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Abstract

The problem is the locally finite generation of a relation sheaf
R(τ1, . . . , τq) in OCn . After τj reduced to Weierstrass’ polynomials in
zn, it is the key for applying an induction on n to show that elements
of R(τ1, . . . , τq) are expressed as a finite linear sum of zn-polynomial-
like elements of degree at most p = maxj degzn

τj over OCn . In that
proof one is used to use a division by τj of the maximum degree,
degzn

τj = p (Oka ’48, Cartan ’50, L. Hörmander ’66, R. Narasimhan
’66, T. Nishino ’96, ....). Here we shall confirm that the division above
works by making use of τk of the minimum degree, minj degzn

τj . This
proof is naturally compatible with the simple case when some τj is a
unit, and gives some improvement in the degree estimate of generators.

1 Introduction and results

It will be of no necessity to mention the importance of Oka’s First Coher-

ence Theorem that the sheaf OCn (also denoted simply by On) of germs of

holomorphic functions over n-dimensional complex vector space Cn (Oka [7],

[8])2. Let Ω ⊂ Cn be an open set and let τj ∈ O(Ω) := Γ(Ω,On), 1 ≤ j ≤ q.

Oka’s First Coherence Theorem claims that the relation sheaf R(τ1, . . . , τq)

defined by

f1τ1z
+ · · · + fqτq

z
= 0, fj ∈ On,z, z ∈ Ω.

is locally finite in Ω, where ∗z stands for the germ at z. The problem

is local, so that we consider in a neighborhood of a point a ∈ Ω; fur-

ther we may assume a = 0 with complex coordinate system (z1, . . . , zn).
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2There are some differences in these two versions of Oka VII.



By Weierstrass’ Preparation Theorem τj are reduced to Weierstrass’ poly-

nomials Pj ∈ O(P∆n−1)[zn] about 0, where P∆n−1 is a small polydisk in

z′ = (z1, . . . , zn−1) ∈ Cn−1. Set

R = R(P1, . . . , Pq),

p = max
1≤j≤q

degzn
Pj,

p′ = min
1≤j≤q

degzn
Pj .

We call f ∈ On−1,b′ [zn] (resp. f ∈ O(P∆n−1)[zn]) a zn-polynomial-like germ

(resp. function) and denote by degzn
f its degree in variable zn; for con-

vention, “degzn
f < 0” means “f = 0”. We also call an element (fj) ∈

(On,(b′,bn))
q (resp. (fj) ∈ (O(P∆n−1 × C)))q) with fj ∈ OP∆n−1,b′ [zn] (resp.

fj ∈ O(P∆n−1)[zn]) a zn-polynomial-like element (resp. section), and degzn
(fj) =

maxj degzn
fj the degree of (fj).

The proof of the local finiteness of R relies on the induction on n, and

the key which makes the induction to work is:

Lemma A. Every element of Rb at b = (b′, bn) with b′ ∈ P∆n−1 is

expressed as a finite linear sum of zn-polynomial-like elements of Rb of degree

at most p with coefficients in Ob.

There is some structure in the generator system with respect to the degree

in zn. For 1 ≤ i < j ≤ q there are sections of R given by

Ti,j = (0, . . . , 0,
i-th
Pj , 0, . . . , 0,

j-th
−Pi , 0, . . . , 0),

which we call the trivial solutions, and are zn-polynomial-like sections of

degzn
Ti,j ≤ p. Without loss of generality we may assume that

p1 = p′,

pq = p,

and set

Tj = T1,j, 2 ≤ j ≤ q.
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In the proof of Lemma A a division algorithm is applied; in the orig-

inal proof of Oka as well as in many references such as H. Cartan [1], R.

Narasimhan [4], L. Hörmander [3], T. Nishino [5], J. Noguchi [6],... etc.,

the division algorithm by Pq of the maximum degree is used to conclude

the existence of a finite generator system consisting of Ti,q of degree ≤ p,

1 ≤ i ≤ q − 1, and a finite number of zn-polynomial-like elements α of de-

gree < p. In case p′ = 0, it is immediate that the trivial solutions Tj with

2 ≤ j ≤ q form already a generator system, while by the original proof one

still needs elements α of degree < p.

The aim of this note is to confirm that Oka’s original proof still works

with the division algorithm by P1 of the minimum degree in zn:

Lemma 1.1. Let the notation be as above. Then an element of Rb is writ-

ten as a finite linear sum of the trivial solutions, Tj, 2 ≤ j ≤ q, and zn-

polynomial-like elements α = (α1, α2, . . . , αq) of Rb with coefficients in On,b

such that

degzn
α1 ≤ p − 1,(1.2)

degzn
αj ≤ p′ − 1, 2 ≤ j ≤ q.

N.B. If p′ = 0, then there is no term of α, and if p′ = 1. αj are constants

for 2 ≤ j ≤ q.

To decrease p − 1 in (1.2) one needs to transform the relation sheaf

R(P1, P2, . . . , Pq) with dividing Pj (2 ≤ j ≤ q) by P1 (here we use an idea

from Hironaka’s proof, cf. [2]). Set

Pj = QjP1 + Rj, Qj, Rj ∈ On−1(P∆n−1)[zn],

degzn
Rj ≤ p′ − 1, 2 ≤ j ≤ q.
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Then for (fj) ∈ (On,z)
q we have

q∑
j=1

fjPj
z

=

(
f1 +

q∑
j=2

fjQj
z

)
P1z

+

q∑
j=2

fjRj
z

(1.3)

= h1P1z
+

q∑
j=2

fjRj
z
,

where h1 = f1+
∑q

j=2 fjQj
z
. Thus the locally finite generation of R(P1, . . . , Pq)

is equivalent to that of R(P1, R2, . . . , Rq). Let

T ′
j = (Rj, 0, . . . , 0,

j-th
−P1 , 0, . . . , 0), 2 ≤ j ≤ q

be the trivial solutions of R(P1, R2, . . . , Rq), which are zn-polynomial-like

sections of degzn
T ′

j = p′.

Lemma 1.4. Set R ′ := R(P1, R2, . . . , Rq) be as above. Then an element of

R ′
b is written as a finite linear sum of the trivial solutions, T ′

j, 2 ≤ j ≤ q,

of degree p′ and zn-polynomial-like elements α′ = (α′
1, α2, . . . , αq) of R ′

b with

coefficients in On,b such that

degzn
α′

1 ≤ p′ − 2,(1.5)

degzn
αj ≤ p′ − 1, 2 ≤ j ≤ q.

N.B. If p′ = 0, then there is no term of α′, and if p′ = 1. then α′
1 = 0

and α′
j are constants for 2 ≤ j ≤ q.

2 Proofs of Lemmas

(1)(Lemma 1.1) By making use of Weierstrass’ Preparation Theorem at b =

(b′, bn) with b′ ∈ P∆n−1 we decompose P1 to a unit u and a Weierstrass

polynomial Q:

P1(z
′, zn) = u · Q(z′, zn − bn), degzn

Q = d ≤ p1.
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Here and in the sequel we abbreviate Q
z

to Q for the sake of notational

simplicity; there will be no confusion.

It follows that u ∈ On−1,b′ [zn], and then

(2.1) degzn
u = p1 − d.

Take an arbitrary f = (f1, . . . , fq) ∈ Rb. By Weierstrass’ Preparation Theo-

rem we divide fi by Q:

fi =ciQ + βi, 1 ≤ i ≤ q,

ci ∈ On,b, βi ∈ On−1,b′ [zn],

degzn
βi < d.(2.2)

Since u ∈ On,b is a unit, with c̃i := ciu
−1 we get the division of fi by P1:

(2.3) fi = c̃iP1 + βi, 1 ≤ i ≤ q.

By making use of this we have

(f1, . . . , fq) + c̃2T2 + · · · + c̃qTq(2.4)

= (c̃1P1 + β1, c̃2P1 + β2, . . . , c̃qP1 + βq)

+ (c̃2P2,−c̃2P1, 0, . . . , 0)

+ · · ·

+ (c̃qPq, 0, . . . , 0,−c̃qP1)

=

(
q∑

i=1

c̃iPi + β1, β2, . . . , βq

)
= (g1, β2, . . . , βq) .

Here we put g1 =
∑q

i=1 c̃iPi+β1 ∈ On,b. Note that βi ∈ On−1,b′ [zn], 2 ≤ i ≤ q.

Since (g1, β2, . . . , βq) ∈ Rb,

g1P1 = −β2P2 − · · · − βqPq ∈ On−1,b′ [zn].(2.5)
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It should be noticed that if p1 = 0, then P1 = 1, βi = 0, 1 ≤ i ≤ q, and

hence g1 = 0; the proof is finished in this case.

In general, it follows from the expression of the above right-hand side of

(2.5) that g1P1 ∈ On−1,b′ [zn] and

degzn
g1P1 ≤ max

2≤i≤q
degzn

βi + max
2≤i≤q

degzn
Pi ≤ d + p − 1.

On the other hand, g1P1 = g1uQ and Q is a Weierstrass’ polynomial at b.

We see that

α1 := g1u ∈ On−1,b′ [zn],

degzn
α1 = degzn

g1P1 − degzn
Q(2.6)

≤ d + p − 1 − d = p − 1.

Set αi = uβi for 2 ≤ i ≤ q. Then, by (2.1) and (2.2) we have

(2.7) degzn
αi ≤ p1 − d + d − 1 = p1 − 1 = p′ − 1, 2 ≤ i ≤ q,

and by (2.9) that

(2.8) f = −
q∑

i=2

c̃iTi + u−1(α1, α2, . . . , αq).

(2)(Lemma 1.4) First note that (f1, . . . , fq) and (h1, f2, . . . , fq) with h1 =

f1 +
∑q

j=2 fjQj as defined in (1.3) are related by
h1

f2
...
fq

 =


1 Q2 · · · Qq

0 1 · · · 0
...

. . . 0
0 0 · · · 1




f1

f2
...
fq

 ,


f1

f2
...
fq

 =


1 −Q2 · · · −Qq

0 1 · · · 0
...

. . . 0
0 0 · · · 1




h1

f2
...
fq

 .
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Therefore, the locally finite generation of R is equivalent to that of R ′.

The proof is similar to the above except for some degree estimates. Now

we have for (fj) ∈ (On,b)
q

(f1, . . . , fq) + c̃2T
′
2 + · · · + c̃qT

′
q(2.9)

=

(
c̃1P1 + β1 +

q∑
i=2

c̃iRi, β2, . . . , βq

)
= (h1, β2, . . . , βq) .

Here we put h1 = c̃1P1 + β1 +
∑q

i=2 c̃iRi ∈ On,b. In stead of (2.5) we have

h1P1 = −β2R2 − · · · − βqRq ∈ On−1,b′ [zn].(2.10)

From this we obtain

degzn
h1P1 ≤ d − 1 + p′ − 1 = d + p′ − 2.

With α′
1 := h1u we have h1P1 = h1uQ = α′

1Q and so

degzn
α′

1 ≤ d + p′ − 2 − d = p′ − 2.

For αi = uβi, 2 ≤ i ≤ q we have the same estimate:

degzn
αi ≤ p′ − 1.

With the above defined we have

f = −
q∑

i=2

c̃iT
′
i + u−1(α′

1, α2, . . . , αq).
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