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Abstract After the solution of Cousin II problem by K. Oka III in 1939, he thought an
extra-zero problem in 1945 (his posthumous paper) asking if it is possible to solve an arbi-
trarily given Cousin II problem adding some extra-zeros whose support is disjoint from the
given one. By the secondly named author, some special case was affirmatively confirmed in
dimension two and a counter-example in dimension three or more was given. The purpose
of the present paper is to give a complete solution of this problem with examples and some
new questions.
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1 Introduction

After the solution of Cousin II problem by K. Oka [10, III] he thought the followingextra-
zero problemin 1945 (his posthumous paper [11], no. 2, p. 31, Problem 2; see§2).

Research supported in part by Grants-in-Aid for Scientific Research (C) 23540217, for Young Scientists (B)
23740098 and for Scientific Research (B) 23340029 of Japan Society for the Promotion of Science.

Makoto Abe
Division of Mathematical and Information Sciences, Faculty of Integrated Arts and Sciences, Hiroshima Uni-
versity, 1-7-1 Kagamiyama, Higashi-Hiroshima, 739-8521, Japan
E-mail: abem@hiroshima-u.ac.jp

Sachiko Hamano
Department of Mathematics, Faculty of Human Development and Culture, Fukushima University, Kanaya-
gawa, Fukushima, 960-1296, Japan
E-mail: hamano@educ.fukushima-u.ac.jp

Junjiro Noguchi
Graduate School of Mathematical Sciences, The University of Tokyo, Komaba, Meguro, Tokyo, 153-8914,
Japan
E-mail: noguchi@ms.u-tokyo.ac.jp



2 M. Abe, S. Hamano, J. Noguchi

Oka’s Extra-Zero Problem Let X be a domain of holomorphy and let D be an effective
divisor on X. Find an effective divisor E on X such that their supports have no intersection,

(SuppD)∩ (SuppE) = /0,

and CousinII problem for D+E is solvable on X.

The divisorE in the above problem is called anextra-zeroof D. LetL(D) denote the line
bundle determined byD, letN(D) = L(D)|(SuppD) →SuppD be the normal bundle ofD over
the support SuppD of D, and let1X denote the trivial line bundle overX. Then Cousin II
problem is equivalent to ask ifL(D)∼= 1X. TheOka Principle[10, III] says thatL(D)∼= 1X if
and only if the the first Chern classc1(L(D)) = 0 in the cohomology groupH2(X,Z). Since
the problem is trivial forD such thatL(D) ∼= 1X, Oka’s extra-zero problem makes sense for
D with c1(L(D)) ̸= 0. For a general reference of the Oka Principle, cf. Forstnerič [4].

In [6] a counter-example was constructed in dimX ≥ 3, and if dimX = 2, some partial
affirmative answer was shown.

The purpose of this paper is to give a complete answer to Oka’s extra-zero problem with
examples and some new questions based on this problem, on which we would like to put
equal emphasis as well (see§§4 and 5). It is also a point of this paper to have the analytic
expressions of some topological invariants of Stein manifolds (cf. Stein [12]). In the general
case we have

Theorem 1.1 Let D be an effective Cartier divisor on a (reduced) Stein space X. Then Oka’s
extra-zero problem is solvable if and only if c1(N(D)) = 0 in H2(SuppD,Z). In particular,
if dimX = 2, Oka’s extra-zero problem is always solvable.

The last statement is due toH2(SuppD,Z) = 0, since dimSuppD ≤ 1 (cf. [7]).

N.B.

1. K. Oka [11] almost proved Theorem 1.1 (see Theorem 2.1). Referring to Oka’s Theorem
2.1, one may say that Theorem 1.1 is an infinitesimalization of the topological condition
from a neighborhood ofD to D itself. This is not difficult now by many well-established
results.

2. By the proof in§3 it is in fact not necessary to assumeD to be effective; even in this
case, the extra-zeroE is kept to be effective.

Let E be an extra-zero ofD in Oka’s extra-zero problem. By definitionL(E) = L(−D).
Thus the problem is equivalent to find a holomorphic sectionσ ∈ Γ (X,L(−D)) such that

Supp(σ)∩SuppD = /0. (1)

Here we consider onlyσ whose zero set is nowhere dense inX and hence defines a divisor
(σ) onX. From this viewpoint it is interesting to see

Proposition 1.2 Let the notation be as in Theorem1.1. Then Oka’s extra-zero problem is
solvable if and only if there exists a sectionτ ∈Γ (X,L(D)) with nowhere dense zero set and

Supp(τ)∩SuppD = /0. (2)
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N.B. For τ in (2) (resp.σ in (1)) we required that the zero set ofτ (resp.σ ) is nowhere
dense inX. This is, however, not a restriction. For ifτ vanishes constantly on an irreducible
component ofX, we letX′

ν (ν = 1,2, . . .) be all such components. Then we take a section
τ ′ν ∈ Γ (X,L(D)) such thatτ ′ν |X′

ν
̸≡ 0 andτ ′ν ≡ 0 on every irreducible component ofX other

thanX′
ν . We setτ̂ = τ + ∑ν τ ′ν . Then{τ̂ = 0} ⊂ {τ = 0} as sets and the analytic subset

{τ̂ = 0} is nowhere dense inX. This is the same forσ in (1).

Acknowledgements After the counter-example constructed by [6] which was a reducible divisor, Professor
T. Ueda asked if there is an irreducible counter-example; his question forms a part of the motivation of the
present paper. Professor S. Takayama gave an interesting example of§4. The authors are very grateful to all
of them.

2 Oka’s notes

Here we summarize in short the contents of the posthumous paper [11]. We should first
notice that it is dated 28 February 1945 before Oka’s Coherence Theorem [10, VII]. Roughly
speaking, he developed the following study.

1. He wished to reformulate Cousin II problem by relaxing the conclusion so that it is
solvable on every domain of holomorphy.

2. He recalled the Oka Principle for Cousin II problem on a domain of holomorphy, and
reduced the essential key-part of the problem to the following:

Let Ω̄ b Cn be a bounded closed domain with a fundamental system of holomor-
phically convex neighborhoods. Let D be a divisor on a neighborhood ofΩ̄ . Then the
Cousin II problem for D is solvable in a neighborhood ofΩ̄ if and only if c1(L(D)) = 0
in a neighborhood of̄Ω .1

3. He then proposed theExtra-Zero Problemas Problem 2. LetΩ andD (effective) be as in
the above item. Then he asks to find an effective divisorE in a neighborhood of̄Ω such
that SuppD∩SuppE = /0 and Cousin II problem forD+E is solvable in a neighborhood
of Ω̄ .

4. He proved a result as Theorem 8 which is stated as follows:

The extra-zero problem is solvable for D in a neighborhood ofΩ̄ if and only if there
is a neighborhood V of D∩ Ω̄ with c1(L(D)|V) = 0.

5. After confirming the above topological obstruction for the extra-zero problem, he proved
that there always exists an effective divisorF in a neighborhood of̄Ω such that Cousin II
problem forD+F is solvable. Furthermore he proved that there are at mostn+1 holo-
morphic functionsf j , 1≤ j ≤ n+1, in a neighborhood of̄Ω such that in a neighborhood
W of every point ofD∩ Ω̄ one of zeros off j is exactlyD∩W.

Taking into account of the items 2 and 4 above, we may assume that he obtained or at
least recognized the following statement.

Theorem 2.1 (Oka [11]) Let Ω ⊂ Cn be a domain of holomorphy, and let D be an effec-
tive divisor onΩ . Then the extra-zero problem for D is solvable if and only if there is a
neighborhood V of D satisfying c1(L(D)|V) = 0 in V .

1 Here his term is “balayable” used in Oka [10, III]; the meaning is that the given Cousin II distribution is
continuously deformable to a zero-free continuous Cousin II distribution. The Cousin II problem on a domain
X of holomorphy is solvable if and only ifD is balayableonX.
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K. Oka wrote that it strongly attracts his interest from a number of viewpoints to decide
if this Extra-Zero Problem is always solvable or there is a counter-example, and the problem
would have a wide influence in future.2

It is now necessary to know what is the most general form of his statement (Theo-
rem 2.1), and it is Theorem 1.1.

3 Proofs

(a) Proof of Theorem 1.1

Suppose first that Oka’s extra-zero problem is solvable. LetE be an extra-zero ofD, and let
σ ∈ Γ (X,L(E)) with (σ) = E. SetY = SuppD. Then the restrictionσ |U toU = X \SuppE
has no zero over the neighborhoodU of Y. ThereforeL(−D)|U = L(E)|U ∼= 1U , and then
N(D) ∼= 1Y, so thatc1(N(D)) = 0.

Conversely, assume thatc1(N(D)) = 0. Then, of course,c1(N(−D)) = 0. SinceY is
Stein,N(−D) ∼= 1Y, so that there exists a holomorphic sectionϕ ∈ Γ (Y,N(−D)) which has
no zero. By the Fundamental Theorem of Oka-Cartan (Oka [10] I–II, VII–VIII; Grauert-
Remmert [5])ϕ extends to an element̃ϕ ∈ Γ (X,L(−D)) with nowhere dense zero set.
Sinceϕ̃ has no zero onY, the divisor(ϕ̃) gives rise to an extra-zero ofD.

(b) Proof of Proposition 1.2

We keep the notation used in (a). Suppose that Oka’s extra-zero problem is solvable. Then
the aboveσ ∈ Γ (X,L(E)) has no zero onY. Therefore,N(D) = L(D)|Y = L(−E)|Y ∼= 1Y.
By the Fundamental Theorem of Oka-Cartan,σ−1|Y extends holomorphically to a section
τ ∈ Γ (X,L(D)) with nowhere dense zero set. By definition, Supp(τ)∩Y = /0.

Suppose the existence ofτ ∈ Γ (X,L(D)) with nowhere dense zero set such that
Supp(τ)∩Y = /0. Then the same argument implies the existence ofσ ∈ Γ (X,L(−D)) with
nowhere dense zero set such that Supp(σ)∩Y = /0, and hence(σ) is an extra-zero ofD.

4 Examples

(a) A generalized example due to K. Stein

The case ofX = (C∗)2 with C∗ = C \ {0} may be the most fundamental for non-trivial
H2(X,Z) ̸= 0. In fact, K. Stein [12] studied this case. The torusT = S1×S1 ⊂ X gives the
generator ofH2(X,Z) ∼= H2(X,Z). Let (z,w) ∈ X be the natural coordinates, and letτ ∈ C
with ℑτ > 0. Then we take an analytic hypersurface given by

D+
τ : w = zτ = eτ logz. (3)

We are going to show thatD+
τ has the first Chern classT. The case ofτ = i is the

example of Stein [12]. We set

F+
τ (z,w) =exp

(
τ

4π i
(logz)2 +

τ +1
2

logz

)
(4)

2 He did not give an explicit problem here.
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×
∞

∏
k=0

(
1− w

eτ logz−2kπ iτ

)
×

∞

∏
k=1

(
1− 1

we−τ logz−2kπ iτ

)
,

where we take a branch log1= 0. LetLz (resp.Lw) denote the analytic continuation as the
variablez (resp.w) runs over the unit circle in the anti-clockwise direction. ThenLz logz=
logz+2π i, and

LzF
+
τ (z,w) = wF+

τ (z,w), LwF+
τ (z,w) = F+

τ (z,w). (5)

Thus we have that
D+

τ = {F+
τ (z,w) = 0}.

It follows from (5) that
|F+

τ (z,w)|
|w| 1

2π argz
(6)

is one-valued onX. Let z= r1eiθ1 andw = r2eiθ2 be the polar coordinates. Then

d =
2

∑
j=1

(
∂

∂ r j
dr j +

∂
∂θ j

dθ j

)
,

dc =
i

4π
(∂̄ −∂ ) =

1
4π

2

∑
j=1

(
r j

∂
∂ r j

dθ j −
1
r j

∂
∂θ j

dr j

)
.

By (6) we see that|w| 1
π argz = rθ1/π

2 gives a hermitian metric inL(D+
τ ), and we compute the

Chern form:

ddc log|w|
1
π argz = d

{
1

4π

2

∑
j=1

(
r j

∂
∂ r j

dθ j −
1
r j

∂
∂θ j

dr j

)
θ1

π
logr2

}

=
1

4π2 (d logr1∧d logr2 +dθ1∧dθ2) .

The above first term isd-exact, since

d logr1∧d logr2 = d((logr1) ·d logr2).

Hence the Chern classc1(L(D+
τ )) ∈ H2(X,Z) is represented by

1
4π2 dθ1∧dθ2. By pairing

we have

⟨c1(L(D+
τ )),T⟩ =

∫
S1×S1

1
4π2 dθ1∧dθ2 = 1.

In the same way, takingτ ′ ∈ C with ℑτ ′ > 0 we set

D−
τ ′ : w = z−τ ′ = e−τ ′ logz,

F−
τ ′ (z,w) = F+

τ ′

(
1
z
,w

)
.

Thus

LzF
−
τ ′ (z,w) =

1
w

F−
τ ′ (z,w), LwF−

τ ′ (z,w) = F−
τ ′ (z,w). (7)

From (4) one obtains

F−
τ ′ (z,w) =exp

(
τ ′

4π i
(logz)2− τ ′ +1

2
logz

)
(8)
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×
∞

∏
k=0

(
1− w

e−τ ′ logz−2kπ iτ ′

)
×

∞

∏
k=1

(
1− 1

weτ ′ logz−2kπ iτ ′

)
.

Therefore,L(D+
τ +D−

τ ′)
∼= 1X, however in this example,D+

τ ∩D−
τ ′ ̸= /0; in fact,D+

τ ∩D−
τ ′

is a countably infinite set.
By Theorem 1.1 there is an extra-zeroE of D+

τ , but it is unknown what isE. Therefore
it is very interesting to ask

Question 4.1 Find an analytic expression ofE.

On the other hand we may give an example for Proposition 1.2. We letλ ∈C and further
set

D+
λ ,τ : w = eλ zτ .

ThenD+
λ ,τ is the image of an embedding

ζ ∈ C → (eζ , eλ ·eτζ ) ∈ X,

and is also given as a zero set ofF+
τ

(
z,e−λ w

)
. Thus,D+

τ = D+
0,τ andL(D+

τ ) = L(D+
λ ,τ) for

all λ . There is a small neighborhoodΩ of 0∈ C such that

Φ : (ζ ,λ ) ∈ C×Ω → (eζ , eλ ·eτζ ) ∈ (C∗)2 = X (9)

is an into-biholomorphism; in particular,

D+
τ ∩D+

λ ,τ = /0, λ ∈ Ω \{0}.

This describes precisely whyD+
τ is balayablein a neighborhood ofD+

τ (see§2 and its
footnote).

N.B. We do not know a method how to produce the analytic expressionF+
τ (z,w) of (4) from

the Chern classc1(L(D+
τ )) = T, and it is an interesting problem to find it.

(b) Examples for Theorem 1.1 withc1(N(D)) ̸= 0

(1) (Reducible divisor)A counter example in dimX ≥ 3 was first given by [6] in a domain
of Cn (n≥ 3). Using a similar idea, we give another counter example of a divisor on(C∗)3

for which Oka’s extra-zero problem has no solution.
Now we letX = (C∗)2×C∗ = (C∗)3 with projectionp : X → (C∗)2. Let D+

τ ⊂ (C∗)2

be as in the above (a), and set

D1 = D+
τ ×C∗, D2 = (C∗)2×{1}, (10)

D3 = D1 +D2.

SinceL(D2) ∼= 1X, L(D3) ∼= L(D1) ∼= p∗L(D+
τ ). ThereforeN(D3)|D2

∼= L(D+
τ ) ̸∼= 1D2 with

D2 ∼= (C∗)2, so thatN(D3) ̸∼= 1D3. One sees thatD3 has no extra-zero onX.
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(2) (Irreducible divisor) The above example ofD3 is reducible, and we like to have an
irreducible analytic hypersurface that has no extra-zero. We are going to modify the example
(1).

Let τ = i, let Z[i] = Z + iZ be the lattice of Gaussian integers and put

C → C/Z[i] ∼= C∗ λ0−→ C∗/Z = E ∼= C/Z[i].

ThenE is an elliptic curve with complex multiplicationa∈ E → ia ∈ E. Set

ι : (a,b) ∈ E2 → (ia,b) ∈ E2

and let∆ ⊂ E2 be the diagonal divisor. Renewing the index numbering, we set

D1 = ι∗∆ ⊂ E2,

λ1 = λ0×λ0 : (C∗)2 → E2,

D̂1 = λ ∗D1 ⊂ (C∗)2.

Note that the exampleD+
i with τ = i in the above (a) is a connected componentD̂′

1 of D̂1. It
follows that the Chern class

c1(L(D̂1)) ̸= 0 in H2((C∗)2,Z).

(This is equivalent to the non-solvability of Cousin II forD̂1, or to the non-triviality of the
line bundleL(D̂1) over(C∗)2.)

In fact, it follows from (a) of this section that

⟨c1(L(D̂1)),T⟩ = ⟨c1(L(D̂′
1)),T⟩ = 1. (11)

Now we set

λ2 : X = (C∗)2×C∗ → E2×E (the quotient map),

D2 = D1×E +E2×{0},
D̂2 = λ ∗

2 D2.

ThenL(λ ∗
2 (E2×{0})) is trivial onX and soL(D̂2) = L(λ ∗

2 (D1×E)), which is the pull-back
of L(D̂1) over(C∗)2 by the projectionX → (C∗)2. Therefore,L(D̂2) ̸∼= 1X. Furthermore, we
see that the normal bundleN(D̂2) = L(D̂2)|D̂2

→ D̂2 is non-trivial. ForN(D̂2)|(C∗)2×{1}
∼=

L(D̂1). Therefore we obtain

Lemma 4.2 Let the notation be as above. Then L(D̂2) ̸∼= 1X and N(D̂2) ̸∼= 1D̂2
.

N.B. This means that Cousin II problem forD̂2 on X is not solvable and there is no extra
zero forD̂2.

We would like to deformD̂2 to a smooth irreducible divisor, but this is not trivial. Thus
we are going to deformD2 onE3, butD2 is not ample. To make it ample, we add the divisor
{0}×E2 to D2 with setting

D3 = D2 +{0}×E2,

which is then ample, and we put̂D3 = λ ∗
2 D3 on X. Sinceλ ∗

2 L({1}×E2) = L(λ−1
2 {1}×

(C∗)2) ∼= 1X, we have thatL(D̂3) ∼= L(D̂2). Thus Lemma 4.2 holds for̂D3, too:



8 M. Abe, S. Hamano, J. Noguchi

Lemma 4.3 Let the notation be as above. Then we have that L(D̂3) ̸∼= 1X and N(D̂3) ̸∼= 1D̂3
.

It is well known thatL(3D3) is very ample. We take a smooth irreducible hyperplane
sectionD4 by a holomorphic section ofL(3D3), and set

D̂4 = λ ∗
2 D4.

Proposition 4.4 (Example)Let the notation be as above. ThenD̂4 is a smooth irreducible
divisor on X such that L(D̂4) ̸∼= 1X and N(D̂4) ̸∼= 1D̂4

; equivalently,

c1(L(D̂4)) ̸= 0 in H2(X,Z),

c1(N(D̂4)) ̸= 0 in H2(D̂4,Z).

Proof It is clear due to the construction thatD̂4 is smooth and irreducible (or connected).
Now we look at the 2-cycleT in (11). We regardT = S1×S1×{1} ∈ H2(X,Z). Then this
cycle T comes from a 2-cycle ofE3, which is again denoted by the sameT ∈ H2(E3,Z).
Then it follows that

⟨c1(L(D4),T⟩ = 3, (12)

so thatc1(L(D̂4)) ̸= 0.
It remains to show thatc1(N(D̂4)) ̸= 0. By Lefschetz’ hyperplane-section theorem the

natural morphism
H2(D4,Z) → H2(E3,Z) → 0

is surjective, and then there is a 2-cycleT ′ ∈ H2(D4,Z) which is mapped toT. ThenT ′ can
be lifted to a 2-cycle inH2(D̂4,Z), denoted by the sameT ′. We see by (12) that

⟨c1(N(D̂4)),T ′⟩ = 3.

Thusc1(N(D̂4)) ̸= 0; this finishes the proof. ⊓⊔

(3) (Takayama’s irreducible example)Let zj = x j + iy j , 1≤ j ≤ n, be the natural complex
coordinates ofCn with the standard basisej , 1≤ j ≤ n. Thenej , ie j , 1≤ j ≤ n, form real
basis ofCn and we define a latticeΓ ⊂ Cn by

Γ = ⟨e1, . . . ,en, ie1, . . . , ien⟩.

We setA = Cn/Γ and a sequence of covering maps

Cn ρ→ (C∗)n π→ A, (13)

whereρ is the quotient map by⟨ie1,e2, . . . ,en⟩ and π is that by⟨e1, ie2, . . . , ien⟩. We set
X = (C∗)n.

Let L be the line bundle overA whose Chern class is represented by

ω = µ i
n

∑
j=1

dzj ∧dz̄j + i ∑
j ̸=k

dzj ∧dz̄k, µ ∈ Z.

ThenL is ample forµ ≥ 2, and very ample ifµ ≥ 4.

Claim 4.5 π∗ω ̸= 0 in H2(X,Z); in particular, the pairing,ω · (ie1∧ej) ̸= 0, j ≥ 2, where
ie1∧ej ∈ H2(A,Z).
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Proof We consider the two pull-back morphisms

π∗ : Hq(A,Z) → Hq(X,Z), q = 1,2.

Thenπ∗dx1 = 0 andπ∗dyk = 0, k≥ 2; on the other hand,π∗dy1 ̸= 0 andπ∗dxk ̸= 0, k≥ 2.
It follows that

idzj ∧dz̄j = 2dxj ∧dyj = 0, 1≤ j ≤ n (moddx1, dyk, k≥ 2).

Therefore we have

π∗i(dz1∧dz̄j +dzj ∧dz̄1) = iπ∗(idy1∧dxj +dxj ∧ (−idy1))

= −2π∗(dy1∧dxj)

for j ≥ 2. ⊓⊔

Now we assumen≥ 3 andµ ≥ 4. ThenL is very ample.

Proposition 4.6 (Example)We take a smooth irreducible divisor D∈ |L| and setD̃ =
π−1D ⊂ X. Then the divisor̃D is smooth irreducible and has no extra-zero on X.

Proof SinceH1(D,Z) ∼= H1(A,Z) (Lefschetz’ Theorem),̃D is connected. Again by Lef-
schetz’ Theorem the natural morphism is surjective:

H2(D,Z) → H2(A,Z) → 0.

There is an elementξ ∈ H2(D,Z) which is mapped toie1∧ej ( j ≥ 2). Let ι : D ↪→ A be the
inclusion map and let̃ι : D̃ → X be the lifting. It follows from (13) that there is an element
ξ̃ ∈ H2(D̃,Z) with ι̃∗ξ̃ = ξ . Note thatc1(L(D̃)) = π∗ω. We have that

c1(L(D̃)) · ξ̃ = ω · (ie1∧ej) ̸= 0.

Therefore we see thatc1(L(D̃)) ̸= 0 and thatc1(N(D̃)) ̸= 0; equivalently, the smooth irre-
ducible divisorD̃ has no extra-zero onX. ⊓⊔

The problem that we are here dealing with may be considered as a special case of the
intersection theory of analytic cycles. LetX be an affine algebraic manifold. Then there are
theories of cycles in algebraic and analytic categories; there is a difference even in a simplest
case as follows. LetX ⊂ C2 be an affine elliptic curve with a point at infinity, and leta∈ X
be a point, which is an algebraic divisor. There is no regular rational function onX with
exact zeroa, but there exists such a holomorphic function onX.

In general, letX̄ be a compact complex space, letZ⊂ X̄ be a reduced complex subspace,
and setX = X̄ \Z. Let I ⟨Z⟩ be the geometric ideal sheaf ofZ. Let f ∈ O(X) be a holo-
morphic function onX. We consider a positive numberρ ′ for which the following condition
holds: There are a neighborhoodU ⊂ X̄ of every pointa∈ Z with generatorsσ j , 1≤ j ≤ ℓ,
of I ⟨Z⟩ overU , and positive constantsC1, C2 such that

log| f (x)| ≤ C1

(maxj |σ j(x)|)ρ ′ +C2,
∀x∈U ∩X.

We call the infinimumρ = inf {ρ ′} (≤ ∞) of all thoseρ ′ the order of f at infinity; if no
ρ ′ exists,ρ = ∞ by definition. Because of the coherence ofI ⟨Z⟩ (Oka [10, VII–VIII] and
Cartan [1]), this definition makes sense.

Problem 4.7 LetX = X̄\Z be Stein and algebraic. LetD be an effective algebraic divisor on
X with c1(L(D)) = 0 (resp.c1(N(D)) = 0). Do there exist an algebraic compactificationX̄ of
X and a holomorphic functionf ∈O(X) with zero divisorD (resp. locally in a neighborhood
of SuppD) such thatf has order at most one at infinity?
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(c) Stein’s example from the viewpoint of the value distribution theory

Let f : ζ ∈ C → (eζ ,eiζ ) ∈ (C∗)2 = X be the example (3) due to Stein in (a). Thenf is
algebraically non-degenerate; that is, there is no proper algebraic subsetY ⊂ X with f (C)⊂
Y. In fact, letP(z,w) (̸= 0) be any non-zero polynomial in(z,w) ∈ X. We write

P(z,w) = ∑
j,k

c jkzjwk.

Suppose thatf (C) ⊂ {P = 0}. Then

∑
j,k

c jke( j+ik)ζ ≡ 0.

This is absurd, sincee( j+ik)ζ are linearly independent overC.
According to the main result of Noguchi-Winkelmann-Yamanoi [8], [9], and Corvaja-

Noguchi [2], the intersection setf (C)∩D is infinite for an arbitrary algebraic divisorD on
X, but we have that for an extra-zeroE of D+ = f (C),

f (C)∩E = /0.

Problem 4.8 Let g : C → X be an analytically non-degenerate entire curve. Then, isg(C)∩
A ̸= /0 for an arbitrary analytic divisorA of X? Moreover, isg(C)∩A an infinite set? Here it
is natural to generalizeX to a semi-abelian variety.

References

1. Cartan, H.: Id́eaux et modules de fonctions analytiques de variables complexes. Bull. Soc. Math. France
78, 29–64 (1950)

2. Corvaja, P., Noguchi, J.: A new unicity theorem and Erdös’ problem for polarized semi-abelian varieties.
Math. Ann.353, 439–464 (2012)

3. Cornalba, M., Shiffman, B.: A counterexample to the “Transcendental Bezout problem”, Ann. Math. (2)
96, 402–406 (1972)
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