg = 7,0 with u = (k,0) € C%. In this case, the integral transformation (4.11)
1 2 641042 k Kkl
k=41 k—(42 -k 1 2 o k—L k41 - n

f € B(G/Pe;Te). Note that the corresponding kernel function is a measure whose support
is the compact double coset in Q2\G/Po and N,, = {(a:ij) € Gizyj =10 if i>Lloryj<
fLorj> k:}

with w = ) converges for any continuous function

Lemma 6.3. Under the notation above we have a G-homomorphism

(6.10) Ty : B(G/ P ny; (k,0)) — B(G/ Py py; (£,0)).

Proof. Let f € B(G/Pigny; (k,0)). From (4.9), (4.12) and (4.13) we have 7., f € B(G/P; )
with g = l(e1+--+ex). If k < i < j, then w™ ! E;jw commutes with any element of N, and
we have E;; f = 0. By the natural identification GL(k,R) ~ GL(k,R) ® I,,_ C GL(n,R),
we have an imbedding N,, C GL(k,R). Here I,,_; is the identity matrix of size n — k.

For a continuous function ¢ on GL(k,R) satisfying

6(np) = | det 91| |det gol #6(n) for p= () € SL(k,R)
with g1 € GL({,R) and g» € GL(k — ¢,R), the integration wa ¢(n)dn or equivalently,
fso(k) o(k)dk is left SL(k,R)-invariant if §,— (31 = —k, which corresponds to —2pg (cf. (4.1)
and (4.4)). Hence by putting ¢(z) = f(gz) with g € G, we clearly have the right (SL(k,R)®
I,,_)-invariance of 7, f.
The invariances we have proved imply 7, {’66 B(G/ P ny; (¢,0)). O



Through the anti-automorphism G 3 g — ¢g~' € G, B(G/Py ny; (k,0)) is canonically
identified with the space of hyperfunctions ¢ on the fn-dimensional manifold

ti1 - tin

(6.11) M(,n)= {(ti]) = ..o ; tij € R and rank (tij) = ﬁ}

which satisfy

(6.12) $(g(ti;)) = |det g| "¢((ti;)) for g€ GL(LR).

Similarly B(G/ Py ny; (¢,0)) is canonically identified with the space of hyperfunctions ® on
the kn-dimensional manifold

(6.13) M(k,n) = {(ym) = .o ; ¥ij € R and rank (yij> = k}
Ye1 o Ykn

which satisfy

(6.14) ®(g(yi;)) = |det g|~“®((yi;)) for g€ GL(K,R).

Denoting GL(¢,R); = {g € GL({,R);detg > 0}, we choose Q1 = GL({,R); x --- X
GL({,R)4y C GL(n,R) and define 7 by

71(g) = (det g1)™** -~ (det gm) "™ for g = (g1, ,9m) € Qu,
where o = (o, ... , ) € C™ with the condition
(6.15) a4+ + k= 0.
Let € = (e1,...,€n) € {1,—1}". Using a function

{ |s|]*r if €,s >0,

(6.16) |s|¢P = .
0 if €,5<0

€p
on R, we give a function
®p

(6.17) B(t) = %( ﬁ ‘ det (tij) <<

s (p—1)e<j<pt

+ H ‘ det (tij) 1<i<p
p=1

(p—1)€<j<pt

ap )
in Definition 6.1, which belongs to B(G/ Py ,}; (K,0)).
Put 2,zyw() = yij fori=1,... ,£and j =1,... ,n. Then in GL(n,R)

(618) 1 w_l Yki w7 Yhen = Zle teyTyr - Zi:l tovTun U]_l

and we have our hypergeometric function

m k
6.19 O(a, ;1) = d t( t ,,-) .
(6.19) (a, € 2) /Re(k_z) pl;[l et (D twtn;) 1ize

v=1 (p—1)€<j<pt
with the convention

Qp

H dts;

€ 1<i<l<j<k
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Theorem 6.4. The hypergeometric function ®(a,e;x) on M(k,n) = {(x;j);zi; € R, 1 <
i <k, 1<j<n, rank(z;;) = k} satisfies the following equations.
i) A right GL({,R)4 x --- x GL(¢,R) +-invariance:

O(xg) = ([[(det gp)?)@(x) for g=g1 @ @ gm with gy € GLLR),.
p=1

ii) A left GL(k,R)-invariance:
®(gx) = |det g| “®(x) for g€ GL(k,R).

iii) Generalized Capelli operators:

0
det | ——— ) =
© (aﬂﬁz‘m)%ﬁgii (@) =0

for 1<ip < <1 <kand1<j; <---<jpg1 <n.

(6.21)

Proof. The GL(k,R)-dependence is clear from our argument. Note that ¢ satisfies the left
GL({,R)4 x -+ x GL(¢,R) -invariance and the equations Dy;(—¢)¢ = 0 for #I = #.J =

¢+ 1 (cf. Theorem 3.1). The other equations follow from the the G-equivariance of the

intertwining operator 7,, combining with the coordinate transformation G > g + ¢!,

Proposition 2.6 iii) and Proposition 3.2 ii). O

The two invariances in Theorem 6.4 are infinitesimally as follows:

(6.22)

Zx“‘Hp&r » =00, ® for 1< </l 1<v<L 0<p<m,
i, v+L€p
= ol
(6.23) Y wio— =—5;;® for 1<i<k 1<j<k

Note that GL(n,R)/ P,y ~ O(n)/O(£) xO(n—£). Hence the definition of ®(c, €; ) is an
integration of a function on O(n)/O(¢) x O(n—¥) over its submanifold O(k)/O(¢) x O(k—¥).

Remark 6.5. Suppose £ = 1. The integration can be rewritten as

n k
(6.24) O(a,e52) =C H ) thxpj

i+ tti=1; €p

with a suitable constant C' and

— )PP ,dty Adtg A Adty_y Adtpig A A di.

Il
-

(6.25)

p=1

This integral representation coincides with the one given in [G] and the corresponding
equations in Theorem 6.4 with ¢ = 1 are same as in [GG]. This hypergeometric function is
also studied by [A].

Remark 6.6. Let (1,,V,) be representation of GL(¢,R) for p = 1,...,m and put 7 =
(T4, yTm) and V=V; ® --- ® V,,,. Choose v € V satisfying

(6.26) 71(9) @ -+ @ Tm(g)v = |det g|*v for g€ GL({,R)
18



and define endomorphisms of V), for £ x f-matrices (z;;):

N z) if epdetz >0,

(6.27) (@), = { v

0 it e,detx <O0.

We have V-valued hypergeometric functions

k
7T1(E tw%j) 1<i<p
v=1

®

€1

(6.28) (I)(T,G,U;.T):/
RE(k—2)

0<y<e

k
e ® )Wm(ztw%j) 1<i<t
v=1

(m—-1)t<j<me

(% H dtij .

1<i<e<j<k

Then ®(7, €, v;x) satisfy
(6.29) d(zg) =7 Hg)®(x) for g€ GL({,R); x --- x GL({,R) 4

and the equations given in Theorem 6.4 ii) and iii).
For the analysis of hypergeometric functions in the case where G = Py, and Q2 =
Piy ny, the following theorem is essential. Its proof will be given in §7.

Theorem 6.7. The intertwining operator (6.10) in Lemma 6.3 is a topological G-isomor-
phism onto the solution space V,f’n of the system (6.21) under our realization using (6.13)
and (6.14) if

(6.30) 0<l<k<n and (+k<n.

Corollary 6.8. Let Q be a closed subgroup of GL(n,R) and let (7,V) be a finite dimensional
representation of Q. If (6.30) holds, the integral transformation R : ¢ +— fSO(k) o(kx)dk

is a bijection between S(€,n;7T) and S(k,n;¢,7). Here S(¢,n;T) is the space of V-valued
hyperfunctions ¢ on M(£,n) satisfying (6.12) and

(6.31) o(tg) = (g ")o(t) for geQ.

Moreover S(k,n;l,7) is the space of V-valued hyperfunctions ®(z) on M(k,n) satisfying
the equations given in Theorem 6.4 ii) and iii) and

(6.32) O(zg) =7(97")®(z) for g€ Q.
In this corollary ‘hyperfunctions’ can be replaced by ‘Schwartz’s distributions’ or ‘C*°-
functions’ or ‘real analytic functions’, which is clear by our way of the proof.
Lastly we give other examples of ()1 for the same Pg and Q5.
Example 6.9. For A = (4;;) € gl(n,R) with n = ml and for p = 1,... ,m and v =
1,...,m, put
u ={Aegl(nR); M, (A)=0 if p>uv,
My, y+i(A) = Myt1p4+i11(A) for i=1,...,m—2 and v=1,... ,m—i—1},

My (A) = (A(u—1yeri,—1)e+s)1<i<e-

155<¢
If @1 equals the closed subgroup of GL(n,R) with the Lie algebra uy, condition (6.2) is
valid and we can define hypergeometric functions with respect to the character of ()1 which

has m — 1 continuous parameters. When ¢ = 1, the hypergeometric functions correspond
to those discussed in [GRS] and [KHT].
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7. Radon transforms

Retain the notation in the previous section and put X; = O(n)/O(j) x O(n — j) with
0 < j <n. Since G = KPg = KQ2 with K = O(n), we may restrict the intertwining
operator (6.10) on K and the restriction

(7.1) Ri:BX) 30— (Rid)g)= | olgh)dk € B
is a Radon transform for a real Grassmannian (cf. [H4, Chap. 1]). Here O(k) ~ O(k) ®
I, C O(n) and we assume (6.30).

The Radon transforms, in particular, their inversions and the range characterization, were
originated by [F], [R] and [J{] in special cases and later studied by [H1], [GGR], [Gr1],[Gr2],
[Gol], [Go2], [Ka], [I] etc. in more general cases. The characterization of Im R, stated in
Theorem 6.7 is not clear from these references (cf. [Grl]) and hence in this section we will
give the proof of Theorem 6.7 for the sake of completeness.

Fix an irreducible representation mp of O(n). Note that the dimension of O(n)-homo-
morphism of 75 to B(X;) is at most one because X; are connected symmetric spaces.
Put X; = SO(n)/SO(j) x SO(n — j) and g, = diag(—1,1...,1,—1) € SO(n). Then
Xj is a universal covering of X; and the fundamental group of X, equals Z/2Z. The
function on X is identified with the function on X j which is invariant under the involution
SO(n) 3 x — goxg,.

Suppose 7y is isomorphic to Vo C B(Xy). Thanks to the assumption (6.30), Cartan-
Helgason’s theorem (cf. [Wa, Theorem 3.3.11]) says that Vi has an O(k) x O(n — k)-fixed
vector ¢, which can be normalized by ¢4 (€) = 1 because of Lemma 7.1. Then R ¢ (e) = 1
and therefore RV, # {0}. Since Ker R, is O(n)-invariant, the map R is injective.

Let n' be a maximal positive integer with 2n’ < n. Put F,, = E,, — E,, and v
v+ (n—n'). Let t be a maximal torus of o(n,C) spanned by H, = F,; forv=1,...,n
and define f, € & by fu(H,) = —idu. Then {fi — fo,..., fn—1 — fn, gn} is a fundamental
system of the roots for the pair (o(n),t), where g, = fo,—1 + fn if 20’ = n and ¢, = f,
otherwise. Moreover for 1 < p < v < n/, Xfl, =Y.}, — (£Y,,) are root vectors for the
positive roots f,, & f,, respectively, by putting Yut = Flp — tFpp and YN_V = Fp—iF,
(cf. [Kn, Chap. IV §1 Example 2]).

Note that sz,n is O(n)-invariant. Suppose & < T and 7 is contained in sz,n' Let
A1 fi + -+ 4+ A for be the corresponding highest weight and let vy be the highest weight
vector in V,fm. Cartan-Helgason’s theorem and the covering map X j — X, say that \; >
<o > A > A1 = -+ = Ay = 0 and that \; are even integers (cf. [Grl], [Sr]). Suppose
there exists v satisfying A\, # 0 and £ <v < k. Then (7.2) proves Dy 4 ,3(1,... 2,53 VA(€) =
(=A1i —li) - (=i —i)(—Ayi)va(e) and therefore vy(e) = 0. This means vy = 0 because
vy is real analytic and C® g = C ® Lie(Pypny) +COt+ 37, oo,y CXf, + CX . Thus
we have A, = 0 for v > ¢. Using again Cartan-Helgason’s theorem, we can conclude
that 74 has an O(f) x O(n — {)-fixed vector and that ImRj is dense in V! . By the
isomorphism X, ~ X,,_, the same conclusion holds in the case where & > 5. Then through
the imbedding (4.8) as a closed subspace of the Fréchet-Schwartz space B(K) (cf. [Km]),
Theorem 6.7 follows from Lemma 7.3 and the open mapping theorem.

Lemma 7.1. The intertwining function ¢a (cf. [Ho|) satisfies pa(e) # 0.

~

Proof. We will prove the lemma in the same way as in the proof of [OS, Proposition 4.2]. So
suppose ¢ (e) =0, put &; = o(j)®o(n—j) C o(n) and let q; be the orthogonal compliment
of £ in o(n) with respect to the Killing form. Put g’ = €,Ntx+qrNqr =~ o(n—k+L)Bo(k—1).
Fix a maximal abelian subspace t; of qy N qx. Note that dimt, = /.
Let D € U(o(n)) and define D’ € U(g’") with D — D" € (¢, N qe)U(g) + U(g) (e N qx)
and put D = fO(Z)XO(k—Z)XO(n—k) Ad(k)D'dk. Then (D¢y)(e) = (D'da)(e) = (Doy)(e).
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Note that D defines an invariant differential operator on the symmetric space X, = O(n —
k+1£0)xO(k—120)/O) x O(n —k) x O(k — £). Moreover if D, € U(o(n)) is €-invariant,
then D! is £ N ¢g-invariant. Note that the restricted root system for X, and that of
X, are of type By. Hence we can choose a &-invariant element D € U(o(n)) such that
D' and D define the same element of U(t;) under the Harish-Chandra homomorphism
associated to the symmetric space X,. Since there exists A € C with Dgp = A¢a, we have
(Don)(e) = (D' ¢n)(e) = (Dpa)(e) = Apa(e) = 0. Since ¢, is a real analytic function on a
connected manifold, this implies ¢y = 0 and leads a contradiction. [

Lemma 7.2. For the set {v1,...,ve41} of positive integers satisfying 1 < 11 < ... <
Vo1 S %7
(7'2) D{Vl,l/Qw- o1 UL, 02, V1) = (HV1 - Ei)(HVQ - (6 - 1>Z) T (Hl/e+1)
- +
mod Y (B4 P+ UX, , +UX7 )+ > Byl

1<p<g<{t+1 1<p<l+1
1<q<e+1

Proof. We show (7.2) by the induction on ¢. We may assume v; = j. Then

(+1
_ l+j+1
D{l,...,e+1}{i...,m} —Z(_l) ! D{l,...,p—l,p+1,...,e+1}{T,...,Z}Ep,le
p=1
¢
_ l+p+1 . .
=Y (DD e eyne. B, + B m — B )

(Y~ (0= 1)) - (Hyoy — ) (Ho) Hep

2
=7 E _1\¢+p+1 _ - —
=t ( 1) D{17,p—l,p+17,Z+l}{l7,p—1,g+1,p+l7,e}

b (Hy — (€= 1))+ (Hyy — i) (Ho) Hoon
L
= S (= i) (Hyy — (6= pot Di)(Hyr — (= p)i) - Hemn

+ (H1 = (0= 1)1) - (He—1 — i) (He) Hoa
= (Hy — 6i)- - (Hy — i)Hypr. O

Lemma 7.3. i) Consider the intertwining operator
T,y : B(G/P;p+ pte) — B(G/P;w(u+ p+ pt) — p,€)

in (4.12) with a parameter t € C. Fix an integer N such that 7:1}3 = tNT! holomorphically
depends on t for |t| < 1. Then the image of TO is closed in B(G/P;w(u + p) — p,€).

ii) The same result as above holds even if we replace the space of hyperfunctions by other
functions spaces, such as Schwartz’s distributions, C*°-functions or real analytic functions.

Proof. Suppose |t| < 1. Consider the inverse intertwining operator
(7.3) T-1 : B(G/P;w(p+ p+ pt) = p,€') — B(G/P; pu+ pte)
and fix a positive integer N’ so that S = tV /’Tu’i,l is holomorphic for t. We identify

these spaces of hyperfunctions with subspaces of B(K) which do not depend on ¢. Since
21



’Z:ut, and S! are topological G-isomorphisms for ¢ # 0, there exists a nonzero holomorphic
function ¢(t) such that S o7t = c(t)id. Let m be the order of zero of c¢(t) at t = 0. Then

Im 70 = ﬂ;n:_ol Ker(%é‘fuh:o) is closed in B(K).

ii) is clear because our proof similarly works on other function spaces. [

Remark 7.4. i) A proof of the injectivity of Radon transforms is given in [Grl, §6]. But the
proof seems to be insufficient since the conclusion ¢4 (€) # 0 in Lemma 7.1 is stated just as
a consequence of the Frobenius reciprocity theorem.

ii) Theorem 6.7 (or Corollary 6.8 with ) = {e}) characterizes the image of the Radon
transform RY on the real Grassmann manifold X, (cf. (7.1)). Note that our proof naturally
gives an inversion formula (cf. [GGR]). In fact, ¢(t) in the proof of Lemma 7.3 is known
(cf. [GK], [Kn, Chap. VII §5]).
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