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Abstract. The Capelli identity is extended to the case of minors. The operators appearing in

the generalized identities give the annihilator of the degenerate principal series for GL(n) and
characterizes the image of the Poisson transform of the hyperfunctions on several boundaries of
GL(n). Hypergeometric functions are defined through realizations of some special sections of

the degenerate principal series and the realizations on boundaries of GL(n) generalize Gelfand’s
hypergeometric functions. Related Radon transforms for Grassmannians are discussed.

0. Introduction

The Capelli identity [C1] is an important fundamental tool in the classical invariant
theory (cf. [We]). It should be remarked that the differential operator given in the identity
is an invariant differential operator on GL(n).

In this note, we first generalize the Capelli identity to the case of minors. In §3 the
corresponding non-invariant differential operators will be shown to characterize the repre-
sentations of GL(n, R) belonging to the degenerate principal series.

Any simultaneous eigenfunction of invariant differential operators on a Riemannian sym-
metric space G/K of a non-compact type has a Poisson integral representation of a hyper-
function section of a line bundle over the maximal boundary G/P of a semisimple Lie group
G. This was conjectured by [H2] and then [K-] solved it in general by formulating it as
boundary value problems with regular singularities (cf. [KO]) under a smooth realization
(cf. [O2]) of G/K.

A similar boundary value problem is naturally formulated for the general boundary G/PΘ

with any parabolic subgroup PΘ of G. Combining the result [K-] with [KR], it is easy to
see that the image of the Poisson transform of hyperfunction sections of a line bundle over
a general boundary G/PΘ is characterized by a suitable system of differential equations.
Hence the main problem is to give an explicit description of the nice generators of the
system.

In [O1] we gave nice generators of the system in the case of a certain boundary of GL(n, R)
and a conjecture for general semisimple Lie groups. On the other hand, [J1] and [J2] gave
the generators in a less explicit way for general boundaries G/PΘ in the case of trivial
line bundle over G/PΘ. There are many related works for Shilov boundaries of bounded
symmetric domains (cf. [BV], [KM], [L], [Sn]).

In §5 we will generalize [O1] and show that the generalized Capelli operators give the
generators of the system in the case of the general boundary G/PΘ of GL(n, R) by using
the fact that the regular representation on the solution space is isomorphic to a represen-
tation belonging to degenerate spherical principal series of GL(n, R). These operators are
closely connected with the operators given in [Sh] to characterize a singular representation
of U(n, n) realized on sections of a certain line bundle over U(n, n)/U(n) × U(n).
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Lastly we will consider a special vector in a realization of the representation characterized
by a finite-dimensional representation of a certain subgroup of G. For example, a fixed vector
under the action of the maximal compact subgroup K of G is a zonal spherical function if
we consider the spherical representation, that is, the representation on the function space on
G/K. If the subgroup is the diagonal matrices of GL(n, R) and if we consider representations
of a certain degenerate principal series realized on boundaries, the functions coincide with
Gelfand’s hypergeometric functions.

In §6 we will define hypergeometric functions on a general reductive Lie group G and
give some examples when G = GL(n, R), which are a generalization of Gelfand’s hyperge-
ometric functions introduced by [G] and equations defined in [GG]. Then Corollary 6.8 is
fundamental for their analysis, which characterize the image of Radon transforms on real
Grassmann manifolds (cf. Remark 7.4 ii)).

In §3 we will restrict ourself to the case when G = GL(n, R). The similar arguments
can be applied to GL(n, C) or its other real forms (cf. [OSn]). The study in this note is
also restricted to the case of GL(n) but we try to explain our results explicitly by using the
coordinates of GL(n, R). Generalizations of our results including the study in the case of
other classical groups and further studies of hypergeometric functions will be discussed in
other papers.

1. Capelli identities

The classical Capelli identity can be considered as a quantization of the formula det tAB =
det A · det B in the linear algebra. We quantize more general identities

(1.1) det
( n∑

ν=1

xνiyνj

)
1≤i≤m
1≤j≤m

=
∑

1≤ν1<···<νm≤n

det
(
xνij

)
1≤i≤m
1≤j≤m

· det
(
yνij

)
1≤i≤m
1≤j≤m

for 2mn commutative variables xνi and yνi with 1 ≤ i ≤ m and 1 ≤ ν ≤ n (cf. [Si, II §5
Theorem 9]), where the left hand side of (1.1) is zero if m > n, and we get

Theorem 1.1. (Generalized Capelli identities) Let I = {ik}1≤k≤m and J = {jℓ}1≤ℓ≤m be
sequences of positive integers. Then

(1.2) det
( n∑

ν=1

xνik

∂

∂xνjℓ

+ (m − ℓ)δikjℓ

)
1≤k≤m
1≤ℓ≤m

=


∑

1≤ν1<···<νm≤n

det
(
xνpiq

)
1≤p≤m
1≤q≤m

· det
( ∂

∂xνpjq

)
1≤p≤m
1≤q≤m

if m ≤ n,

0 if m > n.

Here δij is the Kronecker symbol and for a matrix A = (Aij) =
(
Aij

)
1≤i≤m
1≤j≤m

with (i, j)

components Aij in an associative algebra, we define

(1.3) det A =
∑

σ∈Sm

sgn(σ)Aσ(1)1Aσ(2)2 · · ·Aσ(m)m,

where Sm is the m-th symmetric group.

Proof of Theorem 1.1. First note that Theorem 1.1 is equivalent to (1.1) if I ∩ J = ∅. We
will reduce the theorem to (1.1) by the induction on m.
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The theorem is trivial when m = 1. Suppose m > 1. Denoting det
(
xνpiq

)
1≤p≤m
1≤q≤m

and ∂/∂xνj by det(x{ν1,... ,νm}{i1,... ,im}) and ∂νj , respectively, from the hypothesis of the
induction we deduce

(1.4)

det
( n∑

ν=1

xνik
∂νjℓ

+ (m − ℓ)δikjℓ

)
1≤k≤m
1≤ℓ≤m

=
∑

σ∈Sm

sgn(σ)(
n∑

ν=1

xνiσ(1)∂νj1 + (m − 1)δiσ(1)j1)

· · · (
n∑

ν=1

xνiσ(m)∂νjm + (m − m)δiσ(m)jm)

=
m∑

k=1

(−1)k−1(
n∑

ν=1

xνik
∂νj1 + (m − 1)δikj1)∑

1≤ν2<···<νm≤n

det(x{ν2,... ,νm}{i1,... ,ik−1,ik−1,... ,im}) · det(∂{ν2,... ,νm}{j2,... ,jm}).

If j1 /∈ I, (1.4) equals

(1.5)
m∑

k=1

(−1)k−1
n∑

ν=1

∑
1≤ν2<···<νm≤n

xνik
det(x{ν2,... ,νm}{i1,... ,ik−1,ik+1,... ,im})

· ∂νj1 det(∂{ν2,... ,νm}{j2,... ,jm})

and the theorem follows from the corresponding equation in the commutative case (1.1).
Suppose there exists iℓ with iℓ = j1. Then the difference of (1.5) from (1.4) equals

(1.6)

∑
1≤ν2<···<νm≤n

(m − 1)(−1)ℓ−1 det(x{ν2,... ,νm}{i1,... ,iℓ−1,iℓ+1,... ,im})

· det(∂{ν2,... ,νm}{j2,... ,jm})

+
∑

1≤ν2<···<νm≤n

∑
1≤k≤m

n∑
ν=1

(−1)k−1xνik

· [∂νiℓ
, det(x{ν2,... ,νm}{i1,... ,ik−1,ik+1,... ,im})] det(∂{ν2,... ,νm}{j2,... ,jm}).

Note that if ν /∈ {ν2, . . . , νm}, then

[∂νiℓ
, det(x{ν2,... ,νm}{i1,... ,ik−1,ik+1,... ,im})] = 0.

On the other hand, putting JN = {ν2, . . . , νN−1, νN+1, . . . , νm} for N = 2, . . . , m, we have
m∑

k=1

(−1)k−1xνN ik
[∂νN iℓ

,det(x{ν2... ,νm}{i1,... ,ik−1,ik+1,... ,im})]

=
ℓ−1∑
k=1

(−1)k+N+ℓ−1xνN ik
det(xJN{i1,... ,ik−1,ik+1,... ,iℓ−1,iℓ+1,... ,im})

+
m∑

k=ℓ+1

(−1)k+N+ℓxνN ik
det(xJN{i1,... ,iℓ−1,iℓ+1,... ,ik−1,ik+1,... ,im})

= (−1)ℓ det(x{ν2,... ,νm}{i1,... ,iℓ−1,iℓ+1,... ,im}).

Hence we can conclude that (1.6) is identically zero and we have the theorem as in the case
when j1 /∈ I. ¤
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Corollary 1.2. Under the notation in Theorem 1.1, we have

det
( n∑

ν=1

xνik

∂

∂xνjℓ

+ (n + 1 − ℓ)δikjℓ

)
1≤k≤m
1≤ℓ≤m

(1.7)

=


∑

1≤ν1<···<νm≤n

det
( ∂

∂xνpjq

)
1≤p≤m
1≤q≤m

· det
(
xνpiq

)
1≤p≤m
1≤q≤m

if m ≤ n,

0 if m > n

and

det
( n∑

ν=1

xνik

∂

∂xνjℓ

+ (m − ℓ)δikjℓ

)
1≤k≤m
1≤ℓ≤m

(1.8)

= det
( n∑

ν=1

xνiℓ

∂

∂xνjk

+ (ℓ − 1)δiℓjk

)
1≤k≤m
1≤ℓ≤m

.

Proof. Let W denote the algebra generated by xij and ∂
∂xij

, which is called a Weyl algebra.
Applying the anti-automorphism of W to (1.2) defined by xij 7→ xij and ∂

∂xij
7→ − ∂

∂xij
, we

have ∑
1≤ν1<···<νm≤n

det
(
− ∂

∂xνpjq

)
1≤p≤m
1≤q≤m

· det
(
xνpiq

)
1≤p≤m
1≤q≤m

=
∑

σ∈Sm

sgn(σ)
( n∑

ν=1

− ∂

∂xνjm

xνiσ(m) + (m − m)δiσ(m)jm

)
· · ·

( n∑
ν=1

− ∂

∂xνj1

xνiσ(1) + (m − 1)δiσ(1)j1

)
= (−1)m

∑
σ∈Sm

sgn(σ)
( n∑

ν=1

xνiσ(m)

∂

∂xνjm

+ nδiσ(m)jm

)
· · ·

( n∑
ν=1

xνiσ(1)

∂

∂xνj1

+ (n − m + 1)δiσ(1)j1

)
.

Reversing the order of the indices in the above, we have (1.7).
Consider the automorphism of W defined by xij 7→ ∂

∂xij
and ∂

∂xij
7→ −xij . Then it

follows from (1.2) and (1.7) that

det
( n∑

ν=1

xνjk

∂

∂xνiℓ

+ (m − ℓ)δjkiℓ

)
1≤k≤m
1≤ℓ≤m

=
∑

1≤ν1<···<νm≤n

det
(
xνpjq

)
1≤p≤m
1≤q≤m

· det
( ∂

∂xνpiq

)
1≤p≤m
1≤q≤m

= (−1)m det
( n∑

ν=1

− ∂

∂xνik

xνjℓ
+ (n + 1 − ℓ)δikjℓ

)
1≤k≤m
1≤ℓ≤m

= det
( n∑

ν=1

xνjℓ

∂

∂xνik

+ (ℓ − 1)δikjℓ

)
1≤k≤m
1≤ℓ≤m

.
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Combining this with Theorem 1.1 and exchanging I and J , we have (1.8). ¤
Remark 1.3. If m = n, Theorem 1.1 is reduced to the Capelli identity (cf. [C1])

det
( n∑

ν=1

xνi
∂

∂xνj
+ (m − j)δij

)
1≤i≤n
1≤j≤n

= det
(
xij

)
1≤i≤n
1≤j≤n

· det
( ∂

∂xij

)
1≤i≤n
1≤j≤n

.

In general, we have the m-th order Capelli identity (cf. [C2])

(1.9)
∑

1≤i1<···<im≤n

det
( n∑

ν=1

xνik

∂

∂xνiℓ

+ (m − ℓ)δkℓ

)
1≤k≤m
1≤ℓ≤m

=
∑

1≤i1<···<im≤n
1≤j1<···<jm≤n

det
(
xikjℓ

)
1≤k≤m
1≤ℓ≤m

· det
( ∂

∂xikjℓ

)
1≤k≤m
1≤ℓ≤m

.

2. Capelli operators

Definition 2.1. Let Eij be the n×n matrix whose (µ, ν) element equals δiµδjν and consider
Eij as an element of g = gl(n, C). Let I = {iµ}1≤µ≤m and J = {jν}1≤ν≤m be sequences of
m positive integers with 1 ≤ iµ ≤ n and 1 ≤ jν ≤ n. Then define

DIJ
µν = Eiµjν ,

D̄IJ
µν = D̄IJ

µν(λ) = Eiµjν + (λ + m − ν)δiµjν ,

DIJ = DIJ(λ) = det
(
D̄IJ

µν

)
1≤µ≤m
1≤ν≤m

.

Here λ is an indeterminate which commutes with elements of g and DIJ(λ) is an element
of U = U(g) ⊗ C[λ], where U(g) is the universal enveloping algebra of g.

We naturally identify Eij with the left invariant vector filed on G = GL(n, C). Then Eij

is of the form

(2.1) Eij =
n∑

ν=1

xνi
∂

∂xνj

under the coordinates
(
xij

)
1≤i≤n
1≤j≤n

∈ G and the left hand side of (1.2) is identified with

DIJ (0). Hence we call DIJ and DIJ (0) generalized Capelli operators.

Lemma 2.2. Put τ(I) = {iτ(µ)}1≤µ≤m and τ ′(J) = {jτ ′(ν)}1≤ν≤m for τ , τ ′ ∈ Sm. Then

DIJ(λ) = sgn(τ) sgn(τ ′)Dτ(I)τ ′(J)(λ).

Proof. We can prove the lemma by a direct calculation but we remark that it is a corollary
of Theorem 1.1. In fact, by the identification (2.1), it follows from Theorem 1.1 that
DIJ (0) = sgn(τ) sgn(τ ′)Dτ(I)τ ′(J)(0). Then applying an automorphism of U(g) defined by

(2.2) Sλ : U(g) ∋ Eij 7→ Eij + λδij

to this equality, we have Lemma 2.2 for any λ ∈ C. ¤
This lemma immediately implies
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Corollary 2.3. If there exist integers k and ℓ with 1 ≤ k < ℓ ≤ m which satisfy ik = iℓ or
jk = jℓ, then DIJ (λ) = 0.

Proposition 2.4. Suppose I = {iµ}1≤µ≤m and J = {jν}1≤ν≤m satisfy iµ ̸= iµ′ and
jν ̸= jν′ for 1 ≤ µ < µ′ ≤ m and 1 ≤ ν < ν′ ≤ m. Let k and ℓ be positive integers with
1 ≤ k ≤ n and 1 ≤ ℓ ≤ n. Then

[Ekℓ, DIJ(λ)] = D1 − D2

with

D1 =
{

0 if ℓ /∈ I,

D{i1,... ,iµ−1,k,iµ+1,... ,im}J(λ) if ℓ = iµ,

D2 =
{

0 if k /∈ J,

DI{j1,... ,jν−1,ℓ,jν+1,... ,jm}(λ) if k = jν .

Proof. We may assume ℓ ∈ I and k ∈ J because otherwise the lemma is clear from the rela-
tion [Ekℓ, Eij ] = δiℓEkj − δjkEiℓ and the definition of DIJ . Suppose iµ(ℓ) = ℓ and jν(k) = k.
Putting I ′ = {i1, . . . , iµ(ℓ)−1, k, iµ(ℓ)+1, . . . , im}, J ′ = {j1, . . . , jν(k)−1, ℓ, jν(k)+1, . . . , jm},
I ′′ = {i1, . . . , iµ(ℓ)−1, iµ(ℓ)+1, . . . , im} and J ′′ = {j1, . . . , jν(k)−1, jν(k)+1, . . . , jm}, we have

[Ekℓ, DIJ ] = det
(
DI′J

ij − (λ + m − j)δiµ(ℓ)δjν(k)

)
1≤i≤m
1≤j≤m

− det
(
DIJ ′

ij − (λ + m − j)δiµ(ℓ)δjν(k)

)
1≤i≤m
1≤j≤m

=
(
DI′J − (−1)µ(ℓ)+ν(k)(λ + m − ν(k))DI′′J′′

)
−

(
DIJ ′ − (−1)µ(ℓ)+ν(k)(λ + m − ν(k))DI′′J ′′

)
= DI′J − DIJ ′

and the proposition. ¤
Lemma 2.2, Corollary 2.3 and Proposition 2.4 imply

Corollary 2.5. i) Put

(2.3) J(m,λ) =
∑

1≤i1<···<im≤n
1≤j1<···<jm≤n

CD{i1,... ,im}{j1,... ,jm}(λ).

Then [gl(n, C), J(m,λ)] ⊂ J(m,λ).
ii) If ℓ /∈ I and k /∈ J , then [Ekℓ, DIJ(λ)] = 0.
iii) If k ∈ I ∩ J and ℓ ∈ I ∩ J , then [Ekℓ, DIJ(λ)] = 0.

Proposition 2.6. i) Under the above notation

(2.4) J(m + 1, λ) ⊂ UJ(m,λ) ∩ UJ(m,λ + 1) for m = 1, . . . , n − 1.

ii) Let I = {i1, . . . , im} and J = {j1, . . . , jm} with 1 ≤ i1 < · · · < im ≤ n and 1 ≤ j1 <
· · · < jm ≤ n. Put I ∩ J = {iµ1 , · · · , iµL

} = {jν1 , · · · , jνL
} with 1 ≤ µ1 < · · · < µL ≤ n and

1 ≤ ν1 < · · · < νL ≤ n. Then

(2.5) DIJ (λ) − DIJ(λ − 1) =
L∑

k=1

D{i1,... ,iµk−1,iµk+1,... ,im}{j1,... ,jνk−1,jνk+1,... ,jm}(λ).
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iii) Under the anti-automorphism a of U(g) satisfying X 7→ −X for X ∈ g, DIJ(λ)
changes into (−1)mDIJ (1 − m − λ) with m = #I.

iv) Under the automorphism t of U(g) satisfying Eij 7→ −Eji for 1 ≤ i ≤ n and 1 ≤ j ≤
n, DIJ(λ) changes into (−1)mDJI(1 − m − λ) with m = #I.

Proof. Note that Corollary 2.5 shows UJ(m, λ+1) = J(m, λ+1)U. The Laplace expansions
with respect to the first and the last columns of J(m + 1, λ) imply i). ii) is clear from
Lemma 2.2 with

a
(
(Eiσ(1)j1 + (λ + m − 1)δiσ(1)j1) · · · (Ēiσ(m)jm + (λ + m − m)δiσ(m)jm)

)
= (−Eiσ(m)jm + (λ + m − m)δiσ(m)jm) · · · (−Eiσ(1)j1 + (λ + m − 1)δiσ(1)j1)

= (−1)m(Eiσ(m)jm + ((1 − m − λ) + m − 1)δiσ(m)jm)

· · · (Eiσ(1)j1 + ((1 − m − λ) + m − m)δiσ(1)j1).

Put Dk
IJ(λ) = det

(
Eipjq + (λ + m − q − cq

k)δipjq

)
1≤p≤m
1≤q≤m

, where cq
k = 1 if q ≤ k and 0

otherwise. Then it easily follows from (1.3) that Dk−1
IJ (λ) − Dk

IJ (λ) are summands of the
right hand side of (2.5) and hence we have iii).

By (1.8) we have∑
σ∈Sm

(−Ej1iσ(1) + (1 − 1)δj1iσ(1)) · · · (−Ejmiσ(m) + (1 − m)δjmiσ(m))

= (−1)m
∑

σ∈Sm

(Eiσ(1)j1
+ (m − 1)δj1iσ(1)) · · · (Eiσmjm) + (m − m)δjmiσ(m)).

Applying S1−m−λ given in (2.2) to this, we get iv). ¤

Definition 2.7. (Harish-Chandra homomorphism) Put a = CE11 + · · · + CEnn, n̄ =∑
1≤i<j≤n CEij and n =

∑
1≤j<i≤n CEij . For D ∈ U we define elements γ′(D) and γ(D)

of U(a) ⊗ C[λ] so that D − γ′(D) ∈ Un̄ + nU and γ(D) = ιρ(γ′(D)). Here ιρ is an algebra
endomorphism of U(a) ⊗ C[λ] which satisfies ιρ(λ) = λ and ιρ(Eii) = Eii + i − n+1

2 .

Lemma 2.8. For I = {iµ}1≤µ≤m and J = {jν}1≤ν≤m we put

EIJ = Ei1j1Ei2j2 · · ·Eimjm .

Then γ(EIJ ) = 0 if σ(I) ̸= J for any σ ∈ Sm.

Proof. We will prove the lemma by the induction on m.
Suppose there exists k which satisfies ik < jk and iµ ≥ jµ for µ > k. If k = m, the

lemma is clear. If k < m,

Ei1j1 · · ·Eikjk
Eik+1jk+1 · · ·Eimjm = Ei1j1 · · ·Eik+1jk+1Eikjk

· · ·Eimjm

+ δik+1jk
Ei1j1 · · ·Eikjk+1 · · ·Eimjm − δikjk+1Ei1j1 · · ·Eik+1jk

· · ·Eimjm

and the lemma is proved by the induction on the lexicographic order of (m, m − k).
On the other hand, if there exists k with ik > jk and iµ ≤ jµ for µ < k, we have similarly

the lemma by the induction on (m, k).
Since the assumption of the lemma assures the existence of k with ik ̸= jk, we have the

lemma. ¤
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Proposition 2.9. Let I = {iµ}1≤µ≤m and J = {jν}1≤ν≤m with 1 ≤ i1 < i2 < · · · < im ≤ n
and 1 ≤ j1 < j2 < · · · < jm ≤ n. Then γ(DIJ(λ)) = 0 if I ̸= J and

γ(DII(λ)) =
m∏

ν=1

(Eiν iν + λ + iν + m − ν − n + 1
2

).

Proof. The definition of DIJ and Lemma 2.8 implies γ(DIJ) = 0 if I ̸= J . Note that

DII =
∑

σ∈Sm

sgn(σ)D̄II
σ(1)1 · · · D̄

II
σ(m)m

and that DII
σ(1)1 = Eiσ(1)i1 ∈ n if σ(1) ̸= 1. Hence we have

DII ≡
∑

σ∈Sm, σ(1)=1

sgn(σ)(Ei1i1 + λ + m − 1)D̄II
σ(2)2 · · · D̄

II
σ(m)m mod nU

= (Ei1i1 + λ + m − 1)D{i2,i3,··· ,im}{i2,i3,··· ,im}

≡
m∏

ν=1

(Eiν iν + λ + m − ν) mod nU

by the induction on m and we have the proposition. ¤

The following result is well-known.

Corollary 2.10. i) Regard D{1,... ,n}{1,... ,n}(λ) as a polynomial function of λ and denote it
by D(λ). Then the coefficients of the terms λk in D(λ) for k = 1, . . . , n generate the center
of U(g) and

γ(D(λ)) =
n∏

i=1

(Eii + λ +
n + 1

2
).

ii) The m-th order Capelli operator (1.9), which will be denoted by Dm, is in the center
of U(g) and satisfies

γ(Dm) =
∑

1≤i1<···<im≤n

m∏
ν=1

(Eiν iν + iν − ν + m − n + 1
2

).

The operators D1, . . . , Dn generate the center of U(g).

Changing the indices in Proposition 2.9 by
(

1 2 ... n

n n−1 ... 1

)
, we have

Corollary 2.11. Under the notation in Proposition 2.9

DIJ ∈ n̄U + Un if I ̸= J,

DII ≡
m∏

ν=1

(Eiν iν + λ + ν − 1) mod n̄U.

Here mod n̄U may be replaced by mod Un.

Lastly we remark
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Lemma 2.12. If D ∈ U(g) satisfies γ(D) = γ([X,D]) = 0 for any X ∈ g, then D = 0.

Proof. Let g∗ and a∗ be the dual spaces of g and a, respectively, and identify g∗ with g by
the Killing form of g. Let S(g) be the symmetric algebra of g, which is identified with the
space of polynomial functions on g∗. Denote by S(m)(g) the set of polynomials in S(g) with
degree at most m. Let Λ be the map of symmetrization of S(g), which maps the element
X1 · · ·Xm ∈ S(g) with Xi ∈ g to

∑
σ∈Sm

1
m!Xσ(1) · · ·Xσ(m) ∈ U(g).

Suppose D ̸= 0. Let m be the smallest number with Λ−1(D) ∈ S(m)(g) and let D̄ be
the non-zero homogeneous element in S(m)(g) with Λ−1(D) − D̄ ∈ S(m−1)(g). Since Λ is
Ad(g)-equivariant, the assumption implies Ad(g)D̄|a∗ = 0 for g ∈ G. Hence by denoting
U =

∪
g∈G Ad(g)a∗, we have D̄|U = 0 and D̄ = 0 because U is open dense in g∗, which

leads a contradiction. ¤

3. Degenerate principal series

In this section we will see that the generalized Capelli operators define the annihilators
of degenerate principal series representations of G, where G is GL(n, C) or its real form.
For simplicity we assume G = GL(n, R) hereafter in this note if otherwise stated. Then
K = O(n) is a maximal compact subgroup of G.

Given a positive integer L and a sequence of positive integers Θ = {n1, . . . , nL} with
0 = n0 < n1 < · · · < nl = n, we define a parabolic subgroup

(3.1) PΘ =

p =


g1 0∗ g2
...

...
. . .

∗ ∗ · · · gL

 ∈ GL(n, R); gk ∈ GL(nk − nk−1, R)

 .

Note that the subgroup P{1,... ,n} = {(xij) ∈ G; xij = 0 if i < j} is a minimal parabolic
subgroup of G, which will be simply denoted by P .

The space B(G) of hyperfunctions on G is a left G-module by G × B(G) ∋ (g, f(x)) 7→
(πg(f))(x) = f(g−1x). The space A(G) of real analytic functions on G and the space C∞(G)
of C∞-functions on G are G-submodules of B(G).

For µ = (µ1, . . . , µL) ∈ CL and ε = (ε1, . . . , εL) ∈ {0, 1}L, we define a G-submodule

(3.2) B(G/PΘ; µ, ε) = {f ∈ B(G); f(xp) = τµ,ε(p−1)f(x) for p ∈ PΘ}

belonging to degenerate principal series of G, where

(3.3) τµ,ε(p) = sgn(det g1)ε1 |det g1|−µ1 · · · sgn(det gL)εL |det gL|−µL for p ∈ PΘ

is a character of PΘ under the expression of p in (3.1).
Note that U(g) is a subalgebra of the ring of differential operators on G which satisfies

g × B(G) ∋ (D, f) 7→ (Df)(x) = d
dtf(x exp tD)|t=0. Then we have

Theorem 3.1. For µ ∈ CL we define an algebra homomorphism χΘ,µ of U(a) to C so that

χΘ,µ(Ejj) = µk + j − n + 1
2

if nk−1 < j ≤ nk.

Then for u ∈ B(G/PΘ;µ, ε)

(3.4) Dmu = χΘ,µ(γ(Dm))u for m = 1, . . . , n
9



and

(3.5) DIJ (−µk − nk−1)u = 0
for #I = #J = n − nk + nk−1 + 1 and k = 1, . . . , L

under the notation in Corollary 2.10.

Proof. For simplicity, we put Vµ = B(G/PΘ; µ, ε) in this proof. Let consider the function

hξ(x−1) = sgn
(
det

(
xij

)
1≤i≤n1
1≤j≤n1

)ε1
∣∣ det

(
xij

)
1≤i≤n1
1≤j≤n1

∣∣ξ1

· · · sgn
(
det

(
xij

)
1≤i≤nL

1≤j≤nL

)εL
∣∣ det

(
xij

)
1≤i≤nL

1≤j≤nL

∣∣ξL

with −µ = (ξ1 + · · ·+ξL, ξ2 + · · ·+ξL, . . . , ξL). If Re ξk is sufficiently large for k = 1, . . . , L,
hξ(x) is a sufficiently differentiable N̄ -invariant function in Vµ, where N̄ = exp(

∑
i<j REij).

For any D ∈ U(a) and D̃ ∈ D+n̄U(g)+U(g)n, we denote by D̃ζ the image of D under the
algebra homomorphism of U(a) to C with (Eii)ζ = ζi for i = 1, . . . , m by putting ζj = µk

if nk−1 < j ≤ nk. Then we have

D̃hξ(n̄) = D̃ζhξ(n̄) for n̄ ∈ N̄

and it follows from Corollary 2.11 that D̃II(λ)ζ =
∏m

ν=1(ζiν +λ+ ν − 1) if I = {i1, . . . , im}
with 1 ≤ i1 < . . . < im ≤ n. Put m = n − nk + nk−1 + 1. Since nk−1 < ink−1+1 ≤
n − (m − (nk−1 + 1)) = nk, we have ζiν + (−µk − nk−1) + ν − 1 = 0 when ν = nk−1 + 1,
and therefore D̃IJ(−µk − nk−1)ζ = 0 if #I = #J = m.

Suppose Dµ
1 , . . . , Dµ

N are elements of U(g) which holomorphically depend on µ and satisfy

Dµ
khξ(n̄) = 0 and Ad(g)Dµ

k ∈
N∑

j=1

U(g)Dµ
j for k = 1, . . . , N, n̄ ∈ N̄ and g ∈ G.

Then if we prove Dµ
kVµ = 0, we have (3.4) and similarly (3.5) from Corollaries 2.5 and 2.10.

Note that Dµ
khξ(n̄p) = 0 for p ∈ PΘ because Dhξ(n̄p) = τµ,ε(p−1)(Ad(p)Dhξ)(n̄) for

D ∈ U(g). Since N̄PΘ is open dense in G, Dµ
khξ = 0 if Re ξk is sufficiently large for

k = 1, . . . , L. If moreover ξk are generic, Vµ is an irreducible G-module and hence in this
case we have Dµ

ku = 0 for any u ∈ Vµ. For any fixed µ′ ∈ CL and a real analytic function
u ∈ Vµ′ , we can define uµ ∈ Vµ with uµ|K = u|K . Since uµ holomorphically depends on
µ ∈ CL, we have Dµ

kuµ = 0 for any µ ∈ CL. Since A(G) ∩ Vµ is dense in Vµ, we have
Dµ′

k u = 0 for any u ∈ Vµ′ . ¤
Proposition 3.2. i) If

(µi + ni) − (µj + nj−1 + 1) /∈ {0, 1, 2, . . . , ni − ni−1 + nj − nj−1 − 2} for 1 ≤ i < j ≤ L,

then

(3.6) Dm − χΘ,µ(γ(Dm)) ∈
L∑

k=1

UJ(n − nk + nk−1 + 1,−µk − nk−1).

ii) For an integer m with 0 < m ≤ n, the system of differential equations

DIJ(0)u = 0 for #I = #J = m
10



on G is equivalent to

det
( ∂

∂xij

)
i∈I,j∈J

u = 0 for #I = #J = m.

Proof. Theorem 1.1 proves ii) because det
(
det(xij)i∈I,j∈J

)
IJ

= det(xij)N ̸= 0 with #I =
#J = m and N = n!

(m−1)!(n−m)! .
Proposition 2.6 i) and Corollary 2.10 show that the right hand side of (3.6) contains

D(−µk −nk−1 − ν)u = 0 for k = 1, . . . , L and ν = 0, . . . , nk −nk−1 − 1 under the notation
there, which is equivalent to D(λ)u = 0 for any λ ∈ C and we have (3.6) because the relation

(3.7)
{(µi + νi) − (µj + νj);ni−1 + 1 ≤ νi ≤ ni, nj−1 + 1 ≤ νj ≤ nj}
= {(µi + ni) − (µj + nj−1 + 1) − ν; 0 ≤ ν ≤ ni − ni−1 + nj − nj−1 − 2}

shows that the numbers −µk − nk−1 − ν are different to each other. ¤

4. Intertwining operators

Other realizations of degenerate principal series we will investigate are given by some
G-homomorphisms, namely, by intertwining operators, which are integral operators with
kernel functions because G/PΘ is compact. We will review them in this section.

Retain the notation in §3 and define Lie subalgebras of g:

nΘ =
L∑

k=1

∑
nk−1<i≤nk

j≤nk−1

REij , n̄Θ =
L∑

k=1

∑
nk−1<i≤nk

j≤nk−1

REji, lΘ =
L∑

k=1

∑
nk−1<i≤nk

nk−1<j≤nk

REij .

Then Lie(PΘ) = lΘ⊕nΘ is a Levi decomposition. We put NΘ = exp(nΘ) and N̄Θ = exp(n̄Θ).
If Θ = {1, 2, . . . , n}, then PΘ, nΘ, n̄Θ, NΘ and N̄Θ are simply denoted by P , n, n̄, N , N̄ ,
respectively.

Let a∗C be the complex dual of a, which equals
∑n

j=1 Cej by denoting ei(Ejj) = δij . Let
ρ and ρΘ be elements of a∗C corresponding to the restrictions of 1

2 trace(ad) on n and nΘ,
respectively, and put ρ(Θ) = ρ − ρΘ. Then we have

(4.1)

ρ =
1
2

∑
1≤i<j≤n

(ej − ei) =
n∑

j=1

(j − n + 1
2

)ej ,

ρ(Θ) =
1
2

L∑
k=1

∑
nk−1<i<j≤nk

(ej − ei) =
L∑

k=1

∑
nk−1<ℓ≤nk

(ℓ − nk−1 + nk + 1
2

)eℓ,

ρΘ =
L∑

k=1

∑
nk−1<ℓ≤nk

nk−1 + nk − n

2
eℓ =

L∑
k=1

nk−1 + nk − n

2
fk

by denoting
fk =

∑
nk−1<ℓ≤nk

eℓ.

We identify λ = (λ1, . . . , λn) ∈ Cn and µ = (µ1, . . . , µL) ∈ CL with the elements∑
λjej ∈ a∗C and

∑
µkfk ∈ a∗C, respectively.

Putting A(G/PΘ; µ, ε) = A(G) ∩ B(G/PΘ; µ, ε) and

(4.2) µ∗
Θ = −µ − 2ρΘ = (n − n0 − n1 − µ1, . . . , n − nL−1 − nL − µL),

11



we have a G-invariant bilinear form

(4.3) B(G/PΘ; µ, ε) ×A(G/PΘ; µ∗
Θ, ε) ∋ (f, ϕ) 7→ ⟨f, ϕ⟩Θ =

∫
K

f(k)ϕ(k)dk

with the normalized Haar measure dk on K, which follows from the G-invariant integral

(4.4) B(G/PΘ;−2ρΘ, 0) ∋ f 7→
∫

K

f(k)dk.

For a close subgroup Q of G and an irreducible finite dimensional representation (τ, Vτ ) of
Q, we have an associated representation space

(4.5) B(G/Q; τ) = {f ∈ B(G) ⊗ Vτ ; f(xq) = τ(q−1)f(x) for q ∈ Q}.
Then for an element T ∈ B(G/PΘ; µ∗

Θ, ε) ⊗ V satisfying

(4.6) T (qx) = τ(q)T (x) for q ∈ Q,

we have a G-homomorphism

(4.7) B(G/PΘ; µ, ε) ∋ f 7→ (T f)(x) =
∫

K

f(k)T (x−1k)dk ∈ B(G/Q; τ).

Here we note that (T f)(x) = ⟨f, πx(T )⟩Θ = ⟨πx−1(f), T ⟩Θ =
∫

K
f(xk)T (k)dk.

It is natural to choose Q so that Q\G/P has an open orbit because the dimension of the
intertwining operators of any irreducible Harish-Chandra module of G to B(G/Q; τ) is of
finite dimension (cf. [O3]).

Suppose Q is also a parabolic subgroup. Since

(4.8) B(G/PΘ; µ, ε) ⊂ B(G/P ; ζ, ε′)

if

(4.9)
L∑

k=1

µkfk =
L∑

ℓ=1

ζneℓ and ϵ′k = ϵℓ for nℓ−1 < k ≤ nℓ,

the intertwining operators in the case when PΘ = Q = P are fundamental. There exist
standard intertwining operators (cf. [Kn, Chap. 7]) parametrized by the Weyl group W of
G or equivalently by the double cosets P\G/P , which is isomorphic to the n-th symmetric
group Sn.

Fix w ∈ W ≃ Sn and identify w with the representative in G whose (i, j)-component
equals δw(i)j . Hence w

(
xij

)
w−1 =

(
xw(i)w(j)

)
for

(
xij

)
∈ G. By denoting N̄w = w−1Nw ∩

N̄ , we have

(4.10) N̄w =
{(

xij

)
1≤i≤n
1≤j≤n

∈ G; xij = δij if i ≤ j or w−1(i) < w−1(j)
}
.

Consider the integral

(4.11) (Twf)(x) =
∫

N̄w

f(xwnw)dnw

with the normalized Haar measure dnw on N̄w, which is a constant multiple of the usual
measure

∏
dxij under the coordinates in (4.10). If Re(µk−1 − µk) is sufficiently large, this

integral converges for any continuous function f ∈ B(G/P ; µ, ε) and its kernel function
defines the intertwining operator

(4.12) Tw : B(G/P ;µ, ε) → B(G/P ; µ′, ε′)

with

(4.13)
µ′ = w(µ + ρ) − ρ = (µw−1(1) + w−1(1) − 1, . . . , µw−1(n) + w−1(n) − n),

ε′ = (εw−1(1), . . . , εw−1(n)).

This intertwining operator Tw is defined for any µ ∈ Cn by the analytic continuation of the
kernel function.
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5. Poisson transforms

In this section we study the realization of degenerate principal series on the Riemannian
symmetric space G/K. First introduce the Poisson kernel

(5.1)

Φµ
Θ(x) = Φn1(x)ξ1 · · ·ΦnL(x)ξL ,

Φm(x) =
∑

1≤ν1<···<νm≤n

∣∣∣∣det
(
xiνj

)
1≤i≤m
1≤j≤m

∣∣∣∣2 ,

2ξk = (µk + nk−1) − (µk+1 + nk+1) for k = 1, . . . , L − 1,

2ξL = µL + nL−1.

It is easy to see that

Φµ
Θ(pxk) = τΘ,µ∗

Θ
(p)Φµ

Θ(x) for p ∈ PΘ and k ∈ K

and therefore we have a G-homomorphism

(5.2)
Pµ

Θ : B(G/PΘ; µ) ∋ f 7→ (Pµ
Θf)(x) =

∫
K

f(xk)dk =
∫

K

f(k)Φµ
Θ(k−1x)dk

∈ B(G/K)

as was stated in §5. This is called the Poisson transform. Here for simplicity we put
B(G/PΘ;µ) = B(G/PΘ; µ, ε) if ε = {0, . . . , 0}.

The map Pµ
Θ was studied in [H2], [H3] and [K-] when PΘ is a minimal parabolic subgroup

and it was proved that Pζ
{1,... ,n} is injective if and only if e(ζ) ̸= 0 and in this case the image

is the totality of the real analytic functions u on G/K which satisfy

(5.3) Dmu = χζ(Dm)u for m = 1, . . . , n.

Here e(ζ)−1 corresponds to the denominator of Harish-Chandra’s c-function given by

e(ζ) =
∏

1≤i<j≤n

Γ
(ζj − ζi + j − i + 3

4

)−1

Γ
(ζj − ζi + j − i + 1

4

)−1

(cf. [H2]) and e(ζ) ̸= 0 if and only if

(ζi + i) − (ζj + j) /∈ {1, 3, 5, 7, . . . } for 1 ≤ i < j ≤ n.

Hence it follows from (4.8), (4.9) and (3.7) that Pµ
Θ is injective if

(5.4) (µi + ni) − (µj + nj−1 + 1) /∈ {1, 2, 3, 4, . . . } for 1 ≤ i < j ≤ L.

Theorem 5.1. i) Any u ∈ ImPµ
Θ is real analytic and satisfies (3.4) and (3.5).

ii) If the condition

(5.5) (µi + ni) − (µj + nj−1 + 1) /∈ {0, 1, 2, 3, 4, . . . } for 1 ≤ i < j ≤ L

holds, Pµ
Θ is a topological G-isomorphism onto the subspace of C∞(G/K) which is the

totality of solutions of the system of equations (3.5).
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Example 5.2. Suppose G = SL(2, R) and P =
{ (

∗ 0

∗ ∗

)
∈ G

}
. Then the natural action

on P1
C = (C2 − {0})/C× ∋

[ z1

z2

]
is given by the left multiplication. The fixed point group

with respect to i = z1/z2 equals SO(2) and the symmetric space G/SO(2) is identified with
the upper half plane H+ =

{ [
x+yi

1

]
∈ P1

C; y > 0
}
. Since(√

y x√
y

0 1√
y

) [
i
1

]
=

[√
yi + x√

y
1√
y

]
=

[
x + yi

1

]
∈ H+ ⊂ P1

C,

we have Ψ1 =
(√

y
)2+

(
x√
y

)2 = x2+y2

y . Hence if µ1 = µ2 = 0, we get the usual Poisson kernel
Φµ

{1,2} = y
x2+y2 for H+ and Theorem 5.1 says the isomorphism of the space of harmonic

functions on H+ onto that of hyperfunctions on the circle G/P ≃ R ∪ {∞} ⊂ P1
C.

Example 5.3. Suppose Θ = {n}. Then PΘ = G and B(G/PΘ;µ) = C|det x|µ for generic
µ ∈ C and we have the equality corresponding to (3.4):

D{1,... ,n}{1,... ,n}(λ)|det x|µ = (µ + λ)(µ + λ + 1) · · · (µ + λ + n − 1)|det x|µ.

If we put λ = 0 and µ = s + 1, this corresponds to Cayley’s formula

det
( ∂

∂xij

)
1≤i≤n
1≤j≤n

(det x)s+1 = (s + 1)(s + 2) · · · (s + n)(det x)s

in view of the Capelli identity. Note that this equality defines the b-function of detx
and hence µ is the meromorphic parameter of |det x|µ and its poles are contained in
{−1,−2,−3, . . . } (cf. [B], [Sm]).

Proof of Theorem 5.1. Since the Poisson kernel Φµ
Θ is real analytic, any u ∈ ImPµ

Θ is also real
analytic. For c ∈ C, Ad(g)J(m, c) = J(m, c) (cf. Corollary 2.5) and the condition Du = 0
for any D ∈ J(m, c) is equivalent to πa(D)u = 0 for any D ∈ J(m, c) (cf. Proposition 2.6 iii)
and note that π is the left regular representation). Hence i) follows from Theorem 3.1 and
the G-equivariance of Pµ

Θ.
Put A(G/K; ζ) = {u ∈ A(G);u(gk) = u(g) and Dmu = χ{1,... ,n},ζ(γ(Dm))u for k ∈ K

and m = 1, . . . , n}. Then Pζ
{1,... ,n} is a topological G-isomorphism of B(G/P ; ζ) onto

A(G/K; ζ). This is proved in [K-] by constructing a map βζ of taking the boundary values,
which gives the inverse of Pζ

{1,... ,n}. Here we note that χΘ,µ = χ{1,... ,n},ζ .
Suppose u ∈ A(G/K; ζ) satisfies (3.5). Since βζ is G-equivariant, Corollary 2.5 i) assures

DIJ (−µk −nk−1)βζ(u) = 0 for #I = #J = n−nk +nk−1 +1 and k = 1, . . . , L. Fix k with
nk − nk−1 > 1, choose io and jo with nk−1 < io < jo ≤ nk and put I = {n, n− 1, . . . , nk +
1, io, nk−1, nk−1 − 1, . . . , 1} and J = {n, n− 1, . . . , nk + 1, jo, nk−1, nk−1 − 1, . . . , 1}. Then
it is clear from the definition of DIJ that

DIJ (−µk − nk−1) ≡
n∏

ν=nk+1

(Eνν − µk − nk + ν) · Eiojo

·
nk−1∏
ν=1

(Eνν − µk − nk−1 + ν − 1) mod U(g)n

and for ϕ ∈ B(G/P ; ζ) we have

DIJ (−µk − nk−1)ϕ

=
n∏

ν=nk+1

(ζν − µk − nk + ν) · Eiojo ·
nk−1∏
ν=1

(ζν − µk − nk−1 + ν − 1)ϕ.
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If ℓ < k and nℓ−1 < ν ≤ nℓ, then ζν − µk − nk−1 + ν − 1 = (µℓ + ν)− (µk + nk−1 + 1) ̸= 0,
which follows from (5.5) because of (3.7). Similarly if ℓ ≥ k and nℓ < ν ≤ nℓ+1, then
ζν − µk − nk + ν = −

(
(µk + nk) − (µℓ+1 + ν)

)
̸= 0. Hence Eiojoβ

ζ(u) = 0. Thus we have
Xβζ(u) = 0 for any X ∈ Lie(PΘ) ∩ n̄, which means βζ(u) ∈ B(G/PΘ;µ) and we have the
theorem from Proposition 3.2 i). ¤
Remark 5.4. i) Theorem 5.1 in the case Θ = {1, n} is given in [O1], where it is conjectured
that in general there exists a system of operators D satisfying a suitable condition for γ(D)
and characterizing the image of the Poisson transform. When G = GL(n, R), the conjecture
corresponds to Theorem 5.1 and Corollary 2.11.

ii) If Reµj < Re µj+1 + 1 for j = 1, . . . , L − 1, then (5.5) is valid.
iii) In [J1] and [J2] some differential equations characterizing ImP0

Θ are given, which are
less explicit than ours.

iv) Let wΘ ∈ Sn with Ad(wΘ)n̄ ∩ n = Lie(PΘ) ∩ n. As is remarked in [O1], ImPµ
Θ =

ImPζ′

{1,... ,n} with ζ ′j = ζwΘ(j) + wΘ(j) − j and hence for η ∈ Cn, it is interesting to study
the system of differential equations characterizing ImPη

{1,... ,n}.

6. Hypergeometric functions

In general, suppose G is a linear reductive Lie group and moreover suppose that we are
given three closed subgroups PΘ, Q1 and Q2 of G and their finite dimensional representations
(τΘ, VΘ), (τ1, V1) and (τ2, V2), respectively, which satisfy the conditions

PΘ is a parabolic subgroup of G,(6.1)

the double cosets Qj\G/PΘ have open cosets for j = 1 and 2.(6.2)

Define the degenerate principal series as in §3:

B(G/PΘ; τΘ) = {ϕ(g) ∈ B(G) ⊗ VΘ; ϕ(gp) = τΘ(p−1)ϕ(g) for p ∈ PΘ}.

Let PΘ = LΘNΘ be a Levi decomposition of PΘ. Fix a Cartan involution θ of G with
θ(LΘ) = LΘ. Then K = {g ∈ G; θ(g) = g} is a maximal compact subgroup of G. Let V ∗

Θ

be the dual space of VΘ and let τ∗
Θ be the representation of PΘ on V ∗

Θ such that

(6.3) B(G/PΘ; τΘ) ×A(G/PΘ; τ∗
Θ) ∋ (ϕ, ψ) 7→ ⟨ϕ, ψ⟩Θ =

∫
K

⟨ϕ(k), ψ(k)⟩dk ∈ C

defines a G-invariant bilinear form. Note that (τ∗
Θ, V ∗

Θ) is the tensor product of the contra-
gredient representation of τΘ and the character det(Ad) of PΘ on nΘ = Lie(NΘ), and that
if ⟨ϕ(k), ψ(k)⟩ is an integrable function on K,

(6.4) ⟨ϕ, ψ⟩Θ =
∫

N̄Θ

⟨ϕ(n), ψ(n)⟩dn

with a suitably normalized Haar measure dn on N̄Θ = θ(NΘ).

Definition 6.1. For given functions ϕ ∈ B(G/PΘ; τΘ) ⊗ V1 and ψ ∈ B(G/PΘ; τ∗
Θ) ⊗ V2

satisfying

(6.5)
ϕ(q1x) = τ1(q1)ϕ(x) for q1 ∈ Q1,

ψ(q2x) = τ2(q2)ψ(x) for q2 ∈ Q2,

we call a V1 ⊗ V2-valued function

(6.6) Φϕ,ψ(x) =
∫

K

⟨ϕ(xk), ψ(k)⟩dk
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on G a hypergeometric function.

By the G-invariance of the bilinear form we have

(6.7) Φϕ,ψ(q1xq2) = τ1(q1)τ2(q−1
2 )f(x) for (q1, q2) ∈ Q1 × Q2

and for elements D of the universal enveloping algebra U(g) of C ⊗ Lie(G)

(6.8) πD(Φϕ,ψ) = 0 if πD(ϕ) = 0.

Note that the following map defines a G-homomorphism (cf. (4.7)):

(6.9) B(G/PΘ; τΘ) ∋ f 7→ (Tψf)(x) =
∫

K

⟨f(xk), ψ(k)⟩dk ∈ B(G/Q2; τ2).

Example 6.2. Suppose PΘ is a minimal parabolic subgroup. If Q1 and Q2 are maximal
compact subgroups, the integral representations of the corresponding hypergeometric func-
tions are Eisenstein integrals. In particular, if τ1 and τ2 are trivial representations, we have
the integral representations of zonal spherical functions.

If the parameter of the representation becomes degenerate, the zonal spherical function
satisfies more differential equations (cf. [Kr] for an example). When G = GL(n, R) and the
parameter corresponds to the degenerate principal series for P{1,n}, it satisfies equations
(3.5) with #I = #J = 2 (cf. Theorem 5.1) and the radial part of this zonal spherical
function is given by Lauricella’s FD (cf. [E]).

Now we will consider the case where G = GL(n, R) and furthermore PΘ and Q2 are
parabolic subgroups. In particular, we examine the case where they are maximal, namely,
Θ = {ℓ, n} and Q2 = P{k,n}. Suppose ℓ < k < n and n = mℓ with a positive integer m
satisfying m > 1. To assure the existence of the nontrivial intertwining operator (6.9), we
assume τΘ = τµ,0 with µ = (k, 0) ∈ C2. In this case, the integral transformation (4.11)

with w =
(

1 2 ··· ℓ ℓ+1 ℓ+2 ··· k k+1 ··· n

k−ℓ+1 k−ℓ+2 ··· k 1 2 ··· k−ℓ k+1 ··· n

)
converges for any continuous function

f ∈ B(G/PΘ; τΘ). Note that the corresponding kernel function is a measure whose support
is the compact double coset in Q2\G/PΘ and N̄w =

{(
xij

)
∈ G; xij = δij if i ≥ ℓ or j ≤

ℓ or j > k
}
.

Lemma 6.3. Under the notation above we have a G-homomorphism

(6.10) Tw : B(G/P{ℓ,n}; (k, 0)) → B(G/P{k,n}; (ℓ, 0)).

Proof. Let f ∈ B(G/P{ℓ,n}; (k, 0)). From (4.9), (4.12) and (4.13) we have Twf ∈ B(G/P ;µ)
with µ = ℓ(e1+· · ·+ek). If k < i < j, then w−1Eijw commutes with any element of N̄w and
we have Eijf = 0. By the natural identification GL(k, R) ≃ GL(k, R) ⊗ In−k ⊂ GL(n, R),
we have an imbedding N̄w ⊂ GL(k, R). Here In−k is the identity matrix of size n − k.

For a continuous function ϕ on GL(k, R) satisfying

ϕ(np) = |det g1|β1 |det g2|β2ϕ(n) for p =
(

g1 0

∗ g2

)
∈ SL(k, R)

with g1 ∈ GL(ℓ, R) and g2 ∈ GL(k − ℓ, R), the integration
∫

N̄w
ϕ(n)dn or equivalently,∫

SO(k)
ϕ(k)dk is left SL(k, R)-invariant if β2−β1 = −k, which corresponds to −2ρΘ (cf. (4.1)

and (4.4)). Hence by putting ϕ(x) = f(gx) with g ∈ G, we clearly have the right (SL(k, R)⊗
In−k)-invariance of Twf .

The invariances we have proved imply Twf ∈ B(G/P{k,n}; (ℓ, 0)). ¤
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Through the anti-automorphism G ∋ g 7→ g−1 ∈ G, B(G/P{ℓ,n}; (k, 0)) is canonically
identified with the space of hyperfunctions ϕ on the ℓn-dimensional manifold

(6.11) M(ℓ, n) =
{(

tij

)
=

 t11 · · · t1n

. . . . . . . . . . . .
tℓ1 · · · tℓn

 ; tij ∈ R and rank
(
tij

)
= ℓ

}
which satisfy

(6.12) ϕ(g(tij)) = |det g|−kϕ((tij)) for g ∈ GL(ℓ, R).

Similarly B(G/P{k,n}; (ℓ, 0)) is canonically identified with the space of hyperfunctions Φ on
the kn-dimensional manifold

(6.13) M(k, n) =
{(

yij

)
=

 y11 · · · y1n

. . . . . . . . . . . . .
yk1 · · · ykn

 ; yij ∈ R and rank
(
yij

)
= k

}
which satisfy

(6.14) Φ(g(yij)) = |det g|−ℓΦ((yij)) for g ∈ GL(k, R).

Denoting GL(ℓ, R)+ = {g ∈ GL(ℓ, R); det g > 0}, we choose Q1 = GL(ℓ, R)+ × · · · ×
GL(ℓ, R)+ ⊂ GL(n, R) and define τ1 by

τ1(g) = (det g1)−α1 · · · (det gm)−αm for g = (g1, . . . , gm) ∈ Q1,

where α = (α1, . . . , αm) ∈ Cm with the condition

(6.15) α1 + · · · + αm + k = 0.

Let ϵ = (ϵ1, . . . , ϵm) ∈ {1,−1}m. Using a function

(6.16) |s|αp
ϵp

=
{ |s|αp if ϵps > 0,

0 if ϵps ≤ 0

on R, we give a function

(6.17) ϕ(t) =
1
2

( m∏
p=1

∣∣∣ det
(
tij

)
1≤i≤ℓ

(p−1)ℓ<j≤pℓ

∣∣∣αp

ϵp

+
m∏

p=1

∣∣∣ det
(
tij

)
1≤i≤ℓ

(p−1)ℓ<j≤pℓ

∣∣∣αp

−ϵp

)
in Definition 6.1, which belongs to B(G/P{ℓ,n}; (k, 0)).

Put xw(i)w(j) = yij for i = 1, . . . , ℓ and j = 1, . . . , n. Then in GL(n, R)

(6.18)


t11 t1k

. . . . . . .
tℓ1 tℓk

1

. . .
1

w−1


y11 ··· y1n

. . . . . . . .
yk1 ··· ykn

. . . . . . . .

. . . . . . . .

. . . . . . . .

 =


∑k

ν=1
t1νxν1 ···

∑k

ν=1
t1νxνn

. . . . . . . . . . . . . . . . . . . . . . . .∑k

ν=1
tℓνxν1 ···

∑k

ν=1
tℓνxνn

. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .

 w−1

and we have our hypergeometric function

(6.19) Φ(α, ϵ; x) =
∫

Rℓ(k−ℓ)

m∏
p=1

∣∣∣∣ det
( k∑

ν=1

tiνxνj

)
1≤i≤ℓ

(p−1)ℓ<j≤pℓ

∣∣∣∣αp

ϵp

∏
1≤i≤ℓ<j≤k

dtij

with the convention

(6.20) tij = δij if 1 ≤ j ≤ ℓ.
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Theorem 6.4. The hypergeometric function Φ(α, ϵ; x) on M(k, n) = {(xij);xij ∈ R, 1 ≤
i ≤ k, 1 ≤ j ≤ n, rank(xij) = k} satisfies the following equations.

i) A right GL(ℓ, R)+ × · · · × GL(ℓ, R)+-invariance:

Φ(xg) =
( m∏

p=1

(det gp)αp
)
Φ(x) for g = g1 ⊗ · · · ⊗ gm with gp ∈ GL(ℓ, R)+.

ii) A left GL(k, R)-invariance:

Φ(gx) = |det g|−ℓΦ(x) for g ∈ GL(k, R).

iii) Generalized Capelli operators:

(6.21)
det

( ∂

∂xiµjν

)
1≤µ≤ℓ+1
1≤ν≤ℓ+1

Φ(x) = 0

for 1 ≤ i1 < · · · < iℓ+1 ≤ k and 1 ≤ j1 < · · · < jℓ+1 ≤ n.

Proof. The GL(k, R)-dependence is clear from our argument. Note that ϕ satisfies the left
GL(ℓ, R)+ × · · · × GL(ℓ, R)+-invariance and the equations DIJ(−ℓ)ϕ = 0 for #I = #J =
ℓ + 1 (cf. Theorem 3.1). The other equations follow from the the G-equivariance of the
intertwining operator Tw combining with the coordinate transformation G ∋ g 7→ g−1,
Proposition 2.6 iii) and Proposition 3.2 ii). ¤

The two invariances in Theorem 6.4 are infinitesimally as follows:

k∑
i=1

xi,µ+ℓp
∂Φ

∂xi,ν+ℓp
= αpδµνΦ for 1 ≤ µ ≤ ℓ, 1 ≤ ν ≤ ℓ, 0 ≤ p < m,

(6.22)

n∑
ν=1

xiν
∂Φ

∂xjν
= −ℓδijΦ for 1 ≤ i ≤ k, 1 ≤ j ≤ k.(6.23)

Note that GL(n, R)/P{ℓ,n} ≃ O(n)/O(ℓ)×O(n−ℓ). Hence the definition of Φ(α, ϵ;x) is an
integration of a function on O(n)/O(ℓ)×O(n−ℓ) over its submanifold O(k)/O(ℓ)×O(k−ℓ).

Remark 6.5. Suppose ℓ = 1. The integration can be rewritten as

(6.24) Φ(α, ϵ; x) = C

∫
t21+···+t2

k
=1

n∏
j=1

∣∣∣ k∑
p=1

tpxpj

∣∣∣αp

ϵp

ω̂

with a suitable constant C and

(6.25) ω̂ =
k∑

p=1

(−1)p+1tpdt1 ∧ dt2 ∧ · · · ∧ dtp−1 ∧ dtp+1 ∧ · · · ∧ dtk.

This integral representation coincides with the one given in [G] and the corresponding
equations in Theorem 6.4 with ℓ = 1 are same as in [GG]. This hypergeometric function is
also studied by [A].

Remark 6.6. Let (τp, Vp) be representation of GL(ℓ, R) for p = 1, . . . ,m and put τ =
(τ1, . . . , τm) and V = V1 ⊗ · · · ⊗ Vm. Choose v ∈ V satisfying

(6.26) τ1(g) ⊗ · · · ⊗ τm(g)v = |det g|kv for g ∈ GL(ℓ, R)
18



and define endomorphisms of Vp for ℓ × ℓ-matrices (xij):

(6.27) |πp(x)|ϵp =
{

τ−1
p (x) if ϵp det x > 0,

0 if ϵp det x ≤ 0.

We have V -valued hypergeometric functions

(6.28) Φ(τ, ϵ, v; x) =
∫

Rℓ(k−ℓ)

∣∣∣π1

( k∑
ν=1

tiνxνj

)
1≤i≤ℓ
0<j≤ℓ

∣∣∣
ϵ1
⊗

· · · ⊗
∣∣∣πm

( k∑
ν=1

tiνxνj

)
1≤i≤ℓ

(m−1)ℓ<j≤mℓ

∣∣∣
ϵm

v
∏

1≤i≤ℓ<j≤k

dtij .

Then Φ(τ, ϵ, v; x) satisfy

(6.29) Φ(xg) = τ−1(g)Φ(x) for g ∈ GL(ℓ, R)+ × · · · × GL(ℓ, R)+

and the equations given in Theorem 6.4 ii) and iii).
For the analysis of hypergeometric functions in the case where G = P{ℓ,n} and Q2 =

P{k,n}, the following theorem is essential. Its proof will be given in §7.

Theorem 6.7. The intertwining operator (6.10) in Lemma 6.3 is a topological G-isomor-
phism onto the solution space V ℓ

k,n of the system (6.21) under our realization using (6.13)
and (6.14) if

(6.30) 0 < ℓ < k < n and ℓ + k < n.

Corollary 6.8. Let Q be a closed subgroup of GL(n, R) and let (τ, V ) be a finite dimensional
representation of Q. If (6.30) holds, the integral transformation R : ϕ 7→

∫
SO(k)

ϕ(kx)dk

is a bijection between S(ℓ, n; τ) and S(k, n; ℓ, τ). Here S(ℓ, n; τ) is the space of V -valued
hyperfunctions ϕ on M(ℓ, n) satisfying (6.12) and

(6.31) ϕ(tg) = τ(g−1)ϕ(t) for g ∈ Q.

Moreover S(k, n; ℓ, τ) is the space of V -valued hyperfunctions Φ(x) on M(k, n) satisfying
the equations given in Theorem 6.4 ii) and iii) and

(6.32) Φ(xg) = τ(g−1)Φ(x) for g ∈ Q.

In this corollary ‘hyperfunctions’ can be replaced by ‘Schwartz’s distributions’ or ‘C∞-
functions’ or ‘real analytic functions’, which is clear by our way of the proof.

Lastly we give other examples of Q1 for the same PΘ and Q2.

Example 6.9. For A = (Aij) ∈ gl(n, R) with n = mℓ and for µ = 1, . . . ,m and ν =
1, . . . , m, put

u1 = {A ∈ gl(n, R);Mµν(A) = 0 if µ > ν,

Mν,ν+i(A) = Mν+1,ν+i+1(A) for i = 1, . . . , m − 2 and ν = 1, . . . , m − i − 1},
Mµν(A) = (A(µ−1)ℓ+i,(ν−1)ℓ+j)1≤i≤ℓ

1≤j≤ℓ

.

If Q1 equals the closed subgroup of GL(n, R) with the Lie algebra u1, condition (6.2) is
valid and we can define hypergeometric functions with respect to the character of Q1 which
has m − 1 continuous parameters. When ℓ = 1, the hypergeometric functions correspond
to those discussed in [GRS] and [KHT].
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7. Radon transforms

Retain the notation in the previous section and put Xj = O(n)/O(j) × O(n − j) with
0 < j < n. Since G = KPΘ = KQ2 with K = O(n), we may restrict the intertwining
operator (6.10) on K and the restriction

(7.1) Rℓ
k : B(Xℓ) ∋ ϕ 7→ (Rℓ

kϕ)(g) =
∫

O(k)

ϕ(gk)dk ∈ B(Xk)

is a Radon transform for a real Grassmannian (cf. [H4, Chap. 1]). Here O(k) ≃ O(k) ⊗
In−k ⊂ O(n) and we assume (6.30).

The Radon transforms, in particular, their inversions and the range characterization, were
originated by [F], [R] and [Jf] in special cases and later studied by [H1], [GGR], [Gr1],[Gr2],
[Go1], [Go2], [Ka], [I] etc. in more general cases. The characterization of ImRℓ

k stated in
Theorem 6.7 is not clear from these references (cf. [Gr1]) and hence in this section we will
give the proof of Theorem 6.7 for the sake of completeness.

Fix an irreducible representation πΛ of O(n). Note that the dimension of O(n)-homo-
morphism of πΛ to B(Xj) is at most one because Xj are connected symmetric spaces.
Put X̃j = SO(n)/SO(j) × SO(n − j) and go = diag(−1, 1 . . . , 1,−1) ∈ SO(n). Then
X̃j is a universal covering of Xj and the fundamental group of Xj equals Z/2Z. The
function on Xj is identified with the function on X̃j which is invariant under the involution
SO(n) ∋ x 7→ goxgo.

Suppose πΛ is isomorphic to VΛ ⊂ B(Xℓ). Thanks to the assumption (6.30), Cartan-
Helgason’s theorem (cf. [Wa, Theorem 3.3.11]) says that VΛ has an O(k) × O(n − k)-fixed
vector ϕΛ, which can be normalized by ϕΛ(e) = 1 because of Lemma 7.1. Then Rℓ

kϕΛ(e) = 1
and therefore Rℓ

kVΛ ̸= {0}. Since KerRℓ
k is O(n)-invariant, the map Rℓ

k is injective.
Let n′ be a maximal positive integer with 2n′ ≤ n. Put Fµν = Eµν − Eνµ and ν̄ =

ν + (n − n′). Let t be a maximal torus of o(n, C) spanned by Hν = Fνν̄ for ν = 1, . . . , n′

and define fµ ∈ t∗C by fµ(Hν) = −iδµν . Then {f1 − f2, . . . , fn−1 − fn, gn} is a fundamental
system of the roots for the pair (o(n), t), where gn = fn−1 + fn if 2n′ = n and gn = fn

otherwise. Moreover for 1 ≤ µ < ν ≤ n′, X±
µν = Y +

µν − (±Y −
µν) are root vectors for the

positive roots fµ ± fν , respectively, by putting Y +
µν = Fµν̄ − iFµ̄ν̄ and Y −

µν = Fνµ̄ − iFµν

(cf. [Kn, Chap. IV §1 Example 2]).
Note that V ℓ

k,n is O(n)-invariant. Suppose k ≤ n
2 and πΛ is contained in V ℓ

k,n. Let
λ1f1 + · · · + λn′fn′ be the corresponding highest weight and let vΛ be the highest weight
vector in V ℓ

k,n. Cartan-Helgason’s theorem and the covering map X̃j → Xj say that λ1 ≥
· · · ≥ λk ≥ λk+1 = · · · = λn′ = 0 and that λj are even integers (cf. [Gr1], [Sr]). Suppose
there exists ν satisfying λν ̸= 0 and ℓ < ν ≤ k. Then (7.2) proves D{1,... ,ℓ,ν}{1̄,... ,ℓ̄,ν̄}vλ(e) =
(−λ1i − ℓi) · · · (−λℓi − i)(−λνi)vλ(e) and therefore vλ(e) = 0. This means vλ = 0 because
vλ is real analytic and C ⊗ g = C ⊗ Lie(P{k,n}) + C ⊗ t +

∑
1≤µ<ν≤n′ CX+

µν + CX−
µν . Thus

we have λν = 0 for ν > ℓ. Using again Cartan-Helgason’s theorem, we can conclude
that πΛ has an O(ℓ) × O(n − ℓ)-fixed vector and that ImRℓ

k is dense in V ℓ
k,n. By the

isomorphism Xk ≃ Xn−k, the same conclusion holds in the case where k ≥ n
2 . Then through

the imbedding (4.8) as a closed subspace of the Fréchet-Schwartz space B(K) (cf. [Km]),
Theorem 6.7 follows from Lemma 7.3 and the open mapping theorem.

Lemma 7.1. The intertwining function ϕΛ (cf. [Ho]) satisfies ϕΛ(e) ̸= 0.

Proof. We will prove the lemma in the same way as in the proof of [OS, Proposition 4.2]. So
suppose ϕΛ(e) = 0, put kj = o(j)⊕o(n− j) ⊂ o(n) and let qj be the orthogonal compliment
of kj in o(n) with respect to the Killing form. Put g′ = kℓ∩kk+qℓ∩qk ≃ o(n−k+ℓ)⊕o(k−ℓ).
Fix a maximal abelian subspace tℓ of qℓ ∩ qk. Note that dim tℓ = ℓ.

Let D ∈ U(o(n)) and define D′ ∈ U(g′) with D − D′ ∈ (kk ∩ qℓ)U(g) + U(g)(kℓ ∩ qk)
and put D̄ =

∫
O(ℓ)×O(k−ℓ)×O(n−k)

Ad(k)D′dk. Then (DϕΛ)(e) = (D′ϕΛ)(e) = (D̄ϕΛ)(e).
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Note that D̄ defines an invariant differential operator on the symmetric space Xo = O(n−
k + ℓ) × O(k − ℓ)/O(ℓ) × O(n − k) × O(k − ℓ). Moreover if Do ∈ U(o(n)) is kℓ-invariant,
then D′

o is kℓ ∩ kk-invariant. Note that the restricted root system for Xℓ and that of
Xo are of type Bℓ. Hence we can choose a kℓ-invariant element D̃ ∈ U(o(n)) such that
D̃′ and D̄ define the same element of U(tℓ) under the Harish-Chandra homomorphism
associated to the symmetric space Xo. Since there exists λ ∈ C with D̃ϕΛ = λϕΛ, we have
(DϕΛ)(e) = (D̃′ϕΛ)(e) = (D̃ϕΛ)(e) = λϕΛ(e) = 0. Since ϕΛ is a real analytic function on a
connected manifold, this implies ϕΛ = 0 and leads a contradiction. ¤
Lemma 7.2. For the set {ν1, . . . , νℓ+1} of positive integers satisfying 1 ≤ ν1 < . . . <
νℓ+1 ≤ n

2 ,

(7.2) D{ν1,ν2,... ,νℓ+1}{ν1,ν2,... ,νℓ+1} ≡ (Hν1 − ℓi)(Hν2 − (ℓ − 1)i) · · · (Hνℓ+1)

mod
∑

1≤p<q≤ℓ+1

(FνpνqU + Fνp νq
U + UX−

νpνq
+ UX+

νpνq
) +

∑
1≤p≤ℓ+1
1≤q≤ℓ+1

Eνpνq
U.

Proof. We show (7.2) by the induction on ℓ. We may assume νj = j. Then

D{1,... ,ℓ+1}{1,... ,ℓ+1} =
ℓ+1∑
p=1

(−1)ℓ+j+1D{1,... ,p−1,p+1,... ,ℓ+1}{1,... ,ℓ}Ep,ℓ+1

≡
ℓ∑

p=1

(−1)ℓ+p+1D{1,... ,p−1,p+1,... ,ℓ+1}{1,... ,ℓ}(Eℓ+1,p + iEp,ℓ+1 − iEℓ+1,p)

+ (H1 − (ℓ − 1)i) · · · (Hℓ−1 − i)(Hℓ)Hℓ+1

≡ i

ℓ∑
p=1

(−1)ℓ+p+1D{1,... ,p−1,p+1,... ,ℓ+1}{1,... ,p−1,ℓ+1,p+1,··· ,ℓ}

+ (H1 − (ℓ − 1)i) · · · (Hℓ−1 − i)(Hℓ)Hℓ+1

≡ −i
ℓ∑

p=1

(H1 − (ℓ − 1)i) · · · (Hp−1 − (ℓ − p + 1)i)(Hp+1 − (ℓ − p)i) · · ·Hℓ+1

+ (H1 − (ℓ − 1)i) · · · (Hℓ−1 − i)(Hℓ)Hℓ+1

= (H1 − ℓi) · · · (Hℓ − i)Hℓ+1. ¤

Lemma 7.3. i) Consider the intertwining operator

T t
w : B(G/P ; µ + ρt, ϵ) → B(G/P ; w(µ + ρ + ρt) − ρ, ϵ′)

in (4.12) with a parameter t ∈ C. Fix an integer N such that T̃ t
w = tNT t

w holomorphically
depends on t for |t| ≪ 1. Then the image of T̃ 0

w is closed in B(G/P ; w(µ + ρ) − ρ, ϵ′).
ii) The same result as above holds even if we replace the space of hyperfunctions by other

functions spaces, such as Schwartz’s distributions, C∞-functions or real analytic functions.

Proof. Suppose |t| ≪ 1. Consider the inverse intertwining operator

(7.3) T t
w−1 : B(G/P ; w(µ + ρ + ρt) − ρ, ϵ′) → B(G/P ; µ + ρt, ϵ)

and fix a positive integer N ′ so that St
w = tN

′T t
w−1 is holomorphic for t. We identify

these spaces of hyperfunctions with subspaces of B(K) which do not depend on t. Since
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T̃ t
w and St

w are topological G-isomorphisms for t ̸= 0, there exists a nonzero holomorphic
function c(t) such that St

w◦T̃ t
w = c(t) id. Let m be the order of zero of c(t) at t = 0. Then

Im T̃ 0
w =

∩m−1
ν=0 Ker( dν

dtν St
w|t=0) is closed in B(K).

ii) is clear because our proof similarly works on other function spaces. ¤
Remark 7.4. i) A proof of the injectivity of Radon transforms is given in [Gr1, §6]. But the
proof seems to be insufficient since the conclusion ϕΛ(e) ̸= 0 in Lemma 7.1 is stated just as
a consequence of the Frobenius reciprocity theorem.

ii) Theorem 6.7 (or Corollary 6.8 with Q = {e}) characterizes the image of the Radon
transform Rℓ

k on the real Grassmann manifold Xℓ (cf. (7.1)). Note that our proof naturally
gives an inversion formula (cf. [GGR]). In fact, c(t) in the proof of Lemma 7.3 is known
(cf. [GK], [Kn, Chap. VII §5]).
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