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Abstract

We give a description of the local Jacquet-Langlands correspondence for sim-
ple supercuspidal representations via type theory. As a consequence, we show that
the endo-classes for such representations are invariant under the local Jacquet-
Langlands correspondence.

Introduction

Let K be a non-archimedean local field with residue characteristic p. Let A be a central
simple algebra over K. We put n = [A : K]'/2. The local Jacquet-Langlands correspon-
dence (LJLC) gives a correspondences between irreducible essentially square-integrable
representations of GL,(K) and A*. The irreducible supercuspidal representations of
GL,(K) is classified in [BK] via type theory, which describes supercuspidal representa-
tions as compact inductions of representations of some open subgroups that are compact
modulo center. More generally, type theory for representations of A* is developed in
a series of papers [Sel], [Se2], [Se3], [SS1], [BSS] and [SS2]. So it is natural to seek a
description of the LILC via type theory.

In the case where A is a division algebra, such descriptions are studied in [Ge], [He],
[BH2| and [BH4] if n is a prime number, and in [BH3| if p is odd, n is a power of
p and representations are totally ramified. For general A, such descriptions are given
in [SZ] for level zero discrete series representations, and in [BH5] for essentially tame
representations.

In this paper, we give a description of the LJLC via type theory for the simple su-
percuspidal representations. We define the simple supercuspidal representations of A*
in Definition 1.1 after [RY], which are equivalent to the supercuspidal representations
of conductor n + 1 as a result. Such representations appear in [IT1]. If A* = GL,(K),
simple supercuspidal representations are studied in [AL] (cf. [KL], [Xu]) and they are
called epipelagic representations in [BH6]. We note that the simple supercuspidal rep-
resentations of A* are essentially tame if n is prime to p, but they are not essentially
tame if p divides n.

As a consequence of the description of the LJLC, we show that the endo-classes are
invariant under the LJLC for the simple supercuspidal representations. This verifies
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[BSS, Conjecture 9.5] by Broussous-Sécherre-Stevens for the simple supercuspidal rep-
resentations. The conjecture is verified in [Ka] for totally ramified representations of
unit groups of division algebras, based on results in [BH3].

In Section 1, we give a construction and a definition of the simple supercuspidal
representations of A*. Further, we show that they are equivalent to the supercuspidal
representations of conductor n 4+ 1. In Section 2, we give formulas for the characters
of the simple supercuspidal representations at some elements, which are elliptic quasi-
regular in the sense of [BH5, 1.1 Remark]. The values of the characters at these elements
are written in terms of variants of Gauss sums and generalized Kloosterman sums
(cf. Proposition 2.6 and Proposition 2.9). We believe that these formulas are interesting
in themselves. In Section 3, we give a description of the LJLC via type theory in
Theorem 3.5. We determine the description by checking character relations at some
elements. In Section 4, we give another proof of our main theorem using Godement-
Jacquet local constants. This proof is based on a formula in [Bu] and [BF], which
calculates Godement-Jacquet local constants with respect to some kind of Gauss sums.
In Section 5, we show the invariance of the endo-classes under the LILC for the simple
supercuspidal representations.

Type theory for irreducible supercuspidal representations of A* naturally appears
in the study of geometric realization of the local Langlands correspondence and the
LJLC. The results in this paper are used in [IT2] to show that the LJLC is realized in
the cohomology of the reductions of a family of affinoids in the Lubin-Tate perfectoid
space.
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Notation

For a non-archimedean local field F', let O denote the ring of integers in F'. For a field
F and a positive integer [, let y;(F') denote the group of I-th roots of the unity inside
F. For an abelian group X, we write X" for its character group Homgz(X,C*). For
a group G, its subgroup H, a character # of H and g € G, we put H9 = gHg~ ' and
define a character #9 of HY by 09(h) = 6(g~‘hg) for h € HY.

1 Simple supercuspidal representation

In this section, we give a construction and a definition of the simple supercuspidal
representations of the multiplicative group of a central simple algebra over a non-
archimedean local field. Further, we give a characterization of the simple supercuspidal
representations by the conductors.

Let K be a non-archimedean local field with residue field k. We set ¢ = |k|. Let pg
be the maximal ideal of Of. Any central simple algebra over K is isomorphic a matrix
algebra over a central division algebra over K. Let m be a positive integer, and D be
a central division algebra over K. We put A = M,,(D) and G = A*.
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Let 7 be an irreducible smooth representation of G. We fix a non-trivial character
Y € kY. For z € Ok, let T denote the image of z under the reduction map O — k.
We take a character ) € KV such that

’QZ)K(.’L') = @D(i’) for x € Ok,
Yr(r) =1 forx € pk.

Let e(m, s,1k) be the Godement-Jacquet local constant of m with respect to 1. Then
there exists an integer f(m, k) such that

€<7T787wK) = q Fmbx)s (7T 0 ¢K>

by [GJ, Theorem 3.3(4)]. We put 7 = [D : K]/? and n = mr. We define the conductor
c(m) of ™ by

o(m) = f(m, K) +n.
Let .A”+1 denote the set of the isomorphism classes of the supercuspidal representations
of G of conductor n + 1.

We fix a uniformizer @ of K. Let n = ((,x,¢) € pg—1(K) x (k*)¥ x C*. In the
following, we define a smooth representation 7p,,, of G. Let K, be the unramified
extension of K of degree r. We take an element ¢p . € D*, an embedding K, — D and
an integer 1 <s <1 — 1 which is prime to 7 such that ¢}, - = (w and @D,Cdgpg’lg =dv
for d € pgr—1(K,). We put

0 1,1
= m cA d L =K C A.
©¢ (sOD,g 0 ) an ¢ (¢¢)

Since @7 = (w, the field L¢ is a totally ramified extension over K of degree n. We have

Nrda/k(pe) = (=1)" ¢, Trda/x(e;') = 0. (1.1)

Let Op denote the maximal order of D, and pp denote the maximal ideal of Op.
For a positive integer [, let k; be the extension of k of degree . We identify Op/pp with
k.. Let C be the subring of M,,(k,) consisting of all upper triangular matrices. Let 2
denote the inverse image of C' under the reduction map M,,(Op) — M,, (k). Then A
is an order in A. Let By be the Jacobson radical of 2. Note that Py = ¢ A and the
normalizer of A in G equals L2*. For a positive integer i, we set Uy = 1+ By. Let
Opmy: L Uy — C* be the character defined by

Op.mn(x) = x(z) for z € p,1(K),
Opmn(r) = (Vi 0 TrdA/K)(g% (x—1)) forx € Uy, (1.2)
Opmalpc) = (=1)""

G
We put mp . = c—IndLCX UglleD,mﬂ?'

Definition 1.1. We say that an irreducible supercuspidal representation 7 of G is
simple supercuspidal if T ~ 7p , ,, for some n € p,1(K) x (k*)¥ x C*.

Lemma 1.2. The representation mp ., i a supercuspidal representation of conductor
n+1.



Proof. We define a chain lattice A = {A;};cz in D®™ by
Amjr = (0p)"" @ (py )
for j € Z and 0 <1 <m — 1. Then we have
Ql:{gEA|gAiCAZ- for all ieZ}

and pcA; C Ay for ¢ € Z. Hence, 2 is a hereditary order in A (cf. [Sel, Définition
1.3]). We consider a stratum [2, 1,0, cpc_l] of A (cf. [Sel, Définition 2.1]). We set

B:{x€A|xz:zxf0rallz€L¢}.

Then we have B = L;. Using this, we see that the critical exponent of this stratum
equals —1 (cf. [Sel, 2.1]). Hence, this stratum is simple (cf. [Sel, Définition 2.3]). Since
the simple pair [0, gpgl] over K is minimal in the sense of [Sel, 2.3.3], we have

H' (o, 20) = JM (o', 20) = Uy € J(p; ", 2) = OF.Ug (13)

under the notation in [Sel, (65)]. We have

€', 0,2) = {Opmaliy | (1.4)

by [Sel, Lemma 3.23] under the notation in [Sel, Définition 3.45]. Then, by (1.2), (1.3)
and (1.4), we can check that the pair

(J,\) = ((’)ZC Usis QD,m,n|OIfC U91[>

is a maximal simple type of level > 0 for G with respect to the simple stratum
[2(,1,0, gogl] in the sense of [Se3, 4.1 and 5.1]. Hence, 7p ., is a supercuspidal repre-
sentation by [Se3, Théoreme 5.2]. We see ¢(mpm,) = n + 1 by using [BF, Theorem
3.3.8] (cf. the proof of [ABPS, Proposition 2.6]). O

Proposition 1.3. The map
O pg1(K) x () x C* — A%Tnll; N TDmay
1S a bijection.
Proof. We show the injectivity. We take
n=(Cx,c), n'=(¢",X,¢) € pg-1(IK) x (k%) x C*

such that mp ., &~ Tpm.y. By [SS2, Corollary 7.3], we see that ( = ¢’ and x = x’. By
TDmn = Tpmay, there exists gy € G such that

Hong USN(LZ U)% (0D,m,ns eg,m,n’) # 0. (1.5)

This implies
Hongllm(Ug[)go (eD,m,nv e%j,m,n) # 0,

4



since 0p .,y coincides with €p . ,» on Uy. Then we have gg € L? Uy by [Se2, Proposition
2.10]. Hence, we have n =1’ by (1.5).

We show the surjectivity. Let m € Aﬁ;}l. By [SS1, Théoreme 5.21 and Corollaire
5.22], we have m =~ c-Ind56 for a maximal simple type (J,\) with a simple stratum
[20,7,0, 3] and an extension 6 of A to

J={geG|J'=J N =)

Let Py, be the Jacobson radical of 2. By [ABPS, Proposition 2.6], we have [ = 1 and
prRlo = Py, Replacing 2y by its conjugate, we may assume that Ay = 2 (cf. [BF,
(1.5.2) Proposition (ii)]). We put Uy = 1+ pr. We take ¢ € p,—1(K) such that

Nrda/x(B7) = (-1)" (@ mod Uy. (1.6)

We write 871 = pcau, where u € Uy and a = (a;;)1<ij<m € A~ is a diagonal matrix
such that a; € pgr—1(K,) for 1 < i < m. We put b = [[,.,.,, @i- Then we see that

@ca 1s conjugate to
0 ]m—l
cA
(@D,cb 0 )

by an element of A*. Further, this is conjugate to ¢, by an element of 2>, since we
have Nrdp,x(b) = 1 by (1.6). Hence, we may assume that § = goc_l.

We see that 6 is a character by the definition of a maximal simple type (cf. [Se3, 4.1
and 5.1]), [Se2, 2.2] and (1.3). We define x € (k*)Y by x(z) = 0(z) for z € p,—1(K),
and put ¢ = (—=1)""'0(¢¢). Then we have 7 = ®(n) for n = ({, x, ¢). O

Remark 1.4. If m = n, Proposition 1.3 follows from [BH6, 2.1 and 2.2]. Actually, the
proof of the injectivity of ® is logically unnecessary in this paper: We need only the
surjectivity of ® in the case m = n for the proof of Theorem 3.5, and the injectivity of
® follows from Theorem 3.5 and the injectivity of ® in the case m = n.

2 Formula for character

In this section, we give formulas for characters of the simple supercuspidal representa-
tions of GG at some elements.

Definition 2.1 (cf. [BH5, 1.1 Remark]). Let g € G. Let f,(z) € K[z]| be the reduced
characteristic polynomial of g over K.

1. We say that g is regular if f,(z) is separable.
2. We say that g is quasi-regular if f(x) has no repeated irreducible factor over K.

3. We say that g is elliptic if the minimal polynomial of g is irreducible over K.

We write Gieg, G and Gglrl for the set of the regular elements of G, the set of
the quasi-regular elements of G' and the set of the elliptic quasi-regular elements of GG
respectively.

Let H(G) be the space of locally constant compactly supported functions G — C.
We take a Haar measure dug on G. We recall the following fact due to Bushnell-
Henniart:



Proposition 2.2. For an irreducible smooth representation w of G, there is a locally
constant function trm: G, — C characterized by

e () = /G tr(9) f(9)dpic

for all f € H(G) with support contained in Gyy.

Proof. This is proved in [BH1, (A.11) Corollary] in the case where G = GL,(K). The
same arguments work also in our situation (cf. [BH5, 1.1 Remark and Proposition]). [

For an irreducible smooth representation 7 of GG, let tr w be the function in Propo-
sition 2.2, which we call the character of .

Let n = (¢, x,¢) € pg-1(K) x (k)" x C*.

Lemma 2.3. We have

tr WD,m,n(.g) = Z HD,m,n(x_lgz)

:(:EG/LCX Uy u’(,‘—lngLCX Uy

for g € G

qr

Proof. This follows from [BH5, 1.1 Remark and (1.2.2)] (cf. [BH1, (A.14)]). O
We put Uy, =1+ pr C Ox. We set g, = (1 + peu) € A for u € 2.

Lemma 2.4. Let u € . We set

n—1

fou(@) = 2"+ 3 aj(w)a’ € Kla).

1=0

Then, we have
ao(u)

(w

a;(u) €pg for1<i<n-—1, -— € U.
Furthermore, g, s an elliptic quasi-reqular element.

Proof. We see that a;(u) € pg for 0 < i < n — 1, since the left multiplication on
Op/@wOp by g, acts nilpotently. We have

ap(u) = (—1)"Nrda/k (gu) € Pr \ Pk

Hence, the former assertion follows from (1.1) and Nrda, k(1 + pcu) € Uj. By Eisen-
stein’s irreducibility criterion, f,, (x) is irreducible over K. Therefore, the latter asser-
tion follows. O

Lemma 2.5. Let ¢ € G and u € A. Assume that g~ 'g,g € Ba. Then we have
g € LiAx.



Proof. We take | € Z and s = (8;;)1<ij<m € A\ Pa such that g = <pl<3. We put
u = goglugolc € 2. Then we have

9799 = 5" gurs € Par.
Hence, we have g,,s2l C sp 2. This implies g,/ 52 = s 2, since we have
NrdA/K(gpgls’lgu/s) € Og.

Therefore we have @5 = s in Poy/P3. This implies that s;; € OF if and only if
Sit1i+1 € Op for each 1 < i <m — 1. Then we have s;; € OF for all 1 <1i < m, since
s ¢ Pq. Hence, we have s € A*. This shows the claim. ]

We put n, = (n,q — 1). For a € k, we put

Gulx,t,a) = > x(x)¢(az).

T€fing (k)
Note that G,_1(x, %, 1) is a usual Gauss sum, for which we write G(x, ¢).

Proposition 2.6. For u € 2, we have
tI"ﬂ'D’m’n(gu) = (—1)m_chn(X,¢,W).
Proof. For A € p,-1(K), let
g(\) = diag(1,\,--- , A" e G.

We put
H={dg(\) € G| d € pg_1(K,), X € pg1(K), d* "= \"}.

Note that A in the definition of H automatically belongs to p,, (K). Then, we can
check that H is equal to

{z = diag(dy,--- ,dw) € G | 27 gur € LTUy, d; € pgr—1(K,) for all i}.

Hence, we see that
{zeCG|a g e L?Ugll} = HL?U%l

by Lemma 2.5. We have the isomorphism

HLZU/LEUY ™ oy (k) dg(3) o X
Hence, the claim follows from Lemma 2.3 and Lemma 2.4. O
Lemma 2.7. The element 1 + @, is elliptic quasi-reqular.

Proof. The element ¢¢ is elliptic quasi-regular by Lemma 2.4. Hence, the claim follows.
O

Lemma 2.8. Let g € G and \ € i, 1(K). Assume that g~ (1+ wcx)g € L Uy. Then
we have g € L/A*.



Proof. By the assumption, we have g7 (1 + p¢x)g = Xo(1 + v) with A\g € p,—1(K) and
v € Py. Then we have

! !

. q . —1 q
Ao ZZEI?O(%(HU)) :llirg(g (1+¢)g)" =1.
Hence we have g 'pcng = v € Py. Therefore, the claim follows from Lemma 2.5 and
LI = L5A%. O

For a finite field extension k&’ of k, an additive character ¢’ € k'Y, a positive integer
[ and a € kK'*, we put

!

Ku = Y ¥(X6)
Gr-G=a, GER™ i=1

This is a generalized Kloosterman sum (cf. [De, Sommes trig. 7.1]).

Proposition 2.9. For A € u,_1(K), we have

tr D (14 @er) = (=1)""" K, 5 (¥). (2.1)

Proof. Let A € p1,-1(K). We have

T D mp (1 + per) = Z Op.mn(9~ (1 +cr)g)
gELIAX /LU
by Lemma 2.3, Lemma 2.7 and Lemma 2.8. We can check that

m—1

trA/D@Elg_lQOO\g) = ‘PE)?gar_n}mSOD,C/\al,l + Z a;ilai+1,i+1 mod pp
i=1

for g = (a;;)1<ij<m € A*. For d € Op, let d denote the image of d by Op — k,. We
have the bijection

LEA /LUy = {(Crye o Gn) € (B)F™ | Nrg (G- Gu) = A}

1 —
(@ig)1<ig<m ((% Ait1i41)1<i<m—1, sﬁp,gamfmSDD,cxal,l),

where (a;;)1<ij<m € A*. Hence, we have

tr 7TD7m7,7(1 + QOO\) = Z Km’x<'¢ (¢] Trkr/k)'
Nrkr/k(z):jx

Further, we have

> 7Km,z(¢ o Try, i) = (=1)" > o Ty uly) = (=1)" K, 5(¥)

Nry,. /1 (2)=A Nry,, /i (y)=A

by [De, (7.2.5)]. Thus, we have proved the claim. O



3 Description of LJLC

In this section, we give an explicit description of the local Jacquet-Langlands corre-
spondence (LJLC).

First, we recall the statement of the LJLC. Let A7, denote the set of equivalent
classes of irreducible essentially square-integrable smooth representations of GL,,(D).
We put G’ = GL,(K). We say that g € Gy, and ¢’ € G, correspond if fy(x) = fy ().

Theorem 3.1 ([Ba, Théoreme 5.1] and [DKV, Théoreme principal]). There ezists a
bijection
JLDva A‘l]?,m — ./4?{7”,
which 1s uniquely characterized by the character relation
tra(g) = (=1)""" tr JLpm(7)(g")

!
reg-’

forme AR, and any corresponding g € Gireg and g' € G

The bijection JLp,, in Theorem 3.1 is called the local Jacquet-Langlands corre-
spondence.

Corollary 3.2. The bijection JLp,, satisfies the character relation
tra(g) = (=1)""" tr JLpm(m)(g)
form e A%m and any corresponding g € G and g' € G,

Proof. The complement of G™* in G is a Zariski closed subset of G with strictly smaller
dimension than G. This implies that G**® is dense in G in the w-adic topology, hence
it is dense also in G. Therefore, the claim follows from Theorem 3.1, since tr 7 and
tr JLp m(m) for m € AJ,, are locally constant functions on G and G, respectively. [

Lemma 3.3. The function
Goyw: k= C; a— Gu(x, v, a).
is not equal to the zero function on k.

Proof. Let I, , be the function on k defined by

0 if © & fin, (k).

Then G, is regarded as the Fourier transformation of F,, , with respect to ¢. Hence,
the claim follows from the Fourier inversion formula. O

Lemma 3.4. For any o’ € k* \ {1}, there is a € k* such that K, (V) # Kp a0 (V).
Proof. Let o’ € k* \ {1}. We take x’ € (k*)" such that x'(a’) # 1. Then we have
> X (ad) (Ena(¥) = Knaw (¥) = (' () = 1) Y X'(0) Kpa(¥)

ack> ack>
= ((a") = DG, )" #0
by [De, (7.1.6)]. Hence, the claim follows. O

Fo(z) = {x(m) if & € pun, (K),



Theorem 3.5. Forn = ((,x,¢) € pg—1(K) x (k*)¥ x C*, we have JLp m(Tpmy) =
TKmnn-

Proof. Let LJp,, denote the inverse of JLp,,. The map LJp,, preserves conductors
and supercuspidality by [ABPS, Theorem 2.1(e), (i)]. Let 0 = ({', X/, ) € pg—1(K) X
(k)Y x C*. By Proposition 1.3, there exists n = (¢, x, ¢) € pg—1(K) x (k*)" x C* such
that LJD,m(TrK,n,n’) = TD,m,;n-

We have to show n = 7’. We have x = X/, because JLp ,, preserves central charac-
ters. We write 21" and ¢} for 2 and ¢, respectively in the case m = n. By Proposition
2.9 and Corollary 3.2, we have

Km;\(w) = (—1)n7m tr 7TD,m,n(1 + QOQ\) =tr 7TK7n777/<1 + (,OIQ\) = KTL’T\CC/—I (d})

for A € p,—1(K). Hence, we have ¢ = ¢’ by Lemma 3.4.
Finally, we show ¢ = ¢/. By Lemma 3.3, we can take a € k such that G,,(x, ¥, a) # 0.
We take & € k, such that Try, /x(§) = a. Let £ € Op be a lifting of . We set

= diag(&,0,---,0) € 2.

We simply write g¢ for g,,. Let {ai(ug) }o<i<n—1 be as in Lemma 2.4. By Lemma 2.4,
the elements

ao(ue)

+1

o = — al(w) for1<i<n—1 a,=—-——9
(w (w

are contained in Q. We set
Zgo” 'diag(a;,0,--+,0) € A, go = @ (1 + gLua) € G

Then we have

n—1

fou(2) = 2" — Z (war' — (w(1+ a(w) = foe ().

i=1

Hence, g € G and g, € G, correspond. We have tr(u,) = Trd s,k (u¢) = a, since
3 q qr / 3

Trd ') Nrd
tr(ug) = a1 = (—1)" rda/i (9 Ciﬂ rda/c(ge) = Trdp/x(§) mod pg.

Therefore, we have

At TDm (gf) -1 tr i, ’(goz) ’
= (=1)™ 1 1M —(=1)" »11 —
= g e - Y Gt

by Proposition 2.6 and Corollary 3.2. O
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4 Another proof of Theorem 3.5

Let n = ((,x,¢) € pg—1(K) x (k*)¥ x C*. We simply write €(7p ., ¥x) for the value
of €(Tpmy, S, Vi) at 1/2. For any smooth character £: K* — C*, let {4 denote the
composite £ o Nrdy k.

The following lemma is a special case of a formula which represents Godement-
Jacquet local constants with respect to non-abelian congruence Gauss sums. Such a
formula is studied in [Bu] and [BF]. If m = n, this lemma is just [BH6, 2.2 Lemmal].

Lemma 4.1. 1. We have
E(ﬂ—D,m,ml/}K) = (_1)71—10‘

2. For any tamely ramified character & of K*, we have

6<7TD7m777 & 5,4, ¢K) = 5((_1)n_lcw)€(7rD,m,m 77ZJK)

Proof. Let & be a tamely ramified character of K*. Assume that the characteristic of

K equals zero. We set
X%

We see that p is an irreducible admissible representation of L?QLX by Lemma 1.2, and
non-degenerate in the sense of [BF, p. 228] by (1.2).

Let 9% be the standard continuous additive character of K defined in [BF, 2.1].
In [BF, (2.3.6)], the non-abelian congruence Gauss sum 7(p) is defined for p and %.
However, it can be defined for any non-trivial additive character 1}, of K as in [Bu,
(3.4)] (cf. [Bu, Remarks after Theorem (3.7)]), for which we write 7(p, ¥%).

We take an element a € K* such that ¢ (z) = ¢) (az) for € K. Let w,v denote
the central character of p¥. By [Bu, (3.4)] and [GJ, (3.3.5)], we have formulas

7(p" ¥x) = wpr (a7 (p", Vi) = (Op.mn @ E4)(a)T(p", V),

4.1
(T pmey €4, 0) = By @ E)(@)E(TDmn @ Ea, ) (4.1)

respectively. By these formulas and [BF, Theorem (3.3.8)(iv)], we obtain

(TDmn @ €, ¥r) = (=1)" "7 (p", Yr)Nf(p)~1/2. (4.2)
We put 14 = ¥g o Trdy/k. Then we have

7(p", ¥x) = N§(p)*(0pm ® €)" (0 )0alg ) (4.3)

by (4.1) and [BF, (2.7.4)]. We obtain

(TDmn ® Ea,¥K) = (=1)" "™ (Opmy ® €a) (9 ) ale? )
= (=D)" (=) (w)e

by (1.1), (1.2), (4.2) and (4.3). The same arguments work also in the equal characteristic
case (cf. [Bu, Remarks after Theorem (3.7)]). Hence, we obtain the claims. O
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Another proof of Theorem 3.5. Let nf = (', X', ) € pg—1(K) x (E*)¥ x C*. As in the
first proof of Theorem 3.5, we see that there exists a triple n = (¢, X/, ¢) € pg—1(K) X
(k)Y x C* such that 7p ., =~ LIpm(Tkn.y). We prove ¢ = ¢’. Let £ be any tamely
ramified character of K*. We write A’ for A in the case m = n. Since the JLp,,
preserves character twists, we have

(TDmy ® &a, Vi) = (T ® Ears V) (4.4)

by [ABPS, Theorem 2.2(i)] (cf. [DKV, B.j.1]). We have €(7k .y, %¥x) 7 0 by Lemma
4.1.1. By Lemma 4.1.2 and (4.4), we have

5((_1)n_1cw> _ E(WD,m,n ®€Aa¢K> _ E(ﬂ'K,n,n’ ®§A’a¢K> _ §(<_1)n_1g/w).

E(ﬂ-D,m,m Q/JK) E(WK,n,n’a wK)

Hence, we obtain £((¢'™') = 1. This implies ¢ = ¢’. By Lemma 4.1.1 and (4.4), we
have

€= (_1)n_16(7TD,m,n7¢K) = (_1)71_16(7‘7(#1,77”1/’1() =c.

Therefore we have n =17/ U

5 Invariance of endo-class

We show that endo-classes for the simple supercuspidal representations are invariant
under the LJLC.

Let £(K) be the set of endo-classes of ps-characters over K in the sense of [BSS,
Definition 1.10]. Then we have a map

@GS A%’m — E(K)
constructed in [BSS, 9.3]. Broussous-Sécherre-Stevens conjecture that
@G<7T) = @G’ (JLD’m(ﬂ'))

for m € A, in [BSS, Conjecture 9.5]. The following proposition verifies the conjecture
for the simple supercuspidal representations.

Proposition 5.1. For any simple supercuspidal representation © of G, we have
@G(ﬂ') = @G’ (JLD,m(ﬂ')).

Proof. Let 7 be a simple supercuspidal representation of G. We take n = ({, x,¢) €
fg—1(K) x (k*)Y x C* such that m = 7p . Then O¢(mpm ) is the endo-class of the
ps-character defined by

([2(7 1,0, 90(_1]7 0D7m777|U91‘)'

We have JLp (Tpmn) = Timny by Theorem 3.5. We define ' and <p’< for M, (K)
similarly as 2 and ¢, for M,,(D). Then O¢(7k ) is the endo-class of the ps-character
defined by

([2[/7 ]-7 07 802“_1]7 0K,”777|Ugll/)'
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Let L¢o be a finite extension of K generated by an element .o such that 7, = (w@.
Let CKK(goaé, 0) be the set of simple characters corresponding to the simple pair [cp;(l], 0]
over K defined in [Sel, p. 371]. Then we have bijective transfer maps

To 007 %K(waé, 0) — %ﬂ(gogl, 0,20),
TQ[’,O,«,DC_}] : (KK«O;%)? O) - Cg(@/(_la 07 Q(/)
by [Sel, Théoreme 3.53]. We have

Tgrvlllcpg’é (QD,m,n|Ugll) - TQ:’,IO,%T}) (0K7”777|UQ1U)

by (1.4). Hence, we have the claim. O
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