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Abstract

We construct a family of affinoids in the Lubin-Tate perfectoid space and their formal
models such that the middle cohomology of their reductions realizes the local Langlands
correspondence and the local Jacquet-Langlands correspondence for the simple epipelagic
representations. The reductions of the formal models are isomorphic to the perfections of
some Artin-Schreier varieties, whose cohomology realizes primitive Galois representations.

Introduction

Let K be a non-archimedean local field with a residue field k. Let p be the characteristic
of k. We write OK for the ring of integers of K, and p for the maximal ideal of OK . We
fix an algebraic closure kac of k. The Lubin-Tate spaces are deformation spaces of the one-
dimensional formal OK-module over kac of height n with level structures. We take a prime
number ℓ that is different from p. The local Langlands correspondence (LLC) and the local
Jacquet-Langlands correspondence (LJLC) for cuspidal representations of GLn are realized in
the ℓ-adic cohomology of Lubin-Tate spaces. This is proved in [Boy99] and [HT01] by global
automorphic arguments. On the other hand, the relation between these correspondences and
the geometry of Lubin-Tate spaces is not well understood.

In this direction, Yoshida constructs a semi-stable model of the Lubin-Tate space with a full
level p-structure, and studies its relation with the LLC in [Yos10]. In this case, the Deligne-
Lusztig varieties appear as open subschemes in the reductions of the semi-stable models, and
their cohomology realizes the LLC for depth zero supercuspidal representations. In [BW16],
Boyarchenko-Weinstein construct a family of affinoids in the Lubin-Tate perfectoid space and
their formal models so that the cohomology of the reductions realizes the LLC and the LJLC
for some representations which are related to unramified extensions of K (cf. [Wei10a] for some
special case at a finite level). It generalizes a part of the result in [Yos10] to higher conductor
cases. In the Lubin-Tate perfectoid setting, the authors study the case for the essentially tame
simple epipelagic representations in [IT13], where simple epipelagic means that the exponential
Swan conductor is equal to one. See [BH05] for the notion of essentially tame representations.
The result in [IT13] is generalized to some higher conductor essentially tame cases by Tokimoto
in [Tok16] (cf. [IT15a] for some special case at a finite level).

In all the above cases, Langlands parameters are of the form IndWK
WL

χ for a finite separable
extension L over K and a character χ of WL, where WK and WL denote the Weil groups of
K and L respectively. Further, the construction of affinoids directly involves CM points which
have multiplication by L. In this paper, we study the case for simple epipelagic representations
which are not essentially tame. In this case, the Langlands parameters can not be written as
inductions of characters. Hence, we have no canonical candidate of CM points which may be
used for constructions of affinoids.
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We will explain our main result. All the representation are essentially tame if n is prime
to p. Hence, we assume that p divides n. We say that a representation is essentially simple
epipelagic if it is a character twist of a simple epipelagic representation. Let q be the number
of the elements of k and D be the central division algebra over K of invariant 1/n. We write
q = pf and n = pen′, where n′ is prime to p. We put m = gcd(e, f). The main theorem is the
following:

Theorem. For r ∈ µq−1(K), there is an affinoid Xr in the Lubin-Tate perfectoid space and its
formal model Xr such that

• the special fiber Xr of Xr is isomorphic to the perfection of the affine smooth variety
defined by

zp
m − z = yp

e+1 − 1

n′

∑
1≤i≤j≤n−2

yiyj in An
kac ,

• the stabilizer Hr ⊂ GLn(K)×D× ×WK of Xr naturally acts on Xr, and

• c-Ind
GLn(K)×D××WK

Hr
Hn−1

c (Xr,Qℓ) realizes the LLC and the LJLC for essentially simple
epipelagic representations.

See Theorem 2.5 and Theorem 6.4 for precise statements. As we mentioned, we have no
candidate of CM points for the construction of affinoids. First, we consider a CM point ξ which
has multiplication by a field extension of K obtained by adding an n-th root of a uniformizer of
K. If we imitate the construction of affinoids in [IT13] using the CM point ξ, we can get a non-
trivial affinoid and its model, but the reduction degenerates in some sense, and the cohomology
of the reduction does not give a supercuspidal representation. What we will do in this paper
is to modify the CM point ξ using information of field extensions which appear in the study
of our simple epipelagic Langlands parameter. The modified point is no longer CM point, but
we can use this point for a construction of a desired affinoid.

In the above mentioned preceding researches, the Langlands parameters are inductions of
characters, and realized from commutative group actions on varieties. In the case for Deligne-
Lusztig varieties, they come from the natural action of tori. In our simple epipelagic case,
they come from non-commutative group actions. For example, the restriction to the inerita
subgroup of a simple epipelagic Langlands parameter factors through a semi-direct product of
a cyclic group with a Heisenberg type group, which acts on our Artin-Schreier variety in a very
non-trivial way.

In the following, we briefly explain the content of each section. In Section 1, we collect
known results on the Lubin-Tate perfectoid space, its formal model and group action on it.

In Section 2, we construct a family of affinoids and their formal models. Further we de-
termine the reductions of them. The reduction is isomorphic to the perfection of some Artin-
Schreier variety.

In Section 3, we describe the group action on the reductions. To determine the action of
some special element on the cohomology of the reduction, we need to study half-dimensional
cycle classes on some Artin-Schreier variety. This is done in Section 4.

In Section 6, we give an explicit description of the LLC and the LJLC for essentially simple
epipelagic representations, which follows from results in [IT14] and [IT15b]. In Section 6, we
give a geometric realization of the LLC and the LJLC in cohomology of our reduction.

2



Notation

For a non-archimedean valuation field F , its valuation ring is denoted by OF . For a ∈ Q and
elements f , g with valuation v that takes values in Q, we write f ≡ g mod a if v(f − g) ≥ a,
and f ≡ g mod > a if v(f − g) > a. For a topological field extension E over F , let Gal(E/F )
denote the group of the continuous automorphisms of E over F .

1 Lubin-Tate perfectoid space

1.1 Lubin-Tate perfectoid space and its formal model

Let K be a non-archimedean local field with a residue field k of characteristic p. Let q the
number of the elements of k. We write p for the maximal ideal of OK . We fix an algebraic
closure Kac of K. Let kac be the residue field of Kac.

Let n be a positive integer. We take a one-dimensional formal OK-module G0 over kac of
height n, which is unique up to isomorphism. Let Kur be the maximal unramified extension
of K in Kac. We write K̂ur for the completion of Kur. Let C be the category of complete
Noetherian local OK̂ur-algebras with residue field kac.

Let G be a formalOK-module over R ∈ C. For a ∈ OK , let [a]G : G → G be the multiplication
by a, and G[a] be the kernel of [a]G. For an integer m ≥ 0, we define G[pm] to be G[a] for some
a ∈ pm \ pm+1.

We consider the functor C → Sets which associates to an object R ∈ C the set of isomor-
phism classes of triples (G, ϕ, ι), where (G, ι) is a deformation of G0 to R and ϕ is a Drinfeld level
pm-structure on G. This functor is represented by a regular local ring Am by [Dri74, Proposition
4.3]. Then, {Am}m≥0 makes an inductive system. Let I the ideal of lim−→Am generated by the
maximal ideal of A0. Let A be the I-adic completion of lim−→Am. We put MG0,∞ = Spf A.

Let Kab be the maximal abelian extension of K in Kac. We write K̂ab for the completion
of Kab. Let ∧G0 denote the one-dimensional formal OK-module over kac of height one. Then
we have M∧G0,∞ ≃ SpfOK̂ab by the Lubin-Tate theory. We have a determinant morphism

MG0,∞ →M∧G0,∞ (1.1)

by [Wei10b, 2.5 and 2.7] (cf. [Hed10]). Then, we have the ring homomorphism OK̂ab → A
determined by (1.1).

We fix a uniformizer ϖ of K. LetM∞ be the open adic subspace of Spa(A,A) defined by

|ϖ(x)| ̸= 0 (cf. [Hub94, 2]). We regardM∞ as an adic space over K̂ur. For a deformation G of
G0 over OC, we put

Vp(G) =
(
lim←−G[p

m](OC)
)
⊗OK

K,

where the transition maps are multiplications by ϖ. By the construction, each point ofM∞(C)
corresponds to a triple (G, ϕ, ι) that consists of a formal OK-module over OC, an isomorphism
ϕ : Kn → Vp(G) and an isomorphism ι : G0 → G ⊗OC

kac (cf. [BW16, Definition 2.10.1]).

We put η = Spa(K̂ab,OK̂ab). By the ring homomorphism OK̂ab → A, we can regard M∞
as an adic space over η, for which we write M∞,η. Let C be the completion of Kac. We put

η̄ = Spa(C,OC). We have a natural embedding K̂ab ↪→ C. We put

M∞,η =M∞,η ×η η.

Then, M∞,η is a perfectoid space over C in the sense of [Sch12, Definition 6.15] by [Wei10b,
Lemma 2.10.1]. We callM∞,η the Lubin-Tate perfectoid space.
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In the following, we recall an explicit description of A◦ = A⊗̂O
K̂ab
OC given in [Wei10b,

(2.9.2)]. Let Ĝ0 be the formal OK-module over OK whose logarithm is

∞∑
i=0

Xqin

ϖi

(cf. [BW16, 2.3]). Let G0 be the formal OK-module over kac obtained as the reduction of Ĝ0.
We put OD = EndG0 and D = OD ⊗Z Q, which is the central division algebra over K of
invariant 1/n. Let [ · ] denote the action of OD on G0. Let φ be the element of D such that
[φ](X) = Xq. Let Kn be the unramified extension of K of degree n. For an element a ∈ OC,
its image in the residue field is denoted by ā. We consider the K-algebra embedding of Kn into
D determined by

[ζ](X) = ζ̄X for ζ ∈ µqn−1(Kn).

Then we have φn = ϖ and φζ = ζqφ for ζ ∈ µqn−1(Kn). Let ∧̂G0 be the one-dimensional
formal OK-module over OK whose logarithm is

∞∑
i=0

(−1)(n−1)iX
qi

ϖi
.

We choose a compatible system {tm}m≥1 such that

tm ∈ Kac (m ≥ 1), t1 ̸= 0, [ϖ]∧̂G0
(t1) = 0, [ϖ]∧̂G0

(tm) = tm−1 (m ≥ 2). (1.2)

We put
t = lim

m→∞
(−1)q(n−1)(m−1)tq

m−1

m ∈ OC.

Let v be the normalized valuation of K such that v(ϖ) = 1. The valuation v naturally extends
to a valuation on C, for which we again write v. Note that v(t) = 1/(q − 1). For an integer
i ≥ 0, we put tq

−i
= limm→∞(−1)q(n−1)(m−1)tq

m−i−1

m .
Let WK be the Weil group of K. Let ArtK : K× ∼−→ W ab

K be the Artin reciprocity map
normalized such that a uniformizer is sent to a lift of the geometric Frobenius element. We
use similar normalizations also for the Artin reciprocity maps for other non-archimedean local
fields. Let σ ∈ WK . Let nσ be the image of σ under the composite

WK ↠ W ab
K

Art−1
K−−−→ K× v−→ Z.

Let aK : WK → O×
K be the homomorphism given by the action of WK on {tm}m≥1. It induces

an isomorphism aK : Gal(K̂ab/K̂ur) ≃ O×
K .

For m ≥ 0, we put

δm(X1, . . . , Xn) = ∧̂G0
∑

(m1,...,mn)

sgn(m1, . . . ,mn)X
qm1−m

1 · · ·Xqmn−m

n (1.3)

in OK [[X1/q∞

1 , . . . , X
1/q∞
n ]], where

• the symbol ∧̂G0
∑

denotes the sum under the additive operation of ∧̂G0,

• we take the sum over n-tuples (m1, . . . ,mn) of integers such thatm1+· · ·+mn = n(n−1)/2
and mi ̸≡ mj mod n for i ̸= j,
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• sgn(m1, . . . ,mn) is the sign of the permutation on Z/nZ defined by i 7→ mi.

We put
δ = lim

m→∞
δq

m

m ∈ OC[[X
1/q∞

1 , . . . , X1/q∞

n ]].

For l ≥ 1, we put δq
−l

= limm→∞ δq
m−l

m . The following theorem follows from [Wei10b, (2.9.2)]
and the proof of [BW16, Theorem 2.10.3] (cf. [SW13, Theorem 6.4.1]).

Theorem 1.1. Let σ ∈ Gal(K̂ab/K̂ur). We put Aσ = A⊗̂O
K̂ab ,σOC. Then, we have an

isomorphism

Aσ ≃ OC[[X
1/q∞

1 , . . . , X1/q∞

n ]]/(δ(X1, . . . , Xn)
q−m − σ(tq−m

))m≥0. (1.4)

For σ ∈ Gal(K̂ab/K̂ur), let M∞,η̄,σ be the base change of M∞,η by η̄ → η
σ−→ η. For

σ ∈ Gal(K̂ab/K̂ur) and α = aK(σ) ∈ O×
K , we write A

α for Aσ andM(0)
∞,η̄,α forM(0)

∞,η̄,σ. We put

M
(0)
∞,OC

=
⨿
α∈O×

K

Spf Aα, M(0)
∞,η̄ =

⨿
α∈O×

K

M∞,η̄,α. (1.5)

ThenM(0)
∞,η̄ is the generic fiber of M

(0)
∞,OC

, andM(0)
∞,η̄(C) =M∞(C).

Let +Ĝ0
and +∧̂G0

be the additive operations for Ĝ0 and ∧̂G0 respectively.

Lemma 1.2. 1. We have X1 +Ĝ0
X2 ≡ X1 +X2 modulo terms of total degree qn.

2. We have X1 +∧̂G0
X2 ≡ X1 +X2 modulo terms of total degree q.

Proof. This follows from the descriptions of the logarithms of Ĝ0 and ∧̂G0 (cf. [Wei10b, Lemma
5.2.1]).

Let Xi be (Xq−j

i )j≥0 for 1 ≤ i ≤ n. We write δ(X1, . . . ,Xn) for the q-th power compatible

system (δ(X1, . . . , Xn)
q−j

)j≥0.

For q-th power compatible systems X = (Xq−j
)j≥0 and Y = (Y q−j

)j≥0 that take values in
OC, we define q-th power compatible systems X + Y , X − Y and XY by the requirement
that their j-th components for j ≥ 0 are

lim
m→∞

(Xq−m

+ Y q−m

)q
m−j

, lim
m→∞

(Xq−m − Y q−m

)q
m−j

, and Xq−j

Y q−j

respectively. For such X = (Xq−j
)j≥0, we put v(X) = v(X). We put

δ′0(X1, . . . ,Xn) =
∑

(m1,...,mn)

sgn(m1, . . . ,mn)X
qm1

1 · · ·Xqmn

n ,

where we take the sum in the above sense and the index set is the same as (1.3). We recall the
following lemma from [IT13, Lemma 1.6].

Lemma 1.3. Assume that n ≥ 2 and v(Xi) ≥ (nqi−1(q − 1))−1 for 1 ≤ i ≤ n. Then, we have

δ(X1, . . . ,Xn) ≡ δ′0(X1, . . . ,Xn) mod >
1

n
+

1

q − 1
.
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1.2 Group action on the formal model

We define a group action on the formal scheme M
(0)
∞,OC

, which is compatible with usual group
actions on Lubin-Tate spaces with finite level (cf. [BW16, 2.11]). We put

G = GLn(K)×D× ×WK .

Let G0 denote the kernel of the following homomorphism:

G→ Z; (g, d, σ) 7→ v
(
det(g)−1NrdD/K(d)Art

−1
K (σ)

)
.

Then, the formal scheme M
(0)
∞,OC

admits a right action of G0. We write down the action. In
the sequel, we use the following notation:

For a ∈ µqn−1(Kn) ∪ {0}, let aq
−m

denote the qm-th root of a in µqn−1(Kn) ∪ {0}
for a positive integer m, and we simply write a also for the q-th power compatible
system (aq

−m
)m≥0.

For q-th power compatible systems X = (Xq−j
)j≥0 and Y = (Y q−j

)j≥0 that take values
in OC, we define a q-th power compatible system X +Ĝ0

Y by the requirement that their

j-th components for j ≥ 0 are limm→∞(Xq−m
+Ĝ0

Y q−m
)q

m−j
. The symbol Ĝ0

∑
denotes this

summation for q-th power compatible systems.
First, we define a left action of GLn(K) × D× on the ring Bn = OC[[X

1/q∞

1 , . . . , X
1/q∞
n ]].

For a =
∑∞

j=l ajϖ
j ∈ K with l ∈ Z and aj ∈ µq−1(K) ∪ {0}, we set

[a] ·Xi = Ĝ0
∞∑
j=l

ajX
qjn

i .

for 1 ≤ i ≤ n. Let g ∈ GLn(K). We write g = (ai,j)1≤i,j≤n. Then, let g act on the ring Bn by

g∗ : Bn → Bn; Xi 7→ Ĝ0
n∑
j=1

[aj,i] ·Xj for 1 ≤ i ≤ n. (1.6)

Let d ∈ D×. We write d−1 =
∑∞

j=l djφ
j ∈ D× with l ∈ Z and dj ∈ µqn−1(Kn) ∪ {0}. Then, let

d act on Bn by

d∗ : Bn → Bn; Xi 7→ Ĝ0
∞∑
j=l

djX
qj

i for 1 ≤ i ≤ n. (1.7)

Now, we give a right action of G0 on M
(0)
∞,OC

using (1.6) and (1.7). Let (g, d, 1) ∈ G0. We set

γ(g, d) = det(g)NrdD/K(d)
−1 ∈ O×

K . We put t = (tq
−m

)m≥0. Let (g, d, 1) act on M
(0)
∞,OC

by

Aα → Aγ(g,d)
−1α; Xi 7→ (g, d) ·Xi for 1 ≤ i ≤ n,

where α ∈ O×
K . This is well-defined, because the equation

δ((g, d) ·X1, . . . , (g, d) ·Xn) = ArtK(α)(t)

is equivalent to δ(X1, . . . ,Xn) = ArtK(γ(g, d)
−1α)(t). Let (1, φ−nσ , σ) ∈ G0 act on M

(0)
∞,OC

by

Aα → AaK(σ)α; Xi 7→Xi, x 7→ σ(x) for 1 ≤ i ≤ n and x ∈ OC,

where α ∈ O×
K . Thus, we have a right action of G0 on M∞,OC

, which induces a right action on

M(0)
∞,η̄(C) =M∞(C).

Remark 1.4. For a ∈ K×, the action of (a, a, 1) ∈ G0 on M∞,OC
is trivial by the definition.
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1.3 CM points

We recall the notion of CM points from [BW16, 3.1]. Let L be a finite extension of K of degree
n inside C.

Definition 1.5. A deformation G of G0 over OC has CM by L if there is an isomorphism
L

∼−→ End(G) ⊗OK
K as K-algebras such that the induced map L → End(LieG) ⊗OK

K ≃ C
coincides with the natural embedding L ⊂ C.

We say that a point ofM∞(C) has CM by L if the corresponding deformation over OC has
CM by L.

Let ξ ∈ M∞(C) be a point that has CM by L. Let (G, ϕ, ι) be the triple corresponding
to ξ. Then we have embeddings iM,ξ : L → Mn(K) and iD,ξ : L → D characterized by the
commutative diagrams

Kn ϕ //

iM,ξ(a)

��

VpG
Vp(a)

��
Kn ϕ // VpG

and

G0 ι //

iD,ξ(a)

��

G ⊗OC
kac

a⊗id
��

G0 ι // G ⊗OC
kac

in the isogeny category for a ∈ L. We put iξ = (iM,ξ, iD,ξ) : L→Mn(K)×D. We put

(GLn(K)×D×)0 = {(g, d) ∈ GLn(K)×D× | (g, d, 1) ∈ G0}.

Lemma 1.6. [BW16, Lemma 3.1.2] The group (GLn(K)×D×)0 acts transitively on the set of
the points ofM∞(C) that have CM by L. For ξ ∈M∞(C) that has CM by L, the stabilizer of
ξ in (GLn(K)×D×)0 is iξ(L

×).

2 Good reduction of affinoids

2.1 Construction of affinoids

We take a uniformizer ϖ of K. Let r ∈ µq−1(K). We put ϖr = rϖ. We take φr ∈ C such that
φnr = ϖr. We put Lr = K(φr). Let Gr be the one-dimensional formal OLr -module over OL̂ur

r

defined by

[φr]Gr(X) = φrX +Xq, [ζ]Gr(X) = ζX for ζ ∈ µq−1(L) ∪ {0}. (2.1)

We take a compatible system {tr,m}m≥1 in C such that

tr,1 ̸= 0, [φr]Gr(tr,1) = 0, [φr]Gr(tr,m) = tr,m−1

for m ≥ 2. We apply results in Section 1 replacing ϖ by ϖr and taking a model of G0 given by
the reduction of (2.1). We put

φM,r =

(
0 In−1

ϖr 0

)
∈Mn(K).

Let φD,r ∈ D be the image of φr under the composite

OLr → EndGr → EndG0 = OD.

For ξ ∈ M(0)
∞,η(C), we write (ξ1, . . . , ξn) for the coordinate of ξ with respect to (X1, . . . ,Xn),

where ξi = (ξq
−j

i )j≥0 for 1 ≤ i ≤ n.
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Lemma 2.1. There exists ξr ∈M(0)
∞,η(C) such that

ξq
−j

r,i = lim
m→∞

tq
m−i−j

r,m ∈ OC (2.2)

for 1 ≤ i ≤ n and j ≥ 0. Further, we have the following:

(i) ξr has CM by Lr.

(ii) We have iξr(φr) = (φM,r, φD,r) ∈Mn(K)×D.

(iii) ξr,i = ξqr,i+1 for 1 ≤ i ≤ n− 1.

(iv) v(ξr,i) = 1/(nqi−1(q − 1)) for 1 ≤ i ≤ n.

Proof. This is proved as in the same way as [IT13, Lemma 2.2].

We take ξr as in Lemma 2.1. We can replace the choice of (1.2) so that δ(ξ1, . . . , ξn) = t.

Then we have ξr ∈M(0)
∞,η̄,1. Let D

n,perf
C be the generic fiber of SpfOC[[X

1/q∞

1 , · · · , X1/q∞
n ]]. We

considerM(0)
∞,η,1 as a subspace of Dn,perfC by (1.4). We put ηr = ξq−1

r,1 . Note that v(ηr) = 1/n.
We write n = pen′ with (p, n′) = 1. We put

ε0 =

{
(n′ + 1)/2 if pe = 2,

0 if pe ̸= 2.

We take q-th power compatible systems θr and λr in C satisfying

θp
2e

r + ηp
e−1
r (θr + 1) = 0, λqr − ηq−1

r (λr − θp
e

r (θr + 1) + ε0ηr) = 0 (2.3)

Note that

v(θr) =
pe − 1

np2e
, v(λr) =

1

n

(
1− 1

qpe

)
. (2.4)

We define ξ′r ∈ D
n,perf
C by

ξ′r,1 = ξr,1(1 + θr), ξ′r,i+1 = ξ′
1
q

r,i for 1 ≤ i ≤ n− 2,

ξ′r,n = ξ′
1
q

r,n−1

(
(1 + θr)

−n(1 + n′λr)
) 1

qn−1 .

Proposition 2.2. There uniquely exists ξ0r ∈M
(0)
∞,η,1 satisfying

ξ0r,i = ξ′r,i for 1 ≤ i ≤ n− 1, ξ0r,n ≡ ξ′r,n mod >
q2 − q + 1

nqn−1(q − 1)
.

Proof. We have

δ(ξ′r) ≡ t mod >
1

q − 1
+

1

n
.

Hence, we see the claim by Newton’s method.

We take ξ0r as in Proposition 2.2. We put xi = Xi/ξ
0
r,i for 1 ≤ i ≤ n. We define Xr ⊂M(0)

∞,η,1

by

v

(
xi
xi+1

−
(xn−1

xn

)qn−1−i
)
≥ 1

2nqi
for 1 ≤ i ≤ n− 2,

v(xi − 1) ≥ 1

nqn−1(pe + 1)
for n− 1 ≤ i ≤ n.

(2.5)

The definition of Xr is independent of the choice of θr and λr. We define Br ⊂ Dn,perfC by the
same condition (2.5).
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2.2 Formal models of affinoids

Let (X1, . . . ,Xn) be the coordinate of Br. We put h(X1, . . . ,Xn) =
∏n

i=1X
qi−1

i . Further, we
put

f(X1, . . . ,Xn) = 1− δ(X1, . . . ,Xn)

h(X1, . . . ,Xn)
, (2.6)

f0(X1, . . . ,Xn) =
n−1∑
i=1

(
Xi

Xi+1

)qi−1(q−1)

+

(
Xqn

n

X1

) q−1
q

. (2.7)

We simply write f(X) for f(X1, . . . ,Xn), and f(ξr) for f(ξr,1, . . . , ξr,n). We will use the similar
notations also for other functions. We put

S = f0(X)− f0(ξ0r). (2.8)

Lemma 2.3. We have

f(X) ≡ f0(X) mod >
q − 1

nq
and S ≡ f(X)− f(ξ0r) mod >

1

n
.

Proof. We put

f1(X1, . . . ,Xn) =
n−3∑
i=1

n−1∑
j=i+2

(
Xi

Xi+1

)qi−1(q−1)(
Xj

Xj+1

)qj−1(q−1)

+

(
Xqn

n

X1

) q−1
q

n−3∑
i=1

(
Xi+1

Xi+2

)qi(q−1)

.

Then we see that

f(X) ≡ 1− δ0(X)

h(X)
≡ f0(X)− f1(X) mod >

1

n

using Lemma 1.3 and the definition of δ0. The claims follow from this, because

v(f1(X)) ≥ 2(q − 1)

nq
and v

(
f1(X)− f1(ξ0r)

)
>

2(q − 1)

nq
.

We put si = (xi/xi+1)
qi(q−1) for 1 ≤ i ≤ n− 1, and

sis
−1
n−1 = 1 + Y i for 1 ≤ i ≤ n− 2, sn−1 = 1 + Yn−1. (2.9)

We put m = gcd(e, f) and

z =

e
m
−1∑

i=0

(
θp

e

r Yn−1

ηr

)pim
− 1

n′

f
m
−1∑

i=0

(
S

ηr

)pim
. (2.10)

We put f = m0 and e = m1. We definem2, . . . ,mN+1 by the Euclidean algorithm as follows:
We have

mi−1 = nimi +mi+1 with ni ≥ 0 and 0 ≤ mi+1 < mi for 1 ≤ i ≤ N,

mN = m, mN+1 = 0.

We put

T0 =
θp

e

r Yn−1

ηr
, T1 =

−S
n′ηr

(2.11)
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and define T2, . . . ,TN by

Ti+1 = Ti−1 +

ni−1∑
j=0

T pjmi+mi+1

i for 1 ≤ i ≤ N − 1.

Then we see that

z =

mi+1
m

−1∑
j=0

T pjm

i +

mi
m

−1∑
j=0

T pjm

i+1 for 1 ≤ i ≤ N − 1

inductively by (2.10). We see also that

(−1)N−iTi =

mi
m

−1∑
j=0

T pjm

N + Pi(z) (2.12)

with some Pi(x) ∈ Z[x] for 0 ≤ i ≤ N − 1. We put

Y =
(−1)Nηr

θp
e

r

T pf−m

N . (2.13)

Then we have
Y ≡ Yn−1 mod > 1/(n(pe + 1)) (2.14)

by (2.12) and (2.13). We define a subaffinoid B′
r ⊂ Br by v(z) ≥ 0. We choose a square root

η
1/2
r and a (pe + 1)-root η

1/(pe+1)
r of ηr compatibly.

We set

Y i = η1/2
r yi with yi = (yq

−j

i )j≥0 for 1 ≤ i ≤ n− 2,

Y = η1/(pe+1)
r y with y = (yq

−j

)j≥0

(2.15)

on B′
r. Let B be the generic fiber of SpfOC⟨y1/q

∞
, y

1/q∞

1 , . . . , y
1/q∞

n−2 , z
1/q∞⟩. The parameters

y,y1, . . . ,yn−1,z give the morphism Θ: B′
r → B. We simply say an analytic function on B for

a q-th power compatible system of analytic functions on B.
We put

1 + θ′
r = (1 + θr)

−n(1 + n′λr)

(
ξ0n
ξ′n

)qn−1

.

Lemma 2.4. Θ is an isomorphism.

Proof. We will construct the inverse morphism of Θ. We can write Yn−1 and S as analytic
functions on B by (2.11), (2.12), (2.13) and (2.15). Then we can write xi/xi+1 as an analytic
function on B by (2.9). By (2.7) and (2.8), we have

η
−(q−1)
r Sq

(1 + θr)(q−1)2
=

n−2∑
i=1

(si − 1) +
sn−1 − 1

(1 + θ′
r)
q−1

+ (1 + θ′
r)
q(q−1)

(
x(q−1)(qn−1)
n

n−1∏
i=1

(x−1
i xi+1)− 1

)
.

By this equation, we can write xn as an analytic functions on B. Hence, we have the inverse
morphism of Θ.

We put
δB(y, y1, . . . , yn−1, z) = (δ|B′

r
) ◦Θ−1

equipped with its qj-th root δq
−j

A for j ≥ 0. We put

Xr = SpfOC⟨y1/q
∞
, y

1/q∞

1 , . . . , y
1/q∞

n−1 , z
1/q∞⟩/(δq

−j

B )j≥0.
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Theorem 2.5. The formal scheme Xr is a formal model of Xr, and the special fiber of Xr is
isomorphic to the perfection of the affine smooth variety defined by

zp
m − z = yp

e+1 − 1

n′

∑
1≤i≤j≤n−2

yiyj in An
kac . (2.16)

Proof. Let (X1, . . . ,Xn) be the coordinate of Br. By Lemma 2.3, we have

v(f(X)) ≥ q − 1

nq
and v(S) >

q − 1

nq
. (2.17)

We have

h(X)q−1 =

(
Xqn

n

X1

) n−1∏
i=1

(
Xi

Xi+1

)qi
. (2.18)

We have (
Xqn

n

X1

)q−1

=
(
ηr(1 + θr)

q−1(1 + θ′
r)
q
)q−1

(
h(X)

h(ξ0r)

)(q−1)2 n−1∏
i=1

s−1
i (2.19)

by (2.18). We put

R(X) =
1− f(ξ0r)
1− f(X)

− (1 + S). (2.20)

Then we have v(R(X)) > 1/n by Lemma 2.3 and (2.17). The equation δ(X) = δ(ξ0r) is
equivalent to(

Xqn

n

X1

)q−1

=
(
ηr(1 + θr)

q−1(1 + θ′
r)
q
)q−1(

1 + S +R(X)
)(q−1)2

n−1∏
i=1

s−1
i (2.21)

by (2.6), (2.19) and (2.20). We put

F (X) = (1 + θ′
r)
q(q−1)

(
1 + S +R(X)

)(q−1)2
n−1∏
i=1

s−1
i .

The equation (2.21) is equivalent to

f0(X)q = ηq−1
r (1 + θr)

(q−1)2

(
n−2∑
i=1

si +
sn−1

(1 + θ′
r)
q−1

+ F (X)

)
. (2.22)

The equation (2.22) is equivalent to

Sq = ηq−1
r (1 + θr)

(q−1)2

(
n−2∑
i=1

(si − 1) +
sn−1 − 1

(1 + θ′
r)
q−1

+ F (X)− F (ξ0r)

)
. (2.23)

We put

R1(X) =(1 + θr)
(q−1)2

(
n−2∑
i=1

(si − 1) +
sn−1 − 1

(1 + θ′
r)
q−1

+ F (X)− F (ξ0r)

)

−

(
S +

∑
1≤i≤j≤n−2

Y iY j − n′
(
Y pe+1
n−1 + (1 + θr)Y

pe

n−1 + θp
e

r Yn−1

))
.
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Then we have v(R1(X)) > 1/n. The equation (2.23) is equivalent to

Sq = ηq−1
r

(
S +

∑
1≤i≤j≤n−2

Y iY j − n′
(
Y pe+1
n−1 + (1 + θr)Y

pe

n−1 + θp
e

r Yn−1

)
+R1(X)

)
. (2.24)

The equation (2.24) is equivalent to

zp
m − z = η−1

r

(
Y pe+1
n−1 −

1

n′

∑
1≤i≤j≤n−2

Y iY j −
R1(X)

n′

)
. (2.25)

As a result, δ(X) = δ(ξL) is equivalent to (2.25) on Br. By Lemma 2.3 and (2.25), we
have v(z) ≥ 0 on Xr. This implies Xr ⊂ B′

r. We have the first claim by Lemma 2.4 and the
construction of Xr. The second claim follows from (2.14) and (2.25).

Remark 2.6. If n = p = 2, then the curve over k defined by (2.16) is the supersingular elliptic
curve, which appears in a semi-stable reduction of a one-dimensional Lubin-Tate space in [IT11]
and [IT12].

3 Group action on the reductions

Action of GLn and D× Let I ⊂ Mn(OK) be the inverse image under the reduction map
Mn(OK)→Mn(k) of the ring consisting of upper triangular matrices in Mn(k).

Lemma 3.1. Let (g, d, 1) ∈ G0. We take the integer l such that dφ−l
D,r ∈ O

×
D. Let (X1, . . . ,Xn)

be the coordinate of Xr. Assume v((g, d) ·Xi) = v(Xi) for 1 ≤ i ≤ n at some point of Xr. Then
we have (g, d) ∈ (φM,r, φD,r)

l(I× ×O×
D).

Proof. This is proved as in the same way as [IT13, Lemma 3.1].

We put
gr = (φM,r, φD,r, 1) ∈ G. (3.1)

We put

ε1 =

{
1 if pe = 2,

0 if pe ̸= 2.

Proposition 3.2. 1. The action of gr stabilizes Xr, and induces the automorphism of Xr

defined by

(z,y, (yi)1≤i≤n−2)

7→
(
z + ε1(yn−2 + 1),y,−

n−3∑
i=1

yi − 2yn−2 + ε1, (yi−1 − yn−2 + ε1)2≤i≤n−2

)
.

(3.2)

2. Assume pe ̸= 2. Let gr ∈ GLn−1(k) be the matrix corresponding to the action of gr on
(y, (yi)1≤i≤n−2) in (3.2). Then, det(gr) = (−1)n+1.

Proof. By (1.6) and (1.7), we have

g∗
rX1 = Xqn−1

n , g∗
rX i = X

1
q

i−1 for 2 ≤ i ≤ n. (3.3)

12



By (3.3), we have g∗
r(h(X)) = h(X). Hence, we have

g∗
rS ≡ S mod >

1

n
(3.4)

by (2.6), (2.8) and Lemma 2.3. By (2.21) and (3.3), we have

g∗
rs1 ≡

n−1∏
i=1

s−1
i mod >

1

2n
. (3.5)

We have also

g∗
rsi = si−1 for 2 ≤ i ≤ n− 2, g∗

rsn−1 = sn−2(1 + θ′
r)

1−q (3.6)

by (3.3). We have

g∗
rY 1 ≡ (1 + θr)

n(1 + Y n−2)
−2

n−3∏
i=1

(1 + Y i)
−1 − 1 mod >

1

2n
(3.7)

by (3.5) and (3.6). We have also

g∗
rY i ≡ (1 + θr)

n(1 + Y i−1)(1 + Y n−2)
−1 − 1 mod >

1

2n
for 2 ≤ i ≤ n− 2,

g∗
rY n−1 ≡ (1 + θr)

−n(1 + Y n−2)(1 + Y n−1)− 1 mod >
1

pen

(3.8)

by (3.6). The claim follows from (3.4), (3.7) and (3.8).

Let P be the Jacobson radical of the order I, and pD be the maximal ideal of OD. We put

U1
I = 1 +P, U1

D = 1 + pD

and
(U1

I × U1
D)

1 = {(g, d) ∈ U1
I × U1

D | det(g)−1NrdD/K(d) = 1}.
Let prOK/k

: OK → k be the reduction map. We put

hr(g, d) =
1

n′ (Trk/Fpm
◦ prOK/k

)
(
TrdD/K(φ

−1
D,r(d− 1))− tr(φ−1

M,r(g − 1))
)

for (g, d) ∈ U1
I × U1

D.

Proposition 3.3. The stabilizer of Xr in GLn(K) × D× is iξr(L
×
r ) · (U1

I × U1
D)

1. Further,
(g, d) ∈ (U1

I × U1
D)

1 induces the automorphism of Xr defined by

(z,y, (yi)1≤i≤n−2) 7→ (z + hr(g, d),y, (yi)1≤i≤n−2).

Proof. Assume that (g, d) ∈ GLn(K) ×D× stabilizes Xr. Then we have det(g) = NrdD/K(d).
We will show that (g, d) ∈ iξr(L×

r ) · (U1
I × U1

D)
1. By Lemma 3.1 and Proposition 3.2, we may

assume that (g, d) ∈ I× ×O×
D.

We write g = (ai,j)1≤i,j≤n ∈ I and ai,j =
∑∞

l=0 a
(l)
i,jϖ

l
r with a

(l)
i,j ∈ µq−1(K) ∪ {0}. By (1.6),

we have

g∗X1 ≡ a
(0)
1,1X1 + a

(1)
n,1X

qn

n mod > q/(n(q − 1)),

g∗X i ≡ a
(0)
i,i X i + a

(0)
i−1,iX i−1 mod > (nqi−2(q − 1))−1 for 2 ≤ i ≤ n.

(3.9)
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We write d−1 =
∑∞

i=0 diφ
i
D,r with di ∈ µqn−1(Kn) ∪ {0}. We set κ(d) = d1/d0. By (1.7), we

have

d∗X i ≡ d0X i

(
1 + κ(d)Xq−1

i

)
mod > (nqi−2(q − 1))−1 for 1 ≤ i ≤ n. (3.10)

By (2.5), (3.9) and (3.10), we have (g, d) ∈ iξr(O×
K) · (U1

I × U1
D)

1. Conversely, any element of
iξr(L

×
r ) · (U1

I ×U1
D)

1 stabilizes Xr by Remark 1.4 and Proposition 3.2 and the above arguments.
Let (g, d) ∈ (U1

I × U1
D)

1. We put

∆g(X) =
n−1∑
i=1

a
(0)
i,i+1

(
X i

X i+1

)qi
+ a

(1)
n,1

Xqn

n

X1

, ∆d(X) =
n∑
i=1

κ(d)q
i−1

X
qi−1(q−1)
i .

Then, we acquire

f0
(
(g, d)∗X

)
≡ f0(X) + ∆g(X) + ∆d(X) mod > 1/n. (3.11)

We have
(g, d)∗S ≡ S +∆g(X) + ∆d(X) mod > 1/n (3.12)

by (2.8) and (3.11). We have
(g, d)∗si ≡ si mod 1/n (3.13)

for 1 ≤ i ≤ n− 2. We obtain
(g, d)∗z = z + hr(g, d)

by (2.10), (3.12) and (3.13). We can compute the action of (g, d) on y and {yi}1≤i≤n−2 by
(2.9), (2.14), (2.15) and (3.13).

Action of Weil group We put φ′
r = φp

e

r and Er = K(φ′
r). Let σ ∈ WEr in this paragraph.

We put aσ = Art−1
Er
(σ), and uσ = aσφ

′
r
−nσ ∈ O×

Er
. We take bσ ∈ µq−1(K) such that b̄p

e

σ = ūσ ∈ k.
We put cσ = b−nσ NrEζ/K(uσ) ∈ U1

K . Let gσ = (ai,j)1≤i,j≤n ∈ O×
KU

1
I be the element defined by

ai,i = bσ for 1 ≤ i ≤ n− 1, an,n = bσcσ and ai,j = 0 if i ̸= j. We put

gσ = (gσ, φ
−nσ
D,r , σ) ∈ G. (3.14)

We choose elements αr, βr and γr such that

αp
e+1
r = −φ′

r, βp
2e

r + βr = −α−1
r , γp

m

r − γr = βp
e+1
r + ε0,

α−1
r η

pe

pe+1
r ≡ 1, β−1

r θp
e

r η
− pe

pe+1
r ≡ 1, γ−1

r

f
m
−1∑

i=0

(λrη
−1
r )p

im ≡ 1 mod > 0.
(3.15)

For σ ∈ WEr , we set

ar,σ = σ(αr)/(αr), br,σ = ar,σσ(βr)− βr,

cr,σ = σ(γr)− γr +
e
m
−1∑

i=0

(bp
e

r,σ(βr + br,σ))
pim .

(3.16)

Then we have ar,σ, br,σ, cr,σ ∈ OC.
Let

Q =
{
g(a, b, c)

∣∣∣ a, b, c ∈ kac, ape+1 = 1, bp
2e

+ b = 0, cp
m − c+ bp

e+1 = 0
}
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be the group whose multiplication is given by

g(a1, b1, c1) · g(a2, b2, c2) = g

(
a1a2, a1b2 + b1, c1 + c2 +

e
m
−1∑

i=0

(a1b
pe

1 b2)
pim
)
.

Let Q ⋊ Z be the semidirect product, where l ∈ Z acts on Q by g(a, b, c) 7→ g(aq
−l
, bq

−l
, cq

−l
).

Let (g(a, b, c), l) ∈ Q⋊ Z act on Xr by

(z,y, (yi)1≤i≤n−2) 7→
((

z +

e
m
−1∑

i=0

(by)p
im

+ c

)ql
, (a(y + bp

e

))q
l

, (a
pe+1

2 yq
l

i )1≤i≤n−2

)
. (3.17)

We have the surjective homomorphism

Θr : WEr → Q⋊ Z; σ 7→
(
g(ār,σ, b̄r,σ, c̄r,σ), nσ

)
. (3.18)

Proposition 3.4. Let σ ∈ WEr . Then, gσ ∈ G stabilizes Xr, and induces the automorphism
of Xr given by Θr(σ).

Proof. Let P ∈ Xr(C). We have

S(Pgσ) = f0
(
X(Pgσ)

)
− f0(ξ0r)

= f0
(
X(Pgσ)

)
− f0

(
X(P (1, φ−nσ

r , σ))
)
+ σ−1

(
f0(X(P ))

)
− f0(ξ0r)

≡ ∆gσ

(
X(P (1, φ−nσ

r , σ))
)
+ σ−1

(
S(P ) + f0(ξ

0
r)
)
− f0(ξ0r)

≡ σ−1
(
S(P )

)
+ f0(σ

−1(ξ0r))− f0(ξ0r) mod > 1/n (3.19)

by (2.10) and (3.11). We have

f0(σ
−1(ξ0r))− f0(ξ0r) ≡ n′(σ−1(λr)− λr) mod > 1/n. (3.20)

We put si(X) = (X i/X i+1)
qi(q−1) for 1 ≤ i ≤ n− 1. We have

sn−1(ξ
0
r)Y n−1(Pgσ) = sn−1

(
X(Pgσ)

)
− sn−1(ξ

0
r)

= sn−1

(
X(Pgσ)

)
− sn−1

(
X(P (1, φ−nσ

r , σ))
)
+ σ−1

(
sn−1(X(P ))

)
− sn−1(ξ

0
r)

≡ σ−1
(
sn−1(ξ

0
r)Y n−1(P )

)
+ σ−1

(
sn−1(ξ

0
r)
)
− sn−1(ξ

0
r) mod >

q − 1

n
+

1

npe
(3.21)

by (2.10) and (3.11). Hence, we have

Y n−1(Pgσ) ≡ σ−1
(
Y n−1(P )

)
+ σ−1(θr)− θr mod >

1

npe
. (3.22)

We put θr,σ = σ(θr)− θr and λr,σ = σ(λr)− λr. We have

σ
(
z(Pgσ)

)
= σ

( e
m
−1∑

i=0

(
θp

e

r Yn−1(Pgσ)

ηr

)pim
− 1

n′

f
m
−1∑

i=0

(
S(Pgσ)

ηr

)pim)

≡ z(P ) +

e
m
−1∑

i=0

(
θp

e

r,σYn−1(P )− σ(θp
e

r )θr,σ

ηr

)pim
+

f
m
−1∑

i=0

(
λr,σ
ηr

)pim

≡ z(P ) +

e
m
−1∑

i=0

(
br,σ

Yn−1(P )

η
1/(pe+1)
r

− σ(βr)ar,σb
1
pe

r,σ

)pim
+ σ(γr)− γr

≡ z(P ) +

e
m
−1∑

i=0

(br,σy(P ))
pim + cr,σ mod > 0
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by (3.19), (3.20), (3.21) and (3.22). We see also that

σ

(
Y n−1(Pgσ)

η
1/(pe+1)
r

)
≡ a−p

e

r,σ (y − b
1
pe

r,σ) ≡ ar,σ(y + bp
e

r,σ) mod > 0

by (3.22). By the same argument using (3.10), we have Y i(Pgσ) ≡ σ−1(Y i(P )) mod > 1/(2n)
for 1 ≤ i ≤ n− 1. This implies

yi(Pgσ) ≡
σ−1(η

1/2
r )

η
1/2
r

σ−1(yi(P )) ≡ a(p
e+1)/2

r,σ yi(P )
qnσ

mod > 0

for 1 ≤ i ≤ n− 1.

Stabilizer We put n1 = (n, pm − 1). We put φ′′
r = φ′n1

r and Fr = K(φ′′
r). Let σ ∈ WFr . We

put ζσ = σ−1(φ′
r)/φ

′
r. Let ζ

1/pe

σ be the pe-th root of ζσ in µpm−1(K). We put φr,σ = ζ
1/pe

σ φr.
Let Gr,σ be the one-dimensional formal OLr -module over OL̂ur

r
defined by (2.1) changing φr by

φr,σ. We take a compatible system {tr,j,σ}j≥1 in C such that

σ−1(tr,1)

tr,1,σ
≡ 1 mod > 0, [φr,σ]Gr,σ(tr,1,σ) = 0, [φr,σ]Gr,σ(tr,j,σ) = tr,j−1,σ

for j ≥ 2. We construct ξr,σ as in Lemma 2.1 using {tr,j,σ}j≥1. Then ξr,σ has CM by Lr.

Lemma 3.5. For σ ∈ WFr , we have

σ−1(ξr,i)

ξr,σ,i
≡ 1 mod

1

qi−1pe−1(p− 1)
for 1 ≤ i ≤ n,

σ−1(θr) ≡ θr mod
1

n(pe + 1)
.

Proof. We have
σ−1(φr)

φr
≡ ζ1/p

e

σ mod
1

pe−1(p− 1)
. (3.23)

We obtain the claims by (3.23) and(
σ−1(θr)− θr

)p2e
+ ηp

e−1
r

(
σ−1(θr)− θr

)
+
(
1+ σ−1(θr)

)(
σ−1(ηr)

pe−1 − ηp
e−1
r

)
= 0,

which follows from (2.3).

We define jr : WFr → L×
r \(GLn(K)×D×) as follows:

Let σ ∈ WFr . Since ξr,σ has CM by Lr, there exists (g, d) ∈ GLn(K)×D× uniquely
up to left multiplication by L×

r such that (g, d, 1) ∈ G0 and ξr,σ(g, d, 1) = ξr by
Lemma 1.6. We put jr(σ) = L×

r (g, φ
−nσ
D,r d).

For σ ∈ WLr , we put aσ = Art−1
Lr
(σ) ∈ L×

r and uσ = aσφ
−nσ
r ∈ O×

Lr
.

Lemma 3.6. For σ ∈ WLr , we have jr(σ) = L×
r (1, a

−1
σ ).

Proof. This follows from [BW16, Lemma 3.1.3]. Note that our action of WK is inverse to that
in [BW16].
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We put
Sr = {(g, d, σ) ∈ G | σ ∈ WFr , jr(σ) = L×

r (g, d)}.

Lemma 3.7. The action of Sr onM(0)
∞,η stabilizes Xr, and induces the action on Xr.

Proof. We take an element of Sr, and write it as (g, φ−nσ
D,r d, σ), where (g, d, 1) ∈ G0 and σ ∈ WFr .

Since ξr,σ(g, d, 1) = ξr, we have (g, d) ∈ (φM,r, φD,r)
l(I× ×O×

D) by Lemma 3.1 and Lemma 3.5.
To show the claims, we may assume that (g, d) ∈ I× ×O×

D by Proposition 3.2.1. We write

g = (ai,j)1≤i,j≤n ∈ I× and ai,j =
∑∞

l=0 a
(l)
i,jϖ

l
r with a

(l)
i,j ∈ µq−1(K) ∪ {0}, and d−1 =

∑∞
i=0 diφ

i
D,r

with di ∈ µqn−1(Kn) ∪ {0}. For 1 ≤ i ≤ n− 1, we have

a
(0)
i,i

a
(0)
i+1,i+1

= dq−1
0 (3.24)

by ξr,σ(g, d, 1) = ξr using (3.9), (3.10), ξr,σ,i = ξqr,σ,i+1 and ξr,i = ξqr,i+1. The condition on the
first line in (2.5) is equivalent to

v

(
X i

X i+1

−
(Xn−1

Xn

)qn−1−i
)
≥ 3

2nqi
for 1 ≤ i ≤ n− 2. (3.25)

We see that the condition (3.25) is stable under the action of (g, φ−nσ
D,r d, σ) using (3.9) and

(3.10), because a
(0)
i,i /a

(0)
i+1,i+1 is independent of i by (3.24). We see that the condition on the

second line in (2.5) is stable under the action of (g, φ−nσ
D,r d, σ) by Lemma 3.5 using (3.9) and

(3.10).

The group Sr normalizes iξr(L
×
r ) · (U1

I × U1
D)

1 by Proposition 3.3. We put

Hr = (U1
I × U1

D)
1 · Sr ⊂ G.

Then Hr acts on Xr by Lemma 3.7 and the proof of Proposition 3.3.

Proposition 3.8. The subgroup Hr ⊂ G0 is the stabilizer of Xr inM(0)
∞,η.

Proof. Assume that (g, φ−nσ
D,r d, σ) ∈ G0 stabilizes Xr. It suffices to show that (g, φ−nσ

D,r d, σ) ∈
Hr. By Lemma 3.1, we have (g, d) ∈ (φM,r, φD,r)

l(I× × O×
D). Hence, we may assume that

(g, d) ∈ I× ×O×
D by Proposition 3.2.1.

First, we show that σ ∈ WFr . We write g = (ai,j)1≤i,j≤n ∈ I×, ai,j =
∑∞

l=0 a
(l)
i,jϖ

l
r and

d−1 =
∑∞

i=0 diφ
i
D,r as in the proof of Lemma 3.7. Since (g, φ−nσ

D,r d, σ) stabilizes Xr, we have

a
(0)
i,i

a
(0)
i+1,i+1

= dq−1
0 for 1 ≤ i ≤ n− 1, (3.26)

a
(0)
n,nd0σ

−1(ξ0r,n)

ξ0r,n
≡ 1 mod

1

nqn−1(pe + 1)
(3.27)

by (2.5), (3.9), (3.10) and ξr,i = ξqr,i+1. By taking peqn−1(q − 1)-th power of (3.27), we see that

d
peqn−1(q−1)
0

σ−1(φ′
r)

φ′
r

≡
(

1 + θr
1 + σ−1(θr)

)pe(q−1)

mod
pe

n(pe + 1)
. (3.28)

This implies that the left hand side of (3.28) is equal to 1. Hence we have σ−1(φ′
r)/φ

′
r ∈ µq−1(K)

and σ−1(θr) ≡ θr mod 1/(n(pe + 1)), since dq−1
0 ∈ µq−1(K) by (3.26). These happen only if

σ ∈ WFr by the proof of Lemma 3.5 and µpe−1(K
ur) ∩ µq−1(K) = µpm−1(K). Since σ ∈ WFr ,

we may assume that σ = 1 by Lemma 3.7. Then (g, d, 1) ∈ Hr by Proposition 3.3.
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4 Artin-Schreier variety in characteristic two

In this section, we assume that p = 2. For an integer i ≥ 0, we simply write Ai for an affine
space Ai

kac . Let n ≥ 4 be an even integer. We consider the affine smooth variety Y of dimension
n− 2 defined by

z2
m − z =

∑
1≤i≤j≤n−2

yiyj in An−1.

Then, by the isomorphism

ui =
n−2∑
j=i

yj for 1 ≤ i ≤ n− 2,

the variety Y is isomorphic to the affine variety defined by

z2
m − z =

n−2∑
i=1

u2i +
n−3∑
i=1

uiui+1 in An−1. (4.1)

For each ζ ∈ F×
2m , we consider the homomorphism

pζ : F2m → F2; x 7→
m−1∑
i=0

(ζ−2x)2
i

.

Then, we consider the quotient Yζ = Y/ ker pζ . This variety has the defining equation

ζ2(z2ζ − zζ) =
n−2∑
i=1

u2i +
n−3∑
i=1

uiui+1 in An−1,

where the relation between z and zζ is given by zζ =
∑m−1

i=0 (ζ−2z)2
i
. We set wζ = ζzζ+

∑n−2
i=1 ui.

Then, Yζ is defined by

w2
ζ + ζwζ = ζ

n−2∑
i=1

ui +
n−3∑
i=1

uiui+1 in An−1. (4.2)

Lemma 4.1. Let ℓ ̸= p be a prime number. Then we have an isomorphism

Hn−2(Y,Qℓ) ≃
⊕
ζ∈F×

2m

Hn−2(Yζ ,Qℓ)

and dimHn−2(Yζ ,Qℓ) = 1.

Proof. By [IT13, Proposition 4.5.1], we know that there exists an isomorphism

Hn−2(Y,Qℓ) ≃
⊕

ψ∈F∨
2m\{1}

ψ

as F2m-representations. Hence, for each ψ ∈ F∨
2m \ {1}, we acquire

Hn−2(Y,Qℓ)[ψ] ≃ ψ.

Let ι0 : F2 ↪→ Q×
ℓ be the non-trivial character. Then, for each ψ ∈ F∨

2m\{1}, there exists a unique
element ζ ∈ F×

2m such that ψ = ι0◦pζ . Hence, we know thatHn−2(Yζ ,Qℓ) = Hn−2(Y,Qℓ)[ψ] ≃ ψ
as F2m-representations. Hence, the required assertion follows.
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We put n0 = (n− 2)/2. We can write (4.2) as

w2
ζ + ζwζ = ζ

n0∑
i=1

u2i +

n0∑
i=1

u2i−1(u2i−2 + u2i + ζ), (4.3)

where we use notation that u0 = 0. Consider the fibration

πζ : Yζ → An0 ; (wζ , (ui)1≤i≤n−2) 7→ ((u2i)1≤i≤n0).

We consider the closed point P in An0 defined by

u2i = iζ for 1 ≤ i ≤ n0.

We put N0 =
(
n0+1
2

)
. Then, we have

w2
ζ + ζwζ = N0ζ

2 (4.4)

on π−1
ζ (P ) by (4.3). By (4.4), the inverse image π−1

ζ (P ) has two connected components. Let
ϱ ∈ kac be an element such that ϱ2 + ϱ = N0. We put

ϱ+ = ϱ, ϱ− = ϱ+ 1.

For ι ∈ {±}, we define Zι
ζ to be the connected component of π−1

ζ (P ) defined by wζ = ζϱι. By

(4.4), we know that Z+
ζ and Z−

ζ are isomorphic to affine spaces of dimension n0.
Let ℓ ̸= p be a prime number. Let

cl : CHn0(Yζ)→ Hn−2(Yζ ,Qℓ)

be the cycle class map.

Lemma 4.2. 1. The fibration πζ : Yζ → An0 is an affine bundle over An0 \ {P}.
2. The cohomology group Hn−2(Yζ ,Qℓ) is generated by the cycle class cl([Z+

ζ ]), and we have

cl([Z+
ζ ]) = −cl([Z

−
ζ ]).

Proof. The first claim follows from (4.3) easily.
We set U = π−1

ζ (An0 \ {P}). We have the long exact sequence

Hn−3(U,Qℓ)→ Hn−2

π−1
ζ (P )

(Yζ ,Qℓ) ≃ Qℓ(−n0)
⊕2 → Hn−2(Yζ ,Qℓ)→ Hn−2(U,Qℓ)

and Hn−2(U,Qℓ) ≃ Hn−2(An0 \ {P},Qℓ) = 0, which follows from the first claim. Hence,
Hn−2(Yζ ,Qℓ) is generated by the cycle classes cl([Z+

ζ ]) and cl([Z−
ζ ]). On the other hand, we

have cl([Z+
ζ ]) = −cl([Z−

ζ ]), since [Z+
ζ ] + [Z−

ζ ] = 0 in CHn0(Yζ). Therefore, we obtain the
claim.

Remark 4.3. Using Lemma 4.1, Lemma 4.2 and [IT13, Proposition 4.5], we can verify that a
generalization of the Tate conjecture in [Jan90, 7.13] holds for the variety Y .

For ι ∈ {±}, we consider the other n0-dimensional cycle Z ′ι
ζ defined by

u2i−1 = (n0 + 1− i)ζ for 1 ≤ i ≤ n0, wζ = ζϱι.

Proposition 4.4. For ζ ∈ F×
2m and ι ∈ {±}, we have[
Zι
ζ

]
= (−1)n0

[
Z ′ι
ζ

]
in CHn0(Yζ).
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Proof. We show that [Z+
ζ ]− (−1)n0 [Z ′+

ζ ] is rationally equivalent to zero. For each 1 ≤ j ≤ n0,
let Yζ,j be the (n0 + 1)-dimensional closed subvariety of Yζ defined by

u2i−1 = (n0 + 1− i)ζ for 1 ≤ i ≤ j − 1,

u2i−2 + u2i = ζ for j + 1 ≤ i ≤ n0.

Note that
j−1∑
i=1

u2i−1 =

(
N0 +

(
n0 + 2− j

2

))
ζ (4.5)

on Yζ,j. We see that the equality (4.3) becomes

w2
ζ + ζwζ = ζ

(
j−1∑
i=1

u2i−1 +

n0∑
i=j−1

u2i

)
+ u2j−3u2j−2 + u2j−1(u2j−2 + u2j + ζ)

= N0ζ
2 +

(
u2j−1 + (n0 + 1− j)ζ

)
(u2j−2 + u2j + ζ)

on Yζ,j, using (4.5). Therefore, we acquire

div(wζ − ζϱ) = [u2j−1 + (n0 + 1− j)ζ] + [u2j−2 + u2j + ζ] (4.6)

on Yζ,j. For 0 ≤ j ≤ n0, let Z
+
ζ,j be the n0-dimensional cycle on Yζ defined by

u2i−1 = (n0 + 1− i)ζ for 1 ≤ i ≤ j,

u2i−2 + u2i = ζ for j + 1 ≤ i ≤ n0

and wζ = ζϱ. Note that Z+
ζ,0 = Z+

ζ and Z+
ζ,n0

= Z ′+
ζ . By (4.6), we have

[Z+
ζ,j] + [Z+

ζ,j+1] = 0

in CHn0(Yζ) for 0 ≤ j ≤ n0 − 1. Hence, we have the claim for Z+
ζ . We can prove the claim for

Z−
ζ replacing the condition wζ = ζϱ by wζ = ζ(ϱ+ 1) in the above argument.

Corollary 4.5. Assume that n ≥ 4. Let g be the automorphism of Y defined by

(z, (yi)1≤i≤n−2) 7→
(
z + ε1(yn−2 + 1),

n−3∑
i=1

yi + ε1, (yi−1 + yn−2 + ε1)2≤i≤n−2

)
.

Then, g∗ acts on Hn−2(Y )(n0) by −1.

Proof. First note that g induces the automorphism(
z, (ui)1≤i≤n−2

)
7→
(
z + ε1(un−2 + 1), un−2, (ui−1 + iun−2 + (i+ 1)ε1)2≤i≤n−2

)
.

We can check that g∗wζ = wζ + ε1. Hence, we have

g−1(Z ′+
ζ ) =

{
Z−
ζ if e = 1,

Z+
ζ otherwise.

Therefore, we obtain

g∗
(
cl([Z+

ζ ])
)
= (−1)n0g∗

(
cl([Z ′+

ζ ])
)
= −cl([Z+

ζ ])

in Hn−2(Y )(n0) using Lemma 4.2 and Proposition 4.4. Hence, the claim follows from Lemma
4.1 and Lemma 4.2.
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5 Explicit LLC and LJLC

5.1 Galois representations

Let X be the affine smooth variety over kac defined by (2.16). We define an action of Q ⋊ Z
on X similarly as (3.17).

We choose an isomorphism ι : Qℓ ≃ C. Let q1/2 ∈ Qℓ be the 2-nd root of q such that
ι(q1/2) > 0. For a rational number r ∈ 2−1Z, let Qℓ(r) be the unramified representation of
Gal(kac/k) of degree 1, on which the geometric Frobenius Frobq acts as scalar multiplication
by q−r. We simply write Q for the subgroup Q× {0} ⊂ Q⋊ Z. We consider the morphism

Φ: An−1
kac → A1

kac ; (y, (yi)1≤i≤n−2) 7→ yp
e+1 − 1

n′

∑
1≤i≤j≤n−2

yiyj.

Let Lψ be the Artin-Schreier Qℓ-sheaf on A1
kac associated to ψ, which is F(ψ) in the notation

of [Del77, Sommes trig. 1.8 (i)]. Then we have a decomposition

Hn−1
c (X,Qℓ) ≃

⊕
ψ∈F∨

pm\{1}

Hn−1
c (An−1

kac ,Φ
∗Lψ) (5.1)

as Q⋊ Z-representations. We put

τψ,n = Hn−1
c (An−1

kac ,Φ
∗Lψ)

(
n− 1

2

)
as a Q⋊ Z-representation for each ψ ∈ F∨

pm\{1}. We write τ 0r,ψ for the inflation of τψ,n by Θr.
We put τr,ψ = IndEr/Kτ

0
r,ψ.

5.2 Correspondence

Definition 5.1. We say that an irreducible finite dimensional continuous ℓ-adic representation
of WK is simple epipelagic if its exponential Swan conductor is one.

We apply the same definition to a smooth irreducible supercuspidal representation of GLn(K)
and a smooth irreducible representation of D×.

Remark 5.2. The words “simple” and “epipelagic” come from [GR10] and [RY14]. Our “sim-
ple epipelagic” representations are called “epipelagic” in [BH14].

We define ψ0 ∈ F∨
p by ι(ψ0(1)) = e2π

√
−1/p. We put ψ0 = TrFpm/Fp ◦ψ0. We take an additive

character ψK : K → Q×
ℓ such that ψK(x) = ψ0(x̄) for x ∈ OK . In the following, for each triple

(ζ, χ, c) ∈ µq−1(K)×(k×)∨×Q×
ℓ , we define a GLn(K)-representation πζ,χ,c, a D

×-representation
ρζ,χ,c and a WK-representation τζ,χ,c.

We use notations in Subsection 2.1, replacing r ∈ µq−1(K) by ζ ∈ µq−1(K). We have the
K-algebra embeddings

Lζ →Mn(K); φζ 7→ φM,ζ , Lζ → D; φζ 7→ φD,ζ .

Set φζ,n = n′φζ . Let Λζ,χ,c : L
×
ζ U

1
I → Q×

ℓ be the character defined by

Λζ,χ,c(φζ) = (−1)n−1c, Λζ,χ,c(x) = χ(x̄) for x ∈ O×
K ,

Λζ,χ,c(x) = (ψK ◦ tr)(φ−1
ζ,n(x− 1)) for x ∈ U1

I .

21



We put πζ,χ,c = c-Ind
GLn(K)

L×
ζ U

1
I

Λζ,χ,c. Then, πζ,χ,c is a simple epipelagic representation of GLn(K),

and every simple epipelagic representation is isomorphic to πζ,χ,c for a uniquely determined

(ζ, χ, c) ∈ µq−1(K)× (k×)∨ ×Q×
ℓ (cf. [BH14, 2.1, 2.2]).

Let θζ,χ,c : L
×
ζ U

1
D → Q×

ℓ be the character defined by

θζ,χ,c(φζ) = c, θζ,χ,c(x) = χ(x̄) for x ∈ O×
K ,

θζ,χ,c(d) =
(
ψK ◦ TrdD/K

)
(φ−1

ζ,n(d− 1)) for d ∈ U1
D.

We put ρζ,χ,c = IndD
×

L×
ζ U

1
D
θζ,χ,c. The isomorphism class of this representation does not depend

on the choice of the embedding Lζ ↪→ D.

Let ϕc : WEζ
→ Q×

ℓ be the character defined by ϕc(σ) = cnσ . Let Frobp : k
× → k× be the

map defined by x 7→ xp
−1

for x ∈ k×. We consider the composite

νζ : W
ab
Eζ

Art−1
Eζ−−−→ E×

ζ → O
×
Eζ

can.−−→ k×
Frobep−−−→ k×,

where the second homomorphism is given by E×
ζ → O

×
Eζ
; x 7→ xφ′

ζ
−vEζ

(x). We simply write τ 0ζ
for τ 0ζ,ψ0 . We set τ 0ζ,χ,c = τ 0ζ ⊗ (χ ◦ νζ)⊗ ϕc and τζ,χ,c = IndEζ/Kτ

0
ζ,χ,c.

The following theorem follows from [IT14] and [IT15b].

Theorem 5.3. Let JL and LL denote the local Jacquet-Langlands correspondence and the local

Langlands correspondence for GLn(K) respectively. For ζ ∈ µq−1(K), χ ∈ (k×)∨ and c ∈ Q×
ℓ ,

we have JL(ρζ,χ,c) = πζ,χ,c and LL(πζ,χ,c) = τζ,χ,c.

Definition 5.4. We say that an irreducible finite dimensional continuous ℓ-adic representation
of WK is essentially simple epipelagic if it is a character twist of a simple epipelagic represen-
tation.

We apply the same definition to a smooth irreducible representation of GLn(K) and a smooth
irreducible representation of D×.

Let ω : K× → Q×
ℓ be a smooth character. We put

πζ,χ,c,ω = πζ,χ,c ⊗ (ω ◦ det), ρζ,χ,c,ω = ρζ,χ,c ⊗ (ω ◦ NrdD/K), τζ,χ,c,ω = τζ,χ,c ⊗ (ω ◦ Art−1
K ),

and

Λζ,χ,c,ω = Λζ,χ,c ⊗ (ω ◦ det |L×
ζ U

1
I
), θζ,χ,c,ω = θζ,χ,c ⊗ (ω ◦ NrdD/K |L×

ζ U
1
D
),

τ 0ζ,χ,c,ω = τ 0ζ,χ,c ⊗ (ω ◦ NrL′
ζ/K
◦Art−1

Eζ
).

Then we have

πζ,χ,c,ω = c-Ind
GLn(K)

L×
ζ U

1
I

Λζ,χ,c,ω, ρζ,χ,c,ω = IndD
×

L×
ζ U

1
D
θζ,χ,c,ω, τζ,χ,c,ω = IndL′

ζ/K
τ 0ζ,χ,c,ω.

Corollary 5.5. We have LL(πζ,χ,c,ω) = τζ,χ,c,ω and JL(ρζ,χ,c,ω) = πζ,χ,c,ω.

Proof. This follows from Theorem 5.3, because LL and JL are compatible with character twists.
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6 Geometric realization

We fix s ∈ µn1(q−1)
pm−1

(K). We take an element r ∈ µq−1(K) such that r
pm−1
n1 = s. We put

HXr = Hn−1
c (Xr)

(
n− 1

2

)
as Hr-representations. Further, we put

Πs = c-IndGHr
HXr ,

whose isomorphism class as a G-representation depends only on s. For simplicity, we write G1

and G2 for GLn(K) and D××WK respectively, and consider them as subgroups of G. We put

H = {g ∈ U1
I | det(g) = 1}.

We have H = Hr ∩G1 by Proposition 3.3. Let Hr be the image of Hr in G/G1 ≃ G2.

Let a ∈ µq−1(K). We define a character Λar : U
1
I → Q×

ℓ by x 7→ (ψK ◦ tr)((aφr,n)−1(x− 1)).
Let π be a smooth irreducible representation of GLn(K).

Lemma 6.1. If π is not essentially simple epipelagic, then we have HomH(Λ
a
r , π) = 0. Further,

we have

dimHomH(Λ
a
r , πζ,χ,c,ω) =

{
1 if anr = ζ,

0 otherwise.

Proof. We assume that HomH(Λ
a
r , π) ̸= 0, and show that π is essentially simple epipelagic. Let

ωπ be the centaral character of π. Then ωπ is trivial on K× ∩H by HomH(Λ
a
r , π) ̸= 0. Hence,

we may assume that Then ωπ is trivial on K× ∩ U1
I , changing π by a character twist. Then,

there is a character Λar,ωπ
: K×U1

I → Q×
ℓ such that

Λar,ωπ
|U1

I
= Λaζ , Λar,ωπ

|K× = ωπ.

Then we have

HomH(Λ
a
r , π) ≃ HomK×H(Λ

a
r,ωπ

, π) ≃ HomK×U1
I

(
Ind

K×U1
I

K×H (Λar,ωπ
|K×H), π

)
(6.1)

by Frobenius reciprocity. We have the natural isomorphism

K×U1
I/(K

×H)
det−→ (K×)nU1

K/(K
×)n ≃ U1

K/(U
1
K)

n. (6.2)

For a smooth character ϕ of U1
K/(U

1
K)

n, let ϕ′ denote the character of K×U1
I obtained by ϕ and

the isomorphism (6.2). We have a natural isomorphism

Ind
K×U1

I

K×H (Λar,ωπ
|K×H) ≃

⊕
ϕ∈(U1

K/(U
1
K)n)∨

Λar,ωπ
⊗ ϕ′. (6.3)

Let ϕ be a smooth character of U1
K/(U

1
K)

n, and regard it as a character of U1
K . We extend ϕ to

a character ϕ̃ of K× such that ϕ̃(ϖ) = 1 and ϕ̃ is trivial on µq−1(K). We have

HomK×U1
I
(Λar,ωπ

⊗ ϕ′, π) ≃ HomG1

((
c-IndG1

K×U1
I
Λar,ωπ

)
⊗ ϕ̃, π

)
. (6.4)
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We take χ′ ∈ (k×)∨ such that χ′(x̄) = ωπ(x) for x ∈ µq−1(K). For c′ ∈ Q×
ℓ , we define the

character Λar,χ′,c′ : L
×
r U

1
I → Q×

ℓ by

Λar,χ′,c′ |U1
I
= Λar , Λar,χ′,c′(φM,r) = c′, Λar,χ′,c′(x) = χ′(x̄) for x ∈ µq−1(K).

We put πar,χ′,c′ = c-IndG1

L×
r U

1
I

Λar,χ′,c′ . Then we have

c-IndG1

K×U1
I
Λar,ωπ

≃
⊕
c′∈Q×

ℓ

πar,χ′,c′ . (6.5)

Note that
πar,χ′,c′ ≃ πanr,χ′,χ′(a)c′ (6.6)

by the constructions. Then we see that π is simple epipelagic by (6.1), (6.3), (6.4), (6.5), (6.6)
and the assumption HomH(Λ

a
r , π) ̸= 0.

For an irreducible admissible representation π of G1, we write a(π) for its Artin conductor
exponent. Then, if ϕ ̸= 1, we have a(ϕ̃) ≥ 2n. Hence, by a(πar,χ,c′) = n + 1, we obtain

a(πar,χ,c′ ⊗ ϕ̃) = a(ϕ̃) ≥ 2n. Therefore, we acquire

dimHomG1(π
a
r,χ′,c′ ⊗ ϕ̃, πζ,χ,c) =

{
1 if ϕ = 1, anr = ζ and χ′(a)c′ = c,

0 otherwise

by (6.6) and [BH14, 2.2]. To show the second claim, we may assume that ω = 1. Hence, we
obtain the second claim by the above discussion, using that ωπζ,χ,c

is trivial on U1
K .

Proposition 6.2. 1. If π is not essentially simple epipelagic, then we have HomH(HXr , π) = 0.
Further, we have

dimHomH(HXr , πζ,χ,c,ω) =

{
pen1 if ζ

pm−1
n1 = s,

0 otherwise.
(6.7)

2. We have L×
r U

1
D ×WEr ⊂ Hr and an injective homomorphism

θr,χ,c,ω ⊗ τ 0r,χ,c,ω ↪→ HomH(HXr , πr,χ,c,ω)

as L×
r U

1
D ×WEr-representations.

Proof. By (5.1), we have a decomposition

HXr ≃
⊕

ψ∈F∨
pm\{1}

τψ,n (6.8)

as representations of Q⋊ Z. By Proposition 3.3 and (6.8), we have

HXr ≃
⊕

a∈µpm−1(K)

(Λ−a
r )⊕p

e

(6.9)

as H-representations. We prove the first claim. If ζ
pm−1
n1 ̸= s, the claim follows from Lemma

6.1 and (6.9). Assume that ζ
pm−1
n1 = s. By Lemma 6.1 and (6.9), we have

HomH(HXr , πζ,χ,c,ω) ≃
⊕

a∈µpm−1(K), anr=ζ

HomH(Λ
−a
r , πζ,χ,c,ω)

⊕pe , (6.10)
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and the dimension of this space is pen1.
We prove the second claim. We consider the element (φD,r, 1) ∈ L×

r U
1
D ×WEr ⊂ G2 and its

lifting gr ∈ G in (3.1) with respect to G → G2. We have gr ∈ Hr by Proposition 3.2.1. The
element (φD,r, 1) acts on θr,χ,c,ω⊗ τ 0r,χ,c,ω as scalar multiplication by cω((−1)n−1rϖ). By Propo-
sition 3.2.2, Corollary 4.5, [IT13, Proposition 4.2.3], the element gr acts on HomH(HXr , πr,χ,c,ω)
as scalar multiplication by cω((−1)n−1rϖ).

Let zd ∈ O×
KU

1
D with z ∈ µq−1(K) and d ∈ U1

D. Let g = (ai,j)1≤i,j≤n ∈ U1
I be the

element defined by a1,1 = NrdD/K(d), ai,i = 1 for 2 ≤ i ≤ n and ai,j = 0 if i ̸= j. We
have det(g) = NrdD/K(d) and (zg, zd, 1) ∈ Hr. The element (zd, 1) ∈ L×

r U
1
D ×WEr acts on

θr,χ,c,ω ⊗ τ 0r,χ,c,ω as scalar multiplication by χ(z̄)θr,χ,c(d)ω(NrdD/K(zd)). We have the subspace

HomH(τ−ψ0,n, πr,χ,c,ω) ⊂ HomH(HXr , πr,χ,c,ω) (6.11)

by the decomposition (6.8). By Remark 1.4, Proposition 3.3 and [IT13, Propositions 4.2.1
and 4.5.1], the element (zg, zd, 1) acts on the subspace (6.11) as scalar multiplication by
χ(z̄)θr,χ,c(d)ω(det(zg)).

Let σ ∈ WEr such that nσ = 1. We take gσ as in (3.14). By Proposition 3.4, the element
gσ acts on the subspace (6.11) by

χ(b̄σ)τ
0
r,ψ0(σ)ω(det(gσ)).

On the other hand, the element (φ−1
D,r, σ) ∈ L×

r U
1
D ×WEr acts on θr,χ,c,ω ⊗ τ 0r,χ,c,ω by

(χ ◦ νr)(σ)τ 0r,ψ0(σ)ω(NrEr/K(uσ)).

Hence, the required assertion follows.

Proposition 6.3. If π is not essentially simple epipelagic, then we have HomGLn(K)(Πs, π) = 0.
Further, we have

HomGLn(K)(Πs, πζ,χ,c,ω) ≃

{
ρζ,χ,c,ω ⊗ τζ,χ,c,ω if ζ

pm−1
n1 = s,

0 otherwise

as D× ×WK-representations.

Proof. For g ∈ Hr\G/G1, we choose an element g̃ ∈ G2 whose image in Hr\G2 equals g　
under the natural isomorphism Hr\G/G1 ≃ Hr\G2. We put H g̃ = g̃−1Hg̃. Let H g̃

Xr
denote the

representation of H g̃ which is the conjugate of HXr by g̃. Then, we have

Πs|G1 ≃
⊕

g∈Hr\G/G1

c-IndG1

H g̃H
g̃
Xr
≃ Πs|G1 ≃

⊕
Hr\G2

c-IndG1
H HXr (6.12)

as G1-representations, since we have H g̃ = H and HXr ≃ H g̃
Xr

as H-representations. By (6.12)
and Frobenius reciprocity, we acquire

HomG1(Πs, πζ,χ,c,ω) ≃
⊕
Hr\G2

HomH(HXr , πζ,χ,c,ω). (6.13)

If ζ
pm−1
n1 ̸= s, the required assertion follows from (6.13) and Proposition 6.2.1. Now, assume

that ζ
pm−1
n1 = s. Without loss of generality, we may assume that ζ equals r, because Πs depends

only on s. By Proposition 6.2 and Frobenius reciprocity, we obtain a non-zero map

IndHr

L×
r U

1
D×WEr

(θr,χ,c,ω ⊗ τ 0r,χ,c,ω)→ HomH(HXr , πr,χ,c,ω). (6.14)
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By applying IndG2

Hr
to the map (6.14), we acquire a non-zero map

ρr,χ,c,ω ⊗ τr,χ,c,ω → IndG2

Hr
HomH(HXr , πr,χ,c,ω). (6.15)

We have dim ρr,χ,c,ω = (qn − 1)/(q − 1) and dim τr,χ,c,ω = n. Moreover, we have [G2 : Hr] =
n′(qn − 1)/n1(q − 1). Hence, the both sides of (6.15) are n(qn − 1)/(q − 1)-dimensional by
Proposition 6.2.1. Since ρr,χ,c,ω ⊗ τr,χ,c,ω is an irreducible representation of G2, we know that
(6.15) is an isomorphism as G2-representations. On the other hand, we have a non-zero map

IndG2

Hr
HomH(HXr , πr,χ,c,ω)→ HomG1(Πs, πr,χ,c,ω) (6.16)

by Frobenius reciprocity. Since the left hand side is an irreducible representation of G2 and the
both sides have the same dimension by (6.13), we know that (6.16) is an isomorphism. Hence,
the required assertion follows from the isomorphisms (6.15) and (6.16).

Theorem 6.4. Let LJ be the inverse of JL in Proposition 5.3. We put

Π =
⊕

s∈µn1(q−1)
pm−1

(K)

Πs.

Let π be a smooth irreducible representation of GLn(K). Then, we have

HomGLn(K)(Π, π) ≃

{
LJ(π)⊗ LL(π) if π is essentially simple epipelagic,

0 otherwise

as D× ×WK-representations.

Proof. This follows from Proposition 5.3 and Lemma 6.3, because every essentially simple

epipelagic representation is isomorphic to πζ,χ,c,ω for some ζ ∈ µq−1(K), χ ∈ (k×)∨, c ∈ Q×
ℓ and

a smooth character ω : K× → Q×
ℓ .
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