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Abstract

We deal with the Levi problem (Hartogs’ inverse problem) for ramified Riemann
domains by introducing a positive scalar function ρ(a,X) for a complex manifold
X with a global frame of the holomorphic cotangent bundle by closed Abelian
differentials, which is an analogue of Hartogs’ radius. We obtain some geometric
conditions in terms of ρ(a,X) which imply the validity of the Levi problem for
finitely sheeted ramified Riemann domains over Cn. On the course, we give a new
proof of the Behnke–Stein Theorem.

1 Introduction and main results

1.1 Introduction

In 1943 K. Oka wrote a manuscript in Japanese, solving affirmatively the Levi problem

(Hartogs’ inverse problem) for unramified Riemann domains over complex number space

Cn of arbitrary dimension n ≥ 2,1) and in 1953 he published Oka IX [26] to solve it by

making use of his First Coherence Theorem proved in Oka VII [24] 2); there, he put a

special emphasis on the difficulties of the ramified case (see [26], Introduction 2 and §23,

[25], Introduction). H. Grauert also emphasized the problem to generalize Oka’s Theo-

rem (IX) to the case of ramified Riemann domains in his lecture at OKA 100 Conference

Kyoto/Nara 2001. Oka’s Theorem (IX) was generalized for unramified Riemann domains

∗Math. Ann. 364(2016)Online First.
†Research supported in part by Grant-in-Aid for Scientific Research (C) 15K04917.
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1)This fact was written twice in the introductions of his two papers, [25] and [26]: The manuscript

was written as a research report dated 12 Dec. 1943, sent to Teiji Takagi, then Professor at the Imperial
University of Tokyo, and now one can find it in [29].

2)It is noted that Oka VII [24] is different to his original, Oka VII in [27]; therefore, there are two versions
of Oka VII. The English translation of Oka VII in [28] was taken from the latter, but unfortunately in
[28] all the records of the received dates of the papers were deleted.
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over complex projective n-space Pn(C) by R. Fujita [10] and A. Takeuchi [32]. On the

other hand, H. Grauert [18] gave a counter-example to the problem for ramified Riemann

domains over Pn(C), and J.E. Fornæss [7] gave a counter-example to it over Cn. There-

fore, it is natural to look for geometric conditions which imply the validity of the Levi

problem for ramified Riemann domains.

Under a geometric condition (Cond A, 1.1) on a complex manifold X, we introduce

a new scalar function ρ(a,Ω)(> 0) for a subdomain Ω ⊂ X, which is an analogue of

the boundary distance function in the unramified case (cf. Remark 2.1 (i)). We prove an

estimate of Cartan-Thullen type ([4]) for the holomorphically convex hull K̂Ω of a compact

subset K b Ω with ρ(a,Ω) (see Theorem 1.3).

In the one-dimensional case, by making use of ρ(a,Ω) we give a new proof of Behnke–

Stein’s Theorem: Every open Riemann surface is Stein. In the known methods one uses

a generalization of the Cauchy kernel or some functional analytic method (cf. Behnke–

Stein [2], Kusunoki [16], Forster [8], etc.). Here we use Oka’s Jôku-Ikô combined with

Grauert’s Finiteness Theorem, which is now a rather easy result by a simplification of the

proof, particularly in the one-dimensional case (see §1.2.2): Oka’s Jôku-Ikô (transform

to a higher space) is a principal method of K. Oka to reduce a difficult problem over a

certain general space to the one over a simpler space such as a polydisk, but of higher

dimension, and to solve it (cf. K. Oka [27], e.g., [20]). We see here how the scalar ρ(a,Ω)

works well in this case.

Now, let π : X → Cn be a Riemann domain, possibly ramified, such that X satisfies

Cond A. Then, we prove that a domain Ω b X is a domain of holomorphy 3) if and only

if Ω is holomorphically convex (see Theorem 1.12). Moreover, if X is exhausted by a

continuous family of relatively compact domains of holomorphy, then X is Stein (see

Theorem 1.17; see §3 (a) for a counter-example which does not satisfy Cond A).

We next consider a boundary condition (Cond B, 1.18) with ρ(a,X). We assume that

X satisfies Cond A and that X
π→ Cn satisfies Cond B and is finitely sheeted. We prove

that if X is locally Stein over Cn, then X is Stein (see Theorem 1.19; see §3 (a) for a

counter-example, not satisfying the conditions).

We give the proofs in §2. In §3 we will discuss some examples and properties of ρ(a,X).

Acknowledgment. The author is very grateful to Professor J.E. Fornæss for the clarifi-

cation that his example ([7]) does not satisfy Cond A (§3 (a)), and to Professor Makoto

Abe for interesting discussions on the present theme.

3)Cf. Definition 1.2
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1.2 Main results

1.2.1 Scalar ρ(a,Ω)

Let X be a connected complex manifold of dimension n with holomorphic cotangent

bundle T(X)∗. We assume:

Condition 1.1 (Cond A). There exists a global frame ω = (ω1, . . . , ωn) of T(X)∗ over

X such that dωj = 0, 1 ≤ j ≤ n.

Let Ω ⊂ X be a subdomain. With Cond A we consider an Abelian integral (a path

integral) of ω in Ω from a ∈ Ω:

α : x ∈ Ω −→ ζ = (ζj) =

(∫ x

a

ω1, . . . ,

∫ x

a

ωn
)
∈ Cn. (1.1)

We denote by P∆ =
∏n

j=1{|ζj| < 1} the unit polydisk of Cn with center at 0 and and set

ρP∆ =
n∏
j=1

{|ζj| < ρ}

for ρ > 0. Then, α(x) = ζ has the inverse φa,ρ0(ζ) = x on a small polydisk ρ0P∆:

φa,ρ0 : ρ0P∆ −→ U0 = φa,ρ0(ρ0P∆) ⊂ Ω. (1.2)

Then we extend analytically φa,ρ0 to φa,ρ : ρP∆ → X, ρ ≥ ρ0, as much as possible, and

set

ρ(a,Ω) = sup{ρ > 0 : ∃φa,ρ : ρP∆→ X, φa,ρ(ρP∆) ⊂ Ω} ≤ ∞. (1.3)

Then we have the inverse of the Abelian integral α on the polydisk of the maximal radius

φa : ρ(a,Ω)P∆ −→ Ω. (1.4)

To be precise, we should write

ρ(a,Ω) = ρ(a, ω,Ω) = ρ(a,P∆, ω,Ω), (1.5)

but unless confusion occurs, we use ρ(a,Ω) for notational simplicity.

We immediately see that (cf. §2.1)

(i) ρ(a,Ω) is finitely valued and continuous, unless ρ(a,Ω) ≡ ∞;

(ii) ρ(a,Ω) ≤ inf{|v|ω : v ∈ T(X)a, FΩ(v) = 1}, where FΩ denotes the Kobayashi hy-

perbolic infinitesimal form of Ω, and |v|ω = maxj |ωj(v)|, the maximum norm of v

with respect to ω = (ωj).
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For a subset A ⊂ Ω we write

ρ(A,Ω) = inf{ρ(a,Ω) : a ∈ A}.

For a compact subset K b Ω we denote by K̂Ω the holomorphically convex hull of K

defined by

K̂Ω =
{
x ∈ Ω : |f(x)| ≤ max

K
|f |, ∀f ∈ O(Ω)

}
,

where O(Ω) is the set of all holomorphic functions on Ω. If K̂Ω b Ω for every K b Ω, Ω

is called a holomorphically convex domain.

Definition 1.2. For a relatively compact subdomain Ω b X of a complex manifold X we

may naturally define the notion of domain of holomorphy: i.e., there is no point b ∈ ∂Ω

such that there are a connected neighborhood U of b in X and a non-empty open subset

V ⊂ U ∩ Ω satisfying that for every f ∈ O(Ω) there exists g ∈ O(U) with f |V = g|V .

The following theorem of the Cartan–Thullen type (cf. [4]) is our first main result.

Theorem 1.3. Let X be a complex manifold satisfying Cond A. Let Ω b X be a relatively

compact domain of holomorphy, let K b Ω be a compact subset, and let f ∈ O(Ω).

Assume that

|f(a)| ≤ ρ(a,Ω), ∀a ∈ K.
Then we have

|f(a)| ≤ ρ(a,Ω), ∀a ∈ K̂Ω. (1.6)

In particular, we have

ρ(K,Ω) = ρ(K̂Ω,Ω). (1.7)

Corollary 1.4. Let Ω b X be a domain of a complex manifold X, satisfying Cond A.

Then, Ω is a domain of holomorphy if and only if Ω is holomorphically convex.

1.2.2 The Behnke–Stein Theorem for open Riemann surfaces

We apply the scalar ρ(a,Ω) introduced above to give a new proof of the Behnke–Stein

Theorem for the Steinness of open Riemann surfaces, which is one of the most basic facts

in the theory of Riemann surfaces: Here, we do not use the Cauchy kernel generalized on

a Riemann surface (cf. [2], [16]), nor a functional analytic method (cf., e.g., [8]), but use

Oka’s Jôku-Ikô together with Grauert’s Finiteness Theorem. This is the very difference

of our new proof to the known ones.

To be precise, we recall the definition of a Stein manifold:

Definition 1.5. A complex manifold M of pure dimension n is called a Stein manifold

if the following Stein conditions are satisfied:
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(i) M satisfies the second countability axiom.

(ii) For distinct points p, q ∈M there is an f ∈ O(M) with f(p) 6= f(q).

(iii) For every p ∈M there are fj ∈ O(M), 1 ≤ j ≤ n, such that df1(p)∧· · ·∧dfn(p) 6= 0.

(iv) M is holomorphically convex.

We will rely on the following H. Grauert’s Finiteness Theorem in the one-dimensional

case, which is now a rather easy consequence of the Oka–Cartan Fundamental Theorem,

thanks to a very simplified proof of L. Schwartz’s Finiteness Theorem based on the idea

of Demailly’s Lecture Notes [5], Chap. IX (cf. [20], §7.3 for the present form):

L. Schwartz’s Finiteness Theorem. Let E be a Fréchet space and let F be a Baire

vector space. Let A : E → F be a continuous linear surjection, and let B : E → F

be a completely continuous linear map. Then, (A + B)(E) is closed and the cokernel

Coker(A+B) is finite dimensional.

Here, a Baire space is a topological space such that Baire’s category theorem holds. The

statement above is slightly generalized than the original one, in which F is also assumed

to be Fréchet (cf. L. Schwartz [30], Serre [31], Bers [3], Grauert-Remmert [13], Demailly

[5]).

Grauert’s Theorem in dimension 1. Let X be a Riemann surface, and let Ω b X

be a relatively compact subdomain. Then,

dimH1(Ω,OΩ) <∞. (1.8)

Here, OΩ denotes the sheaf of germs of holomorphic functions over Ω. In case Ω(= X)

itself is compact, this theorem reduces to the Cartan–Serre Theorem in dimension 1.

N.B. It is the very idea of Grauert to claim only the finite dimensionality, weaker than

a posteriori statement, H1(Ω,OΩ) = 0: It makes the proof considerably easy.

By making use of this theorem we prove an intermediate result:

Lemma 1.6. Every relatively compact domain Ω of X is Stein.

Let Ω b Ω̃ b X be subdomains of an open Riemann surface X. Since Ω̃ is Stein

by Lemma 1.6 and H2(Ω̃,Z) = 0, we see by the Oka Principle that the line bundle of

holomorphic 1-forms over Ω̃ is trivial, and so we have:

Corollary 1.7. There exists a holomorphic 1-form ω on Ω̃ without zeros.

By making use of ω above we define ρ(a,Ω) as in (1.3) with X = Ω̃.

Applying Oka’s Jôku-Ikô combined with ρ(a,Ω), we give the proofs of the following

approximations of the Runge type:
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Lemma 1.8. Let Ω′ be a domain such that Ω b Ω′ b Ω̃, and let K b Ω be a compact

subset. Assume that***

max
b∈∂Ω

ρ(b,Ω′) < ρ(K,Ω). (1.9)

Then, every f ∈ O(Ω) can be approximated uniformly on K by elements of O(Ω′).

Theorem 1.9. Assume that no component of Ω̃ \ Ω̄ is relatively compact in Ω̃. Then,

every f ∈ O(Ω) can be approximated uniformly on compact subsets of Ω by elements of

O(Ω̃).

Finally we give another proof of

Theorem 1.10 (Behnke–Stein [2]). Every open Riemann surface X is Stein.

1.2.3 Riemann domains

Let X be a complex manifold, and let π : X → Cn (resp. Pn(C)) be a holomorphic map.

Definition 1.11. We call π : X → Cn (resp. Pn(C)) a Riemann domain (over Cn (resp.

Pn(C))) if every fiber π−1z with z ∈ Cn (resp. Pn(C)) is discrete; if dπ has the maximal

rank everywhere, it is called an unramified Riemann domain (over Cn (resp. Pn(C))). A

Riemann domain which is not unramified, is called a ramified Riemann domain. If the

cardinality of π−1z is bounded in z ∈ Cn (resp. Pn(C)), then we say that π : X → Cn

(resp. Pn(C)) is finitely sheeted or k-sheeted with the maximum k of the cardinalities of

π−1z (z ∈ Cn (resp. Pn(C))).

If π : X → Cn (resp. Pn(C)) is a Riemann domain, then the pull-back of the Euclidean

metric (resp. the Fubini–Study metric) by π is a degenerate (pseudo-)hermitian metric

on X, which leads a distance function on X; hence, X satisfies the second countability

axiom.

Note that unramified Riemann domains over Cn naturally satisfy Cond A.

We have:

Theorem 1.12. Let π : X → Cn be a Riemann domain possibly ramified such that X

satisfies Cond A.

(i) Let Ω b X be a subdomain. Then, Ω is a domain of holomorphy if and only if Ω is

Stein.

(ii) If X is Stein, then − log ρ(a,X) is either identically −∞, or continuous plurisub-

harmonic.

Definition 1.13 (Locally Stein). (i) Let X be a complex manifold. We say that a

subdomain Ω b X is locally Stein if for every a ∈ Ω̄ (the topological closure) there

is a neighborhood U of a in X such that Ω ∩ U is Stein.
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(ii) Let π : X → Cn be a Riemann domain, possibly ramified. If for every point z ∈ Cn

there is a neighborhood V of z such that π−1V is Stein or empty, X is said to be

locally Stein over Cn (cf. [7]).

In general, the Levi problem is the one to asks if a locally Stein domain (over Cn) is

Stein.

Remark 1.14. The following statement is a direct consequence of Elencwajg [6], Théorème

II combined with Andreotti–Narasimhan [1], Lemma 5:

Theorem 1.15. Let π : X → Cn be a ramified Riemann domain, and let Ω b X be a

subdomain. If Ω is locally Stein, then Ω is a Stein manifold.

Therefore the Levi problem for a ramified Riemann domain X
π→Cn is essentially at

the “infinity” of X.

Definition 1.16. Let X be a complex manifold in general. A family {Ωt}0≤t≤1 of subdo-

mains Ωt of X is called a continuous exhaustion family of subdomains of X if the following

conditions are satisfied:

(i) Ωt b Ωs b Ω1 = X for 0 ≤ t < s < 1,

(ii)
⋃
t<s Ωt = Ωs for 0 < s ≤ 1,

(iii) ∂Ωt =
⋂
s>t Ωs \ Ωt for 0 ≤ t < 1.

Theorem 1.17. Let π : X → Cn be a Riemann domain, possibly ramified. Assume

that there is a continuous exhaustion family {Ωt}0≤t≤1 of subdomains of X such that for

0 ≤ t < 1,

(i) Ωt satisfies Cond A,

(ii) Ωt is a domain of holomorphy (or equivalently, Stein).

Then, X is Stein, and for any fixed 0 ≤ t < 1 a holomorphic function f ∈ O(Ωt) can be

approximated uniformly on compact subsets by elements of O(X).

Let π : X → Cn be a Riemann domain such that X satisfies Cond A and let ∂X denote

the ideal boundary of X over Cn (called the accessible boundary in Fritzsche–Grauert [9],

Chap. II §9). We set

Γ = π(∂X) (the topological closure).

To deal with the total space X we consider the following condition which is a sort of

localization principle:
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Condition 1.18 (Cond B). (i) For any sequence {aν}∞ν=1 of points of X such that it

has no accumulation point in X and {π(aν)}∞ν=1 is convergent, lim
ν→∞

ρ(aν , X) = 0.

(ii) For every point z ∈ Γ there are arbitrarily small neighborhoods V b W of z in Cn

such that

ρ(a,X) = ρ(a, W̃ ), ∀a ∈ Ṽ , (1.10)

where Ṽ (resp. W̃ ) is an arbitrary connected component of π−1V (resp. π−1W ) with

Ṽ ⊂ W̃ .

For the Levi problem we prove:

Theorem 1.19. Let π : X → Cn be a finitely sheeted ramified Riemann domain. Assume

that Cond A and Cond B are satisfied. If X is locally Stein over Cn, X is a Stein manifold.

Remark 1.20. Fornæss’ counter-example ([7]) for the Levi problem in the ramified case

is a 2-sheeted Riemann domain over Cn, but it does not satisfy Cond A (see §3 (a)).

2 Proofs

2.1 Scalar ρ(a,Ω)

Let X be a complex manifold satisfying Cond A. We here deal with some elementary

properties of ρ(a,Ω) defined by (1.3) for a subdomain Ω ⊂ X. We use the same notion

as in §1.2.1.

First, we suppose that ρ(a0,Ω) = ∞ at a point a0 ∈ Ω. Then, φa0 : Cn → Ω is

surjective, and ρ(a,Ω) ≡ ∞ for a ∈ Ω. In fact, for any a ∈ Ω we take a path Ca from a0

to a in Ω and set ζ = α(a). By the definition, φa0(ζ) = a, and it follows that ρ(a,Ω) =∞.

Thus, we have:

either ρ(a,Ω) ≡ ∞, or ρ(a,Ω) <∞, ∀a ∈ Ω. (2.1)

Suppose that the latter case above holds. We identify ρ0P∆0 and U0 in (1.2). For

b, c ∈ ρ0P∆ we have

ρ(b,Ω) ≥ ρ(c,Ω)− |b− c|,
where |b − c| denotes the maximum norm with respect to the coordinate system (ζj) ∈
ρ0P∆. Thus,

ρ(c,Ω)− ρ(b,Ω) ≤ |b− c|.
Changing b and c, we have the converse inequality, so that

|ρ(b,Ω)− ρ(c,Ω)| ≤ |b− c|, b, c ∈ ρ0P∆ ∼= U0. (2.2)

Therefore, ρ(a,Ω) is a continuous function in a ∈ Ω.
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Let v =
∑n

j=1 v
j
(
∂
∂ζj

)
a
∈ T(Ω)a be a holomorphic tangent vector at a ∈ Ω. Then, we

set

|v|ω = max
1≤j≤n

|vj|.

With |v|ω = 1 we have by the definition of the Kobayashi hyperbolic infinitesimal metric

FΩ (cf. [15], [21])

FΩ(v) ≤ 1

ρ(a,Ω)
.

Therefore we have

ρ(a,Ω) ≤ inf
v:FΩ(v)=1

|v|ω. (2.3)

Provided that ∂Ω 6= ∅, it immediately follows that

lim
a→∂Ω

ρ(a,Ω) = 0. (2.4)

Remark 2.1. (i) We consider an unramified Riemann domain π : X → Cn. Let

(z1, . . . , zn) be the natural coordinate system of Cn and put ω = (π∗dzj) (Cond A).

Then the boundary distance function δP∆(a, ∂X) to the ideal boundary ∂X with respect

to the unit polydisk P∆ is defined as the supremum of such r > 0 that X is univalent

onto π(a) + rP∆ in a neighborhood of a (cf., e.g., [14], [20]). Therefore, in this case we

have that

ρ(a,X) = δP∆(a, ∂X), (2.5)

and Cond B is naturally satisfied. As for the difficulty to deal with the Levi problem for

ramified Riemann domains, K. Oka wrote in IX [26], §23:

“ Pour le deuxième cas les rayons de Hartogs cessent de jouir du rôle; ceci

présente une difficulté qui m’apparait vraiment grande.”

The above “le deuxième cas” is the ramified case.

(ii) ForX satisfying Cond A one can define Hartogs’ radius ρn(a,X) as follows. Consider

φa,(rj) : P∆(rj)→ X for a polydisk P∆(rj) about 0 with a poly-radius (r1, . . . , rn) (rj > 0),

which is an inverse of α given by (1.1). Then, one defines ρn(a,X) as the supremum of

such rn > 0; for other j, it is similarly defined. Hartogs’ radius ρn(a,Ω) is not necessarily

continuous, but lower semi-continuous. In the present paper, the scalar ρ(a,X) defined

under Cond A plays the role of “Hartogs’ radius”.

Remark 2.2. Even if ρ(a, ω,X) = ∞ (cf. (1.5)), “ρ(a, ω′, X) < ∞” may happen for

another choice of ω′ (cf. §3).
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2.2 Proof of Theorem 1.3

For a ∈ Ω we let

φa : ρ(a,Ω)P∆ −→ Ω

be as in (1.4). We take an arbitrary element u ∈ O(Ω). With a fixed positive number

s < 1 we set

L =
⋃
a∈K

φa
(
s|f(a)|P∆

)
.

Then it follows from the assumption that L is a compact subset of Ω. Therefore there is

an M > 0 such that

|u| < M on L.

Let ∂j be the dual vector fields of ωj, 1 ≤ j ≤ n, on X. For a multi-index ν = (ν1, . . . , νn)

with non-negative integers νj ∈ Z+ we put

∂ν = ∂ν1
1 · · · ∂νnn ,

|ν| = ν1 + · · ·+ νn,

ν! = ν1! · · · · · νn! .

By Cauchy’s inequalities for u ◦ φa on s|f(a)|P∆ with a ∈ K we have

1

ν!
|∂νu(a)| · |sf(a)||ν| ≤M, ∀a ∈ K, ∀ν ∈ (Z+)n.

Note that (∂νu) · f |ν| ∈ O(Ω). By the definition of K̂Ω,

1

ν!
|∂νu(a)| · |sf(a)||ν| ≤M, ∀a ∈ K̂Ω, ∀ν ∈ (Z+)n. (2.6)

For a ∈ K̂Ω we consider the Taylor expansion of u ◦ φa(ζ) at a:

u ◦ φa(ζ) =
∑

ν∈(Z+)n

1

ν!
∂νu(a)ζν . (2.7)

We infer from (2.6) that (2.7) converges at least on s|f(a)|P∆. Since Ω is a domain of

holomorphy, we have that ρ(a,Ω) ≥ s|f(a)|. Letting s↗ 1, we deduce (1.6).

By definition, ρ(K,Ω) ≥ ρ(K̂Ω,Ω). The converse is deduced by applying the result

obtained above for a constant function f ≡ ρ(K,Ω); thus (1.7) follows.

Proof of Corollary 1.4: Assume that Ω b X is a domain of holomorphy. Let K b Ω.

It follows from (1.7) that K̂Ω b Ω, and hence Ω is holomorphically convex. The converse

is clear.

Remark 2.3. (i) Replacing P∆ by the unit ball B with center at 0, one may define

similarly ρ(a,Ω). Then Theorem 1.3 remains to hold. Note that the union of all unitary

rotations of 1√
n
P∆ is B.

(ii) Note that P∆ may be an arbitrary polydisk with center at 0; still, Theorem 1.3

remains valid. We use the unit polydisk just for simplicity.
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2.3 Proof of the Behnke–Stein Theorem

2.3.1 Proof of Lemma 1.6

(a) We take a subdomain Ω̃ of X such that Ω b Ω̃ b X. Let c ∈ ∂Ω be any point, and

take a local coordinate neighborhood system (W0, w) in Ω̃ with holomorphic coordinate

w such that w = 0 at c. We consider Cousin I distributions for k = 1, 2, . . .:

1

wk
on W0,

0 on W1 = Ω̃ \ {c}.

These induce cohomology classes

[
1

wk

]
∈ H1({W0,W1},OΩ̃) ↪→ H1(Ω̃,OΩ̃), k = 1, 2, . . . .

Since dimH1(Ω̃,OΩ̃) < ∞ by (1.8) (Grauert’s Theorem), there is a non-trivial linear

relation over C
ν∑

k=1

γk

[
1

wk

]
= 0 ∈ H1(Ω̃,OΩ̃), γk ∈ C, γν 6= 0.

Hence there is a meromorphic function F on Ω̃ with a pole only at c such that about c

F (w) =
γν
wν

+ · · ·+ γ1

w
+ holomorphic term. (2.8)

Therefore the restriction F |Ω of F to Ω is holomorphic and limx→c |F (x)| =∞. Thus we

see that Ω is holomorphically convex.

(b) We show the holomorphic separation property of Ω (Definition 1.5 (ii)). Let a, b ∈ Ω

be any distinct points. Let F be the one obtained in (a) above. If F (a) 6= F (b), then it

is done. Suppose that F (a) = F (b). We may assume that F (a) = F (b) = 0. Let (U0, z)

be a local holomorphic coordinate system about a with z(a) = 0. Then we have

F (z) = ak0z
k0 + higher order terms, ak0 6= 0, k0 ∈ N, (2.9)

where N denotes the set of positive integers. We define Cousin I distributions by

1

zkk0
on U0, k ∈ N,

0 on U1 = Ω \ {a},

which lead cohomology classes

[
1

zkk0

]
∈ H1({U0, U1},OΩ) ↪→ H1(Ω,OΩ), k = 1, 2, . . . . (2.10)
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It follows from (1.8) that there is a non-trivial linear relation

µ∑

k=1

αk

[
1

zkk0

]
= 0, αk ∈ C, αµ 6= 0.

It follows that there is a meromorphic function G on Ω with a pole only at a, where G is

written as

G(z) =
αµ
zµk0

+
αµ−1

z(µ−1)k0
+ · · ·+ α1

zk0
+ holomorphic term. (2.11)

With g = G · F µ we have g ∈ O(Ω) and by (2.9) and (2.11) we see that

g(a) = αµa
µ
k0
6= 0, g(b) = 0.

(c) Let a ∈ Ω be any point. We show the existence of an element h ∈ O(Ω) with non

vanishing differential dh(a) 6= 0 (Definition 1.5 (iii)). Let (U0, z) be a holomorphic local

coordinate system about a with z(a) = 0. As in (2.10) we consider
[

1

zkk0−1

]
∈ H1({U0, U1},OΩ) ↪→ H1(Ω,OΩ), k = 1, 2, . . . . (2.12)

In the same as above we deduce that there is a meromorphic function H on Ω with a pole

only at a, where H is written as

H(z) =
βλ

zλk0−1
+ · · ·+ β1

zk0−1
+ holomorphic term, βk ∈ C, βλ 6= 0, λ ∈ N. (2.13)

With h = H · F λ we have h ∈ O(Ω) and by (2.9) and (2.13) we get

dh

dz
(a) = βλa

λ
k0
6= 0.

Thus, Ω is Stein.

2.3.2 Proof of Lemma 1.8

We take a domain Ω̃ b X with Ω̃ c Ω. By Lemma 1.6, Ω̃ is Stein, and hence there is a

holomorphic 1-form on Ω̃ without zeros. Then we define ρ(a,Ω) as in (1.3) with X = Ω̃.

With this ρ(a,Ω) we have by (1.7):

Lemma 2.4. For a compact subset K b Ω we get

ρ(K,Ω) = ρ(K̂Ω,Ω).

Lemma 2.5. Let Ω′ be a domain such that Ω b Ω′ b Ω̃. Assume that

max
b∈∂Ω

ρ(b,Ω′) < ρ(K,Ω). (2.14)

Then,

K̂Ω′ ∩ Ω b Ω.
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Proof. Since K̂Ω′ is compact in Ω′ by Lemma 1.6, it suffices to show that

K̂Ω′ ∩ ∂Ω = ∅.
Suppose that there is a point b ∈ K̂Ω′ ∩ ∂Ω. It follows from Lemma 2.4 that

ρ(b,Ω′) ≥ ρ(K̂Ω′ ,Ω
′) = ρ(K,Ω′) ≥ ρ(K,Ω).

By the assumption, ρ(b,Ω′) < ρ(K,Ω); this is absurd.

Proof of Lemma 1.8: Here we use Oka’s Jôku-Ikô. By Lemma 1.8 there are holo-

morphic functions ψj ∈ O(Ω′) such that a finite union P , called an analytic polyhedron,

of relatively compact connected components of

{x ∈ Ω′ : |ψj(x)| < 1}
satisfies “K̂Ω′ ∩ Ω b P b Ω” and the Oka map

Ψ : x ∈ P −→ (ψ1(x), . . . , ψN(x)) ∈ P∆N

is a closed embedding into the N -dimensional unit polydisk P∆N .

Let f ∈ O(Ω). We identify P with the image Ψ(P ) ⊂ P∆N and regard f |P as a

holomorphic function on Ψ(P ). Let I denote the geometric ideal sheaf of the analytic

subset Ψ(P ) ⊂ P∆N . Then we have a short exact sequence of coherent sheaves:

0→ I → OP∆N
→ OP∆N

/I → 0.

By Oka’s Fundamental Lemma, H1(P∆N ,I ) = 0 (cf., e.g., [20], §4.3), which implies the

surjection

H0(P∆N ,OP∆N
)→ H0(P∆N ,OP∆N

/I ) ∼= O(P )→ 0. (2.15)

Since f |P ∈ O(P ), there is an element F ∈ O(P∆N) with F |P = f |P . We then expand F

to a power series

F (w1, . . . , wN) =
∑
ν

cνw
ν , w ∈ P∆N ,

where ν denote multi-indices in {1, . . . , N}. For every ε > 0 there is a number l ∈ N such

that ∣∣∣∣∣∣
F (w)−

∑

|ν|≤l
cνw

ν

∣∣∣∣∣∣
< ε, w ∈ Ψ(K).

Substituting wj = ψj, we have that

g(x) =
∑

|ν|≤l
cνΨ

ν(x) ∈ O(Ω′),

|f(x)− g(x)| < ε, ∀x ∈ K.

13



2.3.3 Proof of Theorem 1.9

We take a continuous exhaustion family {Ωt}0≤t≤1 of subdomains of Ω̃ (cf. Definition 1.16)

with Ω0 = Ω. Let K b Ω be a compact subset and let f ∈ O(Ω). We set

T = {t : 0 < t ≤ 1, O(Ωt)|K is dense in O(Ω)|K},
where “dense” is taken in the sense of the maximum norm on K. Note that

(i) ρ(a,Ωt) is continuous in t;

(ii) ρ(K,Ω) ≤ ρ(K,Ωs) < ρ(K,Ωt) for s < t;

(iii) limt↘s maxb∈∂Ωs ρ(b,Ωt) = 0.

It follows from Lemma 1.8 that T is non-empty, open and closed. Therefore, T 3 1, so

that O(Ω̃)|K is dense in O(Ω)|K.

2.3.4 Proof of Theorem 1.10

We owe the second countability axiom for the Riemann surface X to T. Radó. We take

an increasing sequence of relatively compact domains Ωj b Ωj+1 b X, j ∈ N, such that

X =
⋃∞
j=1 Ωj and no connected component of Ωj+1 \ Ω̄j is relatively compact in Ωj+1.

Then, (Ωj,Ωj+1) forms a so-called Rung pair (Theorem 1.9). Since every Ωj is Stein

(Lemma 1.6), the Steinness of X is deduced.

2.4 Proofs for Riemann domains

2.4.1 Proof of Theorem 1.12

(i) Suppose that Ω(b X) is a domain of holomorphy. It follows from the assumption and

Corollary 1.4 that Ω is K-complete in the sense of Grauert and holomorphically convex.

Thus, by Grauert’s Theorem ([11]), Ω is Stein.

(ii) Let Z = {det dπ = 0}. Then, Z is a thin analytic subset of X. We first take a

Stein subdomain Ω b X and show the plurisubharmonicity of − log ρ(a,Ω). By Grauert-

Remmert [12] it suffices to show that − log ρ(a,Ω) is plurisubharmonic in Ω \Z. Take an

arbitrary point a ∈ Ω \ Z, and a complex affine line Λ ⊂ Cn passing through π(a). Let

Λ̃ be the irreducible component of π−1Λ ∩ Ω containing a. Let ∆ be a small disk about

π(a) such that ∆̃ := π−1∆ ∩ Λ̃ b Λ̃ \ Z.

Claim. The restriction − log ρ(x,Ω)|Λ̃\Z is subharmonic.

By a standard argument (cf., e.g., [14], Proof of Theorem 2.6.7) it suffices to prove that

if a holomorphic function g ∈ O(Λ̃) satisfies

− log ρ(x,Ω) ≤ <g(x), x ∈ ∂∆̃,

then

− log ρ(x,Ω) ≤ <g(x), x ∈ ∆̃, (2.16)
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where < denotes the real part. Now, we have that

ρ(x,Ω) ≥ |eg(x)|, x ∈ ∂∆̃.

Since Ω is Stein, there is a holomorphic function f ∈ O(Ω) with f |Λ̃ = g (cf. the arguments

for (2.15)). Then,

ρ(x,Ω) ≥ |ef(x)|, x ∈ ∂∆̃.

Since ̂̃∆Ω = ¯̃∆, it follows from (1.6) that

ρ(x,Ω) ≥ |ef(x)| = |eg(x)|, x ∈ ∆̃,

so that (2.16) follows.

Let {Ων}∞n=1 be a sequence of Stein domains of X such that Ων b Ων+1 for all ν and

X =
⋃
ν Ων . Then, − log ρ(a,Ων), ν = 1, 2, . . ., are plurisubharmonic and monotone

decreasingly converges to − log ρ(a,X). Therefore, − log ρ(a,X) is either identically −∞,

or plurisubharmonic ( 6≡ −∞). If − log ρ(a,X) 6≡ −∞, it is everywhere finitely valued and

continuous by (2.1).

Corollary 2.6. Let X be a Stein manifold satisfying Cond A. Then, − log ρ(a,X) is either

identically −∞ or continuous plurisubharmonic.

Proof. Since X is Stein, there is a holomorphic map π : X → Cn which forms a

Riemann domain. The assertion is immediate from (ii) above.

Remark 2.7. As a consequence, one sees with the notation in Corollary 2.6 that if

Ω ⊂ X is a domain of holomorphy, then Hartogs’ radius ρn(a,Ω) (cf. Remark 2.1 (ii))

is plurisubharmonic. This is, however, opposite to the history: The plurisubharmonicity

or the pseudoconvexity of Hartogs’ radius ρn(a,Ω) was found first through the study of

the maximal convergence domain of a power series (Hartogs’ series) in several complex

variables (cf. Oka [22], VI [23], IX [26], Nishino [19], Chap. I, Fritzsche–Grauert [9], Chap.

II).

Remark 2.8. We here give a proof of Theorem 1.15 under Cond A by making use of

ρ(a,Ω). Since ω is defined in a neighborhood of Ω̄, Cond B is satisfied at every point of

the boundary ∂Ω; that is, for every b ∈ ∂Ω there are neighborhoods U ′ b U b X of b

such that

ρ(a,Ω) = ρ(a, U ∩ Ω), a ∈ U ′.
If U ∩ Ω is Stein, then − log ρ(a,Ω) is plurisubharmonic in a ∈ U ′ by Theorem 1.12 (iii).

Therefore there is a neighborhood V of ∂Ω in X such that − log ρ(a,Ω) is plurisubhar-

monic in a ∈ V ∩ Ω. Take a real constant C such that

− log ρ(a,Ω) < C, a ∈ Ω \ V.
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Set

ψ(a) = max{− log ρ(a,Ω), C}, a ∈ Ω.

Then, ψ is a continuous plurisubharmonic exhaustion function on Ω. By Theorem 2.10

of Andreotti–Narasimhan below, Ω is Stein.

2.4.2 Proof of Theorem 1.17

In the same way as Lemma 1.8 and its proof we have

Lemma 2.9. Let π : Ω̃ → Cn be a Riemann domain such that Ω̃ satisfies Cond A. Let

Ω b Ω′ be relatively compact subdomains of Ω̃ satisfying (1.9): Then, every f ∈ O(Ω) can

be approximated uniformly on K by elements of O(Ω′).

For the proof of the theorem it suffices to show that (Ωt,Ωs) is a Runge pair for 0 ≤
t < s < 1. Since any fixed Ωs′ (s < s′ < 1) satisfies Cond A, we have the scalar ρ(a,Ωs).

Take a compact subset K b Ωt. Then, for s > t sufficiently close to t we have

max
b∈∂Ωt

ρ(b,Ωs) < ρ(K,Ωt).

It follows from Lemma 2.9 that O(Ωs)|K is dense if O(Ωt)|K . Then, the rest of the proof

is the same as in §2.3.3.

2.4.3 Proof of Theorem 1.19

Here we will use the following result:

Theorem 2.10 (Andreotti–Narasimhan [1]). Let π : X → Cn be a Riemann domain. If

X admits a continuous plurisubharmonic exhaustion function, then X is Stein.

Let z ∈ Γ, (z ∈)V b W and Ṽ ⊂ W̃ be as in Cond B. Then,

ρ(a,X) = ρ(a, W̃ ), a ∈ Ṽ . (2.17)

By the assumption, W̃ can be chosen to be Stein. By Theorem 1.12 (ii), − log ρ(a, W̃ ) is

plurisubharmonic in a ∈ Ṽ , and hence so is − log ρ(a,X) in Ṽ . By covering Γ by those

V b W and making use of Cond B (i), there is a closed subset F ⊂ X such that

(i) F ∩ {x ∈ X : ‖π(x)‖ ≤ R} is compact for every R > 0,

(ii) − log ρ(a,X) is plurisubharmonic in a ∈ X \ F ,

(iii) lim
ν→∞
− log ρ(aν , X) =∞ for every sequence {aν} of points ofX with no accumulation

point in X such that {π(aν)} is convergent in Cn.
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From this we may construct a continuous plurisubharmonic exhaustion function on X as

follows:

We fix a point a0 ∈ F , and may assume that π(a0) = 0. Let Xν be a connected

component of {‖π‖ < ν} containing a0. Then,
⋃
ν Xν = X. Put

Ων = Xν \ F b X.

Take a real constant C1 such that

− log ρ(a,X) < C1, a ∈ Ω̄1.

Then we set

ψ1(a) = max{− log ρ(a,X), C1}, a ∈ X.
Then, ψ1 is plurisubharmonic in X1. We take a positive constant C2 such that

− log ρ(a,X) < C1 + C2(‖π(a)‖2 − 1)+, a ∈ Ω̄2,

where (·)+ = max{·, 0}. Put

p2(a) = C1 + C2(‖π(a)‖2 − 1)+,

ψ2(a) = max{− log ρ(a,X), p2(a)}, a ∈ X.
Then, we have:

(i) p2(a) ≥ C1 + 2C2 in {‖π‖ ≥ 2};
(ii) ψ1(a) = ψ2(a) in a ∈ X1;

(iii) ψ2(a) is plurisubharmonic in X2.

Similarly, we take C3 > C2 so that

− log ρ(a,X) < p2(a) + C3(‖π(a)‖2 − 22)+, a ∈ Ω̄3.

Put

p3(a) = p2(a) + C3(‖π(a)‖2 − 22)+,

ψ3(a) = max{− log ρ(a,X), p3(a)}, a ∈ X.
We then obtain:

(i) p3(a) ≥ C1 + 3C2 + 5C3 in {‖π‖ ≥ 3};
(ii) ψ3(a) = ψ2(a) in a ∈ X2;

(iii) ψ3(a) is plurisubharmonic in X3.

Inductively, we may take a continuous function ψν(a), ν = 1, 2, . . ., such that ψν is

plurisubharmonic in Xν and ψν+1|Xν = ψν |Xν . it is clear from the construction that

ψ(a) = lim
ν→∞

ψν(a), a ∈ X,
is a continuous plurisubharmonic exhaustion function of X.

Finally, by Theorem 2.10 of Andreotti–Narasimhan we see that X is Stein.
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3 Examples and some more on ρ(a,X)

(a) (Fornæss’ example). Fornæss [7] constructed a 2-sheeted ramified Riemann domain

π : M → C2 such that it is locally Stein, M is exhausted by an increasing sequence

of relatively compact Stein subdomains, but M is not Stein. We here show that the

holomorphic cotangent bundle T(M)∗ does not carry a global frame, so that M does not

satisfy Cond A.

For convenience, we use the same notation as in [7]. Assume that there exists a global

frame {λ1, λ2}. With the coordinates (z, w) we write in a neighborhood U = {(z, w) :

|z| < δ, 1− δ < |w| < 1 + δ} (δ > 0, sufficiently small) of z = 0, |w| = 1:

λ1 = f(z, w)dz + g(z, w)dw,

λ2 = h(z, w)dz + k(z, w)dw.

Then, we have

λ1 ∧ λ2 = (fk − gh)dz ∧ dw.
By the assumption, fk − gh has no zero. Put

ν0 =
1

2πi

∫

|w|=1

d log
(
f(z, w)k(z, w)− g(z, w)h(z, w)

) ∈ Z, |z| < δ.

Then we may write

f(z, w)k(z, w)− g(z, w)h(z, w) = eA(z,w)wν0 ,

where A(z, w) is a holomorphic function of z and w. We consider the analytic continua-

tions of the above holomorphic functions as far as possible. In a neighborhood of (1/n, w)

with every sufficiently large natural number n and sufficiently small |w| we have another

chart,

z =
1

n
+ Cnηw

mn + εnη
2, w = w.

Then it follows that

λ1 ∧ λ2 = (fk − gh)dz ∧ dw

= eA(z,w)wν0d

(
1

n
+ Cnηw

mn + εnη
2

)
∧ dw

= eA(z,w)wν0(Cnw
mn + 2εnη)dη ∧ dw. (3.1)

Since at z = 1/n and η = 0 the coefficient function of (3.1) should be holomorphic and

should have no zero, we deduce that mn = −ν0. But, mn → ∞ as n → ∞: This is a

contradiction.

(b) (Grauert’s example). Grauert [18] gave a counter-example to the Levi problem for

ramified Riemann domains over Pn(C): There is a locally Stein domain Ω in a complex
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torus M such that O(Ω) = C. Then, M satisfies Cond A. One may assume that M is

projective algebraic, so that there is a holomorphic finite map π̃ : M → Pn(C), which is a

Riemann domain over Pn(C). Then, the restriction π = π̃|Ω : Ω → Pn(C) is a Riemann

domain over Pn(C), which satisfies Cond A and Cond B. Therefore, Theorem 1.19 cannot

be extended to a Riemann domain over Pn(C).

Remark 3.1. Let π : Ω → Pn(C) be Grauert’s example as above. Let Cn be an affine

open subset of Pn(C), and let π′ : Ω′ → Cn be the restriction of π : Ω → Pn(C) to Cn.

Then, Ω′ is Stein by Theorem 1.19.

The Steinness of Ω′ may be not inferred by a formal combination of the known results

on pseudoconvexity, since it is an unbounded domain (cf., e.g., [18], [17]).

(c) Domains in the products of open Riemann surfaces and complex semi-tori (cf. [21],

Chap. 5) serve for examples satisfying Cond A.

(d) An open Riemann surface X is not Kobayashi hyperbolic if and only if X is bi-

holomorphic to C or C∗ = C \ {0} (For the Kobayashi hyperbolicity in general, cf. [15],

[21]).

(d1) Let X = C. If ω = dz, then ρ(a, dz,C) ≡ ∞ for every a ∈ C. If ω = ezdz, then

a simple calculation implies that

ρ(a, ezdz,C) = |ea|.

(d2) Let X = C∗. If ω = zkdz with k ∈ Z \ {−1}, then

ρ(a, zkdz,C∗) =

∣∣∣∣
1

k + 1
ak+1

∣∣∣∣ .

Therefore, lima→0 ρ(a, zkdz,C∗) = 0 for k ≥ 0, and lima→∞ ρ(a, zkdz,C∗) = 0 for k ≤ −2.

If ω = dz
z

, then ρ(a, dz
z
,C∗) ≡ ∞. It follows that

ψ(a) := max{− log ρ(a, dz,C∗),− log ρ(a, z−2dz,C∗)}
is continuous subharmonic in C∗, and lima→0,∞ ψ(a) =∞.

Thus, the finiteness or the infiniteness of ρ(a, ω,X) depends on the choice of ω.

(e) For a Kobayashi hyperbolic open Riemann surface X we take a holomorphic 1-form

ω without zeros, and write

‖ω(a)‖X = |ω(v)|, v ∈ T(X)a, FX(v) = 1.

Then it follows from (2.3) that ρ(a, ω,X) ≤ ‖ω(a)‖X . We set

ρ+(a,X) = sup{ρ(a, ω,X) : ω hol. 1-form without zeros, ‖ω(a)‖X = 1},
ρ−(a,X) = inf{ρ(a, ω,X) : ω hol. 1-form without zeros, ‖ω(a)‖X = 1}.

Clearly, ρ±(a,X)(≤ 1) are biholomorphic invariants of X, but we do not know the be-

havior of them.
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