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Abstract After the solution of Cousin Il problem by K. Oka Il in 1939, he thought an
extra-zero problem in 1945 (his posthumous paper) asking if it is possible to solve an arbi-
trarily given Cousin Il problem adding some extra-zeros whose support is disjoint from the
given one. By the secondly named author, some special case was affirmatively confirmed in
dimension two and a counter-example in dimension three or more was given. The purpose
of the present paper is to give a complete solution of this problem with examples and some
new questions.
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1 Introduction

After the solution of Cousin Il problem by K. Oka [10, IlI] he thought the followiexgra-
zero problemin 1945 (his posthumous paper [11], no. 2, p. 31, Problem 2§2ge
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Oka’s Extra-Zero Problem Let X be a domain of holomorphy and let D be an effective
divisor on X. Find an effective divisor E on X such that their supports have no intersection,

(SuppD) N (SuppE) = 0,
and Cousinl problem for D+ E is solvable on X.

The divisorE in the above problem is called antra-zeroof D. LetL(D) denote the line
bundle determined by, IetN(D) = L(D)|(sypp) — SuppD be the normal bundle & over
the support Supp of D, and letlyx denote the trivial line bundle ovet. Then Cousin Il
problem is equivalent to asklif D) = 1x. TheOka Principle[10, IlI] says that (D) = 1x if
and only if the the first Chern class(L(D)) = 0 in the cohomology groupl?(X,Z). Since
the problem is trivial foiD such that (D) = 1x, Oka’s extra-zero problem makes sense for
D with c;(L(D)) # 0. For a general reference of the Oka Principle, cf. Forstrjéfi

In [6] a counter-example was constructed in &irr 3, and if dimX = 2, some partial
affirmative answer was shown.

The purpose of this paper is to give a complete answer to Oka’s extra-zero problem with
examples and some new questions based on this problem, on which we would like to put
equal emphasis as well (sg$t and 5). It is also a point of this paper to have the analytic
expressions of some topological invariants of Stein manifolds (cf. Stein [12]). In the general
case we have

Theorem 1.1 Let D be an effective Cartier divisor on a (reduced) Stein space X. Then Oka’'s
extra-zero problem is solvable if and only if(8l(D)) = 0 in H2(SuppD, Z). In particular,
if dimX = 2, Oka’s extra-zero problem is always solvable.

The last statement is due itt?(SuppD, Z) = 0, since dim Supp < 1 (cf. [7]).

N.B.

1. K. Oka[11] almost proved Theorem 1.1 (see Theorem 2.1). Referring to Oka’s Theorem
2.1, one may say that Theorem 1.1 is an infinitesimalization of the topological condition
from a neighborhood db to D itself. This is not difficult now by many well-established
results.

2. By the proof in§3 it is in fact not necessary to assumédo be effective; even in this
case, the extra-ze® is kept to be effective.

Let E be an extra-zero dD in Oka’s extra-zero problem. By definitid{E) = L(—D).
Thus the problem is equivalent to find a holomorphic sectian!” (X,L(—D)) such that

Supgo) NSuppD = 0. @)

Here we consider onlg whose zero set is nowhere dens&iand hence defines a divisor
(o) onX. From this viewpoint it is interesting to see

Proposition 1.2 Let the notation be as in Theorelml Then Oka’s extra-zero problem is
solvable if and only if there exists a sectiog I" (X, L(D)) with nowhere dense zero set and

Supft) NSuppD = 0. )
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N.B. For T in (2) (resp.o in (1)) we required that the zero set of(resp.o) is nowhere
dense inX. This is, however, not a restriction. Fortifvanishes constantly on an irreducible
component ofX, we letX/, (v =1,2,...) be all such components. Then we take a section
T, € [ (X,L(D)) such thatr; |y, # 0 andt;, = 0 on every irreducible component ¥fother
thanX{,. We setf = 1+ Y, 1y,. Then{f =0} C {r = 0} as sets and the analytic subset
{f = 0} is nowhere dense iX. This is the same foo in (1).

Acknowledgements After the counter-example constructed by [6] which was a reducible divisor, Professor
T. Ueda asked if there is an irreducible counter-example; his question forms a part of the motivation of the
present paper. Professor S. Takayama gave an interesting exar§glertie authors are very grateful to all

of them.

2 Oka’s notes

Here we summarize in short the contents of the posthumous paper [11]. We should first
notice that itis dated 28 February 1945 before Oka’s Coherence Theorem [10, VII]. Roughly
speaking, he developed the following study.

1. He wished to reformulate Cousin Il problem by relaxing the conclusion so that it is
solvable on every domain of holomorphy.

2. He recalled the Oka Principle for Cousin Il problem on a domain of holomorphy, and
reduced the essential key-part of the problem to the following:

Let Q € C" be a bounded closed domain with a fundamental system of holomor-
phically convex neighborhoods. Let D be a divisor on a neighborhodd.ofhen the
Cousin Il problem for D is solvable in a neighborhood®fif and only if g (L(D)) =0
in a neighborhood of2.

3. Hethen proposed ttigxtra-Zero Problenas Problem 2. Le© andD (effective) be as in
the above item. Then he asks to find an effective divisar a neighborhood of2 such
that Supf NSuppE = 0 and Cousin Il problem fdD + E is solvable in a neighborhood
of Q.

4. He proved a result as Theorem 8 which is stated as follows:

The extra-zero problem is solvable for D in a neighborhoo@df and only if there
is a neighborhood V of DI Q with ¢;(L(D)|v) = 0.

5. After confirming the above topological obstruction for the extra-zero problem, he proved
that there always exists an effective divisoin a neighborhood of2 such that Cousin Il
problem forD + F is solvable. Furthermore he proved that there are at mest holo-
morphic functionsfj, 1< j <n+1, in a neighborhood a® such that in a neighborhood
W of every point ofD N Q one of zeros of; is exactlyD NW.

Taking into account of the items 2 and 4 above, we may assume that he obtained or at
least recognized the following statement.

Theorem 2.1 QOka [11])Let Q C C" be a domain of holomorphy, and let D be an effec-
tive divisor onQ. Then the extra-zero problem for D is solvable if and only if there is a
neighborhood V of D satisfying @ (D)|v) =0in V.

1 Here his term is Balayablé used in Oka [10, IIl]; the meaning is that the given Cousin Il distribution is

continuously deformable to a zero-free continuous Cousin Il distribution. The Cousin Il problem on a domain
X of holomorphy is solvable if and only B is balayableon X.
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K. Oka wrote that it strongly attracts his interest from a number of viewpoints to decide
if this Extra-Zero Problem is always solvable or there is a counter-example, and the problem
would have a wide influence in futufe.

It is now necessary to know what is the most general form of his statement (Theo-
rem 2.1), and it is Theorem 1.1.

3 Proofs
(a) Proof of Theorem 1.1

Suppose first that Oka’s extra-zero problem is solvableELls¢ an extra-zero db, and let
o €T (X,L(E)) with (0) = E. SetY = SuppD. Then the restrictiow|y toU = X\ SuppE
has no zero over the neighborhoddof Y. ThereforeL(—D)|y = L(E)|ju = 1y, and then
N(D) 2 1y, so thatcy(N(D)) = 0.

Conversely, assume thet(N(D)) = 0. Then, of course¢;(N(—D)) = 0. SinceY is
Stein,N(—D) = 1y, so that there exists a holomorphic sectjor I (Y,N(—D)) which has
no zero. By the Fundamental Theorem of Oka-Cartan (Oka [10] I-I, VII-VIII; Grauert-
Remmert [5])¢ extends to an elemerjt € " (X,L(—D)) with nowhere dense zero set.
Sinced has no zero ok, the divisor($) gives rise to an extra-zero bX.

(b) Proof of Proposition 1.2

We keep the notation used in (a). Suppose that Oka’s extra-zero problem is solvable. Then
the aboveo € I' (X,L(E)) has no zero olY. ThereforeN(D) = L(D)]y = L(—E)Jy = 1y.
By the Fundamental Theorem of Oka-Cartarn,'|y extends holomorphically to a section
T € I (X,L(D)) with nowhere dense zero set. By definition, StipmY = 0.

Suppose the existence af € I (X,L(D)) with nowhere dense zero set such that
Supg1)NY = 0. Then the same argument implies the existenae ofl" (X,L(—D)) with
nowhere dense zero set such that JapmY = 0, and hencéo) is an extra-zero ob.

4 Examples
(a) A generalized example due to K. Stein

The case ofX = (C*)? with C* = C\ {0} may be the most fundamental for non-trivial
H2(X,Z) # 0. In fact, K. Stein [12] studied this case. The toflus- S' x S' C X gives the
generator oHy(X,Z) = H2(X,Z). Let (z,w) € X be the natural coordinates, and tet C
with 01 > 0. Then we take an analytic hypersurface given by

D : w=Z =g (3)

We are going to show thdd; has the first Chern clask. The case off =i is the
example of Stein [12]. We set

1
F (zw) :exp<ﬁ(logz)2+ %Iogz) (4)

2 He did not give an explicit problem here.
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i w a 1
X kl_!) (17 erlogz—zknir) X kl_ll (17 W('rrlogz—zkrrir) ’

where we take a branch log40. Let.%, (resp..%4y) denote the analytic continuation as the
variablez (resp.w) runs over the unit circle in the anti-clockwise direction. Th&logz =
logz+ 2mi, and

LF (zw) =wR (W), LF(zw) =F(zw). ®)

Thus we have that
DY = {F"(zw) =0}.

It follows from (5) that
Fe (zw) )
|W| %1 argz

is one-valued oiX. Letz=r1€% andw = r,€% be the polar coordinates. Then

2 (9 0
d= le(arjdrj+aejd91),

S N S N I AP
d _47T(0 0)_4ﬂjz|<r]0rjdej I’jﬁ@jdr] '

By (6) we see thalfw| RAG rzel/’T gives a hermitian metric ib(D7 ), and we compute the
Chern form:

12 ] 10 6
o Largz _ ) o ) 2L
dd°log|w| d{4nj§_ (r,mjdeJ 7 aejer) - ogrz}

1
=2 (dlogri Adlogra+d6i Ad6y).
The above first term id-exact, since

dlogri Adlogrz = d((logri) - dlogrs).

Hence the Chern clags(L(D7)) € H?(X,Z) is represented bﬁ%demdez. By pairing
we have

@O = [ oodende=1

stxst 4T
In the same way, taking € C with 7’ > 0 we set

—T

- —1'logz
Dy: w=z 9z,

=e
_ 1
F.(zw) =F] (;W) )

Thus 1
LF(zw) = V—VFTT(Z,W), LuF (Zzw) =F/ (zw). @)

From (4) one obtains

_ T T+1
F. (zw) :exp(m(logz)z— 5 Iogz) (8)
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w

a 1
X k[L <17 e—r’logz—anir’) X k[|1 (17 wel’ Iogz—2krn'r’) ’

Therefore (Df +D_,) = 1x, however in this exampl®; ND_, # 0; in fact,Dy ND,
is a countably infinite set.

By Theorem 1.1 there is an extra-zét@f D7, but it is unknown what i€. Therefore
it is very interesting to ask

Question 4.1 Find an analytic expression &f

On the other hand we may give an example for Proposition 1.2. \Wedef and further
set

Dy, w= ez
ThenD;T is the image of an embedding
{eC—(ef,e e eX,

and is also given as a zero setRf (z.e~*w). Thus,Df =D, andL(D;) = L(D; ) for
all A. There is a small neighborhod® of 0 € C such that '

®:({,A)eCxQ— (& e e)e(CT)=X )
is an into-biholomorphism; in particular,
Dy ND}, =0, AeQ\{0}.

This describes precisely why; is balayablein a neighborhood oD; (see§2 and its
footnote).

N.B. We do not know a method how to produce the analytic expre$sida, w) of (4) from
the Chern class; (L(D{)) =T, and it is an interesting problem to find it.

(b) Examples for Theorem 1.1 withcy(N(D)) # O

(1) (Reducible divisor) A counter example in difrK > 3 was first given by [6] in a domain
of C" (n > 3). Using a similar idea, we give another counter example of a divis¢Co)®
for which Oka’s extra-zero problem has no solution.

Now we letX = (C*)2 x C* = (C*)® with projectionp: X — (C*)2. LetDj C (C*)2
be as in the above (a), and set

Dy =Df xC*, D= (C*)2x {1}, (10)
D3 =Dj+ Ds>.

SinceL(D2) = 1x, L(D3) 22 L(D1) = p*L(D7 ). ThereforeN(D3)|p, = L(D7) % 1p, with
D, =2 (C*)?, so thatN(D3) % 1p,. One sees thdds has no extra-zero oX.
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(2) (Irreducible divisor) The above example db; is reducible, and we like to have an
irreducible analytic hypersurface that has no extra-zero. We are going to modify the example

(1).Let T =1, letZ[i] = Z +iZ be the lattice of Gaussian integers and put
Ccc/zji] ~ct X, c/z =E =~ ¢/z]i.
ThenE is an elliptic curve with complex multiplicatioac E — ia € E. Set
1 : (a,b) € E? — (ia,b) € E2
and letA c E? be the diagonal divisor. Renewing the index numbering, we set
D1 =1"A CE?,
A =AgxAg: (C*)? — E2,
D1 =A*DyC (C)2

Note that the examplB;" with T =i in the above (a) is a connected compor@hbf D1. It
follows that the Chern class

ci(L(D1)) #0 inHZ((C*)?,2).

(This is equivalent to the non-solvability of Cousin II fBr, or to the non-triviality of the
line bundleL(D;) over(C*)2.)
In fact, it follows from (a) of this section that

(c1(L(B1)), T) = (ea(L(DY)),T) = L. (11)
Now we set

A2:X=(C*")%xC* - E%2xE (the quotient map
D, = D1 x E+E? x {0},
Dz = )\Z*Dz.
ThenIA_()\é‘(E2 x {01)) is trivial on X and sd_(Dy) = L(A; (D1 x E)), which is the pull-back
of L(Dy) over(C*)? by the projectiorX — (C*)2. Therefore] (D) # 1x. Furthermore, we
see that the normal bundi(D2) = L(D2)|s, — D2 is non-trivial. FOrN(D2)| ¢+ )2, 1} =
L(D1). Therefore we obtain

Lemma 4.2 Let the notation be as above. Thefia) % 1x and N(D2) % 15,.

N.B. This means that Cousin Il problem for on X is not solvable and there is no extra
zero forD».

We would like to defornf)g to a smooth irreducible divisor, but this is not trivial. Thus
we are going to deforr®, on E3, butD5 is not ample. To make it ample, we add the divisor
{0} x E? to D, with setting

D3 =D+ {0} x E?,

which is then ample, and we piils = A;D3 on X. SinceA;L({1} x E?) = L(A, *{1} x
(C*)?) = 1x, we have thak (D3) = L(D). Thus Lemma 4.2 holds fdd3, too:
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Lemma 4.3 Let the notation be as above. Then we have tfiBi). % 1x and N(D3) # 15,

It is well known thatlL(3D3) is very ample. We take a smooth irreducible hyperplane
sectionD4 by a holomorphic section df(3D3), and set

|j4 = AZ* Dy.

Proposition 4.4 (Example)Let the notation be as above. ThBa is a smooth irreducible
divisor on X such that (D4) # 1x and N(D4) # 1p,; equivalently,

c1(L(Dg)) #0 inH3(X,2),
c1(N(Ds)) #0 inH?(Dy,2).

Proof It is clear due to the construction tht, is smooth and irreducible (or connected).
Now we look at the 2-cycld in (11). We regard = S x St x {1} € Hp(X,Z). Then this
cycle T comes from a 2-cycle dE3, which is again denoted by the saffie= H,(E3,Z).
Then it follows that
<C1(L(D4)aT> =3, (12)

so thatcy (L(D4)) # 0.

It remains to show that; (N(D4)) # 0. By Lefschetz’ hyperplane-section theorem the
natural morphism

Ha(D4,Z) — Ha(E3,Z) — 0

is surjective, and then there is a 2-cy@lec Hz(D4,Z) which is mapped t@. ThenT’ can
be lifted to a 2-cycle itH,(D4,Z), denoted by the sani¥. We see by (12) that

(c1(N(D4)),T') =3,
Thusci(N(D4)) # 0; this finishes the proof. 0

(3) (Takayama's irreducible example)Let z; = x; +1iy;j, 1 < j < n, be the natural complex
coordinates oC" with the standard basig, 1 < j < n. Thenej, iej, 1 < j < n, form real
basis ofC" and we define a latticE C C" by

I ={e,...,enie1,...,ien).

We setA= C"/I" and a sequence of covering maps
cn L) LA, (13)

wherep is the quotient map byies,ey,...,e,) andmis that by(ey,iez,...,ien). We set
X =(CH".

LetL be the line bundle ovek whose Chern class is represented by
n
W= iy dzAdzj+i ;kdzj ANdz, peZ.
=1 ]
ThenL is ample fory > 2, and very ample ift > 4.

Claim 4.5 m*w # 0in H2(X,Z); in particular, the pairing,w- (ie1 Aej) £ 0, j > 2, where
ietAej € Ho(A Z).
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Proof We consider the two pull-back morphisms
m:HYAZ) - HIYX,Z2), q=1,2

Thenm*dx = 0 andmr*dy, = 0, k > 2; on the other handr*dy; # 0 andmr*dx # 0,k > 2.
It follows that

idzj Adz; = 2dx;Ady; =0, 1< j<n(moddx,dy, k> 2).
Therefore we have
mi(dz Adzj+dz; Adzy) =i (idyy Adx; +dx; A (—idyy))
= =27 (dyL A dx;)
forj>2. O
Now we assume > 3 andu > 4. ThenL is very ample.

Proposition 4.6 (Example)We take a smooth irreducible divisor ®|[L| and setD =
1D ¢ X. Then the divisob is smooth irreducible and has no extra-zero on X.

Proof SinceH1(D,Z) = Hi(A,Z) (Lefschetz’ Theorem)D is connected. Again by Lef-
schetz’ Theorem the natural morphism is surjective:

H2(D,Z) — H(A,Z) — 0.

There is an elemerdt € Hy(D, Z) which is mapped téei A€ (j > 2). Let : D — Abe the
inclusion map and let: D — X be the lifting. It follows from (13) that there is an element
& e Hy(D,Z) with 7,.§ = . Note thatcy (L(D)) = m* w. We have that

c(L(D))-& = w-(ie1Aej) £0.

Therefore we see thai(L(D)) # 0 and thaic; (N(D)) # 0; equivalently, the smooth irre-
ducible divisorD has no extra-zero oX. O

The problem that we are here dealing with may be considered as a special case of the
intersection theory of analytic cycles. Détbe an affine algebraic manifold. Then there are
theories of cycles in algebraic and analytic categories; there is a difference even in a simplest
case as follows. LeX c C? be an affine elliptic curve with a point at infinity, and ket X
be a point, which is an algebraic divisor. There is no regular rational functiod with
exact zera, but there exists such a holomorphic functiomtn

In general, leX be a compact complex space,Zet X be a reduced complex subspace,
and setX = X\ Z. Let .#(Z) be the geometric ideal sheaf &f Let f € ¢(X) be a holo-
morphic function orX. We consider a positive numbgf for which the following condition
holds: There are a neighborhoddc X of every pointa € Z with generatorgrj, 1< j </,
of .#(Z) overU, and positive constan, C, such that

C]_ v

——+C, "xeunX

(max; |a; (x)[)?

We call the infinimump = inf{p’} (< ) of all thosep’ the order of f at infinity if no
p’ exists,p = « by definition. Because of the coherence%fZ) (Oka [10, VII-VIII] and
Cartan [1]), this definition makes sense.

log|f(x)| <

Problem 4.7 LetX = >?\Z be Stein and algebraic. LBtbe an effective algebraic divisor on
Xwith ¢1(L(D)) =0 (respci(N(D)) = 0). Do there exist an algebraic compactificatonf

X and a holomorphic functiofi € &(X) with zero divisorD (resp. locally in a neighborhood
of SuppD) such thatf has order at most one at infinity?
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(c) Stein’s example from the viewpoint of the value distribution theory

Let f: { € C — (€f,€9) € (C*)? = X be the example (3) due to Stein in (a). Theiis
algebraically non-degenerate; that is, there is no proper algebraic ubs¢twith f(C) C
Y. In fact, letP(z,w) (+ 0) be any non-zero polynomial ifz,w) € X. We write

P(zw) = chkzjvvk.

B

Suppose that(C) C {P = 0}. Then

Zc,—ke(j“k)z =0.
IE

This is absurd, sinceli k)< are linearly independent over.

According to the main result of Noguchi-Winkelmann-Yamanoi [8], [9], and Corvaja-
Noguchi [2], the intersection sé{C) N D is infinite for an arbitrary algebraic divis@ on
X, but we have that for an extra-zeffoof D = f(C),

f(C)NE =0.

Problem 4.8 Letg: C — X be an analytically non-degenerate entire curve. Theg(G3nN
A # 0 for an arbitrary analytic divisoh of X? Moreover, ig9(C) N A an infinite set? Here it
is natural to generaliz¥ to a semi-abelian variety.
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