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1 Introduction

This paper is based on the talk given at the memorial conference for Shoshichi
Kobayashi (1932–2012). Serge Lang has lived for similar years (1927–2005).
The present article is dedicated to an homage to the both from the view
point of Kobayashi hyperbolic geometry. They were interested not only in
solving problems, but even more interested in understanding Mathematics.2

The main aim of this article is to survey the development of the theory of
Mordell’s Conjecture and Lang’s Conjecture in relation with the Kobayashi
hyperbolicity.

The notion of Kobayashi hyperbolic manifolds was introduced in [Ko67a],
[Ko67b] in 1967, and was treated by his monograph [Ko70]. S. Lang took it
to discuss and formulate higher dimensional Diophantine problems in [La74].
This approach was further developed by Osgood and Vojta in relation with
Nevanlinna theory in several complex analysis (cf. [Os81], [Vo87], [La91]).
This leads to a problem of “abc-Conjecture” in higher dimension, of which
counter-part in Nevanlinna theory is a second main theorem with properly
truncated counting functions (cf., e.g., [No03b], [NW14]).

Acknowledgment. The author is grateful to Professor P. Vojta for useful
discussions and his comments.

2 Kobayashi hyperbolicity and Lang’s con-

jecture

The present topics lie in the three fields, complex analysis, complex geometry
and Diophantine geometry. We recall first the Kobayashi pseudo-distance dX

of a (reduced) complex space X, which he called an intrinsic pseudo-distance:
that is, dX is characterized to be the maximum one satisfying the following.
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(i) For each complex space a pseudo-distance dX is assigned.

(ii) For every holomorphic mapping f : X → Y between two complex
spaces, f ∗dY ≤ dX holds.

(iii) If X is the unit disc ∆(1) of the Gaussian plane C, dX = d∆(1) is the
Poincaré distance on ∆(1).

If dX is a “distance”, then X is called a Kobayashi hyperbolic space. It is
immediate to see dC ≡ 0, and the following criterion of Brody is well-known:

Theorem 2.1 ([Br78]). Let X be a compact complex space. Then X is
Kobayashi hyperbolic if and only if there is no non-constant entire curve
f : C → X.

Another interesting instance is the following.

Theorem 2.2 (Royden [Ro70], [Ro71], [Ro75]). Let Tg be the Teichmüller
space of compact Riemann surfaces of genus g = 2. Then the Teichmüller
metric on Tg coincides with the Kobayashi hyperbolic metric on it.

The importance of this theorem is that the Teichmüller metric was incor-
porated into the theory of holomorphic mappings between complex manifolds
in general; the Teichmüller metric was important and useful by itself, but it
had been isolated in the theory of holomorphic mappings before.

In 1974 S. Lang proposed the following conjectures.

Conjecture 2.3 (Lang [La74]). Let k be a number field, and let Vk be an
algebraic variety defined over k. Suppose that VC is Kobayashi hyperbolic for
an embedding k ↪→ C. Then the set Vk(k) of k-rational points of Vk is at
most finite.

On the same time he formulated the analogue over function fields:

Conjecture 2.4 ([La74]). Let X → R be a proper fiber space of algebraic
varieties over C, and let X(C(R)) = Γ(R, X) denote the set of rational
points (rational sections) over R. Assume that every Xt (t ∈ R) is Kobayashi
hyperbolic.

(i) If the set X(C(R)) is infinite, there exists a splitting subspace Y → R
of X → R; i.e., Y ∼= Y0 × R.
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(ii) (Splitting case) Let V be a complex projective hyperbolic variety, and let
W be a complex algebraic variety. Then there is only a finite number
of dominant rational maps of W onto V .

The statement (ii) above was motivated by de Franchis’ Theorem: If
an algebraic curve C has genus ≥ 2, then there are at most finitely many
non-constant rational mappings from an algebraic variety W to C. For gen-
eralizations of Mordell’s Conjecture (now, Faltings’ Theorem) he took the
following two typical cases:

(a) Let A be an abelian variety defined over a number field k. Let V ⊂ A be
a subvariety such that VC does not contain a translate of a 1-parameter
subgroup. Then V (k) is finite.

(b) Let V = Ω/Γ be a fixed-point free quotient of a bounded domain
Ω ⊂ Cn by a discrete subgroup Γ ⊂ Aut(Ω). Assume that V is defined
over a number field k. Then V (k) is finite.

The common nature of V of (a) and (b) above is the Kobayashi hyper-
bolicity.

The following conjecture due to Igor Shafarevich [Sh63] played an essen-
tial role in the solution of Mordell’s Conjecture and is related to Kobayashi
hyperbolicity, too (see 1988a, 1988b and 1990c in §3).

Conjecture 2.5 (Shafarevich). Let R be a projective algebraic curve and let
S ⊂ R be a finite set. Then, for any given integer g ≥ 2 there exists at
most finitely many proper families π : X → R over R such that the fiber
Xt := π−1(t) is a smooth projective algebraic curve of genus g for t ∈ R \ S.

Remark. It is interesting to learn that I. Shafarevich was trying to find
good problems in algebraic geometry modeled after number theory.

3 Chronicle of Mordell’s and Lang’s Conjec-

tures

1960/62: S. Lang proposed Mordell’s Conjecture over function fields,
which is the 1-dimensional case of Conjecture 2.4 (i) ([La60], [La62]).

1963: Y. Manin [Ma63] gave a proof of Mordell’s Conjecture over function
fields proposed by S. Lang, but later a non-trivial gap was found in the proof
(cf. below 1990a). The method was analytic.
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1965: H. Grauert [Gr65] proved Mordell’s Conjecture over function fields
by a method of algebraic geometry. Here the notion of Grauert’s (weak)
negativity was effectively used.

1966: P. Samuel published a comprehensive lecture notes on the above
Grauert’s proof ([Sa66]).

1968: A.N. Parshin proved the Shafarevich Conjecture 2.5 under the con-
dition S = ∅, and observed that Shafarevich’s Conjecture implies Mordell’s
([Pa68]).

1971: S.Ju. Arakelov solved the general case of the Shafarevich Conjec-
ture 2.5 (Parshin-Arakelov Theorem: [Ar71]).

1975a: Motivated by the Lang Conjecture 2.4 (ii), S. Kobayashi and T.
Ochiai [KO75] proved a finiteness theorem:

Let V be a compact complex space of general type, and let W be a complex
algebraic variety. Then there are only finitely many dominant meromorphic
mappings from W to V .

1975b: D. Mumford published a comprehensive concise lecture notes on
the works of Parshin and Arakelov ([Mu75]).

1979: F.A. Bogomolov gave a proof of Mordell’s Conjecture over functions
fields by making use of algebraic surface theory (cf. [De79]).

1981: J. Noguchi generalized Grauert’s result to the higher dimensional
case under the assumption that the relative tangent bundle is negative ([No81]).

1983a: G. Faltings took up the question of the Shafarevich Conjecture
(the Parshin-Arakelov Theorem) for abelian varieties and showed that the
moduli of morphisms from an algebraic curve into Siegel space is of finite
type ([Fa83a]). This led to the following break-through (1983b).

1983b: G. Faltings proved Mordell’s Conjecture over number fields (now,
Faltings’ Theorem: [Fa83b]).

1985: J. Noguchi proved Lang’s Conjecture 2.4 (i) for hyperbolic spaces
with some geometric assumption for degenerate fibers that is automatically
fulfilled in dim Xt = 1. Therefore, in 1-dimensional case, this gives another
proof for Faltings’ Theorem (Mordell’s Conjecture) over function fields by
means of the Kobayashi hyperbolicity ([No85]).

1987: P. Vojta published a lecture notes on his approach to Diophantine
geometry from the viewpoint of Nevanlinna theory ([Vo87]).

1988a: Noguchi studied the moduli of holomorphic maps from a Zariski
open subset of a compact Kähler manifold into an arithmetic quotient M of
a bounded symmetric domain, and proved that the moduli is properly im-
mersed onto a totally geodesic submanifold of M . In the proof the Kobayashi
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hyperbolicity played an important role. The result generalizes Faltings’ Parshin-
Arakelov Theorem for abelian varieties in 1983a above ([No88]).

1988b: Y. Imayoshi and H. Shiga gave another proof of Parshin-Arakelov
Theorem (the Shafarevich Conjecture 2.5) by means of Teichmüller theory,
and hence Faltings’ Theorem (Mordell’s Conjecture) over function fields.
Here, Theorem 2.2 of Royden played an essential role ([IS88]).

1990a: R.F. Coleman noticed that there was a gap in the above proof of
Manin in 1963, and completed Manin’s proof ([Co90], cf. also [Ch91]).

1990b: C. Horst proved Lang’s Conjecture 2.4 (ii) for compact hyperbolic
Kähler manifold V ([Ho90]).

1990c: Using a method involving Kobayashi hyperbolicity, A.N. Parshin
proved a finiteness theorem that contains Mordell’s Conjecture over function
fields as a special case ([Pa90]).

1990d: E. Bombieri gave a proof of Faltings’ Theorem by Diophantine
approximation theory ([Bo90]).

1991: P. Vojta gave a proof of Faltings’ Theorem based on his function
field version ([Vo91]), which was in fact earlier than Bombieri’s proof above.

1991/94: Faltings proved Lang’s Conjecture 2.3 for subvarieties of abelian
varieties over number fields ([Fa91], [Fa94]).

1992: Noguchi proved Lang’s Conjecture 2.4 (ii) for any compact Kobayashi
hyperbolic complex space with no assumption on singularity, algebraicity nor
being Kähler ([No92]). Cf. Makoto Suzuki [SuMk94] for the non-compact
generalization.

1996/99: Vojta generalized Faltings’ results of 1991/94 above for semi-
abelian varieties ([Vo96], [Vo99]). Cf. M. McQuillan [Mc95] and A. Buium
[Bu92] for related results.

2002/08: J. Noguchi, J. Winkelmann and K. Yamanoi proved the second
main theorem with counting functions truncated to level one, which is an
analytic analogue of “abc-Conjecture in semi-abelian varieties” ([No96]) for
entire curves in semi-abelian varieties ([NWY02], [NWY08]).

2003: Noguchi showed an example of Kobayashi hyperbolic projective
hypersurface (defined by one equation, the least constraint for algebraic va-
rieties) defined over Q, which carries only finitely many rational points over
any fixed number field ([No03a]).

Remark. Cf. [No07] for an arithmetic Kobayashi pseudo-distance, and
[Ru01], [BG06], [NW14] for more detailed treatment on Nevanlinna theory
and Diophantine approximation.
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4 Open Problems

Here we recall some open problems on Kobayashi hyperbolic spaces.

Problem 4.1 ([No93]). Let X be a fixed compact complex space. Are there
only finitely many pairs (Y, f) up to isomorphism such that Y is a compact
Kobayashi hyperbolic space and f : X → Y is a surjective holomorphic map?

Problem 4.2. Does there exist a non-algebraic or a non-Kähler compact
hyperbolic manifold?

Problem 4.3. Is a compact Kobayashi hyperbolic manifold of general type?

A holomorphic map from the punctured disk ∆∗(⊂ C) into a compact
Kobayashi hyperbolic space extends holomorphically over the whole disk ∆
to X. Therefore, it is interesting to ask

Problem 4.4 ([No93]). Let E ⊂ ∆(⊂ C) be a subset of logarithmic ca-
pacity zero of a disk ∆. Let f : ∆ \ E → X be a holomorphic map into
a compact Kobayashi hyperbolic space (or manifold). Then, does f extend
holomorphically over ∆ to X?

Remark. T. Nishino [Ni79] proved the case of dimX = 1 (cf. [SuMs87]
for another proof), and Masakazu Suzuki [SuMs88] proved the case when X
has a universal covering biholomorphic to a bounded polynomially convex
domain of Cn with n = dim X.
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