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4.2 Cartan’s Merging Lemma

We consider a coherent she&f — Q over a domai2 c C". As finite local gen-
erator systems of# over adjoining closed subdomaiB$andE” of Q are given, it
is necessary to form a local finite generator systenfobver E’' UE” by merging
them. We begin with some elementary facts on matrices.

4.2.1 Matrix-valued Functions

We prepare several facts on matrices, matrix-valued functions, their series and infi-
nite products, necessary in the later arguments.

In general, lepp € N and letA be a compleX p, p)-matrix. We may consider two
norms forA:

1Al = maxfai [},
[All = max{[|A¢[|;¢ € CP,[|&] = 1}.
By usingé = (0,...,0,1,0,...,0), we immediately get
[Alleo < [|A] < PIIA]]oo-

Therefore, the convergences defined by the two norms are mutually equivalent.
Since ||A|| behaves better thajfA||.. for the product of matrices, we ug@\| in
the sequel. We callA|| the operator normof A.

If A=A(z) is a(p, p)-matrix valued function defined on a subket. C", we put

[|Alle = sup{||A(z)||;z€ E}.
We denote the unitp, p)-matrix by 1.

Proposition 4.2.1 Let A be &a(p, p)-matrix or a(p, p)-matrix valued function in E.
Let B be anothe(p, p)-matrix. Then the following holds:

() [ A+B] <[IA|+[B].

(ii) [AB] < [|A]l-[B]|C

(iii) If A=A(z)(z€E) satisfies|Ale < € < 1, then there exists the inver&l, —
A(z))~! and the following holds:

(1p—A@) =1, +A2) +AD*+--.

Here, the right-hand side converges uniformly ®nand [|(1, — A) e <
= In particular, fore = 3, |(1p— A) g < 20

(iv) Fork=0,1,..., let positive numbersy with 0 < & < 1 and(p, p)-matrix
valued functiong\(z) (z< E) be given, so thaltAc||e < &candyy & < .



116 4 Holomorphically Convex Domains and the Oka—Cartan Fundamental Theorem

Then the infinite products

lim (1p— Ao(2)) - (1p — Ac(2)),
lim (1p — Ax(2)) -+ (1p — Ao(2))
converge uniformly orE and the limits are invertible.

Proof (i), (ii): These are immediate from the definitions.
(ii): We deduce this from the following identity and inequality wkh— o:

(1p—A@)(1p+AD) +AD?+--- +A@DY) =1, - A",
_ gkt
l1-¢

k k
i 1
[1p+A@) +A@Z)? + - +A@) e < ZJHAH,’E < -Zogj =
1= 1=

(iv): The proofs of the both are similar; we show the second. Set

0

Gu(2) = (19~ A2) (1o~ Ao@) = [] (Lo Ai(@), k=01.....
J:

It suffices to show thaf Gy} is a uniform Cauchy sequence, and thag 1}y,
converges uniformly ok, too. We se€y = exp(Sy_o &) Then,

0 K k
[Gklle < I_Llllp—AjHES ]'L(1+||Aj||E)§ (1+¢5)
I= =

17
k k
=exp log(1+ e-)) <exp( e-) < Co.
(3] <o 3

Letl > k> 0. It follows from the above equation that
IGI — G«lle
<o =A)(Lp— A1) (1p— A1) — Lp|| - IGkllE

<Col| —A —A g~ A1 FAA g+ (D) KA A e
<Co(IAlle+-+ [[Aalle + 1Al - [[A-lle+--+Alle- - [[Aalle)

k+1 |
o (ffe- o) o fraver)
=

j=k+1

|
i]l—-1] —0 (I >k— ).
<o(on 3,) 1) o 0k

Thus{Gy} is a uniform Cauchy sequence.
As for Gt = *_o(1p — Aj) 7L, with settingBy = —Ac(1p — A) ~* we have
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(1p—A) t=1p By

By making use of the consequence of (iii) we obtain

_ Ek
Bulle < (L — He < )
[Bulle < IAl[e - [[(1p—Ax)lle < Ty
Put 0< 6 := max{&} < 1. Then it follows that
&
B < .
IBulle < 75
Therefore, for everyk > 1, By fulfills the condition thatAy satisfies. Hence,
{G;l};‘;o converges uniformly ok. O

Assuming the existence ¢1, — S)~* and (1, — T)~? for (p, p)-matricesSand
T, we put
(4.2.2) MST)=(1p-9 H(1p—S-T)(1p-T) ™,
NST)=1,-M(ST).

Lemma 4.2.3 (Key) Let S and T bép, p)-matrices such thanax{||S|, | T||} < 3.
Then

IN(ST)|| < 22(max{|S|. [ TI[})
Proof Noting

(Lp—T) 1 =2p4+T(Lp-T) 1 =1p+T+T?(1p-T) 4,
we see that

MEST)=(1p-9  (1p-S-T)(1,-T)*
= (- (-9 ' M)(L-T)*
=1+ T+T41,-T) !
—(Lp+S(1Lp—9 HT(Lp+T(Lp—T)
=1+ T+T41,-T) !
—T-T2(Lp-T) ' =1, -9 'T(1L,-T) !
=1L, -91,-9 ' T(1,-T) "
NST)=51,-9 ' T(1Lp,-T) "

Then the assumption implies that

IN(ST)[ < [ISiI-2- [T -2 < 22(max{||S]], | T||})?. O
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4.2.2 Cartan’s Matrix Decomposition

We here assume the following:

4.2.4 (Closed cubes)A closed cuber aclosed rectanglés a closed subset @&"
bounded with all edges parallel to real or imaginary axes of the complex coordinates;
here we include the case when the widths of some edges degenerate to zero.

Assume that two closed cubB$ E” € Q are represented as follows. There are
a closed cub& € C"1, and two closed rectanglé&, E/ € C sharing an edgé,
such that (cf. Fig. 4.2)

E'=FxE, E'=FxE/, (=E\NE/

¢ En

Fig. 4.2 Adjoining closed cubes

Let GL(p; C) denote the general linear group of degpeand letl, denote the
unit matrix of degree. The following is due to H. Cartan [8].

Lemma 4.2.5 (Cartan’s matrix decomposition) Let the notation be as above.
Then there is a neighborhood \¢ GL(p;C) of 1, such that for a matrix-valued
holomorphic function AU — V on a neighborhood U of kx ¢, there is a matrix-
valued holomorphic function’AU’ — GL(p;C) (resp. A : U” — GL(p;C)) on a
neighborhood U (resp. U’) of E’ (resp. E') satisfying A= A’ - A” on a neighbor-
hood of Fx ¢.

Proof We widen each edge &, E, Ej by the same lengtig > 0 outward and de-
note the resulting closed cube and closed rectanglés E}{ E” respectively.

Taking é > 0 sufficiently small, we have
F x £ CFx (EyqNEny) €U.
Set the boundaries as in Fig. 4.3:
(4.2.6) 3 (Enyy NEriy) = Y = Yy + Vo
Y1) = (‘75/1(1)) mér/w,(l)’ Yy = =4 deH( -
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R
o

Fig. 4.3 d-closed neighborhoods of the adjoining closed cubes

Similarly, keeping the inneg of the widthd asE], is widened toC:r’m) we suc-
cessively shrink inward by dividing in half the outér That is,Er’](z) denotes the
closed cube shrunk inward Byfrom E,Q(l). Assumingﬁé(k) determined, we denote

by Ef,x. 1, the closed cube shrunk inward b+ from En (cf. Fig. 4.4). Since
5,8, 0
4 8 2’
) ~, . 5
N Epw = the closed cube widened frof by >
k=1
We setﬁ({(k), similarly. As in (4.2.6) we write
4.2.7) p) (E,q( Al ) = Vi + Y-
Let

E,;(n)

S Ene

Fig. 4.4 Closed%-neighborhoods of closed cubes
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=/ = =/ =1/ = =//

be the closed cube neighborhood€bfandE”, respectively.
We write A = 1, — B;. By Cauchy'’s integral expression we have

512'5)

(4.2.9) B1(Z,20) 2711/ 7

/ B]_Z'Z ' Bl(Z,7Z)
~2m

2n1. t {—2z,

d¢
= B’l(i,zn) B’l’(i,zn)-

Here,B}(Z,z,) is holomorphicin(Z,z,) € E )»and so i8] (Z,z0)in (Z,z1) € E{’)
Note that

o ~
Letting L be the length of the curv;*(‘D, we get fork > 1
L = the length ofy(3, > the length ofy,, = the length ofy.

For(Z,z,) € Egz) it follows from (4.2.9) and (4.2.10) that

, 1 4
B4 (2.20)| < 5 5L max|BA(Z. )|

Therefore,

2

IBillg;, < —5Bulle

n .
(v"E

(€]

In the same way we get

2L
B // <
IBiley, < = IIBaler, e,

Set
s
@211 e -max{Iile, IBle } (< 25 Bale ey )

We taked > 0, smaller if necessary, so th%% < % Assume that

_ 25

H 1||E’ mE = 26|_2'

Then we have
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(4.2.12) & < 2%? < %
(4.2.13) A(2) = (1p—B1(2)) = (1p— B1(2))(1p— N(B1(2), B1(2)))

In the sequel, we proceed by induction. Assume thatjfer 1,... k, (p,p)-
matrix valued holomorphic functions

Bj(2) (z€ E[j,1): B{(2) (z€ Ef} 4,
are determined, so that
4214)  e:=max{|B{lg . IBfle  }< % (g 21]> . 1<j<k,
(4.2.15) A(z) = <1pr'1<z>>~~<1pf Bi(2))- (1p — N(B(2). B{(2)))
(1p=Bk(@) - (1p—B1(2), Z€ Ef,q)NEfji1);
the case ok =1 is due to (4.2.12) and (4.2.13).
We set (cf. (4.2.2))

Byi1(2) = N(B(2),Bi(2), z¢€ E(k+2) N E(k+2)

1 Bk+1(Z,4) =/
Bi1(Z,20) = > Ve ﬁdzv (Z,20) € B9,
1 Be.1(Z,
i1(Z,20) = o %dﬁ (Z.20) € Effy)-

k+1)
Here, note thal{ — z,| > 53—2 in the above integrands; we thus infer from (4.2.14)
and Lemma 4.2.3 that

L 2k+2 ”
(4.2.16) &1 < 5= INBLBO e, e

(k+1)" —(k+1)

1p —N(B(2),B(2) = (1p — Bisa( 2))(1p — N(E f<+1(2)a~ i1(2))
“(1p—B,1(2),  2€ B 2 NEfkio)-

Thus, (4.2.14) and (4.2.15) hold fok 4 1".
By (4.2.14) and Proposition 4.2.1 (iv) the infinite products

A(@)=im (1p- By(2) - (L~ B(@). ze €= N E,

=1
A'(2) = lim (1o~ B{(2) - (1~ B{(2). 2 €= N EY
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converge uniformly orE’ andE”, respectively, and the limi'(z) (resp.A”(2)) is
invertible and holomorphic in the interior & (resp.E").
Forze E'NE” we have by (4.2.14) and Lemma 4.2.3

IN(BK(2), Bk (2))]| < 2%&¢ < —0 (k=)

1
22k—2
Therefore (4.2.15) yield&(z) = A'(z2)A”(2). O

Remark 4.2.17 (Estimatd) the above proof of Lemma 4.2.5 there are positive con-
stantsn,C and closed cube neighborhoBé (resp.E”) of E’ (resp.E”), dependent
only onE’, E” andU such that
(i) ENE" cU;
(ii) if A=1p—Bwith ||B|lu < n, then there ar&' =1, — B andA” =1, —B’
satisfying

1,-B(2) =(1,-B'(2)(1,-B"(2), "zcENE",
(4.2.18) max{||B'||g:, |IB"||g~} < C||B]lu-

For the proof, repeat the above arguments together with (4.2.11) and (4.2.16).

4.2.3 Cartan’s Merging Lemma

The following is Cartan’s Merging Lemma in [8] (1940). In a footnote of the intro-
duction of Oka VII, K. Oka describes a comment such that we owe a lot also to the
theorems in [8]

Lemma 4.2.19 (Cartan's Merging Lemma) Let E' c U’ and E' c U” be those in
Lemma 4.2.5. Le# — Q be a coherent sheaf.

Assume that finitely many sectiomise I (U’, %), 1 < j < p/, generate# over
U’, and similarlyg) € I (U”,.%), 1 <k < p”, generateZ over U’. Furthermore,
assume the existence gk ay; € 0(U'NU"), 1< j < p/, 1<k< p’, such that

!

p/
! /i " Al
o _kzlajka , O = zlbk,a].
= =

Then there are a neighborhood WE' UE” with W c U’ UU” and finitely many
sectionsgi onW,1 <| < p= p'+ p’, which generateZ over W.

1/

Proof We set column vectors and matrices as follows='(o7,...,0)), 0" =

p/
Y07,....04), A= (ajk), B= (bxj). Then we have

1 In the original version of Oka VII (Iwanami) K. Oka wrote after the citation of [8], “dont nous
devons beaucoup aussi awetiemes”. In the version of Bull. Soc. Math. France, it is “Nous
devons beaucoup auxébremes de ce Emoire”.
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(4.2.20) o =Ad”", o’ =B0o’.

Adding 0 tog’ ando” to form vectors of the same degrpgwe put

o; 0
/
6./ — O-g 5 0
O Y O-_',Ll
0 O

We also put

o (1] A
A= .
~B|1y —BA

SinceBAo” = ¢’ by (4.2.20),

(4.2.21) & =Ad".
We take the following matrices consisting of the repetition of elementary transfor-
mations:
1y| A 1y|-A
P= , Pl= :
0 1p// O 1pl/
(4.2.22)

1,] 0 14| 0
Q= Q= :
B 1p// _B 1pll

TransformingA from right and left, we get
) 1y| O
(4.2.23) QAP 1= =1, (p=p+p’).
0 1pl/

SinceA = Q 1P, by settingR = P~1Q we have

1y[-A\ (1, O
(4.2.24) R= ,
0 1p// B 1p’/
AR=1,,.

Because of the form d® (cf. (4.2.24)) Ris invertible for any choices ok andB.
Since the elementsy (resp.byn) of A (resp.B) are holomorphic in a neighborhood
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of E'NE” =F x, it follows from Corollary 1.2.22 thad, (resp.byn) are unifromly
approximated in a neighborhodth(e U'NU") of E'NE" by polynomialsajk
(resp. bkh) Let R be the matrix formed bwjk, bxn similarly as in (4.2.24). If the
approximations are sufficient, we may have that with the neighborkigofi1, in
Lemma 4.2.5

(4.2.25) A2 =A2R(2) eVo, zeW.

Then, Lemma 4.2.5 implies that there are a neighborhdo@iesp W") of E’ (resp.
E”) and an invertibld p, p)-matrix valued holomorphic functio&’ (resp.A”) such
that onW’ NW" (C Wp)

(4.2.26) A=AA".

It follows from this and (4.2.25) thak = AA’R L. Itis deduced from (4.2.21) that
onW Nnw”

(4.2.27) A1 =A'R LG
Therefore, we may defing € I (W UW”,.%), 1< j < p, by
T R

_1 A-1g on W/,

' RE1s 6", on W”.

Tp

SinceA' ! andA” Rt are invertibleTj, 1< j < p, generateZ overW’ UW". 0O

We call the above-obtaine(d,-) a locally finite generator system o by merg-
ing (o ) and(gy).



