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Abstract

We give a description of the local Jacquet-Langlands correspondence for sim-
ple supercuspidal representations via type theory. As a consequence, we show that
the endo-classes for such representations are invariant under the local Jacquet-
Langlands correspondence.

Introduction

Let K be a non-archimedean local field with residue characteristic p. Let A be a central
simple algebra over K. We put n = [A : K]1/2. The local Jacquet-Langlands correspon-
dence (LJLC) gives a correspondences between irreducible essentially square-integrable
representations of GLn(K) and A×. The irreducible supercuspidal representations of
GLn(K) is classified in [BK] via type theory, which describes supercuspidal representa-
tions as compact inductions of representations of some open subgroups that are compact
modulo center. More generally, type theory for representations of A× is developed in
a series of papers [Se1], [Se2], [Se3], [SS1], [BSS] and [SS2]. So it is natural to seek a
description of the LJLC via type theory.

In the case where A is a division algebra, such descriptions are studied in [Ge], [He],
[BH2] and [BH4] if n is a prime number, and in [BH3] if p is odd, n is a power of
p and representations are totally ramified. For general A, such descriptions are given
in [SZ] for level zero discrete series representations, and in [BH5] for essentially tame
representations.

In this paper, we give a description of the LJLC via type theory for the simple su-
percuspidal representations. We define the simple supercuspidal representations of A×

in Definition 1.1 after [RY], which are equivalent to the supercuspidal representations
of conductor n+ 1 as a result. Such representations appear in [IT1]. If A× = GLn(K),
simple supercuspidal representations are studied in [AL] (cf. [KL], [Xu]) and they are
called epipelagic representations in [BH6]. We note that the simple supercuspidal rep-
resentations of A× are essentially tame if n is prime to p, but they are not essentially
tame if p divides n.

As a consequence of the description of the LJLC, we show that the endo-classes are
invariant under the LJLC for the simple supercuspidal representations. This verifies
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[BSS, Conjecture 9.5] by Broussous-Sécherre-Stevens for the simple supercuspidal rep-
resentations. The conjecture is verified in [Ka] for totally ramified representations of
unit groups of division algebras, based on results in [BH3].

In Section 1, we give a construction and a definition of the simple supercuspidal
representations of A×. Further, we show that they are equivalent to the supercuspidal
representations of conductor n + 1. In Section 2, we give formulas for the characters
of the simple supercuspidal representations at some elements, which are elliptic quasi-
regular in the sense of [BH5, 1.1 Remark]. The values of the characters at these elements
are written in terms of variants of Gauss sums and generalized Kloosterman sums
(cf. Proposition 2.6 and Proposition 2.9). We believe that these formulas are interesting
in themselves. In Section 3, we give a description of the LJLC via type theory in
Theorem 3.5. We determine the description by checking character relations at some
elements. In Section 4, we give another proof of our main theorem using Godement-
Jacquet local constants. This proof is based on a formula in [Bu] and [BF], which
calculates Godement-Jacquet local constants with respect to some kind of Gauss sums.
In Section 5, we show the invariance of the endo-classes under the LJLC for the simple
supercuspidal representations.

Type theory for irreducible supercuspidal representations of A× naturally appears
in the study of geometric realization of the local Langlands correspondence and the
LJLC. The results in this paper are used in [IT2] to show that the LJLC is realized in
the cohomology of the reductions of a family of affinoids in the Lubin-Tate perfectoid
space.
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Notation

For a non-archimedean local field F , let OF denote the ring of integers in F . For a field
F and a positive integer l, let µl(F ) denote the group of l-th roots of the unity inside
F . For an abelian group X, we write X∨ for its character group HomZ(X,C×). For
a group G, its subgroup H, a character θ of H and g ∈ G, we put Hg = gHg−1 and
define a character θg of Hg by θg(h) = θ(g−1hg) for h ∈ Hg.

1 Simple supercuspidal representation

In this section, we give a construction and a definition of the simple supercuspidal
representations of the multiplicative group of a central simple algebra over a non-
archimedean local field. Further, we give a characterization of the simple supercuspidal
representations by the conductors.

Let K be a non-archimedean local field with residue field k. We set q = |k|. Let pK
be the maximal ideal of OK . Any central simple algebra over K is isomorphic a matrix
algebra over a central division algebra over K. Let m be a positive integer, and D be
a central division algebra over K. We put A =Mm(D) and G = A×.
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Let π be an irreducible smooth representation of G. We fix a non-trivial character
ψ ∈ k∨. For x ∈ OK , let x̄ denote the image of x under the reduction map OK → k.
We take a character ψK ∈ K∨ such that

ψK(x) = ψ(x̄) for x ∈ OK ,

ψK(x) = 1 for x ∈ pK .

Let ϵ(π, s, ψK) be the Godement-Jacquet local constant of π with respect to ψK . Then
there exists an integer f(π, ψK) such that

ϵ(π, s, ψK) = q−f(π,ψK)sϵ(π, 0, ψK)

by [GJ, Theorem 3.3(4)]. We put r = [D : K]1/2 and n = mr. We define the conductor
c(π) of π by

c(π) = f(π, ψK) + n.

Let An+1
D,m denote the set of the isomorphism classes of the supercuspidal representations

of G of conductor n+ 1.
We fix a uniformizer ϖ of K. Let η = (ζ, χ, c) ∈ µq−1(K) × (k×)∨ × C×. In the

following, we define a smooth representation πD,m,η of G. Let Kr be the unramified
extension of K of degree r. We take an element φD,ζ ∈ D×, an embedding Kr ↪→ D and
an integer 1 ≤ s ≤ r− 1 which is prime to r such that φrD,ζ = ζϖ and φD,ζdφ

−1
D,ζ = dq

s

for d ∈ µqr−1(Kr). We put

φζ =

(
0 Im−1

φD,ζ 0

)
∈ A and Lζ = K(φζ) ⊂ A.

Since φnζ = ζϖ, the field Lζ is a totally ramified extension over K of degree n. We have

NrdA/K(φζ) = (−1)n−1ζϖ, TrdA/K(φ
−1
ζ ) = 0. (1.1)

Let OD denote the maximal order of D, and pD denote the maximal ideal of OD.
For a positive integer l, let kl be the extension of k of degree l. We identify OD/pD with
kr. Let C be the subring of Mm(kr) consisting of all upper triangular matrices. Let A
denote the inverse image of C under the reduction map Mm(OD) → Mm(kr). Then A
is an order in A. Let PA be the Jacobson radical of A. Note that PA = φζA and the
normalizer of A in G equals L×

ζ A
×. For a positive integer i, we set U i

A = 1 +Pi
A. Let

θD,m,η : L
×
ζ U

1
A → C× be the character defined by

θD,m,η(x) = χ(x̄) for x ∈ µq−1(K),

θD,m,η(x) = (ψK ◦ TrdA/K)(φ−1
ζ (x− 1)) for x ∈ U1

A,

θD,m,η(φζ) = (−1)m−1c.

(1.2)

We put πD,m,η = c-IndG
L×
ζ U

1
A
θD,m,η.

Definition 1.1. We say that an irreducible supercuspidal representation π of G is
simple supercuspidal if π ≃ πD,m,η for some η ∈ µq−1(K)× (k×)∨ × C×.

Lemma 1.2. The representation πD,m,η is a supercuspidal representation of conductor
n+ 1.
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Proof. We define a chain lattice Λ = {Λi}i∈Z in D⊕m by

Λmj+l = (pjD)
⊕m−l ⊕ (pj+1

D )⊕l

for j ∈ Z and 0 ≤ l ≤ m− 1. Then we have

A =
{
g ∈ A

∣∣ gΛi ⊂ Λi for all i ∈ Z
}

and φζΛi ⊂ Λi+1 for i ∈ Z. Hence, A is a hereditary order in A (cf. [Se1, Définition
1.3]). We consider a stratum [A, 1, 0, φ−1

ζ ] of A (cf. [Se1, Définition 2.1]). We set

B =
{
x ∈ A

∣∣ xz = zx for all z ∈ Lζ
}
.

Then we have B = Lζ . Using this, we see that the critical exponent of this stratum
equals −1 (cf. [Se1, 2.1]). Hence, this stratum is simple (cf. [Se1, Définition 2.3]). Since
the simple pair [0, φ−1

ζ ] over K is minimal in the sense of [Se1, 2.3.3], we have

H1(φ−1
ζ ,A) = J1(φ−1

ζ ,A) = U1
A ⊂ J(φ−1

ζ ,A) = O×
Lζ
U1
A (1.3)

under the notation in [Se1, (65)]. We have

C (φ−1
ζ , 0,A) =

{
θD,m,η|U1

A

}
(1.4)

by [Se1, Lemma 3.23] under the notation in [Se1, Définition 3.45]. Then, by (1.2), (1.3)
and (1.4), we can check that the pair

(J, λ) =
(
O×
Lζ
U1
A, θD,m,η|O×

Lζ
U1
A

)
is a maximal simple type of level > 0 for G with respect to the simple stratum
[A, 1, 0, φ−1

ζ ] in the sense of [Se3, 4.1 and 5.1]. Hence, πD,m,η is a supercuspidal repre-
sentation by [Se3, Théorème 5.2]. We see c(πD,m,η) = n + 1 by using [BF, Theorem
3.3.8] (cf. the proof of [ABPS, Proposition 2.6]).

Proposition 1.3. The map

Φ: µq−1(K)× (k×)∨ × C× → An+1
D,m; η 7→ πD,m,η

is a bijection.

Proof. We show the injectivity. We take

η = (ζ, χ, c), η′ = (ζ ′, χ′, c′) ∈ µq−1(K)× (k×)∨ × C×

such that πD,m,η ≃ πD,m,η′ . By [SS2, Corollary 7.3], we see that ζ = ζ ′ and χ = χ′. By
πD,m,η ≃ πD,m,η′ , there exists g0 ∈ G such that

HomL×
ζ U

1
A∩(L

×
ζ U

1
A)

g0 (θD,m,η, θ
g0
D,m,η′) ̸= 0. (1.5)

This implies
HomU1

A∩(U
1
A)

g0 (θD,m,η, θ
g0
D,m,η) ̸= 0,
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since θD,m,η coincides with θD,m,η′ on U
1
A. Then we have g0 ∈ L×

ζ U
1
A by [Se2, Proposition

2.10]. Hence, we have η = η′ by (1.5).
We show the surjectivity. Let π ∈ An+1

D,m. By [SS1, Théorème 5.21 and Corollaire

5.22], we have π ≃ c-IndGJ̄ θ for a maximal simple type (J, λ) with a simple stratum
[A0, l, 0, β] and an extension θ of λ to

J̄ = {g ∈ G | Jg = J, λg = λ}.

Let PA0 be the Jacobson radical of A0. By [ABPS, Proposition 2.6], we have l = 1 and
pKA0 = Pn

A0
. Replacing A0 by its conjugate, we may assume that A0 = A (cf. [BF,

(1.5.2) Proposition (ii)]). We put U1
K = 1 + pK . We take ζ ∈ µq−1(K) such that

NrdA/K(β
−1) ≡ (−1)n−1ζϖ mod U1

K . (1.6)

We write β−1 = φζau, where u ∈ U1
A and a = (aij)1≤i,j≤m ∈ A× is a diagonal matrix

such that aii ∈ µqr−1(Kr) for 1 ≤ i ≤ m. We put b =
∏

1≤i≤m aii. Then we see that
φζa is conjugate to (

0 Im−1

φD,ζb 0

)
∈ A

by an element of A×. Further, this is conjugate to φζ by an element of A×, since we
have NrdD/K(b) = 1 by (1.6). Hence, we may assume that β = φ−1

ζ .
We see that θ is a character by the definition of a maximal simple type (cf. [Se3, 4.1

and 5.1]), [Se2, 2.2] and (1.3). We define χ ∈ (k×)∨ by χ(x̄) = θ(x) for x ∈ µq−1(K),
and put c = (−1)m−1θ(φζ). Then we have π = Φ(η) for η = (ζ, χ, c).

Remark 1.4. If m = n, Proposition 1.3 follows from [BH6, 2.1 and 2.2]. Actually, the
proof of the injectivity of Φ is logically unnecessary in this paper: We need only the
surjectivity of Φ in the case m = n for the proof of Theorem 3.5, and the injectivity of
Φ follows from Theorem 3.5 and the injectivity of Φ in the case m = n.

2 Formula for character

In this section, we give formulas for characters of the simple supercuspidal representa-
tions of G at some elements.

Definition 2.1 (cf. [BH5, 1.1 Remark]). Let g ∈ G. Let fg(x) ∈ K[x] be the reduced
characteristic polynomial of g over K.

1. We say that g is regular if fg(x) is separable.

2. We say that g is quasi-regular if fg(x) has no repeated irreducible factor over K.

3. We say that g is elliptic if the minimal polynomial of g is irreducible over K.

We write Greg, Gqr and Gell
qr for the set of the regular elements of G, the set of

the quasi-regular elements of G and the set of the elliptic quasi-regular elements of G
respectively.

Let H(G) be the space of locally constant compactly supported functions G → C.
We take a Haar measure dµG on G. We recall the following fact due to Bushnell-
Henniart:
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Proposition 2.2. For an irreducible smooth representation π of G, there is a locally
constant function tr π : Gqr → C characterized by

tr π(f) =

∫
G

tr π(g)f(g)dµG

for all f ∈ H(G) with support contained in Gqr.

Proof. This is proved in [BH1, (A.11) Corollary] in the case where G = GLn(K). The
same arguments work also in our situation (cf. [BH5, 1.1 Remark and Proposition]).

For an irreducible smooth representation π of G, let tr π be the function in Propo-
sition 2.2, which we call the character of π.

Let η = (ζ, χ, c) ∈ µq−1(K)× (k×)∨ × C×.

Lemma 2.3. We have

trπD,m,η(g) =
∑

x∈G/L×
ζ U

1
A, x

−1gx∈L×
ζ U

1
A

θD,m,η(x
−1gx)

for g ∈ Gell
qr .

Proof. This follows from [BH5, 1.1 Remark and (1.2.2)] (cf. [BH1, (A.14)]).

We put U1
K = 1 + pK ⊂ O×

K . We set gu = φζ(1 + φζu) ∈ A for u ∈ A.

Lemma 2.4. Let u ∈ A. We set

fgu(x) = xn +
n−1∑
i=0

ai(u)x
i ∈ K[x].

Then, we have

ai(u) ∈ pK for 1 ≤ i ≤ n− 1, −a0(u)
ζϖ

∈ U1
K .

Furthermore, gu is an elliptic quasi-regular element.

Proof. We see that ai(u) ∈ pK for 0 ≤ i ≤ n − 1, since the left multiplication on
OD/ϖOD by gu acts nilpotently. We have

a0(u) = (−1)nNrdA/K(gu) ∈ pK \ p2K .

Hence, the former assertion follows from (1.1) and NrdA/K(1 + φζu) ∈ U1
K . By Eisen-

stein’s irreducibility criterion, fgu(x) is irreducible over K. Therefore, the latter asser-
tion follows.

Lemma 2.5. Let g ∈ G and u ∈ A. Assume that g−1gug ∈ PA. Then we have
g ∈ L×

ζ A
×.
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Proof. We take l ∈ Z and s = (si,j)1≤i,j≤m ∈ A \ PA such that g = φlζs. We put

u′ = φ−l
ζ uφ

l
ζ ∈ A. Then we have

g−1gug = s−1gu′s ∈ PA.

Hence, we have gu′sA ⊂ sφζA. This implies gu′sA = sφζA, since we have

NrdA/K(φ
−1
ζ s−1gu′s) ∈ O×

K .

Therefore we have φζsA = sφζA in PA/P
2
A. This implies that si,i ∈ O×

D if and only if
si+1,i+1 ∈ O×

D for each 1 ≤ i ≤ m− 1. Then we have si,i ∈ O×
D for all 1 ≤ i ≤ m, since

s /∈ PA. Hence, we have s ∈ A×. This shows the claim.

We put nq = (n, q − 1). For a ∈ k, we put

Gn(χ, ψ, a) =
∑

x∈µnq (k)

χ(x)ψ(ax).

Note that Gq−1(χ, ψ, 1) is a usual Gauss sum, for which we write G(χ, ψ).

Proposition 2.6. For u ∈ A, we have

tr πD,m,η
(
gu
)
= (−1)m−1cGn

(
χ, ψ,TrdA/K(u)

)
.

Proof. For λ ∈ µq−1(K), let

g(λ) = diag(1, λ, · · · , λm−1) ∈ G.

We put
H =

{
dg(λ) ∈ G

∣∣ d ∈ µqr−1(Kr), λ ∈ µq−1(K), dq
s−1 = λm

}
.

Note that λ in the definition of H automatically belongs to µnq(K). Then, we can
check that H is equal to{

x = diag(d1, · · · , dm) ∈ G
∣∣ x−1gux ∈ L×

ζ U
1
A, di ∈ µqr−1(Kr) for all i

}
.

Hence, we see that {
x ∈ G

∣∣ x−1gux ∈ L×
ζ U

1
A

}
= HL×

ζ U
1
A

by Lemma 2.5. We have the isomorphism

HL×
ζ U

1
A/L

×
ζ U

1
A

∼−→ µnq(k); dg(λ) 7→ λ̄.

Hence, the claim follows from Lemma 2.3 and Lemma 2.4.

Lemma 2.7. The element 1 + φζ is elliptic quasi-regular.

Proof. The element φζ is elliptic quasi-regular by Lemma 2.4. Hence, the claim follows.

Lemma 2.8. Let g ∈ G and λ ∈ µq−1(K). Assume that g−1(1 + φζλ)g ∈ L×
ζ U

1
A. Then

we have g ∈ L×
ζ A

×.
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Proof. By the assumption, we have g−1(1 + φζλ)g = λ0(1 + v) with λ0 ∈ µq−1(K) and
v ∈ PA. Then we have

λ0 = lim
l→∞

(
λ0(1 + v)

)ql
= lim

l→∞

(
g−1(1 + φζλ)g

)ql
= 1.

Hence we have g−1φζλg = v ∈ PA. Therefore, the claim follows from Lemma 2.5 and
L×
ζ A

× = L×
ζλA

×.

For a finite field extension k′ of k, an additive character ψ′ ∈ k′∨, a positive integer
l and a ∈ k′×, we put

Kl,a(ψ
′) =

∑
ζ1···ζl=a, ζi∈k′×

ψ′
( l∑
i=1

ζi

)
.

This is a generalized Kloosterman sum (cf. [De, Sommes trig. 7.1]).

Proposition 2.9. For λ ∈ µq−1(K), we have

tr πD,m,η(1 + φζλ) = (−1)n−mKn,λ̄(ψ). (2.1)

Proof. Let λ ∈ µq−1(K). We have

tr πD,m,η(1 + φζλ) =
∑

g∈L×
ζ A×/L×

ζ U
1
A

θD,m,η(g
−1(1 + φζλ)g)

by Lemma 2.3, Lemma 2.7 and Lemma 2.8. We can check that

trA/D(φ
−1
ζ g−1φζλg) ≡ φ−1

D,ζa
−1
m,mφD,ζλa1,1 +

m−1∑
i=1

a−1
i,i ai+1,i+1 mod pD

for g = (ai,j)1≤i,j≤m ∈ A×. For d ∈ OD, let d̄ denote the image of d by OD → kr. We
have the bijection

L×
ζ A

×/L×
ζ U

1
A

∼−→
{
(ζ1, · · · , ζm) ∈ (k×r )

⊕m ∣∣ Nrkr/k(ζ1 · · · ζm) = λ̄
}

(ai,j)1≤i,j≤m 7→
(
(ā−1
i,i āi+1,i+1)1≤i≤m−1, φ

−1
D,ζa

−1
m,mφD,ζλa1,1

)
,

where (ai,j)1≤i,j≤m ∈ A×. Hence, we have

tr πD,m,η(1 + φζλ) =
∑

Nrkr/k(x)=λ̄

Km,x(ψ ◦ Trkr/k).

Further, we have∑
Nrkr/k(x)=λ̄

Km,x(ψ ◦ Trkr/k) = (−1)m−1
∑

Nrkn/k(y)=λ̄

ψ ◦ Trkn/k(y) = (−1)n−mKn,λ̄(ψ)

by [De, (7.2.5)]. Thus, we have proved the claim.
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3 Description of LJLC

In this section, we give an explicit description of the local Jacquet-Langlands corre-
spondence (LJLC).

First, we recall the statement of the LJLC. Let A□
D,m denote the set of equivalent

classes of irreducible essentially square-integrable smooth representations of GLm(D).
We put G′ = GLn(K). We say that g ∈ Gqr and g

′ ∈ G′
qr correspond if fg(x) = fg′(x).

Theorem 3.1 ([Ba, Théorème 5.1] and [DKV, Théorème principal]). There exists a
bijection

JLD,m : A□
D,m → A□

K,n,

which is uniquely characterized by the character relation

tr π(g) = (−1)n−m tr JLD,m(π)(g
′)

for π ∈ A□
D,m and any corresponding g ∈ Greg and g′ ∈ G′

reg.

The bijection JLD,m in Theorem 3.1 is called the local Jacquet-Langlands corre-
spondence.

Corollary 3.2. The bijection JLD,m satisfies the character relation

tr π(g) = (−1)n−m tr JLD,m(π)(g
′)

for π ∈ A□
D,m and any corresponding g ∈ Gqr and g

′ ∈ G′
qr.

Proof. The complement of Greg in G is a Zariski closed subset of G with strictly smaller
dimension than G. This implies that Greg is dense in G in the ϖ-adic topology, hence
it is dense also in Gqr. Therefore, the claim follows from Theorem 3.1, since trπ and
tr JLD,m(π) for π ∈ A□

D,m are locally constant functions on Gqr and G
′
qr respectively.

Lemma 3.3. The function

Gn,χ,ψ : k → C; a 7→ Gn(χ, ψ, a).

is not equal to the zero function on k.

Proof. Let Fn,χ be the function on k defined by

Fn,χ(x) =

{
χ(x) if x ∈ µnq(k),

0 if x /∈ µnq(k).

Then Gn,χ,ψ is regarded as the Fourier transformation of Fn,χ with respect to ψ. Hence,
the claim follows from the Fourier inversion formula.

Lemma 3.4. For any a′ ∈ k× \ {1}, there is a ∈ k× such that Kn,a(ψ) ̸= Kn,aa′(ψ).

Proof. Let a′ ∈ k× \ {1}. We take χ′ ∈ (k×)∨ such that χ′(a′) ̸= 1. Then we have∑
a∈k×

χ′(aa′)
(
Kn,a(ψ)−Kn,aa′(ψ)

)
= (χ′(a′)− 1)

∑
a∈k×

χ′(a)Kn,a(ψ)

= (χ′(a′)− 1)G(χ′, ψ)n ̸= 0

by [De, (7.1.6)]. Hence, the claim follows.
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Theorem 3.5. For η = (ζ, χ, c) ∈ µq−1(K) × (k×)∨ × C×, we have JLD,m(πD,m,η) =
πK,n,η.

Proof. Let LJD,m denote the inverse of JLD,m. The map LJD,m preserves conductors
and supercuspidality by [ABPS, Theorem 2.1(e), (i)]. Let η′ = (ζ ′, χ′, c′) ∈ µq−1(K)×
(k×)∨×C×. By Proposition 1.3, there exists η = (ζ, χ, c) ∈ µq−1(K)× (k×)∨×C× such
that LJD,m(πK,n,η′) = πD,m,η.

We have to show η = η′. We have χ = χ′, because JLD,m preserves central charac-
ters. We write A′ and φ′

ζ for A and φζ respectively in the case m = n. By Proposition
2.9 and Corollary 3.2, we have

Kn,λ̄(ψ) = (−1)n−m tr πD,m,η(1 + φζλ) = tr πK,n,η′(1 + φ′
ζλ) = Kn,λζζ′−1(ψ)

for λ ∈ µq−1(K). Hence, we have ζ = ζ ′ by Lemma 3.4.
Finally, we show c = c′. By Lemma 3.3, we can take a ∈ k such that Gn(χ, ψ, a) ̸= 0.

We take ξ0 ∈ kr such that Trkr/k(ξ0) = a. Let ξ ∈ OD be a lifting of ξ0. We set

uξ = diag(ξ, 0, · · · , 0) ∈ A.

We simply write gξ for guξ . Let {ai(uξ)}0≤i≤n−1 be as in Lemma 2.4. By Lemma 2.4,
the elements

αi = −ai(uξ)
ζϖ

for 1 ≤ i ≤ n− 1, αn = −
a0(uξ)

ζϖ
+ 1

ζϖ

are contained in OK . We set

uα =
n∑
i=1

φ′i−1
ζ diag(αi, 0, · · · , 0) ∈ A′, gα = φ′

ζ(1 + φ′
ζuα) ∈ G′.

Then we have

fgα(x) = xn −
n−1∑
i=1

ζϖαix
i − ζϖ(1 + αnζϖ) = fgξ(x).

Hence, gξ ∈ Gqr and gα ∈ G′
qr correspond. We have tr(uα) = TrdA/K(uξ) = a, since

tr(uα) ≡ α1 = (−1)n
TrdA/K(g

−1
ξ )NrdA/K(gξ)

ζϖ
≡ TrdD/K(ξ) mod pK .

Therefore, we have

c = (−1)m−1 tr πD,m,η(gξ)

Gn(χ, ψ, a)
= (−1)n−1 tr πK,n,η′(gα)

Gn(χ, ψ, a)
= c′

by Proposition 2.6 and Corollary 3.2.
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4 Another proof of Theorem 3.5

Let η = (ζ, χ, c) ∈ µq−1(K)× (k×)∨ × C×. We simply write ϵ(πD,m,η, ψK) for the value
of ϵ(πD,m,η, s, ψK) at 1/2. For any smooth character ξ : K× → C×, let ξA denote the
composite ξ ◦ NrdA/K .

The following lemma is a special case of a formula which represents Godement-
Jacquet local constants with respect to non-abelian congruence Gauss sums. Such a
formula is studied in [Bu] and [BF]. If m = n, this lemma is just [BH6, 2.2 Lemma].

Lemma 4.1. 1. We have
ϵ(πD,m,η, ψK) = (−1)n−1c.

2. For any tamely ramified character ξ of K×, we have

ϵ(πD,m,η ⊗ ξA, ψK) = ξ
(
(−1)n−1ζϖ

)
ϵ(πD,m,η, ψK).

Proof. Let ξ be a tamely ramified character of K×. Assume that the characteristic of
K equals zero. We set

ρ = Ind
L×
ζ A×

L×
ζ U

1
A

(θD,m,η ⊗ ξA).

We see that ρ is an irreducible admissible representation of L×
ζ A

× by Lemma 1.2, and
non-degenerate in the sense of [BF, p. 228] by (1.2).

Let ψ0
K be the standard continuous additive character of K defined in [BF, 2.1].

In [BF, (2.3.6)], the non-abelian congruence Gauss sum τ(ρ) is defined for ρ and ψ0
K .

However, it can be defined for any non-trivial additive character ψ′
K of K as in [Bu,

(3.4)] (cf. [Bu, Remarks after Theorem (3.7)]), for which we write τ(ρ, ψ′
K).

We take an element a ∈ K× such that ψK(x) = ψ0
K(ax) for x ∈ K. Let ωρ∨ denote

the central character of ρ∨. By [Bu, (3.4)] and [GJ, (3.3.5)], we have formulas

τ(ρ∨, ψK) = ωρ∨(a
−1)τ(ρ∨, ψ0

K) = (θD,m,η ⊗ ξA)(a)τ(ρ
∨, ψ0

K),

ϵ(πD,m,η ⊗ ξA, ψK) = (θD,m,η ⊗ ξA)(a)ϵ(πD,m,η ⊗ ξA, ψ
0
K)

(4.1)

respectively. By these formulas and [BF, Theorem (3.3.8)(iv)], we obtain

ϵ(πD,m,η ⊗ ξA, ψK) = (−1)n−mτ(ρ∨, ψK)Nf(ρ)
−1/2. (4.2)

We put ψA = ψK ◦ TrdA/K . Then we have

τ(ρ∨, ψK) = Nf(ρ)1/2(θD,m,η ⊗ ξA)
∨(φ−1

ζ )ψA(φ
−1
ζ ) (4.3)

by (4.1) and [BF, (2.7.4)]. We obtain

ϵ(πD,m,η ⊗ ξA, ψK) = (−1)n−m(θD,m,η ⊗ ξA)
∨(φ−1

ζ )ψA(φ
−1
ζ )

= (−1)n−1ξ
(
(−1)n−1ζϖ

)
c

by (1.1), (1.2), (4.2) and (4.3). The same arguments work also in the equal characteristic
case (cf. [Bu, Remarks after Theorem (3.7)]). Hence, we obtain the claims.

11



Another proof of Theorem 3.5. Let η′ = (ζ ′, χ′, c′) ∈ µq−1(K)× (k×)∨ × C×. As in the
first proof of Theorem 3.5, we see that there exists a triple η = (ζ, χ′, c) ∈ µq−1(K) ×
(k×)∨ × C× such that πD,m,η ≃ LJD,m(πK,n,η′). We prove ζ = ζ ′. Let ξ be any tamely
ramified character of K×. We write A′ for A in the case m = n. Since the JLD,m
preserves character twists, we have

ϵ(πD,m,η ⊗ ξA, ψK) = ϵ(πK,n,η′ ⊗ ξA′ , ψK) (4.4)

by [ABPS, Theorem 2.2(i)] (cf. [DKV, B.j.1]). We have ϵ(πK,n,η′ , ψK) ̸= 0 by Lemma
4.1.1. By Lemma 4.1.2 and (4.4), we have

ξ
(
(−1)n−1ζϖ

)
=
ϵ(πD,m,η ⊗ ξA, ψK)

ϵ(πD,m,η, ψK)
=
ϵ(πK,n,η′ ⊗ ξA′ , ψK)

ϵ(πK,n,η′ , ψK)
= ξ

(
(−1)n−1ζ ′ϖ

)
.

Hence, we obtain ξ(ζζ ′−1) = 1. This implies ζ = ζ ′. By Lemma 4.1.1 and (4.4), we
have

c = (−1)n−1ϵ(πD,m,η, ψK) = (−1)n−1ϵ(πK,n,η′ , ψK) = c′.

Therefore we have η = η′.

5 Invariance of endo-class

We show that endo-classes for the simple supercuspidal representations are invariant
under the LJLC.

Let E(K) be the set of endo-classes of ps-characters over K in the sense of [BSS,
Definition 1.10]. Then we have a map

ΘG : A□
D,m → E(K)

constructed in [BSS, 9.3]. Broussous-Sécherre-Stevens conjecture that

ΘG(π) = ΘG′
(
JLD,m(π)

)
for π ∈ A□

D,m in [BSS, Conjecture 9.5]. The following proposition verifies the conjecture
for the simple supercuspidal representations.

Proposition 5.1. For any simple supercuspidal representation π of G, we have

ΘG(π) = ΘG′
(
JLD,m(π)

)
.

Proof. Let π be a simple supercuspidal representation of G. We take η = (ζ, χ, c) ∈
µq−1(K)× (k×)∨ × C× such that π = πD,m,η. Then ΘG(πD,m,η) is the endo-class of the
ps-character defined by (

[A, 1, 0, φ−1
ζ ], θD,m,η|U1

A

)
.

We have JLD,m(πD,m,η) = πK,n,η by Theorem 3.5. We define A′ and φ′
ζ for Mn(K)

similarly as A and φζ forMm(D). Then ΘG(πK,n,η) is the endo-class of the ps-character
defined by (

[A′, 1, 0, φ′−1
ζ ], θK,n,η|U1

A′

)
.
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Let Lζ,0 be a finite extension of K generated by an element φζ,0 such that φnζ,0 = ζϖ.

Let CK(φ
−1
ζ,0, 0) be the set of simple characters corresponding to the simple pair [φ−1

ζ,0, 0]
over K defined in [Se1, p. 371]. Then we have bijective transfer maps

τA,0,φ−1
ζ,0

: CK(φ
−1
ζ,0, 0) → C (φ−1

ζ , 0,A),

τA′,0,φ−1
ζ,0

: CK(φ
−1
ζ,0, 0) → C (φ′−1

ζ , 0,A′).

by [Se1, Théorème 3.53]. We have

τ−1

A,0,φ−1
ζ,0

(
θD,m,η|U1

A

)
= τ−1

A′,0,φ−1
ζ,0

(
θK,n,η|U1

A′

)
by (1.4). Hence, we have the claim.
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