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4.2 Cartan’s Merging Lemma

We consider a coherent sheafF → Ω over a domainΩ ⊂ Cn. As finite local gen-
erator systems ofF over adjoining closed subdomainsE′ andE′′ of Ω are given, it
is necessary to form a local finite generator system ofF overE′ ∪E′′ by merging
them. We begin with some elementary facts on matrices.

4.2.1 Matrix-valued Functions

We prepare several facts on matrices, matrix-valued functions, their series and infi-
nite products, necessary in the later arguments.

In general, letp∈ N and letA be a complex(p, p)-matrix. We may consider two
norms forA:

∥A∥∞ = max
i, j

{|ai j |},

∥A∥ = max{∥Aξ∥;ξ ∈ Cp,∥ξ∥ = 1}.

By usingξ = t(0, . . . ,0,1,0, . . . ,0), we immediately get

∥A∥∞ ≤ ∥A∥ ≤ p∥A∥∞.

Therefore, the convergences defined by the two norms are mutually equivalent.
Since∥A∥ behaves better than∥A∥∞ for the product of matrices, we use∥A∥ in
the sequel. We call∥A∥ theoperator normof A.

If A= A(z) is a(p, p)-matrix valued function defined on a subsetE ⊂ Cn, we put

∥A∥E = sup{∥A(z)∥;z∈ E}.

We denote the unit(p, p)-matrix by1p.

Proposition 4.2.1 Let A be a(p, p)-matrix or a(p, p)-matrix valued function in E.
Let B be another(p, p)-matrix. Then the following holds:

(i) ∥A+B∥ ≤ ∥A∥+∥B∥.
(ii) ∥AB∥ ≤ ∥A∥ · ∥B∥．

(iii) If A = A(z)(z∈ E) satisfies∥A∥E ≤ ε < 1, then there exists the inverse(1p−
A(z))−1 and the following holds:

(1p−A(z))−1 = 1p +A(z)+A(z)2 + · · · .

Here, the right-hand side converges uniformly onE, and∥(1p −A)−1∥E ≤
1

1−ε : In particular, forε = 1
2, ∥(1p−A)−1∥E ≤ 2．

(iv) For k = 0,1, . . ., let positive numbersεk with 0 < εk < 1 and(p, p)-matrix
valued functionsAk(z) (z∈ E) be given, so that∥Ak∥E ≤ εk and∑∞

k=0 εk < ∞.
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Then the infinite products

lim
k→∞

(1p−A0(z)) · · ·(1p−Ak(z)),

lim
k→∞

(1p−Ak(z)) · · ·(1p−A0(z))

converge uniformly onE and the limits are invertible.

Proof (i), (ii): These are immediate from the definitions.
(iii): We deduce this from the following identity and inequality withk→ ∞:

(1p−A(z))(1p +A(z)+A(z)2 + · · ·+A(z)k) = 1p−A(z)k+1,

∥1p +A(z)+A(z)2 + · · ·+A(z)k∥E ≤
k

∑
j=0

∥A∥ j
E ≤

k

∑
j=0

ε j =
1− εk+1

1− ε
.

(iv): The proofs of the both are similar; we show the second. Set

Gk(z) = (1p−Ak(z)) · · ·(1p−A0(z)) =
0

∏
j=k

(1p−A j(z)), k = 0,1, . . . .

It suffices to show that{Gk}∞
k=0 is a uniform Cauchy sequence, and that{G−1

k }∞
k=0

converges uniformly onE, too. We setC0 = exp(∑∞
k=0 εk). Then,

∥Gk∥E ≤
0

∏
j=k

∥1p−A j∥E ≤
k

∏
j=0

(1+∥A j∥E) ≤
k

∏
j=0

(1+ ε j)

= exp

(
k

∑
j=0

log(1+ ε j)

)
< exp

(
k

∑
j=0

ε j

)
< C0.

Let l > k > 0. It follows from the above equation that

∥Gl −Gk∥E

≤
∥∥(1p−Al )(1p−Al−1) · · ·(1p−Ak+1)−1p

∥∥
E · ∥Gk∥E

≤C0∥−Al −Al−1−·· ·−Ak+1 +Al Al−1 + · · ·+(−1)l−kAl · · ·Ak+1∥E

≤C0(∥Al∥E + · · ·+∥Ak+1∥E +∥Al∥E · ∥Al−1∥E + · · ·+∥Al∥E · · ·∥Ak+1∥E)

= C0

(
k+1

∏
j=l

(1+∥A j∥E)−1

)
≤C0

(
l

∏
j=k+1

(1+ ε j)−1

)

≤C0

(
exp

(
l

∑
j=k+1

ε j

)
−1

)
−→ 0 (l > k→ ∞).

Thus{Gk} is a uniform Cauchy sequence.
As for G−1

k = ∏k
j=0(1p−A j)−1, with settingBk = −Ak(1p−Ak)−1 we have
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(1p−Ak)−1 = 1p−Bk.

By making use of the consequence of (iii) we obtain

∥Bk∥E ≤ ∥Ak∥E · ∥(1p−Ak)−1∥E ≤ εk

1− εk
.

Put 0< θ := maxk{εk} < 1. Then it follows that

∥Bk∥E ≤ εk

1−θ
.

Therefore, for everyk ≫ 1, Bk fulfills the condition thatAk satisfies. Hence,
{G−1

k }∞
k=0 converges uniformly onE. ⊓⊔

Assuming the existence of(1p−S)−1 and(1p−T)−1 for (p, p)-matricesSand
T, we put

M(S,T) = (1p−S)−1(1p−S−T)(1p−T)−1,(4.2.2)

N(S,T) = 1p−M(S,T).

Lemma 4.2.3 (Key) Let S and T be(p, p)-matrices such thatmax{∥S∥,∥T∥} ≤ 1
2.

Then
∥N(S,T)∥ ≤ 22(max{∥S∥,∥T∥})2.

Proof Noting

(1p−T)−1 = 1p +T(1p−T)−1 = 1p +T +T2(1p−T)−1,

we see that

M(S,T) = (1p−S)−1(1p−S−T)(1p−T)−1

= (1p− (1p−S)−1T)(1p−T)−1

= 1p +T +T2(1p−T)−1

− (1p +S(1p−S)−1)T(1p +T(1p−T)−1)

= 1p +T +T2(1p−T)−1

−T −T2(1p−T)−1−S(1p−S)−1T(1p−T)−1

= 1p−S(1p−S)−1T(1p−T)−1,

N(S,T) = S(1p−S)−1T(1p−T)−1.

Then the assumption implies that

∥N(S,T)∥ ≤ ∥S∥ ·2· ∥T∥ ·2≤ 22(max{∥S∥,∥T∥})2. ⊓⊔
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4.2.2 Cartan’s Matrix Decomposition

We here assume the following:

4.2.4 (Closed cubes)A closed cubeor aclosed rectangleis a closed subset ofCn

bounded with all edges parallel to real or imaginary axes of the complex coordinates;
here we include the case when the widths of some edges degenerate to zero.

Assume that two closed cubesE′, E′′ b Ω are represented as follows. There are
a closed cubeF b Cn−1, and two closed rectanglesE′

n,E
′′
n b C sharing an edgeℓ,

such that (cf. Fig. 4.2)

E′ = F ×E′
n, E′′ = F ×E′′

n , ℓ = E′
n∩E′′

n .

Fig. 4.2 Adjoining closed cubes

Let GL(p;C) denote the general linear group of degreep, and let1p denote the
unit matrix of degreep. The following is due to H. Cartan [8].

Lemma 4.2.5 (Cartan’s matrix decomposition) Let the notation be as above.
Then there is a neighborhood V0 ⊂ GL(p;C) of 1p such that for a matrix-valued
holomorphic function A: U →V0 on a neighborhood U of F× ℓ, there is a matrix-
valued holomorphic function A′ : U ′ → GL(p;C) (resp. A′′ : U ′′ → GL(p;C)) on a
neighborhood U′ (resp. U′′) of E′ (resp. E′′) satisfying A= A′ ·A′′ on a neighbor-
hood of F× ℓ.

Proof We widen each edge ofF , E′
n, E′′

n by the same length,δ > 0 outward and de-
note the resulting closed cube and closed rectangles byF̃ , Ẽ′

n(1), Ẽ′′
n(1), respectively.

Takingδ > 0 sufficiently small, we have

F × ℓ ⊂ F̃ ×
(
Ẽ′

n(1) ∩ Ẽ′′
n(1)
)

b U.

Set the boundaries as in Fig. 4.3:

∂
(

Ẽ′
n(1) ∩ Ẽ′′

n(1)

)
= γ(1) = γ ′(1) + γ ′′(1),(4.2.6)

γ ′(1) =
(

∂ Ẽ′
n(1)

)
∩ Ẽ′′

n(1), γ ′′(1) = Ẽ′
n(1) ∩∂ Ẽ′′

n(1).
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Fig. 4.3 δ -closed neighborhoods of the adjoining closed cubes

Similarly, keeping the innerδ2 of the widthδ asE′
n is widened toẼ′

n(1) we suc-

cessively shrink inward by dividing in half the outerδ
2 . That is,Ẽ′

n(2) denotes the

closed cube shrunk inward byδ4 from Ẽ′
n(1). AssumingẼ′

n(k) determined, we denote

by Ẽ′
n(k+1) the closed cube shrunk inward byδ

2k+1 from Ẽ′
n(k) (cf. Fig. 4.4). Since

δ
4

+
δ
8

+ · · · = δ
2

,

∞∩
k=1

Ẽ′
n(k) = the closed cube widened fromE′

n by
δ
2

.

We setẼ′′
n(k), similarly. As in (4.2.6) we write

(4.2.7) ∂
(

Ẽ′
n(k) ∩ Ẽ′′

n(k)

)
= γ(k) = γ ′(k) + γ ′′(k).

Let

Fig. 4.4 Closed δ
2k -neighborhoods of closed cubes
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(4.2.8) Ẽ′
(k) = F̃ × Ẽ′

n(k), Ẽ′′
(k) = F̃ × Ẽ′′

n(k)

be the closed cube neighborhoods ofE′ andE′′, respectively.
We writeA = 1p−B1. By Cauchy’s integral expression we have

B1(z′,zn) =
1

2π i

∫
γ(1)

B1(z′,ζ )
ζ −zn

dζ(4.2.9)

=
1

2π i

∫
γ ′(1)

B1(z′,ζ )
ζ −zn

dζ +
1

2π i

∫
γ ′′(1)

B1(z′,ζ )
ζ −zn

dζ

= B′
1(z

′,zn)+B′′
1(z

′,zn).

Here,B′
1(z

′,zn) is holomorphic in(z′,zn)∈ Ẽ′
(2), and so isB′′

1(z
′,zn) in (z′,zn)∈ Ẽ′′

(2).
Note that

(4.2.10) |zn−ζ | ≥ δ
4

, ∀(z′,zn) ∈ Ẽ′
(2),

∀ζ ∈ γ ′(1).

LettingL be the length of the curveγ ′(1), we get fork≥ 1

L = the length ofγ ′′(1) ≥ the length ofγ ′(k) = the length ofγ ′′(k).

For (z′,zn) ∈ Ẽ′
(2) it follows from (4.2.9) and (4.2.10) that

∥B′
1(z

′,zn)∥ ≤
1

2π
· 4

δ
L ·max

γ(1)
∥B1(z′,ζ )∥.

Therefore,

∥B′
1∥Ẽ′

(2)
≤ 2L

πδ
∥B1∥Ẽ′

(1)∩Ẽ′′
(1)

.

In the same way we get

∥B′′
1∥Ẽ′′

(2)
≤ 2L

πδ
∥B1∥Ẽ′

(1)∩Ẽ′′
(1)

.

Set

(4.2.11) ε1 = max
{
∥B′

1∥Ẽ′
(2)

,∥B′′
1∥Ẽ′′

(2)

}(
≤ 2L

πδ
∥B1∥Ẽ′

(1)∩Ẽ′′
(1)

)
.

We takeδ > 0, smaller if necessary, so thatπδ
25L

≤ 1
2. Assume that

∥B1∥Ẽ′
(1)∩Ẽ′′

(1)
≤ π2δ 2

26L2 .

Then we have
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ε1 ≤
πδ
25L

≤ 1
2
,(4.2.12)

A(z) = (1p−B1(z)) = (1p−B′
1(z))(1p−N(B′

1(z),B
′′
1(z)))(4.2.13)

· (1p−B′′
1(z)), z∈ Ẽ′

(2) ∩ Ẽ′′
(2).

In the sequel, we proceed by induction. Assume that forj = 1, . . . ,k, (p, p)-
matrix valued holomorphic functions

B′
j(z) (z∈ Ẽ′

( j+1)), B′′
j (z) (z∈ Ẽ′′

( j+1)),

are determined, so that

ε j := max
{
∥B′

j∥Ẽ′
( j+1)

,∥B′′
j ∥Ẽ′′

( j+1)

}
≤ πδ

2 j+4L

(
≤ 1

2 j

)
, 1≤ j ≤ k,(4.2.14)

A(z) = (1p−B′
1(z)) · · ·(1p−B′

k(z)) · (1p−N(B′
k(z),B

′′
k(z)))(4.2.15)

· (1p−B′′
k(z)) · · ·(1p−B′′

1(z)), z∈ Ẽ′
(k+1) ∩ Ẽ′′

(k+1);

the case ofk = 1 is due to (4.2.12) and (4.2.13).
We set (cf. (4.2.2))

Bk+1(z) = N(B′
k(z),B

′′
k(z)), z∈ Ẽ′

(k+2) ∩ Ẽ′′
(k+2),

B′
k+1(z

′,zn) =
1

2π i

∫
γ ′(k+1)

Bk+1(z′,ζ )
ζ −zn

dζ , (z′,zn) ∈ Ẽ′
(k+2),

B′′
k+1(z

′,zn) =
1

2π i

∫
γ ′′(k+1)

Bk+1(z′,ζ )
ζ −zn

dζ , (z′,zn) ∈ Ẽ′′
(k+2).

Here, note that|ζ −zn| ≥ δ
2k+2 in the above integrands; we thus infer from (4.2.14)

and Lemma 4.2.3 that

εk+1 ≤
L

2π
2k+2

δ
∥N(B′

k,B
′′
k)∥Ẽ′

(k+1)∩Ẽ′′
(k+1)

(4.2.16)

≤ L
2π

2k+2

δ
22ε2

k ≤ 1
2

εk ≤
πδ

2k+5L
,

1p−N(B′
k(z),B

′′
k(z)) = (1p−B′

k+1(z))(1p−N(B′
k+1(z),B

′′
k+1(z)))

· (1p−B′′
k+1(z)), z∈ Ẽ′

(k+2) ∩ Ẽ′′
(k+2).

Thus, (4.2.14) and (4.2.15) hold for “k+1”.
By (4.2.14) and Proposition 4.2.1 (iv) the infinite products

A′(z) = lim
k→∞

(1p−B′
1(z)) · · ·(1p−B′

k(z)), z∈ Ẽ′ :=
∞∩

k=1
Ẽ′

(k),

A′′(z) = lim
k→∞

(1p−B′′
k(z)) · · ·(1p−B′′

1(z)), z∈ Ẽ′′ :=
∞∩

k=1
Ẽ′′

(k)
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converge uniformly onẼ′ andẼ′′, respectively, and the limitA′(z) (resp.A′′(z)) is
invertible and holomorphic in the interior of̃E′ (resp.Ẽ′′).

For z∈ Ẽ′∩ Ẽ′′ we have by (4.2.14) and Lemma 4.2.3

∥N(B′
k(z),B

′′
k(z))∥ ≤ 22ε2

k ≤ 1
22k−2 −→ 0 (k→ ∞).

Therefore (4.2.15) yieldsA(z) = A′(z)A′′(z). ⊓⊔

Remark 4.2.17 (Estimate)In the above proof of Lemma 4.2.5 there are positive con-
stantsη ,C and closed cube neighborhoodẼ′ (resp.Ẽ′′) of E′ (resp.E′′), dependent
only onE′, E′′ andU such that

(i) Ẽ′∩ Ẽ′′ ⊂U ;
(ii) if A = 1p−B with ∥B∥U ≤ η , then there areA′ = 1p−B′ andA′′ = 1p−B′′

satisfying

1p−B(z) = (1p−B′(z))(1p−B′′(z)), ∀z∈ Ẽ′∩ Ẽ′′,

max{∥B′∥Ẽ′ ,∥B′′∥Ẽ′′} ≤C∥B∥U .(4.2.18)

For the proof, repeat the above arguments together with (4.2.11) and (4.2.16).

4.2.3 Cartan’s Merging Lemma

The following is Cartan’s Merging Lemma in [8] (1940). In a footnote of the intro-
duction of Oka VII, K. Oka describes a comment such that we owe a lot also to the
theorems in [8].1)

Lemma 4.2.19 (Cartan’s Merging Lemma) Let E′ ⊂U ′ and E′′ ⊂U ′′ be those in
Lemma 4.2.5. LetF → Ω be a coherent sheaf.

Assume that finitely many sectionsσ ′
j ∈ Γ (U ′,F ), 1≤ j ≤ p′, generateF over

U ′, and similarlyσ ′′
k ∈ Γ (U ′′,F ), 1≤ k≤ p′′, generateF over U′′. Furthermore,

assume the existence of ajk,bk j ∈ O(U ′∩U ′′), 1≤ j ≤ p′, 1≤ k≤ p′′, such that

σ ′
j =

p′′

∑
k=1

a jkσ ′′
k , σ ′′

k =
p′

∑
j=1

bk jσ ′
j .

Then there are a neighborhood W⊃ E′∪E′′ with W⊂U ′∪U ′′ and finitely many
sectionsσl on W,1≤ l ≤ p = p′ + p′′, which generateF over W.

Proof We set column vectors and matrices as follows:σ ′ = t(σ ′
1, . . . ,σ ′

p′), σ ′′ =
t(σ ′′

1 , . . . ,σ ′′
p′′), A = (a jk), B = (bk j). Then we have

1) In the original version of Oka VII (Iwanami) K. Oka wrote after the citation of [8], “dont nous
devons beaucoup aussi aux théor̀emes”. In the version of Bull. Soc. Math. France, it is “Nous
devons beaucoup aux théor̀emes de ce Ḿemoire”.
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(4.2.20) σ ′ = Aσ ′′, σ ′′ = Bσ ′.

Adding 0 toσ ′ andσ ′′ to form vectors of the same degreep, we put

σ̃ ′ =



σ ′
1
...

σ ′
p′

0
...
0


, σ̃ ′′ =



0
...
0

σ ′′
1
...

σ ′′
p′′


.

We also put

Ã =

 1p′ A

−B 1p′′ −BA

 .

SinceBAσ ′′ = σ ′′ by (4.2.20),

(4.2.21) σ̃ ′ = Ãσ̃ ′′.

We take the following matrices consisting of the repetition of elementary transfor-
mations:

(4.2.22)

P =

1p′ A

0 1p′′

 , P−1 =

1p′ −A

0 1p′′

 ,

Q =

1p′ 0

B 1p′′

 , Q−1 =

 1p′ 0

−B 1p′′

 .

TransformingÃ from right and left, we get

(4.2.23) QÃP−1 =

1p′ 0

0 1p′′

= 1p (p = p′ + p′′).

SinceÃ = Q−1P, by settingR= P−1Q we have

R=

1p′ −A

0 1p′′

1p′ 0

B 1p′′

 ,(4.2.24)

ÃR= 1p.

Because of the form ofR (cf. (4.2.24)),R is invertible for any choices ofA andB.
Since the elementsa jk (resp.bkh) of A (resp.B) are holomorphic in a neighborhood
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of E′∩E′′ = F×ℓ, it follows from Corollary 1.2.22 thata jk (resp.bkh) are unifromly
approximated in a neighborhoodW0(b U ′ ∩U ′′) of E′ ∩E′′ by polynomials ˜a jk

(resp.b̃kh). Let R̃ be the matrix formed by ˜a jk, b̃kh similarly as in (4.2.24). If the
approximations are sufficient, we may have that with the neighborhoodV0 of 1p in
Lemma 4.2.5

(4.2.25) Â(z) = Ã(z) R̃(z) ∈V0, z∈W0.

Then, Lemma 4.2.5 implies that there are a neighborhoodW′ (resp.W′′) of E′ (resp.
E′′) and an invertible(p, p)-matrix valued holomorphic function̂A′ (resp.Â′′) such
that onW′∩W′′(⊂W0)

(4.2.26) Â = Â′ Â′′.

It follows from this and (4.2.25) that̃A = Â′Â′′R̃−1. It is deduced from (4.2.21) that
onW′∩W′′

(4.2.27) Â′−1 σ̃ ′ = Â′′ R̃−1 σ̃ ′′.

Therefore, we may defineτ j ∈ Γ (W′∪W′′,F ), 1≤ j ≤ p, by τ1
...

τp

=

{
Â′−1 σ̃ ′, on W′,

Â′′ R̃−1 σ̃ ′′, on W′′.

SinceÂ′−1 andÂ′′ R̃−1 are invertible,τ j , 1≤ j ≤ p, generateF overW′∪W′′. ⊓⊔
We call the above-obtained(τ j) a locally finite generator system ofF by merg-

ing (σ ′
j) and(σ ′′

k ).


