A Remark to a Division Algorithm in the Proof of Oka's First Coherence Theorem

Junjiro Noguchi¹

The University of Tokyo/Tokyo Institute of Technology, Emeritus

Abstract

The problem is the locally finite generation of a relation sheaf $\mathscr{R}(\tau_1, \ldots, \tau_q)$ in $\mathcal{O}_{\mathbb{C}^n}$. After τ_j reduced to Weierstrass' polynomials in z_n , it is the key for applying an induction on n to show that elements of $\mathscr{R}(\tau_1, \ldots, \tau_q)$ are expressed as a finite linear sum of z_n -polynomial-like elements of degree at most $p = \max_j \deg_{z_n} \tau_j$ over $\mathcal{O}_{\mathbb{C}^n}$. In that proof one is used to use a division by τ_j of the maximum degree, $\deg_{z_n} \tau_j = p$ (Oka '48, Cartan '50, L. Hörmander '66, R. Narasimhan '66, T. Nishino '96,). Here we shall confirm that the division above works by making use of τ_k of the minimum degree, $\min_j \deg_{z_n} \tau_j$. This proof is naturally compatible with the simple case when some τ_j is a unit, and gives some improvement in the degree estimate of generators.

1 Introduction and results

It will be of no necessity to mention the importance of Oka's First Coherence Theorem that the sheaf $\mathcal{O}_{\mathbf{C}^n}$ (also denoted simply by \mathcal{O}_n) of germs of holomorphic functions over *n*-dimensional complex vector space \mathbf{C}^n (Oka [7], [8])². Let $\Omega \subset \mathbf{C}^n$ be an open set and let $\tau_j \in \mathcal{O}(\Omega) := \Gamma(\Omega, \mathcal{O}_n), 1 \leq j \leq q$. Oka's First Coherence Theorem claims that the relation sheaf $\mathscr{R}(\tau_1, \ldots, \tau_q)$ defined by

$$f_1\underline{\tau_1}_z + \dots + f_q\underline{\tau_q}_z = 0, \quad f_j \in \mathcal{O}_{n,z}, \ z \in \Omega.$$

is locally finite in Ω , where $\underline{*}_z$ stands for the germ at z. The problem is local, so that we consider in a neighborhood of a point $a \in \Omega$; further we may assume a = 0 with complex coordinate system (z_1, \ldots, z_n) .

¹Research supported in part by Grant-in-Aid for Scientific Research (B) 23340029.

²There are some differences in these two versions of Oka VII.

By Weierstrass' Preparation Theorem τ_j are reduced to Weierstrass' polynomials $P_j \in \mathcal{O}(P\Delta_{n-1})[z_n]$ about 0, where $P\Delta_{n-1}$ is a small polydisk in $z' = (z_1, \ldots, z_{n-1}) \in \mathbb{C}^{n-1}$. Set

$$\mathscr{R} = \mathscr{R}(P_1, \dots, P_q),$$

$$p = \max_{1 \le j \le q} \deg_{z_n} P_j,$$

$$p' = \min_{1 \le j \le q} \deg_{z_n} P_j.$$

We call $f \in \mathcal{O}_{n-1,b'}[z_n]$ (resp. $f \in \mathcal{O}(P\Delta_{n-1})[z_n]$) a z_n -polynomial-like germ (resp. function) and denote by $\deg_{z_n} f$ its degree in variable z_n ; for convention, " $\deg_{z_n} f < 0$ " means "f = 0". We also call an element $(f_j) \in$ $(\mathcal{O}_{n,(b',b_n)})^q$ (resp. $(f_j) \in (\mathcal{O}(P\Delta_{n-1} \times \mathbf{C})))^q$) with $f_j \in \mathcal{O}_{P\Delta_{n-1},b'}[z_n]$ (resp. $f_j \in \mathcal{O}(P\Delta_{n-1})[z_n]$) a z_n -polynomial-like element (resp. section), and $\deg_{z_n}(f_j) =$ $\max_j \deg_{z_n} f_j$ the degree of (f_j) .

The proof of the local finiteness of \mathscr{R} relies on the induction on n, and the key which makes the induction to work is:

Lemma A. Every element of \mathscr{R}_b at $b = (b', b_n)$ with $b' \in P\Delta_{n-1}$ is expressed as a finite linear sum of z_n -polynomial-like elements of \mathscr{R}_b of degree at most p with coefficients in \mathcal{O}_b .

There is some structure in the generator system with respect to the degree in z_n . For $1 \le i < j \le q$ there are sections of \mathscr{R} given by

$$T_{i,j} = (0, \dots, 0, \overset{i-\text{th}}{P_j}, 0, \dots, 0, \overset{j-\text{th}}{-P_i}, 0, \dots, 0),$$

which we call the *trivial solutions*, and are z_n -polynomial-like sections of $\deg_{z_n} T_{i,j} \leq p$. Without loss of generality we may assume that

$$p_1 = p',$$

$$p_q = p,$$

and set

$$T_j = T_{1,j}, \quad 2 \le j \le q$$

In the proof of Lemma A a division algorithm is applied; in the original proof of Oka as well as in many references such as H. Cartan [1], R. Narasimhan [4], L. Hörmander [3], T. Nishino [5], J. Noguchi [6],... etc., the division algorithm by P_q of the maximum degree is used to conclude the existence of a finite generator system consisting of $T_{i,q}$ of degree $\leq p$, $1 \leq i \leq q - 1$, and a finite number of z_n -polynomial-like elements α of degree < p. In case p' = 0, it is immediate that the trivial solutions T_j with $2 \leq j \leq q$ form already a generator system, while by the original proof one still needs elements α of degree < p.

The aim of this note is to confirm that Oka's original proof still works with the division algorithm by P_1 of the minimum degree in z_n :

Lemma 1.1. Let the notation be as above. Then an element of \mathscr{R}_b is written as a finite linear sum of the trivial solutions, T_j , $2 \leq j \leq q$, and z_n polynomial-like elements $\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_q)$ of \mathscr{R}_b with coefficients in $\mathcal{O}_{n,b}$ such that

(1.2)
$$\deg_{z_n} \alpha_1 \le p - 1,$$
$$\deg_{z_n} \alpha_j \le p' - 1, \quad 2 \le j \le q.$$

N.B. If p' = 0, then there is no term of α , and if p' = 1. α_j are constants for $2 \le j \le q$.

To decrease p-1 in (1.2) one needs to transform the relation sheaf $\mathscr{R}(P_1, P_2, \ldots, P_q)$ with dividing P_j $(2 \leq j \leq q)$ by P_1 (here we use an idea from Hironaka's proof, cf. [2]). Set

$$P_j = Q_j P_1 + R_j, \quad Q_j, R_j \in \mathcal{O}_{n-1}(\mathrm{P}\Delta_{n-1})[z_n],$$
$$\deg_{z_n} R_j \le p' - 1, \ 2 \le j \le q.$$

Then for $(f_j) \in (\mathcal{O}_{n,z})^q$ we have

(1.3)
$$\sum_{j=1}^{q} f_j \underline{P}_{jz} = \left(f_1 + \sum_{j=2}^{q} f_j \underline{Q}_{jz} \right) \underline{P}_{1z} + \sum_{j=2}^{q} f_j \underline{R}_{jz}$$
$$= h_1 \underline{P}_{1z} + \sum_{j=2}^{q} f_j \underline{R}_{jz},$$

where $h_1 = f_1 + \sum_{j=2}^q f_j \underline{Q}_{j_z}$. Thus the locally finite generation of $\mathscr{R}(P_1, \ldots, P_q)$ is equivalent to that of $\mathscr{R}(P_1, R_2, \ldots, R_q)$. Let

$$T'_j = (R_j, 0, \dots, 0, -P_1, 0, \dots, 0), \quad 2 \le j \le q$$

be the trivial solutions of $\mathscr{R}(P_1, R_2, \ldots, R_q)$, which are z_n -polynomial-like sections of $\deg_{z_n} T'_j = p'$.

Lemma 1.4. Set $\mathscr{R}' := \mathscr{R}(P_1, R_2, \ldots, R_q)$ be as above. Then an element of \mathscr{R}'_b is written as a finite linear sum of the trivial solutions, T'_j , $2 \leq j \leq q$, of degree p' and z_n -polynomial-like elements $\alpha' = (\alpha'_1, \alpha_2, \ldots, \alpha_q)$ of \mathscr{R}'_b with coefficients in $\mathcal{O}_{n,b}$ such that

(1.5)
$$\deg_{z_n} \alpha'_1 \le p' - 2,$$
$$\deg_{z_n} \alpha_j \le p' - 1, \quad 2 \le j \le q.$$

N.B. If p' = 0, then there is no term of α' , and if p' = 1. then $\alpha'_1 = 0$ and α'_j are constants for $2 \le j \le q$.

2 Proofs of Lemmas

(1)(Lemma 1.1) By making use of Weierstrass' Preparation Theorem at $b = (b', b_n)$ with $b' \in P\Delta_{n-1}$ we decompose P_1 to a unit u and a Weierstrass polynomial Q:

$$P_1(z', z_n) = u \cdot Q(z', z_n - b_n), \qquad \deg_{z_n} Q = d \le p_1.$$

Here and in the sequel we abbreviate \underline{Q}_z to Q for the sake of notational simplicity; there will be no confusion.

It follows that $u \in \mathcal{O}_{n-1,b'}[z_n]$, and then

$$(2.1) \qquad \qquad \deg_{z_n} u = p_1 - d.$$

Take an arbitrary $f = (f_1, \ldots, f_q) \in \mathscr{R}_b$. By Weierstrass' Preparation Theorem we divide f_i by Q:

(2.2)

$$f_i = c_i Q + \beta_i, \quad 1 \le i \le q,$$

$$c_i \in \mathcal{O}_{n,b}, \quad \beta_i \in \mathcal{O}_{n-1,b'}[z_n],$$

$$\deg_{z_n} \beta_i < d.$$

Since $u \in \mathcal{O}_{n,b}$ is a unit, with $\tilde{c}_i := c_i u^{-1}$ we get the division of f_i by P_1 :

(2.3)
$$f_i = \tilde{c}_i P_1 + \beta_i, \qquad 1 \le i \le q.$$

By making use of this we have

(2.4)

$$(f_{1}, \dots, f_{q}) + \tilde{c}_{2}T_{2} + \dots + \tilde{c}_{q}T_{q}$$

$$= (\tilde{c}_{1}P_{1} + \beta_{1}, \tilde{c}_{2}P_{1} + \beta_{2}, \dots, \tilde{c}_{q}P_{1} + \beta_{q})$$

$$+ (\tilde{c}_{2}P_{2}, -\tilde{c}_{2}P_{1}, 0, \dots, 0)$$

$$+ \dots$$

$$+ (\tilde{c}_{q}P_{q}, 0, \dots, 0, -\tilde{c}_{q}P_{1})$$

$$= \left(\sum_{i=1}^{q} \tilde{c}_{i}P_{i} + \beta_{1}, \beta_{2}, \dots, \beta_{q}\right)$$

$$= (g_{1}, \beta_{2}, \dots, \beta_{q}).$$

Here we put $g_1 = \sum_{i=1}^q \tilde{c}_i P_i + \beta_1 \in \mathcal{O}_{n,b}$. Note that $\beta_i \in \mathcal{O}_{n-1,b'}[z_n], 2 \leq i \leq q$. Since $(g_1, \beta_2, \ldots, \beta_q) \in \mathscr{R}_b$,

(2.5)
$$g_1 P_1 = -\beta_2 P_2 - \dots - \beta_q P_q \in \mathcal{O}_{n-1,b'}[z_n].$$

It should be noticed that if $p_1 = 0$, then $P_1 = 1$, $\beta_i = 0$, $1 \le i \le q$, and hence $g_1 = 0$; the proof is finished in this case.

In general, it follows from the expression of the above right-hand side of (2.5) that $g_1P_1 \in \mathcal{O}_{n-1,b'}[z_n]$ and

$$\deg_{z_n} g_1 P_1 \le \max_{2 \le i \le q} \deg_{z_n} \beta_i + \max_{2 \le i \le q} \deg_{z_n} P_i \le d + p - 1.$$

On the other hand, $g_1P_1 = g_1uQ$ and Q is a Weierstrass' polynomial at b. We see that

(2.6)

$$\alpha_1 := g_1 u \in \mathcal{O}_{n-1,b'}[z_n],$$

$$\deg_{z_n} \alpha_1 = \deg_{z_n} g_1 P_1 - \deg_{z_n} Q$$

$$\leq d + p - 1 - d = p - 1$$

Set $\alpha_i = u\beta_i$ for $2 \le i \le q$. Then, by (2.1) and (2.2) we have

(2.7)
$$\deg_{z_n} \alpha_i \le p_1 - d + d - 1 = p_1 - 1 = p' - 1, \quad 2 \le i \le q,$$

and by (2.9) that

(2.8)
$$f = -\sum_{i=2}^{q} \tilde{c}_i T_i + u^{-1}(\alpha_1, \alpha_2, \dots, \alpha_q).$$

(2)(Lemma 1.4) First note that (f_1, \ldots, f_q) and (h_1, f_2, \ldots, f_q) with $h_1 = f_1 + \sum_{j=2}^q f_j Q_j$ as defined in (1.3) are related by

$$\begin{pmatrix} h_1 \\ f_2 \\ \vdots \\ f_q \end{pmatrix} = \begin{pmatrix} 1 & Q_2 & \cdots & Q_q \\ 0 & 1 & \cdots & 0 \\ \vdots & & \ddots & 0 \\ 0 & 0 & \cdots & 1 \end{pmatrix} \begin{pmatrix} f_1 \\ f_2 \\ \vdots \\ f_q \end{pmatrix},$$
$$\begin{pmatrix} f_1 \\ f_2 \\ \vdots \\ f_q \end{pmatrix} = \begin{pmatrix} 1 & -Q_2 & \cdots & -Q_q \\ 0 & 1 & \cdots & 0 \\ \vdots & & \ddots & 0 \\ 0 & 0 & \cdots & 1 \end{pmatrix} \begin{pmatrix} h_1 \\ f_2 \\ \vdots \\ f_q \end{pmatrix}$$

Therefore, the locally finite generation of \mathscr{R} is equivalent to that of \mathscr{R}' .

The proof is similar to the above except for some degree estimates. Now we have for $(f_j) \in (\mathcal{O}_{n,b})^q$

(2.9)
$$(f_1, \dots, f_q) + \tilde{c}_2 T'_2 + \dots + \tilde{c}_q T'_q$$
$$= \left(\tilde{c}_1 P_1 + \beta_1 + \sum_{i=2}^q \tilde{c}_i R_i, \beta_2, \dots, \beta_q \right)$$
$$= (h_1, \beta_2, \dots, \beta_q).$$

Here we put $h_1 = \tilde{c}_1 P_1 + \beta_1 + \sum_{i=2}^q \tilde{c}_i R_i \in \mathcal{O}_{n,b}$. In stead of (2.5) we have

(2.10)
$$h_1 P_1 = -\beta_2 R_2 - \dots - \beta_q R_q \in \mathcal{O}_{n-1,b'}[z_n].$$

From this we obtain

$$\deg_{z_n} h_1 P_1 \le d - 1 + p' - 1 = d + p' - 2$$

With $\alpha'_1 := h_1 u$ we have $h_1 P_1 = h_1 u Q = \alpha'_1 Q$ and so

$$\deg_{z_n} \alpha'_1 \le d + p' - 2 - d = p' - 2.$$

For $\alpha_i = u\beta_i$, $2 \le i \le q$ we have the same estimate:

$$\deg_{z_n} \alpha_i \le p' - 1$$

With the above defined we have

$$f = -\sum_{i=2}^{q} \tilde{c}_i T'_i + u^{-1}(\alpha'_1, \alpha_2, \dots, \alpha_q).$$

References

 H. Cartan, Idéaux et modules de fonctions analytiques de variables complexes Bull. Soc. Math. France 78 (1950), 29-64.

- [2] H. Hironaka and T. Urabe, Introduction to Analytic Spaces (in Japanese), Asakura Shoten, Tokyo, 1981.
- [3] L. Hörmander, Introduction to Complex Analysis in Several Variables, First Edition 1966, Third Edition, North-Holland, 1989.
- [4] R. Narasimhan, Introduction to the Theory of Analytic Spaces, Lecture Notes in Math. 25, Springer-Verlag, 1966.
- [5] T. Nishino, Function Theory in Several Complex Variables (in Japanese), The University of Tokyo Press, Tokyo, 1996; English translation by N. Levenberg and H. Yamaguchi, Amer. Math. Soc. Providence, R.I., 2001.
- [6] J. Noguchi, Analytic Function Theory of Several Variables (in Japanese), Asakura Shoten, Tokyo, 2013.
- [7] K. Oka, Sur les fonctions analytiques de plusieurs variables: VII Sur quelques notions arithmétiques, Iwanami Shoten, Tokyo, 1961.
- [8] K. Oka, Sur les fonctions analytiques de plusieurs variables: VII Sur quelques notions arithmétiques, Bull. Soc. Math. France 78 (1950), 1-27.

Graduate School of Mathematical Sciences The University of Tokyo Komaba, Meguro-ku,Tokyo 153-8914 e-mail: noguchi@ms.u-tokyo.ac.jp