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Abstract

We construct a family of affinoids in the Lubin-Tate perfectoid space and their formal
models such that the middle cohomology of their reductions realizes the local Langlands
correspondence and the local Jacquet-Langlands correspondence for the simple epipelagic
representations. The reductions of the formal models are isomorphic to the perfections of
some Artin-Schreier varieties, whose cohomology realizes primitive Galois representations.

Introduction

Let K be a non-archimedean local field with a residue field k. Let p be the characteristic
of k. We write Ok for the ring of integers of K, and p for the maximal ideal of Ox. We
fix an algebraic closure k* of k. The Lubin-Tate spaces are deformation spaces of the one-
dimensional formal Og-module over £ of height n with level structures. We take a prime
number ¢ that is different from p. The local Langlands correspondence (LLC) and the local
Jacquet-Langlands correspondence (LJLC) for cuspidal representations of GL,, are realized in
the f-adic cohomology of Lubin-Tate spaces. This is proved in [Boy99] and [HT01] by global
automorphic arguments. On the other hand, the relation between these correspondences and
the geometry of Lubin-Tate spaces is not well understood.

In this direction, Yoshida constructs a semi-stable model of the Lubin-Tate space with a full
level p-structure, and studies its relation with the LLC in [Yos10]. In this case, the Deligne-
Lusztig varieties appear as open subschemes in the reductions of the semi-stable models, and
their cohomology realizes the LLC for depth zero supercuspidal representations. In [BW16],
Boyarchenko-Weinstein construct a family of affinoids in the Lubin-Tate perfectoid space and
their formal models so that the cohomology of the reductions realizes the LLC and the LJLC
for some representations which are related to unramified extensions of K (cf. [WeilOa] for some
special case at a finite level). It generalizes a part of the result in [Yos10] to higher conductor
cases. In the Lubin-Tate perfectoid setting, the authors study the case for the essentially tame
simple epipelagic representations in [IT13], where simple epipelagic means that the exponential
Swan conductor is equal to one. See [BH05] for the notion of essentially tame representations.
The result in [IT13] is generalized to some higher conductor essentially tame cases by Tokimoto
in [Tok16] (cf. [IT15a] for some special case at a finite level).

In all the above cases, Langlands parameters are of the form Ind%i< x for a finite separable
extension L over K and a character x of Wy, where Wx and Wy denote the Weil groups of
K and L respectively. Further, the construction of affinoids directly involves CM points which
have multiplication by L. In this paper, we study the case for simple epipelagic representations
which are not essentially tame. In this case, the Langlands parameters can not be written as
inductions of characters. Hence, we have no canonical candidate of CM points which may be
used for constructions of affinoids.



We will explain our main result. All the representation are essentially tame if n is prime
to p. Hence, we assume that p divides n. We say that a representation is essentially simple
epipelagic if it is a character twist of a simple epipelagic representation. Let ¢ be the number
of the elements of k£ and D be the central division algebra over K of invariant 1/n. We write
q = p/ and n = p°n’, where n’ is prime to p. We put m = ged(e, f). The main theorem is the
following;:

Theorem. Forr € u,1(K), there is an affinoid X, in the Lubin-Tate perfectoid space and its
formal model X, such that

o the special fiber X, of X, is isomorphic to the perfection of the affine smooth variety
defined by

1
pm . pc+1 . n
z —zZ=Yy — ﬁ E yiy; Akac7
1<i<j<n—2

e the stabilizer H, C GL,(K) x D* x W of X, naturally acts on X, and

. c—IndgTL”(K)XDXXWKHQ_l(%_T, Q,) realizes the LLC and the LJLC for essentially simple
epipelagic representations.

See Theorem 2.5 and Theorem 6.4 for precise statements. As we mentioned, we have no
candidate of CM points for the construction of affinoids. First, we consider a CM point & which
has multiplication by a field extension of K obtained by adding an n-th root of a uniformizer of
K. If we imitate the construction of affinoids in [IT13] using the CM point £, we can get a non-
trivial affinoid and its model, but the reduction degenerates in some sense, and the cohomology
of the reduction does not give a supercuspidal representation. What we will do in this paper
is to modify the CM point ¢ using information of field extensions which appear in the study
of our simple epipelagic Langlands parameter. The modified point is no longer CM point, but
we can use this point for a construction of a desired affinoid.

In the above mentioned preceding researches, the Langlands parameters are inductions of
characters, and realized from commutative group actions on varieties. In the case for Deligne-
Lusztig varieties, they come from the natural action of tori. In our simple epipelagic case,
they come from non-commutative group actions. For example, the restriction to the inerita
subgroup of a simple epipelagic Langlands parameter factors through a semi-direct product of
a cyclic group with a Heisenberg type group, which acts on our Artin-Schreier variety in a very
non-trivial way.

In the following, we briefly explain the content of each section. In Section 1, we collect
known results on the Lubin-Tate perfectoid space, its formal model and group action on it.

In Section 2, we construct a family of affinoids and their formal models. Further we de-
termine the reductions of them. The reduction is isomorphic to the perfection of some Artin-
Schreier variety:.

In Section 3, we describe the group action on the reductions. To determine the action of
some special element on the cohomology of the reduction, we need to study half-dimensional
cycle classes on some Artin-Schreier variety. This is done in Section 4.

In Section 6, we give an explicit description of the LLC and the LJLC for essentially simple
epipelagic representations, which follows from results in [IT14] and [IT15b]. In Section 6, we
give a geometric realization of the LLC and the LJLC in cohomology of our reduction.



Notation

For a non-archimedean valuation field F', its valuation ring is denoted by Op. For a € Q and
elements f, g with valuation v that takes values in Q, we write f = ¢ mod a if v(f — g) > q,
and f = ¢ mod- aif v(f —g) > a. For a topological field extension E over F, let Gal(E/F')
denote the group of the continuous automorphisms of £ over F.

1 Lubin-Tate perfectoid space

1.1 Lubin-Tate perfectoid space and its formal model

Let K be a non-archimedean local field with a residue field k of characteristic p. Let ¢ the
number of the elements of k. We write p for the maximal ideal of Ox. We fix an algebraic
closure K2 of K. Let k® be the residue field of K?°.

Let n be a positive integer. We take a one-dimensional formal Og-module Gy over k*¢ of
height n, which is unique up to isomorphism. Let K™ be the maximal unramified extension
of K in K?. We write K" for the completion of K. Let C be the category of complete
Noetherian local Og,.-algebras with residue field .

Let G be a formal Og-module over R € C. For a € Ok, let [alg: G — G be the multiplication
by a, and Gla] be the kernel of [a]g. For an integer m > 0, we define G[p™] to be Gla] for some
a€p™\pmtt.

We consider the functor C — Sets which associates to an object R € C the set of isomor-
phism classes of triples (G, ¢, ¢), where (G, ¢) is a deformation of Gy to R and ¢ is a Drinfeld level
p"-structure on G. This functor is represented by a regular local ring A,, by [Dri74, Proposition
4.3]. Then, {A,,}n>0 makes an inductive system. Let I the ideal of lim Ap, generated by the
maximal ideal of Ay. Let A be the I-adic completion of hﬂAm. We put Mg, - = Spf A.

Let K be the maximal abelian extension of K in K. We write K for the completion

of K® . Let AGy denote the one-dimensional formal Ox-module over k* of height one. Then
we have Mg, o =~ Spf Oz, by the Lubin-Tate theory. We have a determinant morphism

Mgo,oo — M/\go,oo (11)

by [WeilOb, 2.5 and 2.7] (c¢f. [Hed10]). Then, we have the ring homomorphism Og., — A
determined by (1.1).

We fix a uniformizer w of K. Let M, be the open adic subspace of Spa(A, A) defined by
|(x)| # 0 (¢f. [Hub94, 2]). We regard Mo, as an adic space over K. For a deformation G of
Go over Oc¢, we put

V(G) = (@g[Pm](Oc)) Roy K,

where the transition maps are multiplications by . By the construction, each point of M, (C)
corresponds to a triple (G, ¢,¢) that consists of a formal Og-module over O¢, an isomorphism
¢: K™ — V4(G) and an isomorphism ¢: Gy — G ®o¢ k*° (¢f. [BW16, Definition 2.10.1]).

We put n = Spa(l?ab, Ogav). By the ring homomorphism Og., — A, we can regard M,
as an adic space over 7, for which we write M, ,. Let C be the completion of K*°. We put
7 = Spa(C, Oc). We have a natural embedding K < C. We put

Moo,ﬁ - Moo,n Xn ﬁ

Then, M5 is a perfectoid space over C in the sense of [Sch12, Definition 6.15] by [WeilOb,
Lemma 2.10.1]. We call M 5 the Lubin-Tate perfectoid space.



In the following, we recall an explicit description of A° = A®O}?ab O¢ given in [WeilOb,
(2.9.2)]. Let @\0 be the formal Ox-module over O whose logarithm is

o0 Xqin

ot
1=0

(¢f. BW16, 2.3]). Let Gy be the formal Ox-module over k* obtained as the reduction of Gy.
We put Op = EndGy and D = Op ®z Q, which is the central division algebra over K of
invariant 1/n. Let [ - | denote the action of Op on Gy. Let ¢ be the element of D such that
[p](X) = X1 Let K, be the unramified extension of K of degree n. For an element a € O¢,
its image in the residue field is denoted by a. We consider the K-algebra embedding of K, into
D determined by

[CJ(X) = CX for (€ pgni ().

Then we have ¢" = w and ¢( = (% for ¢ € pgm_1(K,). Let AGo be the one-dimensional
formal Og-module over Ok whose logarithm is

o0

X
-1 (n—1)¢ .
;( i
We choose a compatible system {¢,, },>1 such that
tm € K* (m2>1), t#0, [wg(t)=0, [@g{t)==tn1 (m>2). (1.2)

We put
m—1
t = lim (—1)7=Dm=D""" ¢ O,

m—o0

Let v be the normalized valuation of K such that v(w) = 1. The valuation v naturally extends
to a valuation on C, for which we again write v. Note that v(t) = 1/(¢ — 1). For an integer
i >0, we put 19 = limy, s (—1)2Dn=1gam

Let Wi be the Weil group of K. Let Artg: KX = W2 be the Artin reciprocity map
normalized such that a uniformizer is sent to a lift of the geometric Frobenius element. We
use similar normalizations also for the Artin reciprocity maps for other non-archimedean local

fields. Let 0 € W. Let n, be the image of ¢ under the composite
ab Art}}1 « v
Wg » W —— K* = Z.

Let ax: Wk — O be the homomorphism given by the action of Wx on {t,,}>1. It induces
an isomorphism ax : Gal(K*/K") ~ O.
For m > 0, we put

mi—m mnp—m

(X1, Xn) =AGo Y sgn(ma,... my)X{T XY (1.3)
(ma,...,mn)
in Og[[X{77, ..., X)")], where
e the symbol /TQ\O > denotes the sum under the additive operation of Kg\o,
e we take the sum over n-tuples (my, ..., m,) of integers such that m;+- - -+m,, = n(n—1)/2

and m; #m; mod n for ¢ # j,



e sgn(my,...,m,) is the sign of the permutation on Z/nZ defined by i — m;.

We put
§= lim 5;;’” € Oc[X,7, ... X)),

m—o0

For [ > 1, we put 69 = limy,_s0 62", The following theorem follows from [WeilOb, (2.9.2)]
and the proof of [BW16, Theorem 2.10.3] (cf. [SW13, Theorem 6.4.1]).

Theorem 1.1. Let o € Gal(K®™/K™). We put A° = A®o. ., 0Oc. Then, we have an
isomorphism

A7~ Oc[[X{7, XY 0(X, LX) = o () ) mso. (1.4)

For o € Gal([?ab/f(\'ur), let My, be the base change of M., by 7 — n = n. For
o € Gal(K*/K") and o = ag (o) € OF, we write A* for A” and M(Qﬁ’a for Mgﬁﬂ. We put

Mg OC H Spana Mggn H Moona (15)

ac0k ac0k

Then Méo)ﬁ is the generic fiber of M o0 and /\/loon(C) = MOO(C).
Let +5- and + 55 be the additive operations for QO and /\go respectively.

Lemma 1.2. 1. We have X3 +& Xy = X1 4+ Xy modulo terms of total degree q".
2. We have X; +rc Xy = X1 4+ X5 modulo terms of total degree q.

Proof. This follows from the descriptions of the logarithms of Go and /TQ\O (cf. [WeilOb, Lemma
5.2.1]). O

47,50 for 1 < i < n. We write §(X,..., X,,) for the g-th power compatible
system (5(X1, e ,Xn)qij)jzg.
For g-th power compatible systems X = (X9 ');50 and Y = (Y7 ’);5, that take values in
Oc¢, we define ¢g-th power compatible systems X +Y, X —Y and XY by the requirement
that their j-th components for j > 0 are

Let X; be (X

lim (X9 " +Ye ™7 im (X" -y ") and X9y

mM— 00 m— 00

respectively. For such X = (X7 );50, we put v(X) = v(X). We put

mq mn

06(Xi, .. X)) = > sgn(ma,..omp) X X

where we take the sum in the above sense and the index set is the same as (1.3). We recall the
following lemma from [IT13, Lemma 1.6].

Lemma 1.3. Assume that n > 2 and v(X;) > (ng¢" (¢ —1))7! for 1 <i <n. Then, we have

1 1
5(X1,,Xn)556(X1,,Xn) HlOd>—+—.
noq



1.2 Group action on the formal model

We define a group action on the formal scheme MfQOC, which is compatible with usual group

actions on Lubin-Tate spaces with finite level (¢f. [BW16, 2.11]). We put
G = GL,(K) x D* x Wk.
Let G° denote the kernel of the following homomorphism:

G = Z; (g,d,0) — v(det(g)'Nrdp,x(d)Art' (o).

Then, the formal scheme M(()g%oc admits a right action of G°. We write down the action. In
the sequel, we use the following notation:

For a € pgn_1(K,) U {0}, let a? ™ denote the ¢™-th root of a in pe_1(K,) U {0}
for a positive integer m, and we simply write a also for the ¢-th power compatible
system (a? )50

For g-th power compatible systems X = (X7 ’);50 and Y = (Y97),5¢ that take values
in Oc, we define a ¢-th power compatible system X +z Y by the requirement that their

j-th components for j > 0 are lim,, . (X9 " +a Y4 ™)?" ™ The symbol Go > denotes this
summation for ¢g-th power compatible systems.

First, we define a left action of GL,(K) x D* on the ring B, = Oc[[X\/, ..., X2/"]].
For a =3 " a;w’ € K with | € Z and a; € 1, 1(K) U {0}, we set

] Xi = Go > a; X"
=1
for 1 <i<n. Let g € GL,(K). We write g = (a;;)1<ij<n- Then, let g act on the ring B,, by
g: B, — B,; X;~ QAO Z[aw] - X; forl1<i<n. (1.6)

Jj=1

Let d € D*. We write d~' = >, d;¢/ € D* with | € Z and d; € pign1(K,) U{0}. Then, let
d act on B, by

d*: By = Bay X Go Y d;X¢ for1<i<n. (1.7)
j=l

Now, we give a right action of G° on M”, using (1.6) and (1.7). Let (g,d, 1) € G°. We set

00700

(g, d) = det(g)Nrdpyx(d) ™" € OF. We put t = (17 "),,50. Let (g,d, 1) act on M, by
A% — Aled e xo (9,d)-X; forl1<i<mn,
where a € OF. This is well-defined, because the equation
3((g,d) - Xq,...,(g,d) - X,,) = Artg()(t)
is equivalent to §(X, ..., X,,) = Artg(v(g,d) ) (t). Let (1,07, 0) € G° act on Mgi),oc by

A o Ao Xy X e o(z) for1<i<mnandze Og,

where a € OF. Thus, we have a right action of G® on M, o, which induces a right action on
0

ME;(C) = M (C).

Remark 1.4. For a € K*, the action of (a,a,1) € G on My, o, is trivial by the definition.



1.3 CM points

We recall the notion of CM points from [BW16, 3.1]. Let L be a finite extension of K of degree
n inside C.

Definition 1.5. A deformation G of Gy over Oc has CM by L if there is an isomorphism
L = End(G) ®p, K as K-algebras such that the induced map L — End(LieG) ®p, K ~ C
coincides with the natural embedding L C C.

We say that a point of M, (C) has CM by L if the corresponding deformation over O¢ has
CM by L.

Let £ € M4(C) be a point that has CM by L. Let (G, ¢,¢) be the triple corresponding
to . Then we have embeddings iye: L — M, (K) and ipe: L — D characterized by the
commutative diagrams

K" —*~V,g Go —> G ®og k*
iM,g(a)l ivp (a) and iD,g(G«)\L la@id
Kn*d))‘/;g g04">g®00 Jeac

in the isogeny category for a € L. We put i¢ = (ipe,ipe): L — M, (K) x D. We put
(GL,(K) x D*)* ={(g,d) € GL,(K) x D* | (g9,d,1) € G"}.

Lemma 1.6. [BW16, Lemma 3.1.2] The group (GL,(K) x D*)° acts transitively on the set of
the points of My (C) that have CM by L. For & € My (C) that has CM by L, the stabilizer of
& in (GL,(K) x D*)% is ig(L*).

2 Good reduction of affinoids

2.1 Construction of affinoids

We take a uniformizer w of K. Let r € p,—1(K). We put w, = rw. We take ¢, € C such that
¢! = w,. We put L, = K(p,). Let G, be the one-dimensional formal O, -module over Oz,

defined by
[prlg, (X) = o, X + X7, [(Jg.(X) = (X for (€ py-1(L)U{0}. (2.1)
We take a compatible system {¢, ,}m>1 in C such that

lr # 0, [SOT]Qr (tr,l) =0, [SOT]Qr (tr,m> =trm-1

for m > 2. We apply results in Section 1 replacing w by w, and taking a model of G, given by
the reduction of (2.1). We put

0 I
Prr = ( 0 1) € M,(K).

@y
Let op, € D be the image of ¢, under the composite
O, — End g, — End Gy = Op.

For € € Mﬁ{ﬁ(C), we write (§,,...,§,) for the coordinate of £ with respect to (Xi,...,X,),
where &; = (€7 )50 for 1 <i < n.



Lemma 2.1. There exists &, € Mg{ﬁ(C) such that

q*] m—i—j
(Y2

= lim ¢}, ~ € Oc (2.2)
m—0o0

for 1 <i<nandj > 0. Further, we have the following:
(i) & has CM by L,.
(11) We have i¢, (o) = (@rmr, pr) € My(K) X D.

(iii) & = g,iJrl Jor1<i<n-1

(iv) v(&.:) =1/(ng" (g—1)) for 1 <i<n.
Proof. This is proved as in the same way as [IT13, Lemma 2.2]. O

We take &, as in Lemma 2.1. We can replace the choice of (1.2) so that (5(51, €, =t
Then we have & e MY 71 Let DG P be the generic fiber of Spf (’)C[[ X . W

consider M 71 as a subspace of DEP™ by (1.4). We put 1, = &1 . Note that v( ,) = /
We write n = p®n’ with (p,n') = 1. We put

(n'+1)/2 ifp° =2,
En =
o if pe £ 2.
We take ¢g-th power compatible systems 6, and A, in C satisfying

2

07 +ny 10, +1) =0, A —ni' (X —67 (8, +1)+5m,) =0 (2.3)

T

Note that

O (B (2.9

n qp°
We define £, € DEP by

1

5;1_£r1(1+9r>7 €;J+1:£;§ forlgzgn—z
€, = €0 ((1+6,)7"(1+wA,) 7

Proposition 2.2. There uniquely exists 0 € Méﬂfm satisfying

2
— 1
€=, for1<i<n-1, &,=€, wmod, L A%
s = & n =t n g~ 1)
Proof. We have
1 1
(€)=t d —.
(€r) mod > q— 1 + n
Hence, we see the claim by Newton’s method. O
We take &Y as in Proposition 2.2. We put &; = Xi/EE,i for 1 <i <n. Wedefine &, C M(ogfm
by
n 1—4
1 .
( ( ) )2 - for1<i1<n-—2,
Lit1 2nqz (2 5)
] .
v, —1)> ———— - forn—1<i<n.
ng"(pe + 1)

The definition of X, is independent of the choice of 8, and \,. We define B, C Dé’perf by the
same condition (2.5).



2.2

Let
put

Formal models of affinoids
X)) =11, X?". Further, we

(Xi,...,X,) be the coordinate of B,. We put h(Xj,
0(Xy,..., X,)
X,...,.X,)=1-— 7 9.6
f( 1, ) ) h/(Xl,,Xn> ( )
n—1 i—l(q_l) n q-1
X \? X1 q
Xi..... X)) = n . 9
fO( 1, ) n) ;<X1+1) ( Xl ) ( 7)
&,.,). We will use the similar

7Xn)7 and f(Er) fOI' f(g'r,h
(2.8)

We simply write f(X) for f(Xj,
notations also for other functions. We put
S = fo(X) — fo(&).

Lemma 2.3. We have
-1
f(X) = fo(X) mod- and S = f(X)— f(€°) mod-
Proof. We put
n—3 n—1 =1(g—1) ¢~ (g—1) ny &t n-3 q'(g—1)
X, \¢ (g X X4 7 X,
(X X) = (=) (1) (%) =(EY)
T o \ it j+1 1 — i+2
1
mod - —
n

- ol X) _ fo(X) = f1(X)

Then we see that
X)= =
using Lemma 1.3 and the definition of 3. The claims follow from this, because

and o(4(X) - £i(€0) > 2=,
[

oh(0) 2 2=

We put s; = (azi/wiﬂ)qi(q_l) for1<i<n-—1,and
sis;t =1+Y; for1<i<n-—2, s, ,=1+Y,,. (2.9)
We put m = ged(e, f) and
£ _1 HpeY pim 1 £,1 S pim
T n—1
)
i=0 =0
We put f = mg and e = m;. We define mo, ..., my1 by the Euclidean algorithm as follows:
We have
m;_1 =n;m; +m;s; with n;, >0 and 0 <m;; <m; for 1 <i <N,
my =m, mpys1 =0.
We put
0rY,_ -8
Ty = 2* L T=— (2.11)
n;: n'm,



and define T5, ..., Ty by

n;—1 N
To=T +Y 77" for1<i<N-1.
j=0
Then we see that
Mitl g mi_q
z = Z ™"+ ZTfﬂn for 1 <i<N-1
§=0 §=0

inductively by (2.10). We see also that

(VT = TR+ Pz) (212)
=0
with some P;(z) € Z[z] for 0 <i < N — 1. We put
(_1>Nnr f—m
Y - Tm . (213)
Then we have
Y=Y, mod.1/(n(p°+1)) (2.14)
by (2.12) and (2.13). We define a subaffinoid B]. C B, by v(z) > 0. We choose a square root
nt? and a (p° + 1)-root n/ P of n, compatibly.

We set

T

Y, = 771/2yi with gy, = (y;]_j>j20 forl1 <i:<n-—2,
Y =n/® Wy with y = (4 )20

(2.15)

on B.. Let B be the generic fiber of Spf Oc(y/a™ y/7™ . y~9° /7). The parameters
Y, Yy, Y, 1,2 give the morphism ©: B/ — B. We simply say an analytic function on B for
a ¢-th power compatible system of analytic functions on B.

We put

n—1

£0\
1+6,=(14+6,)"(1+n'A,) (5—7)

Lemma 2.4. O is an isomorphism.

Proof. We will construct the inverse morphism of ©@. We can write Y,,_; and S as analytic
functions on B by (2.11), (2.12), (2.13) and (2.15). Then we can write x;/x;;1 as an analytic
function on B by (2.9). By (2.7) and (2.8), we have

n_(q_l)sq — Sp—1— 1 1 1 1 = 1
T n— / _ — n__ —
(]_ —+ er)(q_1)2 - Z(sl - 1) + (1 + 0/ )q—l + (1 + 0r>q(q )<SU£Lq )a ) H(wz CUZ‘+1) — 1) .

i=1 i=1

By this equation, we can write @,, as an analytic functions on B. Hence, we have the inverse
morphism of ©. O]

We put
5B(y7 Y1y oo o5 Yn—1, Z) = (5|B'T) o 6_1

equipped with its ¢’-th root 55? for j > 0. We put

X, = Spf Oc (e yi/a™ .yt 2V (68 s0.

10



Theorem 2.5. The formal scheme X, is a formal model of X, and the special fiber of X, is
isomorphic to the perfection of the affine smooth variety defined by

m e 1 .
Zp — 2 = yp +1 —_ _/ Z ylyj m AZac- (216)
n 1<i<j<n—-2

Proof. Let (X, ...,X,) be the coordinate of 55,. By Lemma 2.3, we have

qg—1

v(f(X)) > ” and v(S) > e (2.17)
We have _
q—-1 Xgn = X; .
X))t = ( % ) H(Xm) . (2.18)
We have
N\ 71 -1 (g—1)2 n—1
(fgl ) = (n.(1+ 0,711+ 0))) (%) 11 s; (2.19)
by (2.18). We put 1 .
R(X) = % —(1+5). (2.20)

Then we have v(R(X)) > 1/n by Lemma 2.3 and (2.17). The equation 6(X) = §(£2) is
equivalent to

_ 1

()" = (narorarar) s erx) O Tlat e

by (2.6), (2.19) and (2.20). We put

n—1
F(X)=(1+6)1(1+8+R(X))"" ITs"

i=1

The equation (2.21) is equivalent to

Sn
fo(X) =ni" (1+06,) 1)? (ZSZ 1+011q 1-|—F(X)), (2.22)
The equation (2.22) is equivalent to
— Sp—1— 1
S1=n"t(1+80,) ( 1:%,)(2_1 + F(X) — F(g?)). (2.23)
i=1 r
We put
n—2 s 1
n—1""
Rl(X) 1+0 ( W"‘F(X)_F(gg))
i=1 r

—<s+ > vy - (Y (1+0)Y561+05’6Yn_1>>.

1<i<j<n—2

11



Then we have v(R;(X)) > 1/n. The equation (2.23) is equivalent to

§7=nt! (S Y Y (Y 0V +0Y ) + Rl(X)>. (2.24)

1<i<j<n—2

The equation (2.24) is equivalent to

. 1 Ri(X
P —z:n;I(YfzJ{l—ﬁ > vy - i )>. (2.25)

~ n/
1<i<j<n-2

As a result, 6(X) = 0(&;) is equivalent to (2.25) on B,. By Lemma 2.3 and (2.25), we
have v(z) > 0 on A&,. This implies &, C B.. We have the first claim by Lemma 2.4 and the
construction of X,. The second claim follows from (2.14) and (2.25). O

Remark 2.6. If n = p = 2, then the curve over k defined by (2.16) is the supersingular elliptic
curve, which appears in a semi-stable reduction of a one-dimensional Lubin-Tate space in [IT11]

and [IT12].

3 Group action on the reductions

Action of GL, and D* Let 3 C M,(Ok) be the inverse image under the reduction map
M, (Ok) — M, (k) of the ring consisting of upper triangular matrices in M, (k).

Lemma 3.1. Let (g,d, 1) € G°. We take the integer | such that ngB{T € OF. Let (Xi,...,X,)
be the coordinate of X,.. Assume v((g,d)-X;) = v(X;) for 1 <i <n at some point of X,.. Then
we have (g,d) € (e, opr) (T* x OF).

Proof. This is proved as in the same way as [IT13, Lemma 3.1]. [
We put
gT = (@M,Tu ng,?ﬂ 1) E G (31)
We put
1 ifp® =2,
g1 =
0 if p®#2.

Proposition 3.2. 1. The action of g, stabilizes X,, and induces the automorphism of %,
defined by

(2,9, (Y;)1<i<n—2)

n—3
(3.2)
= (2 +ei(ype+ 1),y — Z Yi = 242+ €1, (Y1 — Yoz + E1)acicn2)-
i=1

2. Assume p¢ # 2. Let g. € GL,_1(k) be the matriz corresponding to the action of g, on
(y, (Y;)1<i<n_2) in (3.2). Then, det(g,) = (—1)"*%.

Proof. By (1.6) and (1.7), we have

n—1

1
g X=X, gX, =X, for2<i<n. (3.3)

12



By (3.3), we have g*(h(X)) = h(X). Hence, we have
1
g'S=S mod- - (3.4)

by (2.6), (2.8) and Lemma 2.3. By (2.21) and (3.3), we have

1
* d 3.5
grs) = H s; mo > 5 (3.5)
We have also
gisi=8_1 for2<i<n-—2, g's,1=s8,1+6)1 (3.6)
by (3.3). We have
n—3
gYi=(1+60,)"1+Y,)  [[0+Y)" -1 mod. L (3.7)
" 2n

i=1
by (3.5) and (3.6). We have also
1
gY, =(1+0,)"01+Y, ) (1+Y, ) "'—1 mods — for2<i<n-2
2n (3.8)
g:Yn—l = (1 —+ 0,,)_"(1 + Yn_g)(l + Yn—l) —1 mod> an
by (3.6). The claim follows from (3.4), (3.7) and (3.8). ]
Let P8 be the Jacobson radical of the order J, and pp be the maximal ideal of Op. We put

Ul=1+%, U,b=1+pp

and
(Uy x Up)t ={(g,d) € Uy x Up, | det(g) " Nrdp,x(d) = 1}.

Let pro, k2 Ok — k be the reduction map. We put

e(9.d) = (T, 0 broy o) (T (051 — 1) — tr(g3, (9 — 1))
for (g,d) € Uy x U},.
Proposition 3.3. The stabilizer of X, in GL,(K) x D* is i¢, (L)) - (Uy x Up)'. Further,
(g,d) € (U3 x Up)* induces the automorphism of X, defined by
(2, Y, (Yii<icn—2) = (2 + 1 (9. d), Y, (Y;)1<i<n—2).

Proof. Assume that (g,d) € GL,(K) x D* stabilizes X,. Then we have det(g) = Nrdp,x(d).
We will show that (g,d) € i, (LX) - (U3 x Uh)'. By Lemma 3.1 and Proposition 3.2, we may
assume that (g,d) € 3 x OF,.

We write g = (a;;)1<ij<n € J and a;; = Y 120 a;
we have

lj)w with a 6 pe—1(K)U{0}. By (1.6),

X1 =a) X, +a1 X mods g/ (n(q - 1)),
gX; = a(O)X + a(o) X, mods (ng"*(g—1))"" for2<i<n.

i—1,3

(3.9)
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We write d™' = 377 dily, with d; € pgn_1(K,) U {0}. We set w(d) = di/do. By (1.7), we
have

X, =doX; (1+ /{(d)Xg_l) mod s (ng"*(g—1))"' for 1 <i<n. (3.10)

By (2.5), (3.9) and (3.10), we have (g,d) € i, (OF) - (Us x Uh)'. Conversely, any element of
ig, (LX) - (Uy x Up)* stabilizes X, by Remark 1.4 and Proposition 3.2 and the above arguments.
Let (g,d) € (Uy x U)'. We put

n—1 i n n
A, X) = 30 (L) e En A x) = 3 s xy e
g it x n,1 X, ) d i :
i=1

i+l P
Then, we acquire

fol(g,d)"X) = fo(X) + Ay(X) + Ag(X) mod > 1/n. (3.11)

We have
(9,d)*S =S+ AH(X)+ Ay(X) mods 1/n (3.12)

by (2.8) and (3.11). We have
(9,d)*s;=s; mod 1/n (3.13)

for 1 <7 <n— 2. We obtain
(9,d)*z = z + h,(g,d)

by (2.10), (3.12) and (3.13). We can compute the action of (¢g,d) on y and {y,}i<i<n—2 by
(2.9), (2.14), (2.15) and (3.13). O

Action of Weil group We put ¢, = ¢F" and E, = K(¢.). Let 0 € Wy, in this paragraph.
We put a, = Arty!(0), and u, = a,¢, """ € O . We take b, € pi,_1(K) such that b2 = 4, € k.
We put ¢, = b," Nrg /k(u,) € Uk. Let g5 = (a;;)1<ij<n € OxUs be the element defined by
a;; ="b, for 1 <i<n-—1, ay, =b,c, and a;; = 0 if © # j. We put

8o = (90, 9py.0) €G. (3.14)
We choose elements «,., £, and 7, such that
=g, BB = ot =B e,
o e ! . (3.15)
a g =1, BT T =1, 4 Z()\,,n,fl)p =1 mod-.0.

For 0 € Wg,, we set

are=0(ar)/(), bro=a,,008;)— B,

m ! 3.16
%+Z S (Br + bro))” (310

Then we have a,.,,b, 0, ¢, € Oc.
Let

Q= {g(a,b,c) a,b,c €k, a? T =1, W 4 b=0, & —c+ ¥ :O}
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be the group whose multiplication is given by

e 1

g(a1, by, ¢1) - g(az, by, c2) = 9<a1a2; aiby + by, c1 +cp + Z(albﬁ’ebz)ﬂm)'

1=0

Let @ x Z be the semidirect product, where | € Z acts on @ by g(a,b,c) — g(a‘fl, b cqfl).
Let (g(a,b,c),l) € Q@ x Z act on X, by

!

s o (4 §<by>pim ¥ ) fay + )@ Ty iz 1)

We have the surjective homomorphism
O, Wg, > QXZ; 0 (g(d,n7a,l3r,g,ém),na) ) (3.18)

Proposition 3.4. Let 0 € Wg,. Then, g, € G stabilizes X,., and induces the automorphism
of X, given by ©,(0).

Proof. Let P € X,(C). We have
S(Pg,) = fo(X(Pgs)) — fo(&))
= fo(X(ng)) - fO(X(P(l,go;"“,a))) + Uﬁl(fo(X(P))) — fo(&))
Ny, (X(P(1,0,",0))) + 0 (S(P) + fo(&))) — fo(&))
=o' (S(P)) + folo (&) — fo(&)) mod~1/n (3.19)
by (2.10) and (3.11). We have
fo(e™HED)) — fo(&) =n/(c7 (N\,) — A,) mods 1/n. (3.20)
We put s;(X) = (X;/X;41)7@ D for 1 <i <n—1. We have
501 (€)Y 1 (Pgy) = 5n_1 (X (Pgo)) — $0-1(£))
= 5n-1(X(Pgo)) — 501 (X(P(1,0,"7,0))) + 0 (s01(X(P))) = s0-1(£))

— 1
= U_l (Sn—l(ES)Yn—l(P)) + 0_1 (%—1(52)) - Sn—l(ég) mod > 1 npe (321)
by (2.10) and (3.11). Hence, we have
1
Y, 1(Pg,) =0 (Y,i(P)) +0'(0,) — 6, mod. —. (3.22)
npe
We put 0,, = 0(0,) — 0, and A, = d(A,;) — A,. We have
ey, (Pe)\" 1 L S(Pe )\
r Yn— 8o o
o(2(Pg,)) :a( ( 1 ) _1 (_) )
=0 n, L n,

i*l epe Ynil(P> B U(ape)erg pim %71 A pim

EZ(P)+Z( r,o r 7) +Z< r,a)
i=0 s i~ \ Tr
£ 1 im
e Y, (P 2\7?

=z(P)+ Z (br,aan{:(_H)) - U(BT)“T,U“%U) +o(v) =7
i=0 r
£

=2z(P)+ Y _(broy(P)"" + ¢y mod 0
i=0
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by (3.19), (3.20), (3.21) and (3.22). We see also that

Y,_.1(Pg, e % e
U(ﬁ) = CLr’g (y - bygo-) = ar,cr(y + bﬁ,a) H10d> 0

mln/(p“rl)

by (3.22). By the same argument using (3.10), we have Y;(Pg,) = o (Y ;(P)) mod 1/(2n)
for 1 <i <n — 1. This implies

oL (n?) ‘ .
Yi(Pgo) = ——5—0 (yi(P)) = al, "y (P)"7 mod . 0

r

forl1<i<n-—1. O]

Stabilizer We put n; = (n,p™ —1). We put ¢/ = ¢/™ and F, = K(¢!). Let 0 € Wg,. We
put ¢, = o= 1(¢) /L. Let (/" be the p°~th root of (, in ppm—1(K). We put ¢, = A
Let G, be the one-dimensional formal Oy, -module over Oz,. defined by (2.1) changing ¢, by
©ro. We take a compatible system {¢,;,};>1 in C such that

ot (tr,l)

t = ]' mOd > 07 [(p"',a]gr,a (t"'ylag) = 07 I:QOT)O-:IgT',U (t'l‘,j,0'> - tr,j—l,o'
rl,0

for j > 2. We construct &, , as in Lemma 2.1 using {t, ;»};>1. Then &, , has CM by L,.

Lemma 3.5. For o € Wg,, we have

Uﬁl(gr,i) 1

— 7 =1 mod — for1 <i<mn,

Eroi ¢ 'ptp - 1)

1

19, =0, d ——.

o (0,) mo w1
Proof. We have
e, . 1
G ¢ mod —— . (3.23)
Pr pe_ (p - 1)

We obtain the claims by (3.23) and

2

(07'(0,) = 0,)" +m (07 (6,) = 0,) + (1+071(6,) (07 (m, )" =) =0,
which follows from (2.3). O
We define j,.: Wg, — LX\(GL,(K) x D*) as follows:

Let 0 € Wp,. Since &, has CM by L,, there exists (g,d) € GL,(K) x D* uniquely
up to left multiplication by L* such that (g,d,1) € G° and &,,(g,d,1) = & by
Lemma 1.6. We put j.(0) = L) (g, pp7 d).

For o € Wy, we put a, = Art;'(0) € L} and u, = a,¢, " € OF .
Lemma 3.6. For o € Wy, , we have j.(c) = L*(1,a;').

Proof. This follows from [BW16, Lemma 3.1.3]. Note that our action of Wy is inverse to that
in [BW16]. O
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We put
ST = {(g7d7 0) € G | o€ WFra jr(a) = L;((gad>}

Lemma 3.7. The action of S, on ./\/l((f))f stabilizes X,., and induces the action on %,.

Proof. We take an element of S, and write it as (g, ¢, d, o), where (g,d, 1) € G® and 0 € W,.
Since &,,(g,d, 1) = &, we have (g,d) € (a1, pp.) (T x OF) by Lemma 3.1 and Lemma 3.5.

To show the claims, we may assume that (g,d) € 3* x Of by Proposition 3.2.1. We write
9= (@i h1sijen € 7 and a;; = Y77 aljeot with af)) € 1 (K) U{0}, and d~' = % digh,
with d; € pgn_1(K,)U{0}. For 1 <i<n—1, we have

a®

O
i+1,0+1

by &.0(9,d, 1) = & using (3.9), (3.10), &0i = & 5541 and &; = &, ;. The condition on the
first line in (2.5) is equivalent to

XZ’ Xn_l qnflfi 3 ’
— > - for1<i<n-—2. 2
U<X¢+1 ( X, ) ) 2 S or1 <i<n (3.25)

We see that the condition (3.25) is stable under the action of (g, ¢, d, o) using (3.9) and

(3.10), because agg) / agi)l,i 41 1s independent of 7 by (3.24). We see that the condition on the

second line in (2.5) is stable under the action of (g, d, o) by Lemma 3.5 using (3.9) and
(3.10). O

X% (3.24)

The group S, normalizes i, (L)) - (U3 x Uh)! by Proposition 3.3. We put
H,= Uy xUp)'- S, CG.
Then H, acts on X, by Lemma 3.7 and the proof of Proposition 3.3.
Proposition 3.8. The subgroup H, C G° is the stabilizer of X, in Mf)?ﬁ

Proof. Assume that (g, ¢p7d,0) € GY stabilizes X,. It suffices to show that (g, Ypyrd,o) €
H,. By Lemma 3.1, we have (g,d) € (¢, ppr) (3% x OF). Hence, we may assume that
(g,d) € 3 x OF by Proposition 3.2.1.

First, we show that ¢ € Wg,. We write g = (a;j)1<ij<n € T*, @ij = D 100 agf;wﬁ and
A= =322 diph, as in the proof of Lemma 3.7. Since (g, ¢ d, o) stabilizes X,, we have

o

G =4 " for1<i<n-—1, (3.26)
az—i—l i+1
(0) —1(¢0
Qn d n 1
ndoo” (&) =1 mod ———— (3.27)
n ng"=(p° + 1)

by (2.5), (3.9), (3.10) and &,; = &/, ;. By taking p°¢" " (¢ — 1)-th power of (3.27), we see that

dgeqnfl(qfl)g—lwé) _ ( 140, )p (¢-1) o P |

@, L+074(6) n(p® +1)

This implies that the left hand side of (3.28) is equal to 1. Hence we have o~ (¢)) /@) € pg—1(K)
and 0=(,) = 6, mod 1/(n(p® + 1)), since di " € p, 1(K) by (3.26). These happen only if
o € Wg, by the proof of Lemma 3.5 and pipe_1(K™) N py—1(K) = ppm_1(K). Since o € Wi,
we may assume that o =1 by Lemma 3.7. Then (g,d, 1) € H, by Proposition 3.3. O

€

(3.28)
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4 Artin-Schreier variety in characteristic two

In this section, we assume that p = 2. For an integer i > 0, we simply write A’ for an affine
space Al... Let n > 4 be an even integer. We consider the affine smooth variety Y of dimension

n — 2 defined by
22" — 2= Z yiy; in AL

1<i<j<n—2
Then, by the isomorphism
n—2
ui:Zyj forl1 <i<n-—2,
j=i

the variety Y is isomorphic to the affine variety defined by

N}
w

n—
m . —

== W+ Y wugg in AMTL (4.1)

1 i=1

n—

i
For each ¢ € F,., we consider the homomorphism

m—1

D¢ ]Fgm — ]FQ; €T — Z(C_Qﬂf)zi.

1=0

Then, we consider the quotient Y; = Y/ ker p.. This variety has the defining equation
n—2 n—3
CQ(zg — %) = Zuf + Zuiuiﬂ in A"t
i=1 i=1

where the relation between z and z¢ is given by z, = Z;fol(é“”z)?. We set we = CZC—FZ?;f Us.
Then, Y; is defined by

n—2 n—3
wg + Cwe = CZ u; + Z Uty in AL (4.2)
i=1 i=1
Lemma 4.1. Let ¢ # p be a prime number. Then we have an isomorphism

H'(Y,Q) ~ € H" (Y., Q)

CEFSm
and dim H"2(Y;,Q,) = 1.

Proof. By [IT13, Proposition 4.5.1], we know that there exists an isomorphism

H?(Y,Q)~ € v
peFym \{1}

as Fam-representations. Hence, for each ¢ € .., \ {1}, we acquire
H"2(Y, Q) [¢] = .

Let tg: Fy < Q, be the non-trivial character. Then, for each ¢ € F3n \{1}, there exists a unique
element ¢ € FJ,. such that ¢ = (pop,. Hence, we know that H" (Y, Q,) = H" (Y, Q,)[¢)] ~ ¢
as Fom-representations. Hence, the required assertion follows. O]
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We put ng = (n — 2)/2. We can write (4.2) as
no no
w + Cwe = Czum + Zuziq(umﬂ + ug; + (), (4.3)
i=1 i=1
where we use notation that vy = 0. Consider the fibration
me Yo = A" (w, (wi)i<isn—2) = ((u20)1<i<n)-
We consider the closed point P in A™ defined by
ug; = 1¢ for 1 <4 < ny.
We put Ny = ("02+ 1). Then, we have
wg + Cwe = No¢? (4.4)

on . '(P) by (4.3). By (4.4), the inverse image T '(P) has two connected components. Let
0 € k* be an element such that o> + o = Ny. We put

0" =90, 0 =0+1

For « € {£}, we define Z{ to be the connected component of WEI(P) defined by w¢ = Co*. By
(4.4), we know that ZZ“ and Z; are isomorphic to affine spaces of dimension n.
Let ¢ # p be a prime number. Let

cl: CHy, (Ye) = H" (Y, Q)
be the cycle class map.

Lemma 4.2. 1. The fibration mc: Y — A™ is an affine bundle over A™ \ {P}.
2. The cohomology group H" (Y, Q) is generated by the cycle class cl([ZE“]), and we have

cl([2]) = —cl([Z.]).-
Proof. The first claim follows from (4.3) easily.
We set U = Wc_l(A”O \ {P}). We have the long exact sequence

Hn73<U> @2) — H:EIQ(P)(}/Cv@E) = @é(_n0)®2 — HniQ(YvCa@E) — anZ(U, @E)

and H"2(U,Q,) ~ H"*(A™ \ {P},Q,) = 0, which follows from the first claim. Hence,
H" (Y, Q) is generated by the cycle classes cl([Z]) and cl([Z;]). On the other hand, we
have cl([Z}]) = —cl([Z7]), since [Z]] + [Z] = 0 in CH,,(Y;). Therefore, we obtain the
claim. O

Remark 4.3. Using Lemma 4.1, Lemma 4.2 and [IT13, Proposition 4.5], we can verify that a
generalization of the Tate conjecture in [Jan90, 7.13] holds for the variety Y .

For « € {+}, we consider the other no-dimensional cycle Z* defined by
U2i—1 = (no +1-— ’Z)C for 1 S ) S No, We = CQL
Proposition 4.4. For ( € F5.. and . € {£}, we have

Ze) = (=1 [Z¢]in CHy (Ye).
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Proof. We show that [Z]] — (=1)™ [ZEJF] is rationally equivalent to zero. For each 1 < j < ny,
let Y ; be the (ng + 1)-dimensional closed subvariety of Y, defined by

Ugi_lz(n0+1—i>< fOI'].S’LSj—L

Ugi—g + U = ¢ for 7 +1 <i < ny.
Note that
! ng+2—7j
0
ZUQi—l = (No + ( 9 )) ¢ (4.5)
i=1

on Yr ;. We see that the equality (4.3) becomes

Jj—1 no

w? + Que = C(Z Ugi—1 + Z U2i> + Ugj_3Ugj—o + Ugj_1(Uszj—2 + Uz + ()

i=1 i=j—1

= No¢® + (uzj—1 + (no + 1 — 5)¢) (ugj—2 + ugj + ()
on Y ;, using (4.5). Therefore, we acquire
div(we = Co) = [uzj—1 + (no + 1 = j)¢] + [ugj—2 + uz; + (] (4.6)
on Y¢ ;. For 0 < 5 < mny, let ZZ ; be the no-dimensional cycle on Y defined by
g1 = (ng+1—10)¢ forl<i<y,
Ugi—g + Uz = ( for j+1<1i<mng
and w; = Co. Note that Z7, = ZF and Z/, = Z[". By (4.6), we have

280+ 121

J=0

in CH,,(Y;) for 0 < j < mny — 1. Hence, we have the claim for Zg. We can prove the claim for
Z replacing the condition we = Co by w¢ = ¢ (0 + 1) in the above argument. O
Corollary 4.5. Assume that n > 4. Let g be the automorphism of Y defined by

n—3

(2, (Yi)1<i<n—2) + (Z +e1(Yn—2+ 1), Z vi +e1, (Yim1 + Yn—2 + 51)299%2)-
i=1

Then, g* acts on H"2(Y)(ng) by —1.
Proof. First note that ¢ induces the automorphism

(2’7 (ui)1§i§n72) = (Z +e1(Un—2 + 1), tp_2, (Ui—1 + itp_o + (i + 1)81)2§i§n—2)-
We can check that g*w¢ = w¢ + €1. Hence, we have

9z = {Z

¢ ife=1,
Z¢  otherwise.
Therefore, we obtain

g (cl([Zf]) = (=D)"g* (A([Z{T])) = —cl([2]])

in H"2(Y)(ng) using Lemma 4.2 and Proposition 4.4. Hence, the claim follows from Lemma
4.1 and Lemma 4.2. [
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5 Explicit LLC and LJLC

5.1 Galois representations

Let X be the affine smooth variety over k*® defined by (2.16). We define an action of Q x Z
on X similarly as (3.17).

We choose an isomorphism ¢: Q, ~ C. Let ¢*/*> € Q, be the 2-nd root of ¢ such that
1(¢"/?) > 0. For a rational number r € 27'Z, let Q,(r) be the unramified representation of
Gal(k*/k) of degree 1, on which the geometric Frobenius Frob, acts as scalar multiplication
by ¢~". We simply write @ for the subgroup @ x {0} C @ x Z. We consider the morphism

n— . 1
O At = Ajacs (4, Wihisisn2) o7 T — — > v

1<i<j<n—2

Let £, be the Artin-Schreier Q,-sheaf on Al.. associated to ¢, which is F(z) in the notation
of [Del77, Sommes trig. 1.8 (i)]. Then we have a decomposition

H™(X.Q)~ @ HI'(ARL®L) (5.1)
PEF,m \{1}

as () X Z-representations. We put

—1
Topn = Hﬁil(AZ;la (I)*EdJ) (n 9 )

as a () x Z-representation for each ¢ € F),\{1}. We write 7.}, for the inflation of 7, by ©,..
We put 7,4 = IndET/KTEw.

5.2 Correspondence

Definition 5.1. We say that an irreducible finite dimensional continuous £-adic representation
of Wk 1s simple epipelagic if its exponential Swan conductor is one.

We apply the same definition to a smooth irreducible supercuspidal representation of GL,(K)
and a smooth irreducible representation of D*.

Remark 5.2. The words “simple” and “epipelagic” come from [GR10] and [RY14]. Our “sim-
ple epipelagic” representations are called “epipelagic” in [BH1/).

We define 1y € F) by t(¢o(1)) = 2™V We put ¢° = Trg,. /v, 0%o. We take an additive
character ¢ : K — @Z such that ¢ (x) = °(7) for z € Ok. In the following, for each triple
(¢, X €) € pig—1(K) x (k*)YxQ, , we define a GL, (K )-representation mc , o, a D*-representation
Pexe and a Wie-representation 7¢ ..

We use notations in Subsection 2.1, replacing r € p,—1(K) by ¢ € pe—1(K). We have the
K-algebra embeddings

Set wen = n'wc. Let Ag o LEUS — Q, be the character defined by

AC,x,C(SOQ) = (_l)n_lcv AC,x,c(-T) = X(i’) for x € O;(,
A¢xel®) = (YK 0 tr)(@;i(f —1)) forzxze Ujl.
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GLn (K
LU,
and every simple eplpelaglc representation is isomorphic to m¢, . for a uniquely determined

(6% €) € g a(K) x ()" x T, (cf. [BH14, 2.1, 2.2)).
Let Oc y.c: LEUL — Q, be the character defined by

We put 7¢ . = c-Ind AC x.c- Then, me, . is a simple epipelagic representation of GL,(K),

O x.c (SOC) ¢, Ocxelr) =x(x) forze O,
Ocxe(d) = (i © Trdpk) (wgi(d —1)) forde Up.

We put peye = Ind U1 O¢,y.c. The isomorphism class of this representation does not depend
on the choice of the embeddlng Le— D.

Let ¢.: Wg, — @Z be the character defined by ¢.(0) = ¢™. Let Frob,: k* — k* be the
map defined by 2 — 22~ for z € k. We consider the composite

Artg % can. ;5 Frobj ><
I/<2W —>E = Op, — k ——k

where the second homomorphism is given by E — OF B T :vgo’ —0E(®) | We simply write Tg
for Tcw We set TCXC = TC ® (xove) @ ¢ and T¢ 0 = IndE /KTCXC
The following theorem follows from [IT14] and [IT15b].

Theorem 5.3. Let JL. and LL denote the local Jacquet-Langlands correspondence and the local
Langlands correspondence for GL,,(K) respectively. For ¢ € pu,—1(K), x € (k*)" and c € @Z,
we have JL(p¢ y.c) = Tey.e and LL(7e ) = Te e

Definition 5.4. We say that an irreducible finite dimensional continuous (-adic representation
of Wi 1s essentially simple epipelagic if it is a character twist of a simple epipelagic represen-
tation.

We apply the same definition to a smooth irreducible representation of GL,(K) and a smooth
irreducible representation of D*.

Let w: K* — @Z be a smooth character. We put
Tenew = Texe @ (Wodet),  peyew = Pexe ® (WoNIdp/K),  Texew = Tepe ® (wo Arteh),
and

A xew = Moo ® (wodet ’LCX Uf})v Oc xeo = ¢ oye ® (wo Nrdpyk |L§ Ujg)a

0

-1
Toew = Toxe @ (WO NrL'g/K © ArtEc)-

Then we have

B GLn(K _ 1.aD* _ 0
WC,X,C,W - C_IndL U1 ACX (S pC’chvw - IndL? UEGC:chW-” Tﬁvacvw - IndL/c/KTC,X,C,W'

Corollary 5.5. We have LL(7¢ 5 cw) = Teyew @A JL(p¢ ycw) = T xcuw-

Proof. This follows from Theorem 5.3, because LL and JL are compatible with character twists.
m
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6 Geometric realization

m_q
We fix § € finy-1) (K). We take an element r € p1,_1(K) such that P =5 We put

s, = 1 %) (")

as H,-representations. Further, we put

II, = c-Ind%, Hy,,

whose isomorphism class as a G-representation depends only on s. For simplicity, we write G
and G; for GL,(K) and D* x Wy respectively, and consider them as subgroups of G. We put

H = {g € Uy | det(g) = 1}.

We have H = H, N G, by Proposition 3.3. Let H, be the image of H, in G/G| ~ Gb.

Let a € jiy_1(K). We define a character A%: U} — Q, by z — (¢ o tr)((ag,n) (z — 1)).
Let 7 be a smooth irreducible representation of GL,(K).

Lemma 6.1. If 7 is not essentially simple epipelagic, then we have Hompg (A%, 7) = 0. Further,
we have

1 if a"r = (,

dim Hompg (A}, ¢ yew) =
1 (AT e xew) {0 otherwise.

Proof. We assume that Hompy (A%, 7) # 0, and show that 7 is essentially simple epipelagic. Let
wy be the centaral character of 7. Then w;, is trivial on K* N H by Homp (A%, 7) # 0. Hence,
we may assume that Then w, is trivial on K* N U}, changing 7 by a character twist. Then,

there is a character A%, : K*U} — Q, such that
A?,wﬁ|U31 = AZLJ A?,WW|KX = Wg-
Then we have
a a KXUgl a
Hompy (A7, m) ~ Hompgx g (A7, ™) = Hompgxpn ( Indpe i (A7, |xexm), 7 (6.1)

by Frobenius reciprocity. We have the natural isomorphism

det,

KU/ (K H) % (K)"UL /()" = Uk (UL (6.2)

For a smooth character ¢ of U} /(U%)", let ¢ denote the character of K*UJ} obtained by ¢ and
the isomorphism (6.2). We have a natural isomorphism

KXUL  \q a
KXHJ (A/\anr |K>< H) ~ @ AT‘,UJW ® Qb/- (63)
€Uk /(Ui )™)Y

Ind

Let ¢ be a smooth character of Uy /(Uj )", and regard it as a character of Uj. We extend ¢ to
a character ¢ of K* such that ¢(w) = 1 and ¢ is trivial on j,_;(K). We have

Homy 1 (A7, @ ¢, m) ~ Homg, <(C-IndG1 Al ) ® o, 7T>. (6.4)

KxU}

23



We take x' € (k)Y such that \(Z) = we(x) for € pg_1(K). For ¢ € Q,, we define the
character A® , ,: LXUs — Q; by

Noyolor =7y, AL olomy) =, AL o(x) =X(T) forx € pg1(K).

We put 77, o = ¢ Indf1 UlAffX »- Then we have
e-Ind@ ALy, = €D 7o (6.5)
C/E@;
Note that
ot e = Tanr ! ! (a)e (6.6)

by the constructions. Then we see that 7 is simple epipelagic by (6.1), (6.3), (6.4), (6.5), (6.6)
and the assumption Homg (A%, 7) # 0.

For an irreducible adrmsmble representation 7 of Gy, we write a(n) for its Artin conductor
exponent. Then, if ¢ # 1, we have a(¢) > 2n. Hence, by a(r = n + 1, we obtain

a(my, o ® ¢) = a(¢) > 2n. Therefore, we acquire

TXC)

1 if =1, a"r =( and x'(a)d = ¢,

dim Hom, (7, ® 6, T¢ v 0) =
61 (Mo ® &, ) {o otherwise

by (6.6) and [BH14, 2.2]. To show the second claim, we may assume that w = 1. Hence, we
obtain the second claim by the above discussion, using that wy,  _ is trivial on U *. O

Proposition 6.2. 1. If 7 is not essentially simple epipelagic, then we have Hompy(Hy,, ) = 0.
Further, we have

dim Hompy (Hx,, Te yew) = P if¢ ™ =, (6.7)
0 otherwise.

2. We have LXU} x Wy, C H, and an injective homomorphism
97” 3 X CywW KT, Ty x c,w — HOHIH<HXT7 WT,X&UJ)

as LU}, x W, -representations.

Proof. By (5.1), we have a decomposition

er = @ Tpn (68)

YEFm \{1}

as representations of () x Z. By Proposition 3.3 and (6.8), we have

He= @ (A (6.9)
aeﬂpm—l(K)

m

as H-representations. We prove the first claim. If C T # s, the claim follows from Lemma
-1

6.1 and (6.9). Assume that C "t =s. By Lemma 6.1 and (6.9), we have

e

Hompy (Hx,, T¢ y,c0) = &b Homp (A, ey ew)™ (6.10)

ae/"’pm -1 (K)7 anT:C
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and the dimension of this space is pn;.

We prove the second claim. We consider the element (¢p,,1) € LU L x Wg, C Gy and its
lifting g, € G in (3.1) with respect to G — G5. We have g, € H, by Proposition 3.2.1. The
element (¢p,,, 1) acts on O,y 0 @7, ., as scalar multiplication by cw((—1)""'rw). By Propo-
sition 3.2.2, Corollary 4.5, [IT13, Proposition 4.2.3|, the element g, acts on Homp (Hx,, Ty cw)
as scalar multiplication by cw((—1)""trw).

Let zd € OxU}, with z € p,1(K) and d € UL, Let g = (aij)i<ij<n € U; be the
element defined by a1; = Nrdp/k(d), a;; = 1 for 2 < i < n and a;; = 0if 7 # j. We
have det(g) = Nrdp,x(d) and (zg, 2d,1) € H,. The element (zd,1) € LXU}, x W, acts on
Orxcwo @ Ty e @S scalar multiplication by x(2)6y.y.(d)w(Nrdp/k(2d)). We have the subspace

Hom g (7_ 0 ns Tryew) € Hompy (Hz, , Ty cw) (6.11)

by the decomposition (6.8). By Remark 1.4, Proposition 3.3 and [IT13, Propositions 4.2.1
and 4.5.1], the element (zg,zd,1) acts on the subspace (6.11) as scalar multiplication by

X(2)0ryc(d)w(det(zg)).
Let 0 € Wg, such that n, = 1. We take g, as in (3.14). By Proposition 3.4, the element
g, acts on the subspace (6.11) by

X(BU)Tgwo (o)w(det(gs))-
On the other hand, the element (¢}, 0) € LU} x W, acts on Opyc0 @ 70, ., by
(x © ) (0)7. o (0)w (N1, /¢ ().
Hence, the required assertion follows. O

Proposition 6.3. If m is not essentially simple epipelagic, then we have Homgy, (k) (s, 7) = 0.
Further, we have

p—1
X T Z "moo=g,
HOmGLn(K) (]-—‘[‘97 7TC7X7C’UJ) : pC’X)C’w C1X7C7w f C )
0 otherwise

as D> x Wi -representations.

Proof. For g € H,\G/G1, we choose an element g € G2 whose image in HT\GQ equals g
under the natural isomorphism H,\G/Gy ~ H,\G3. We put H9 = g~'Hg. Let H5 denote the
representation of H9 which is the conjugate of Hy, by g. Then, we have

| g, =~ @ C-Indglgng ~ |, ~ @ c-Ind$! Hy, (6.12)
g€EH\G/G1 H\Go

as Gi-representations, since we have HY = H and Hy, ~ Hir as H-representations. By (6.12)
and Frobenius reciprocity, we acquire

Home, (T, ¢ ycs) ~ €D Hompy(Hx,, ¢y ew)- (6.13)
FT\GQ
If ¢ e # s, the required assertion follows from (6.13) and Proposition 6.2.1. Now, assume

-1
that ¢ " = 5. Without loss of generality, we may assume that  equals r, because I, depends
only on s. By Proposition 6.2 and Frobenius reciprocity, we obtain a non-zero map

IndngbxWEr (Orxcw @ TSX’CM) — Hompy (Hx,, Try.cw)- (6.14)
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By a ply]ll IIld—G2 to the map 6.14 , We aC(]lliI“e a Non-zero map
p g H’I‘
FTyX,CwW g Ty X,CW I H2 H( Xr rachy‘*))' ( '15)

We have dim p,, .., = (¢" —1)/(¢ — 1) and dim 7, .., = n. Moreover, we have [Gy : H,| =
n'(¢" — 1)/n1(q — 1). Hence, the both sides of (6.15) are n(¢™ — 1)/(¢ — 1)-dimensional by
Proposition 6.2.1. Since pry.cw ® Try,cw s an irreducible representation of G, we know that
(6.15) is an isomorphism as Ga-representations. On the other hand, we have a non-zero map

Ind 72 Homy (Hx, , Ty ) — Homg, (I, 0y ) (6.16)

by Frobenius reciprocity. Since the left hand side is an irreducible representation of G5 and the
both sides have the same dimension by (6.13), we know that (6.16) is an isomorphism. Hence,
the required assertion follows from the isomorphisms (6.15) and (6.16). O

Theorem 6.4. Let L.J be the inverse of JL in Proposition 5.3. We put

1= @ I,.

SEW ny(g—1) (K)
p™m—1

Let 7 be a smooth irreducible representation of GL,(K). Then, we have

LJ(7) ® LL(7) of 7 is essentially stmple epipelagic,
Hormgs, i (IT, 7) 2{ () (m) if y simp g

otherwise

as D> x Wi -representations.

Proof. This follows from Proposition 5.3 and Lemma 6.3, because every essentially simple
. . . . . . x\V X
epipelagic representation is isomorphic to ¢ y .. for some ¢ € p,—1(K), x € (k*)Y, c € Q, and
—X
a smooth character w: K* — Q, . O
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