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e Explore more applications and related subjects of the Nevanlinna
theory.

1. Problems and some background

In Lang's Monog. (Transcendental numbers ....) 1966:

Schanuel Conj. Let a1,...,a, € C be linearly indep. over Q. Then

tr.degq{ou, ..., aq, €™, ..., €™} >n.

Lang’s Conj.: Let f : C — A be an entire curve (non-constant; originally, 1-parameter
subgroup) into an abelian variety A with Zariski dense image.

Let D be a hyperplane cut of A.
(i) Then, f(C)N D # (07
(ii) #f(C)ND = 7
We discuss these problems for semi-abelian varieties from the viewpoint of Nevanlinna theory:

E. Borel. An entire curve f : C — P"(C) omitting n + 2 hyperplanes in general position.

Then, f is linearly degenerate.
Bloch-Ochiai. Let f: C — A be an entire curve into an abelian variety.
Then the Zariski closure f(C)Zar is a translate of an algebraic subgroup.

A unified form (Borel+Bloch-Ochiai+N. 1977-'81):
Log Bloch-Ochiai. Let f : C — A be an entire curve into a semi-abelian variety.
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Then the Zariski closure f(C)Zar is a translate of an algebraic subgroup.

Remarks. Lang's Conjecture (i) was proved by Siu-Yeung (abelian case, '96), N. (semi-
abelian case, '98), ..... , but (ii) was unanswered for long time, and proved by by Corvaja-N. in
generalized form for semi-abelian varieties in 2011.

Big Picard type: For f : A*(R) — A (semi-abelian) with essential singularity at 0, we
have similar results (N. '81, ...), but not always.

Big Picard type: Let V, W be algebraic varieties (/C).

(1) f: V — W = Extendable over V.

(2) f:V — W, transcendental (e.g., universal covering) = “algebraic — algebraic”.

2. Ax-Schanuel

Schanuel Conjecture:
(i) n = 1: Gel'fond-Schneider (1934; Hilbert's 7th Problem).
(ii) n > 1. Open. Even in n = 2: With (a3, az) = (1, i) it implies the Folklore: alg. indep.
of e and 7.

(ili) e,e™ are alg. indep. (Nesterenko, '96). The elliptic modular function j(7) was used.

Formal Functional Analogue: J. Ax ('71, '72) proved the analogue:

Thm. 2.1 (Ax-Schanuel). Let f(t) = (fj(t)) € (C][[t]})". If fj(t) —f;(0), 1 <j <n, are

linearly independent over Q, then

tr. dego{fi(t),. .., fa(t),e"® . ef®Y >n 1.



More generally, he proved it for semi-ableian varieties, and dealt with t of several variables.

Ax's proof : By means of Kolchin's theory of differential algebra.

Our Aim : 1) Prove Ax-Schanule for entire fj(z) and a semi-abelian variety A by means of

Nevanlina theory,

2) Study and prove a 2nd Main Theorem for the “extended exponential map”

expaf:z€ C — (expaf(z),f(z)) € A x Lie(A).

N.B. There is no “value” in formal analytic functions, but there is for analytic functions:

We may think of more problems.

We mainly follow the developments of the theory for entire curves into A since Lang’s
Questions 66, and Log Bloch-Ochiai’s Theorem.

Arithmetic Thry.—O-minimal Thry.—-Nevnalinna Thry:.:
(i) Raynaud’s Theorem (1983, Manin-Mumford Conj.):
X C A subvariety (/K). = Xior = Uqpie(@ + Btor)s
where a € X, and alg. subgrp’s. B.
Proof: By method of char. p > 0.
(ii) Later, many proofs by Coleman, Hindary, Hrushovski, ..... I was personally moti-
vated by Pila-Zannier (2008) with O-minimal method.
(iii) Yet another proof by Nevanliina thry. (Log Bloch—Ochiai of Big Picard type ) + 'O-
minimal’ (N., Atti Accad. Naz. Rend. Lincei Mat. Appl. 29 (2018)).
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(iv) For Ax-Schanuel by “O-minimal”, other proofs due Tsimerman 2015, Peterzil-
Starchenko 2018, .....
(v) Yet Another Proof of Analy. Ax-Schanuel by Nevanlinna thry. : Today, 1st topic.

More on the Value Distribution: Today, 2nd topic:

N—, Analytic Az-Schanuel for semi-abelian varieties and Nevanlinna theory,
Dor1:10.2969/jmsj /89588958, J. Math. Soc. Jpn., 2023.

------- Yet without “O-minimal”.

(vi) Expectation: Analy. Ax-Schanuel + O-minimal + Arithmetic = 77

Application of Ax-Shanuel:(e.g.) W.D. Brownawell and K.K. Kubota, The algebraic in-
dependence of Weierstrass functions and some related numbers, Acta Arith. 33 (1977),
111-149.

This is covered by the present result of analy. case.

3. Main Results

Jet Spaces. Let A be a semi-abelian variey of dim n:

0— (C)—=A—=Ay—0 (with Ag abelian var.),
exp = expy, : Lie(A) — A be an exponential map;
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f: C — Lie(A) = C" be an entire curve.

Set
expf:ze€ C — (expf(z),f(z)) € A x Lie(A).

Take its k-jet lift:
J(expf):z € C — (Ju(expf(z)), k(f(2))) € J(A x Lie(A)) = Ji(A) x Ji(Lie(A)).

Speciality:

Jk(A) = A X Jk,A7 Jk(Lle<A)) = Lle(A) X Jk,Lie(A)
Jk(A X Lie(A)) =AXx Jk,A X Lie(A X Jk7Lie(A); Jk,A = JI@Lie(A);
3(5D)(2) = (30 F(2), Jewp(2).F(2). Jr(2), Jonpr(@) = Jis(@) (k > 1),

We consider:
(31) Jk<6(\pf)<2) €A X Lle(A) X Jk,A — Jk<A X Ll@(A))

jkA = Lie(A) x Jya = C" x C™ is called the extended jet part.
— — A
Xk(expf) = Jy(expf)(C)

" is the Zariski closure of the image:
Zar

tr. degg exp f := dime Xo(exp f) = dimg exp f(C)

Def. 3.2. f : C — Lie(A) is A-degnerate if 3 alg. subgroup G & A s.t. expf(C) C
expf(0) + G (coset type).

N.B. A = (C")"% f = (fj) is (C*)"-degenerate <= f;,1 < j < n, are lin. dep./Q.
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Thm. 3.1 (Analy. Ax-Schanuel). If an entire curve f : C — Lie(A) is A-nondeg., then
tr.dege expf > n + 1.

Order Functions.
f=(f1,...,f,) :z€ C —f(z) € C" = Lie(A), an entire curve.

Nevanlinna-Shimizu-Ahlfors order function:

" dt
T(ﬂfj) = Tfj(r7wFS) :/1 ?/A()f*wFs
t

Roughly, T(r,f;) ~ log max,_, [fi(z)].
Te(r) := maxy<j<n 1(r,f)).
Texps(r) = Texpe(r, wi) with the curvature form wy of a big Lb. L — A.
Tape(r) := Texps(r) + Te(r) for expf: C — A x Lie(A).
S(r) = O (log" Texps(r)) + O(logr) + O(1)]| = o Texp¢(r))|| (with except’l intervals of total
finite length).

Lem. 3.3 (Key). (i) T¢(r) = S(r).
(i) Tagpe(r) = Texpe(r) + S(r).

Proof. Use the complex Poisson integral 4+ Borel’s technic.

Proof of Analytic Ax-Schanuel Thm.3.1.
The A-nondegeneracy and the Log Bloch—Ochiai imply exp f (C)Zar =A:

(3.4) tr.dege expf = n.
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Lem. 3.5. tr.degg C(f, (expf)*C(A)) > 1.

Pf. 1If “= 07, (expf)*C(A) is alg. over (fj), so that Texps(r) = O(T¢(r)) = o(Texpr(r)) by
Key Lem. 3.3; Contradiction! A

(3.4) = tr.degcexpf > n. Suppose tr.degsexpf = n. = fj are alg. /(expf)*C(A).

=—> 7 non-trivial alg. relations

(3.6) Pi(f, &) = Pi(fi,d1,...,d) =0, 1<j<n,
where {¢;}]_; is a transcendental basis of C(A), and é; == ¢; o expf.
Lem. 3.5 = tr.dego{fj}l_; < n: That is, 3 a non-trivial alg. relation
(3.7) Q(fy,...,f,) =0.

Eliminate f; (1 < j < n) in (3.6) and (3.7). = Alg. rel. in ¢;’s = f is A-degnerate:
Contradiction! O

Ezample. (Brownawell-Kubota) A product of elliptic curves, A := []" E; and alg. indep.
f=(f;) : C — Lie(A):

tr'degc{flv S afm pl(f1)7 ERI) @m(fn)} Z n—+ 1.

Here one may claim the same for more generally A-nondegenerate f = (fj) : e.g., with

f1(z) = z,f2(z) = z and non-isogenious E; (j = 1, 2),
tr. deg{z, p1(2), p2(2)} = 3.
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Lle(El) X Lle(Ez) X A= PZ(C> X E1 X E27

2
Tesi(r) = % (Ail + %2 + o(l)) ,
wherer \; are the areas of the fundamental parallelograms of p; (j = 1,2).
Let P(z1,25, w1, w,) be a polynomials of degrees di, dy in wy, w, respectively,
and =p = {P(z,z, 91(2), p2(z)) = 0}. Then

Noo(r, Zp) = /lr #(Er (; A1) dt = Ny(r,Zp) + o(r?)

d d
2 1 2
=7 — 4+ —=+0(1)]).
7“()\1 Ao O()>

4. Nevanlinna thry. for expf

Thm. 4.1 (2nd Main Thm.). Let f : C — Lie(A) be A-nondegenerate.
(i) For a reduced alg. subset Z C X\ (expf) (C A x /J\k7A) (k =2 0), IA x jkA, a proj.
compactification with closures X, (expf) and Z such that

(4.1) T, (e (rwz) = Na(r, J (&P F)*Z) + S.(r),

where S (r) < eTexps(r) ||lc (Ve > 0),
and ws is a sort of curvature form associated with Z.
(ii) If codimy,(spnZ = 2, then

(4.2) Tape(rwz) = S:(r).
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(iii) (k =0) If D is a reduced divisor on A x Lie(A) and D 5 Xo(exp f), then

(4.3) Tape(r,ws) = Ni(r, (expf)*D) + S.(r).

where D C A x Lie(A).
Pf. 3¢ € N such that
TJk(g{\pf)(r,wZ) = Ng(r, Jk(&\pf)*Z) + S(r)

Here, using this and codim Z > 2, we prove (ii).

Using (ii), we deduce

NZ(an(&Bf)*Z) - Nl(r7Jk(&\pf)*Z) - S€<r)7
— (). O
As an aplication we have:

Thm. 4.2. Let expf: C — A x Lie(A) and D C A x Lie(A) be as in (iii) above.
Assume that some positive multiple #D contains a big divisor coming from A.

Then 3 irred. comp. D’ € D N Xq(expf) such that expf(C) N D’ is Zariski dense in D’; in
particular, |exp f(C) N D| = .

This follows from the estimates in 2nd Main Thm. with N, (r, ) (essential).
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Remark. For expf : C — A, by Corvaja-N. ('12), answering a question in Lang’s Monog.
"66.

The proof of the 2nd Main Thm. 4.1 is rather long but we carry out the proof along
the way as for expf : C — A (N.-Winkelmann-Yamanoi) by making use of Key Lem 3.3.
The next theorem says that the distribution (exp f)*D on C contains an ample informa-

tion of E\, D and f; we have the following unicity theorem of H. Cartan—P. Erdos—K. Yamanoi
type (cf. Yamanoi Forum Math. 2004, Corvaja-N. Math. Ann. 2012)

Thm. 4.3 (Unicity). Let A; (j = 1,2) be two semi-abelian varieties and let
D; (j = 1,2) be effective reduced A;-big divisors on Kj with

St(D;) := {x € A; : x+ D; = D;} = {0}.

Let f; : C — Lie(A;) be Aj-nondegenerate. Assume that

Supp (@Alfl)*[)l = Supp (&BAJZ)*D}

Then Ja : Ai——A, with & : A; — A,, such that
o é\é*Dz = Dl,

e expa,fo = & o exp a,f1, up to translations of K\j.

Remarks to some extensions:
(i) C = A(r)* (isolated essential singularity, Big Picard type).
(ii) C = affine alg. curve.
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(i) C = (parabolic) Riemann suface with involving a counting function of Euler numbers.
(iv) Hyperbolic case?
Hyperbolic Bloch—Ochiai by “O-minimal”, Pila, Ulmo, Mok, ...: How related?

In Thm 4.2 we have |expf(C) N D| = oo.

Question:  What is the cluster set of expf(C) N D, the set of accumulation points of
expf(C)ND?

This question makes sense for exp f(C) N D with D C A, too.

Also recall:
Analy. Ax-Schanuel + O-minimal + Arithmetic = 77
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Thank you for your attention!!

Aug. 2023 at Acad. Sinica, Taipei
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