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Asymptotic Expansions for Perturbed Systems on
Wiener Space: Maximum Likelihood Estimators*

NAKAHIRO YOSHIDA

The Institute of Statistical Mathematics, Tokyo, Japan

By means of the Malliavin Calculus, we derive asymptotic expansion of the
probability distributions of statistics for systems perturbed by small noises. These
results are applied to the problem of the second order asymptotic efficiency of the
maximum likelihood estimator. © 1996 Academic Press, Inc.

1. INTRODUCTION

We consider stochastic systems with unknown parameters disturbed by
white Gaussian noises or normal random variables. For many such systems
the unknown parameters can be estimated consistently by certain statistical
estimators when the disturbances become small and the stochastic system
tends to the corresponding deterministic one. For instance, the maximum
likelihood method and the Bayes method are available for diffusion
processes with unknown parameters in their drifts when the diffusion
coefficient is small. In this case, the maximum likelihood estimator and the
Bayes estimator are consistent and efficient in the first order, e.g., Chapter
3 of Kutoyants [4]. As for higher order properties of estimators, they are
known to be second-order efficient in a certain sense. This fact follows from
their asymptotic expansions in consideration of a problem of hypothesis
testing [ 12, 14]. Thus asymptotic expansions for estimators play an impor-
tant role in higher order statistical inference. The purpose of this article is
to derive asymptotic expansions for likelihood ratio statistics and maxi-
mum likelihood estimators of unknown parameters involved in a system
slightly disturbed by white Gaussian noises or normal random variables.
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We formulate this problem as follows. Let W= {w; w is an R’-valued
continuous path on [0, o0), w(0)=0}. W is a Fréchet space endowed with
sup-norms on compact sets in [0, o0). Let P be a Wiener measure on
(W, B(W)), where B(W) is the Borel g-field of W. The probability space
(W, P) is referred to as the Wiener space. Let (S, B,) be a measurable
space. The closure @ of a bounded convex domain ©° in R* denotes the
space of unknown parameters. We assume that the slightly perturbed
system can be represented by an S-valued random element F%, 0€ 0,
e€(0,1), defined on (W, P). Let P! be the probability measure on S
induced by F9 from P. Then we obtain a family of statistical experiments
{P;;0e0}, ¢€(0,1], on (S,B,). We assume that P} and Pj, are
mutually dominated for 6,, 0, € @. For 0, 0° let

dpP:
2w, 0:01) =log S5 (Fj,(w)
0o

forwe W, 0,0, €0, (0, 1](A,(w, 0; 0,) depends on QO). When 0, €0 is
the true value, the maximum likelihood estimator 0. (w; 8,), if it exists,
satisfies

/’Lc(mja 6;,( w; 60)7 HO) =sup /1::(“}5 (97 00)

Oe O

Under a set of conditions stated in the next section, which ensures the
regularity and entire separation of the statistical experiments {P{; 0 0},
€ (0, 1), we derive the asymptotic expansions for the maximum likelihood
estimator and the log likelihood ratio statistic used in the higher order
statistical inference. We apply these results to the problem of the second-
order efficiency of the maximum likelihood estimator. As in [ 12], the tech-
nique used here is the Malliavin calculus exploited by Watanabe [9-11]
and its modification with truncation. This modification enables us to deal
with statistical estimators, such as the maximum likelihood estimator,
whose existence and regularity cannot be ensured on the whole sample
space in general.

The organization of this paper is as follows. The notations and assumptions
are stated in Section 2. Sections 3 and 4 give the main results. Examples are
presented in Section 5. In Sections 6 and 7, we prove the results stated in
Sections 3 and 4. We could reduce the conditions to milder ones for
second-order expansions used in Section 5, but we will not pursue this
point here.
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2. NOTATIONS AND ASSUMPTIONS

Let H be the Cameron—Martin subspace of W: the totality of R"-valued
absolutely continuous functions on [0, 00) with square integrable
derivative, endowed with the inner product

Sl = [ by i )

for hy, h, € H. Let D denote the H-derivative.

For Hilbert space E, |[-||, denotes the L?(E)-norm of an E-valued
Wiener functional, ie., for each Wiener functional f: W—E, |f|)=
{w | f1% P(dw). Let L be the Ornstein—Uhlenbeck operator (see Watanabe
[10]) and define || f1|, , for E-valued Wiener functionals f, se R, pe (1, o0)
by [fl,s=1I—L)**f|,. The Banach space Di(E) is the completion
of the totality P(E) of E-valued polynomials on the Wiener space (W, P)
with respect to |-[|,,. It is known that for neN(:={0} UN), and
p>1, the norm |-|,, is equivalent to the norm 37 _, | D’ [l ,-
Let D™(E) be the set of Wiener test functionals of Watanabe [10]:
DYJ(@) = ﬂ.v>0 ﬂl <p<w D;(E) Then D_%(E) = Ux>0 Ul <p<w DI;_\(E)
and D™ "(E)=U,=0 N1 <p< D, “(E) are the spaces of generalized Wiener
functionals. We suppress R when E=R. Let us consider a family of
E-valued Wiener functionals (or generalized Wiener functionals) {F,(w)},
£€(0,1). We will consider the asymptotic expansion taking the form of

F.~fo+efi+ -

as €0 in D®(E), D~ *(E), or D~*(E). See Watanabe [ 11] for definition.
The generalized mean of F,(w) yields the ordinary asymptotic expansion.

Let 6,=0/0, and 0,=0/00"i=1, ..,k 6=(6"). For v=(vy, v, ..., V)
with v;eN,i=0,1, .., k, the differential operator &, is defined by
0,=(00)" (01)" - (0x)™ Let |v|=vo+v,+ -+ +v.. Let 0=(J, .., 0g)
and for differentiable function f defined on @, §”'f denotes m-linear form
defined by

k

5mf[u1> ooy um] = Z 51’[ e 51’,,, f‘ulll e uf;;l’

iy ey im=1

where u; = (u})eR",i=1, ...k, j=1,.,m Let M= {0} xN* Let y: R>R
be a smooth function such that 0 <y(x) <1 for xeR, ¥(x)=1 for |x| <}
and Y(x)=0 for |x| > 1. Two as. equal random variables are identified.
We will construct a Sobolev space of Banach space valued functionals in
a similar manner as Kusuoka [2, 3]. Let E be a real Banach space. We say
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that a strongly measurable map F: (W, B(W)")— (E, B(E)) is ray
absolutely continuous (RAC) if for any he H, there exists a strongly
measurable map F,,: (W, B(W)") — (E, B(E)) such that F,(w) = F(w) P-a..
w, and the map s — F,(w + sh) is strongly absolutely continuous, i.e., there
exists a strongly measurable map G} ": R — E such that for any we W and
a,beR (a<b), [2G}"(s)| pds < oo and

F,(w+bh)=F,(w+ ah) +j G "(s) ds.

Let 7° be a bounded open set in R*, and let T=T° Let V be a real
separable Hilbert space with a Hilbertian norm | -| ;.. Denote by C(T - V)
the Banach space of continuous maps from 7 to V equipped with the
supremum norm | Fll ., py=sup,. ¢ [|[F(¢)||,,. We say that a strongly
measurable map F: W— C(T— V) is strongly stochastically Gateaux
differentiable (SSGD) in H directions if there exists a strongly measurable
map DF: W— C(T— H® V) such that for any he H.

-0

(T V)

i (F(w+sh)—F(w))—DF(w)[h]

in Pas s—0. L?(W— E) denotes the L? space of strongly measurable
maps from W to E satisfying that

I o= IFOOI Pldw) < o0

For p>1, let H)(C(T— V))=L"(W— C(T— V)), and let H (C(T— V)) =
{Fe H)(C(T— V)): F is RAC and SSGD in H directions, and
DFe L”(W—» AT—-HQ®YV))}. For Fe H)(C(T—V)), put 1N 2t ccor— vy =
IEN cocw = c(r— vy + HDFHL,,(W_, (T HBV)): As in Kusuoka [2, 3] we can
prove that the space H' J{C(T—V)) is a Banach space with respect to the
norm |- HH (T 7))~ Let T¢ and T be open convex bounded sets in R*
and R*, respectlvely Denote T,=T°fori=1,2. Let T°=T9x T and let
T° be a bounded open set satisfying 7% < T° with k, =k, + k2 Denote the
closure of 7° by T. It is not difficult to prove that if geH, (C(T- 7)),
then I(g)(w, ;7 —frl g(w, &, n) dé belongs to H (C(T, — V)) Consider a
map g: Wx T — V. We denote by D,g the derlvatlve of g with respect to
t,eT, i=1,2, if for P-a.e. we W, the map T>1— g(w, 1) is differentiable
with respect to 7, on 77, and each partial derivative can be extended
continuously to 7. Let D denote the differential operator in the definition
of the space H)(C(T—V)). Put Dy=D, and let H,=H and H,=R",
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i=1,2. We say that a functional g: W— C(T— V) is smooth if for any
p>1,neNand i\, i,, .., i,€{0, 1,2},

DilDiz "'Di”gEH;(C(T_)HiI ®Hi2® ot ®an® V))

Consider a functional g: W — C(T — R*"), and assume that D,g(w, ¢) takes
values in the set of symmetric matrices for all te 7, P-ae. w. Given a
functional R: W — R, R is naturally identified with a map taking values in
C(T—R) by R(w, t)=R(w) for any teT. Let R be smooth. We fix a
version of R and g. Assume that for some convex set U in 7T, the following
conditions hold for R and g: (1) If R(w) <1, the equation g(w, &, ) =0 has
a root &(w, n) in U for any neT,; (2) D,g(w, t*) is positive-definite
uniformly in (w, t¥)e {w: R(w) <1} x Ux T,; (3) For each he H, there
exist RAC versions R,(w) and g, such that if R,(w)<1, the equation
&,(w, &, n)=0 has a root &w,n) in U for any neT,; (4) For each
he H, D, g,(w, t*) is positive-definite uniformly in (w, 1*)e {w: R,(w) <1}
x Ux T,. Furthermore, assume that g is smooth. Then we can prove that,
under these conditions, W(3R) & W— C(T, - R*) is well defined and
smooth [15]. Here, if T< T°, the derivatives with respect to the parameter
are ordinary derivatives.
Put

G(M}a &, Ha 00) = 82/18(14), 03 90)

In this paper we consider the following conditions. Conditions (C1) and
(C4) (or C5)) are regularity conditions. Condition (C2) ensures the
existence of the consistent estimators. By Condition (C3) we confine our-
selves to discussing the locally asymptotically normal experiments.

(C1) For each 0, € @7, the functional G(-, -, -; 0,): W— C([0, 1] x
O — R) is smooth, where G(w, 0, 0; 0,) =lim, |, G(w, &, 0; 0,).

(C2) Foreach (0,0,)e@x0O° G(w,0, 0; 0,) is deterministic (G(0, 0,
0,), say), and for each 6, € O °, there exists a, >0 such that —G(0, 0; 0,) =
ay |0 —0,|* for any 0 e 0.

(C3) For 0, @7, there exist '’ e H, i=1, 2, ..., k, such that

(50(5iG(M}9 Oa 009 00) = fm hg‘l) : dM;s

0
and
cov(9y9,G(+, 0, 0y; 0,), ,0,G(-, 0,043 0,)) =<h', iy H
= —0,0,G(0, 0,; 0,)

fori,j=1, .., k.
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(C4) For 0,€0° and any compact set K = R*, there exists p,>1
such that

sup  E[exp {poe *G(w, & 0y +cu; 04)} ] < o0.
si(e(),Kl)
Op+ecuc O

Remarks 2.1. (1) For a map F: Wx 0 — V, define 1,F: W—V by
(1oF)(w)=F(w, 0). If Fe H’}(C(@ - V), 1,Fe D;l:( V). In fact, 1,F: W— Vis
RAC and SSGD with Di,Fe L?(W —> V), and, hence, we see that
1,F e D;( V) by using the equivalence between Sobolev spaces proved by
Sugita [7]. For this map, 1,DF = Di,F, where the H-derivative on the
RHS is the ordinary one.

(2) G(0,04;0y) =lim, &24,(w, 0y; 0,) =0. Therefore from (C2) we
see that 0,G(0, 6,; 0,) =0, 1 <i<k, and the bilinear form for the Hessian
matrix  (6,6,G(0, 0y; 0y))1 <, j<x 1s negative definite. The matrix
1(0,) = (1) = —0%G(0, 0,; 0,) is called the Fisher information matrix.

(3) To obtain the results in Sections 3 and 4, it suffices to assume the
following weaker condition (C5) in place of (C4):

(C5) For 0,e0° and any compact set KcR* there exist
measurable functions ¢¥ uek,ee(0,1), on S satisfying the following
conditions:

(1) 0<g@ix)<l,xeS.

(i) @i(Fp(w))=1-0(") in D* as |0 uniformly in ueK for
n=1,2,..

(ii) @i (Ff (W) =1-=0(") in D as ¢ |0 uniformly in ue K for
n=1,2,..

(iv) For some p,>1,

sup E[l{q,g(F(go(w)po} exp{ poe 2G(w, &, 0y +eu; 0y)} ] < co.
¢e€(0,1)

ue K
Op+euec®

It is clear that if Condition (C4) holds true, Condition (C5) is satisfied
for 2 =1.
3. ASYMPTOTIC EXPANSIONS FOR LIKELIHOOD RATIO STATISTICS

In this section we present asymptotic expansions for likelihood ratio
statistics. For simplicity denote
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G/; 01502y e iy (50)1 5i1(5i2 e 51',,,G(M}: 09 903 90)
= (50)/51'151'2 "'5,',”G(Wa &, G;HO)L::O, 0=00

for IeN,meN, and i, i,, ..., iy i €11,2, .., k}. We will use Einstein’s rule
for repeated indices. For u = (u) e R¥, let

=G, u' —3Lu'w,
Lou_ 1
f Y= Gz,u—i-zGl,juu—i- Go,,,uufu

Moreover, let

g (x)=ELfT" 1[5 =x].

The distribution function of the normal distribution N(u, ¢2) is denoted by
®(x; 1, %) and its density by ¢(x; u, o%). The differential operator 8/0x is
denoted by &. Suppose 0, € @°. Let B! denote the Borel o-field of R'.

THEOREM 3.1. Let ueR*—{0}. Assume that (C1)~(C3) are satisfied.
Then the distribution of ¢ ~>G(w, &, 0, + eu; 0,) has the asymptotic expansion

P(e72G(w, &, 0y +eu; 0y) € A) ~Lp§’“(x) dx—i—sf plr(x)dx+ -

as ¢l0 for AeB', where pt, p-*“,. are integrable smooth functions
depending on u. This expansion is uniform in AeB'. In particular,

pot(x)=¢(x; =34, J),
pr(x) = —0{g""(x) ¢(x; —3 1, )},

where J=1(0y)[u, u]. The probability distribution function of ¢
0y + eu; 0y) has the asymptotic expansion

2G(w, &,
P(e2G(w, &, 0y +eu; 0,) < x)
~¢(xa _%Ja J)_qu’u(x) ¢(Xa _%J: J)+

as €0 for xeR.

The following theorem gives the asymptotic expansion of the distribution
of the log likelihood ratio statistic under the contiguous alternative P,
As defined in Sections 1 and 2,

Op+¢eu*

8

A(w, 0; 0+ eu) =log —— 1P
0o

S (Foy (W)
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and
G(w, &, 0; 0y + eu) = *A(w, 0; 0y + eu).

Then ¢ 2G(w, ¢, 0, + eu; 0y + eu) is the log likelihood ratio statistic when
the true parameter is 6, + eu.

THEOREM 3.2. Assume that (C1)—(C3) and (CS5) are satisfied. Let
ueR*—{0}. Then the distribution of ¢ >G(w, & 0y+¢eu; 0y+eu) has the
asymptotic expansion

P(e*G(w, & 0y +eu; 0y +eu)e A) ~J pEe(x) dx-l—ef prev(x)dx+ ---
A A

Le,u

as ¢|0 for AeB', where p§-*, pte“,.. are integrable smooth functions
depending on u. This expansion is uniform in A€B'. In particular,

PE0) = 9(x: 1, ),
L) = —0{qh (x) (x; 11 D))+ (x) (L, ).

The probability distribution function of & >G(w, ¢, 0, + eu; 0+ eu) has the
asymptotic expansion

P(e 2G(w, &, 0y +eu; Oy + eu) < x)

~ D 10, T) el —g" ) 0 2L N+ [ g 9z L o)+

— o0

as €0 for xeR.

4. ASYMPTOTIC EXPANSIONS FOR MAXIMUM LIKELIHOOD ESTIMATORS

In this section we present asymptotic expansions for the maximum
likelihood estimator. In the higher order statistical asymptotic theory we
need bias corrections of maximum likelihood estimators. For smooth
function b(#) with bounded derivatives on 0,

0:(w; 00) = 0,(w; 05) — &2b(0,(w; 0,))
is called a bias corrected maximum likelihood estimator. Let
fé) = IiiGl;j;
S1=31"Go+ 17G o+ 51" Goy o 0S5 —D(0,)
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for i=1,2,.., k. Here I=(I,;)=1(0,)=—03°G(0, 0y;0,) and I~ '=(1")=
1(0,) ~'. Moreover, let

4 (x)=ELf} | fo=x]

for xeR* and i=1, 2, .., k. We denote by 0, the partial differential 9/0x",
or 0/0y". The density of the k-dimensional normal distribution with mean
1 and covariance matrix X is denoted by ¢(x; u, 2). Then we obtain the
following theorem.

THEOREM 4.1.  Suppose Conditions (C1)—(C3) hold. Then there exists a
consistent maximum likelihood estimator 0(w; 0,,) for any true wvalue
0, € ©°. The distribution of the bias corrected maximum likelihood estimator
0*(w; 0,) has the asymptotic expansion

Pe (02 (w3 0) = Op) € A) ~ | po(x)dx+e [ p(x)dx+ -

as €10 for AeB*, where p,(x),i=0,1,.., are smooth functions. In par-
ticular,

Po(x) = ¢(x; 0, 1(0) ),
pi(x)=—0,{q,(x) $(x; 0, 1(0,) ")}

This expansion is uniform in A€ B*.

The asymptotic expansions under contiguous alternatives are important
from the statistical viewpoint. For instance, they are useful to calculate the
power of a test with the maximum likelihood estimator. The maximum
likelihood estimator under the contiguous alternative Pj ,,,, ueR*—{0},
is (roughly speaking) defined by maximizing A,(w, 0; 0, + ¢u) in 0 € 6. Let
O(w; 0,4 ¢cu) denote the maximum likelihood estimator under the
contiguous alternative Pj .. As before the bias corrected maximum
likelihood estimator under the contiguous alternative Py ., is defined and
denoted by 0X(w; 0,4+ ¢u). Then we obtain the asymptotic expansion for
the bias corrected maximum likelihood estimator under contiguous

alternatives.

THEOREM 4.2. Assume that (C1)—(C3) and (C5) are satisfied. Then the
probability distribution of the bias corrected maximum likelihood estimator
07(w; 0o+ eu) under the contiguous alternative Py, ., has the asymptotic

expansion

P(e™ (0 0w: 0o +eu) — (B +ew) e A)~ [ pi(y)dy e [ pie(y)dy+ -
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ase|0, AeB*, ueR", where pi*, p$*, ... are smooth functions depending on
u. This expansion is uniform in A€ B* and u e K, where K is any compact set
in R*. In particular,

Py y)=¢(y; 0,171,

pi(y)=—=0qy(y+u) p(y: 0,17 )) +qf“(y+u) p(y; 0,17,
where
g5 “(x)=E[LfT" ] fo=x].
Remark 4.2. By definition
q""(z)=ELq5"(fo) | f5"=2z].

If k=1 and u#0, g5 *“(z) = g™ “(Iuz — 1 1u?).

5. EXAMPLES

5.1. Diffusion Processes Perturbed by Small Noise

Let X*? be a diffusion process defined by the stochastic differential
equation

dXe=Vy (X2, 0)dt +eV(X: ) dw,,  te[0,T],
Xf), v = an

€ (0, 1), where @ is a k-dimensional unknown parameter in ®, T>0 and
X, are constants, V=(V,, .., V,) is an RY@R"-valued smooth function
defined on R?, V, is an Rvalued smooth function defined on R x @ with
bounded x-derivatives, and w is an r-dimensional standard Wiener process.
We consider the parameter estimation problem for 0 from observations
(X% 0<t<T}.

The Radon-Nikodym derivative of Pj with respect to Py, is given by the
formula (e.g., Liptser and Shiryayev [6]):

Ag(Oa X) AS(003 X)ila

where

T
A0 =exp {[ 6 Vi) (X0 ax,
0

T
—gfo e 2 V(VV)* VX, 0) dt}.
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Here A" denotes the Moore-Penrose generalized inverse matrix of matrix
A. We assume that Vy(x, 0)— Vy(x, 0,) € M{V(x)}: the linear manifold
generated by column vectors of V(x), for each x, 6 and 6,.
We assume the following conditions:
(1) V,, Vand (VV')" are smooth in (x, 0).
(2) For neN* with |n|>1,

sup {[0"Vo| + 0"V +|0™(VV') |} < 0.
x, 0

(3) For |v|=1 and |n| >0, a constant C, , exists and
sup [0"0"V,| < C, o1 +]x])
0

for all x.

(4) For 0, €@, there exists a,> 0 such that
T
| DV, 0) = VX2, 00)1 (V) * (X3 )
0
x [ VO(X?’HO; 0)— VO(X(,)’ ®,00)]1dt=a,0—0,|

for 0. (X% is the solution of the differential equation for ¢=0 and
0=0,.)

It is possible to verify the Conditions (C1)—(C3) and (CS5). Then we
obtain, for example, the asymptotic expansion of the distribution of the
bias corrected maximum likelihood estimator under the contiguous

3 &
alternative Pj , .

THEOREM 5.1.  The probability distribution of the bias corrected maximum
likelihood estimator 0(w; 0+ eu) under the contiguous alternative Py,
has the asymptotic expansion

a

0F(w; 0y + eu) — (0 + eu
€

P )eA}ﬁ pé’”(y)dy%f pyi(y)dy+ -,
A A

as ¢l0, AeB*, ueR*, where pi*, p$“,. are smooth functions. The
expansion is uniform in A€ B* and ue K, where K is any compact set in R¥.
In particular,
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Pe (»)=9(y; 0,171,
Py ) =4, L =yyy —ulyy + Iy + '] $(3; 0,171
+B, ;[ =3y —uyy + I + T ] (0,171
—b(00)” Lyy'$(y: 0,171,
where A; ; ; and B, ; , are constants determined by V,, V, x,, and T.
For details see [ 12].

5.2. Models with a Discrete Time Parameter

A Gaussian AR(k) process (X %) with small noise is defined by

do(B) Xi=¢e,, t=k,k+1, . k+n—1,

XE=X0, s X 1=Xi_1, ee[0,17,
where ¢o(z)=1—¢oz— --- —dsz", ¢ eR, B is the backward shift
operator, Xxg,.., X,_; are constants and e, ~N(0,1) independently.

We may construct this AR(k) model on the Wiener space if we
take e,=w(t—k+1)—w(t—k) for t=k k+1,.,k+n—1. Let ¢(z)=
1—¢'z— ... —¢*z*. Then we have

Gln,e.dido)=—¢ 3 (9(B)—ho(B) X' e,
1Y [(4(B)—do(B)) X2

Let X? denote the solution for ¢=0 and ¢, Assume that
kKrn=1(¢(B) X)?>0 for ¢ #¢,. It is not difficult to verify Conditions
(C1)—(C4).

ExampPLE (AR(1) process). Let X¢,t=1,2,..,n, be defined by the
difference equation

X —0,X7_ =¢e,,
Xo=Xg,

where ¢€[0,1], x, is a constant, x,#0, and {e,r=1,2,..,n} is a
Gaussian white noise with E[e,] =0 and Var(e,)=1. The experiments
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generated from this model can be realized on a Wiener space if we take
e,=w(t)—w(t—1). Then

Gw, &, 0;00) =2 Y, (0—00) X e, =1 Y (0—0,)> X2 .
t=1 =1
We have
1(00)=x3 >, 032,
t=1
X?:‘XOH(I);
and
Xi=x,0;+eD,,
where
a d t—1
Dy=0,D,=|~ Xf:z 0o ‘e t=1,2,..,n
de/, =

Also we have

n n
_ 0 _ t—1
G.i= ), X\ _e,=) xo04 e,
t=1 t=1
n n t—1
_ _ t—[1—1
Gy1=2) D, 1e,=2) ) 0 €€,
t=1 t=21=1
n n t—1
0 20—1-2
Gii=—2) X? D,y =-2) ) x05 e,

r=1 t=21=1

Go; 1,11 =0.

From these equations, we obtain

n
So=1""x X 05 ey,
t=1
n t—1 n t—1
[i=17"% ¥ 07 " ee, =21 xg 3 Y 07 e, fo—b(0y)",
t=21=1 t=21=1
n
fo=xo X Oy teu—s I,
t=1
n t—1 n t—1
fle=3 3 05" teeu—xy Y, Y 05 et

t=21=1 t=21=1
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Let (a,), t=1,2, .., n, be a finite sequence of real numbers. Then

E{e,

t=1

where |al|*=Y"_, a7, and

|:er7 et

Z ] 0, t llall~
Let
a,=x,I'0,".
We then have
=E[f1|fo=x]

n

=—xgl ") (t—=1)05 (x*+1"

t=1

and

4y "(xX)=E[fT" | fo=

n
5 a,e,=x} — a2 ax,

1)7

a(x*—|al?).

b(0,)'

=x; Z (1—1) 05 *(x*u—1"u—xu?).

t=1

Put

c=x5 Y (t—=1)03°.

=1

Then we have the asymptotic expansions:

PLe™"(0F(w; 00) — 0) < x]

~D(x;0, I Y +e[I ex*+12c+b] ¢(x;0, 1!

Ple="(03(w; 0y +eu) — 0y —eu) < y]

~@D(y; 0,17 ) +e[ I ey’ + 1 Pcuy+1c+ b1 ¢(y; 0,1~

Ple2G(w, &, 0+ eu; 0,) <x]

~D(x;0,J) —ec[ I 2u='x> =T 'u—1""'ux] ¢(x;0,J) +

Ple 2G(w, ¢, 0+ eu; 0y + eu) < x]
~D(x;0,J)—ec[ I 2u"'x* =T 'u] ¢(x;0,J) +

where x=x+4J,x=x—1J and J=Iu*.

1)+
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In a similar way we can treat nonlinear time series models such as
X, :ft(X()a e X1, 0) + gt(get)a

where f, are given functions and g, are transforms of R. AR models are of
this type. Another example is estimation for a signal from contaminated
observations X, given by

X,=8S,00)+ ee,, t=1,2, .., n

If for some a>0,3,(S,(0)—S,0y)>=al0—0,|>(0,0,€0), then we
may obtain the asymptotic expansion for the maximum likelihood
estimator.

5.3. Second-Order Asymptotic Efficiency of Maximum Likelihood Estimators
We return to the general model defined in Section 1. For simplicity, let
k=1.
An estimator T, is said to be second-order asymptotically median
unbiased (second-order AMU) if for any 6, € @ and any ¢ >0,

lim sup & '|PYT,—0<0]—1%|=0

el0 0e@:|0—06)| <ec
and

lim sup 6_1|P?)[T:79>0]7%|:0

el0 0e@:|0—0¢| <ec

See Akahira and Takeuchi [1].
Given a second-order AMU estimator T,, if

lime " [Py [e (T, — 00) <ul— Golu, 0) — 6Gy(u, 0,)| =0,

el0

then Gy(u, 0,) + ¢G,(u, 8,) is called a second-order asymptotic distribution
of T,.

Now consider testing hypothesis H*:0=0,+¢eu against K:0=20,,
where u is any positive number. Let ¢,=1J +¢p +¢,, where

(1/2) 7

P=q"" D) =/ [ ) $z b d

and

qc:83/2+¢(0; 0; J)_l |P£ [E_I(TC—QO—SM)SO] _%|

0o+ cu
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Hence, ¢, =o0(¢). From Theorem 3.2, we see
Ple2G(w, &, 0y +eu; 0y + cu) < c,]

=1+ed(0,0,J)p+e {—qL’ “(17)¢(0;0,J)

[ g o
+4.9(0;0,J) + O(&?).
Then we have
Ple?G(w, &, 0+ eu; 0y +eu) <c,]>Pj . [e (T,—0,—eu)<0],
and by Neyman—Pearson’s lemma

Ple?G(w, &, 0+ eu; 0y) <c,]1= P [e (T,—0,) <u]

for small ¢. Therefore, by Theorem 3.1 for u >0,

(1/2)J
lim inf e~ {@(;J; 1y, J)—ge’(l/z)Jf qb(z) ¢z 1 0, T) dz

—PZ"[S*I(TS—GO) <u]}>0.

Similarly, for u <0 we consider testing hypothesis H ~: 0 =0, + eu against
K: 0 =0,. Define ¢, as above with the same p and

g =+ 9(0;0,0) " [Py, L& (T, — 0y —eu) =07 — 4.
Then, again by Theorem 3.2, we see
Ple°G(w, &, 0+ eu; Oy +eu) <c, 1> P . [e (T,—0,—eu)>0]
for small ¢, and by Neyman—Pearson’s lemma
Ple2G(w, &, 0+ eu; 09) <c, 1= Pj[e (T,—0,)>ul,

or equivalently

1—PleG(w, &, 0g+eu; 0)) <c, ] <Pj[e (T,—0,) <u]
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for small &. Consequently, we have for u <0
(1/2)J

lim sup & ! {@(—;J; 17, +ge*<1/2>fj qEz) Pz 10, T) de

el0 — 0

—Pj[e (T,—0,) SM]} <0.

In this sense

1 1 —(1/2)J w2 L.ou 1
(LT, —1 T, J)—ze [ g ez b d

for u >0, and
(12)J
O R I T O ES WA P

for u<0 are called the bounds of second-order distributions. An AMU
estimator attaining these bounds for any u>0 and u<0 is said to be
second-order efficient.

PropOSITION 5.1. Let dim(®@) =1 and assume Conditions (C1)—(C3) and
(C5) (or (C4)). Then the second-order AMU bias corrected maximum
likelihood estimator is second-order efficient.

Proof. From Theorem 4.2 we have

P(e™(03(w; 00 + eu) — (0, + u)) <0)
0
~Le| —ah 900,17 )+ [ gh () g0, 1) dy |+ oo

Therefore, for the second-order AMU bias-corrected maximum likelihood
estimator 0F(w; 0,),

0
—g) §(0: 0,17+ [ gb(y+u) §(r: 0,171 dy=0
and
ai) $(0:0.17) + [ g (4w 63 0.1 dy =0,

From Theorem 4.1, it is not difficult to show this bias-corrected maximum
likelihood estimator attains the bounds of the second-order distributions.
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ExampLE. For the diffusion process of Section 5.1 with k=1, the bias
corrected maximum likelihood estimator corresponding to

b(()o) = _Al, 1, 11(90)72

i1s second-order AMU and therefore second-order efficient.

ExampPLE. Consider the AR(1) model in Section 5.2. If
b(0g) = —17c.

the bias-corrected maximum likelihood estimator is second-order AMU
and therefore second-order asymptotically efficient, which is the con-
sequence of Proposition 5.1 or is proved by comparing the bounds of the
second-order distributions with the expansions above for the bias-corrected
maximum likelihood estimator.

6. PROOF OF THEOREMS 3.1 AND 3.2
To show Theorem 3.1, we prepare two lemmas.

LEmmA 6.1. Assume that (C1) and (C2) are satisfied. For any compact
set KR e 2G(w, ¢, 0+ eu; 0,)) has the asymptotic expansion

e 2G(w, e, O0g+eu; 0p) ~fo +ef v+ L+ ..

in D* as ¢ |0 uniformly in ue K with f&*, f="*,..e D*.

Proof. We can prove this lemma from (C1) and the Taylor expansion
using G(w, &, 6,; 0,) =0 and 6G(0, 8,; 6,) =0.

The sequence (P, ,,,) is contiguous to the sequence (Pjp) (Le Cam
[5]). From (C3) the Malliavin covariance of 6,0G(w, 0, 0,; 0,)[u] 1is
1(0y)[u, u]. From Lemma 6.1 we see the Malliavin covariance g,(e) of

e2G(w, ¢, 0, + eu; 0,) has the asymptotic expansion
gole)~J+eg +eg,+ -

in D* as ¢|0 with g,,g,,..e D, where J=1(0y)[u,u]. The Wiener
functional Y= “(w) =y(c |og(e) — J|?), c=(J/2) % can be used as truncation
for nondegeneracy of the Malliavin covariance. Thus applying Theorem
4.1 of [13] (or refer to Proposition 6.2 of Takanobu and Watanabe [ 8],
Yoshida [ 12, 14]), we have the following lemma.
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LEMMA 6.2.  Assume that (C1)~(C3) are satisfied. For ue R* —{0}, the
generalized Wiener functional

UEw) (e *G(w, &, 0y +eu; 0,)),
AeB', is well defined and has the asymptotic expansion
YyE(w) (e 2G(w, &, O+ eu; 0p)) ~ P g+ DLt + -+

in D=7 as ¢ |0 uniformly in AeB' with @44, 44, ..e D=~ determined
by the formal Taylor expansion

L{fe"+el/T"+e/3"+ - ])
1
=S LA b T
where 0= 0/0x. In particular,
DLo=Lf5"),
PL=f L L5

Proof of Theorem 3.1. From Lemma 6.2 and the fact that > “(w)=
1—0(e") in D” as ¢ |0 for any ne N, we have the asymptotic expansion

P(e2G(w, &, 0y +eu; 0y) € A) ~ E[L®L 61+ eE[ L]+ -

as ¢ | 0. Using the integration-by-parts formula in the Malliavin calculus we
see that

E[@51=E[®LL(f5")]
for some qsﬁ;;‘ e D”,i=0, 1,.. Consequently, each term in the asymptotic

expansion is represented by an integration of some smooth function pX “(x)

over A. We only have to calculate p{-* and pi-“. p5-* is easy. As above

integration-by-parts yields

E[@51]1=E[/T"0L(f5")]

= B[O/t LiS§] = | pt) .
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where ¥(w;f1*) is a certain smooth Wiener functional and pi*“(x)=
E[P(w; [T | fE&“=x]ps“(x) is a smooth function. If 4 = (x, ©),

E[fT 0L(f¢")1=ELST"0.(/5") ] =EL/T" /5" =x]pg“(x).

Therefore,

pr(x)=—{EL/T" /5" =x]pg"(x)}.

Next, we discuss asymptotic expansions under contiguous alternatives.
Condition (C5) is assumed.

Lemma 6.3.  Assume that (C1)—(C3) and (CS) are satisfied. Let 0, € @°
and let K be any compact set in R*. Then there exist Wiener functionals
@X(w)e D™, ¢€(0, 1), such that the following conditions are satisfied for
@F(w) and ¢-"(w) := @ (w) @ (F(w)), ue K:

(i) 0<PX“m)<pXw)<l.

(i) For any neN,@X(w)=1-0(") in D* as ¢|0, and also
dE“(w)y=1—0(e") in D as &0 uniformly in ue K.

(iii) If Wiener functionals (!(w) depending on ueK satisfy
ET|(8w)—11P]1=0(e") as €| 0 uniformly in ue K for any p>1 and any
neN, then

ELIC(w) = 1] @ (Fg(w)) exp{e ~G(w, &, 0y +eu; 0,)} ] = O(e")

as €0 uniformly in ueK for any neN. In particular, for any neN,
uniformly in ue K,

EL ¢ “(w) — @ (F(w))| exp{e =>G(w, &, 0y +eu; )} 1 = O(&")

as ¢ 0.
(iv) For any p>1,
sup  E[ 1,50y Xp{pe >G(w, &, 04+ eu; 0y)} ] < 0.
ee€(0,1) )

ue K
Op+cuec®d

Proof. Let
pu)=e2G(w, & 00+ eu; 0p) — 9g0G(w, 0, 05 Op)[ ] + 5 1(00)[u, u].

Choose r>0 so that K< B(r), where B(r)={ueR"; |u| <r}. Let y,(w)=
1P 2my (W 2(B(r)) is a Sobolev space. For definition see
Section 7.) and let @X(w)=1,(y,(w)), where ¥,: R > R is a smooth function



MAXIMUM LIKELIHOOD ESTIMATORS 21

which satisfies the same conditions as y and also satisfies that y,(x) >0 if
|x| < 1. Thus (i) holds. By the Taylor formula

1(]—g)2
puy=s [ U2

a 3
R <> {G(w, t, 00+ tu; 0,)} |,_, ds.

ot

Therefore it is easy to show (ii) using (C1). If X(w) >0, x,(w) <1 and by
Sobolev’s inequality sup,.p,,|p(u)l <a for some a>0. Hence, if
@K (w) >0,

exp{e *G(w, &, 0o+ eu; 0,)}
<exp{éf)éG(VV’ 05 00) 00)[“] _%I(BO)[M’ u] +a}

By (C3), 0,0G(w, 0, 0,; 8,) is Gaussian and we obtain (iv). For ¢,=
Do/(po—1) and any neN, E[|{¥—1]%"] = O(¢"). Therefore, we obtain the
first equation of (iii) using (iv) of (C5) and the Holder inequality. Taking
(w)=@X(w), we obtain the second one. |

We fix @X(w) as in the proof of Lemma 6.3.

Lemma 6.4.  Assume that (C1)—(C3) and (CS) are satisfied. Let 0, € @°
and let K be any compact set in R*. Then, for ue K,

(1) ¢F“(w)exp{e *G(w, & 0o+ eu; 0,)} has the asymptotic expansion
B (w) exple 2G(w, & O+ eu; 0p)} ~ /0" (1 + e Y+ P4+ )
inD* ase | 0with Py, V?%,...e D” determined by the formal Taylor expansion
exp{eff +efhv+ - b =14+e¥Pi+ P+ .

This expansion is uniform in ue K

(2) Suppose that @,(w,e)eD = (resp. D=%), ¢€(0,1), Led (an
index set) has the asymptotic expansion

D,(w,e)~D, o+, |+ ---

in D= (resp. D=%) as ¢ |0 uniformly in ie A with @, ,, ®
(resp. D~=). Then

1 €DT™

s

X “(w) exp{e 2G(w, & 0+ eu; 04)} D, (w, €)
has the asymptotic expansion

G5 (w) exp{e2G(w, & Oy +a1; 00)} ®(w, &) ~ 0 (B 48Py + )
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in D”* (resp. D=*) as elO uniformly in ueK and ied with
DY, DY |,..€e D™ (resp. D~ =) determined by the formal Taylor expansion

(1+eP{+P5+ - )P, o+eD,  + -+ ) =Py (+eDY |+ -+
In particular,
53,02@1,0
53,1=¢A.1+¢A.09ﬂ1{-
(3) Let ueR*—{0} with ue K. Then
dE“(w) exp{e *G(w, &, Oy + eu; 00)} Y2 (w) L(e >G(w, &, 0y + eu; 0,))
Nefg'“[cfﬁ:g—i-ei)j:'f—i- -]

in D= as & | 0 uniformly in AeB" with &%y, ®4:4...e D~ determined by
the formal Taylor expansion

(1+eP{+P5+ - )DL o+ed i+ - ) =D +edl Y +
In particular,
PLo=Ls,  PRI=PLYH/TIPLL.

Proof. Using Lemmas 6.1 and 6.3 (iv), we obtain (1) as in the proof of
Lemma 4.5 (2) of [12] (Note that for any meN, D"¢p5*(w)=
D"¢% “W) - Iy gK oy =0y)- (2) follows from (1) and Theorem 2.2 (ii) of
Watanabe [11]. Lemma 6.2 and (2) lead us to (3).

Proof of Theorem 3.2. By (iii), (iv) of (C5), Lemmas 6.3, 6.4, and the
fact that Y2 “(w)=1—0(&") in D* for any ne N, we have

P(e2G(w, &, 0o+ eu; Oy +eu) e A)

dPI: U &
— | 1, (log T (15, ) )|
0o

dpP;,
~E| 9o 1 (log T () )|
0o
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dP;
— | g 1, (log s ()
0o

x exp{e 2G(w, &, 0o+ eu; 0,)} ]

f~E[¢< o (0) L) <bgdp%+W(Faw»ﬁ

dP;

xexpi{e *G(w, ¢, 0o+ eu; 0,)} ]

~E{q§f< “(w) exp{e >G(w, &, Oy +eu; 00)} Y2 (w

d 8
(1o T (r ) )|

~e[e/V'BL U] 4 eE[e/V BT + -

Le,u

The rest is finding p{“* and pi=“. We see

E[e/(l{uq—sﬁ:,é]zE[efé”lA( OL)u)]—J‘ EXPOLM )dXZJ ¢(X 1
A

and for 4= {y;y<x}:
E[e/v' @]
= ELe/M (@541 2]
= ELe/V (f 0L + 1 4 (£ 5 )]
= —E[e/Vf 1 s (fE )]+ B[V FL L (f5)]
= —E[e/VfPu | fhv=x] pl(x)

[ BRG] ph ) d
= ELfE B =x] e 1)

+[ BRI 60 1)) d

Therefore,

pit(x)=—0{ELfT" | fo"=x]1¢(x; 3, D)}
HEL/T 1 fe =x1d(x:3J.J).

)1

J) dx
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7. PROOF OF THEOREMS 4.1. AND 4.2.

In general we cannot ensure the existence and smoothness of the maxi-
mum likelihood estimators on the whole Wiener space, but it is possible to
extend them to smooth Wiener functionals by multiplying a certain trunca-
tion functional. We begin with constructing such a functional for the maxi-
mum likelihood estimator.

Let 4 be a bounded convex domain in R*. Let m, n,je N satisfy
m>ky/2n+j. Then we know that the Sobolev space (W™ ?'(4),
[+ | w2 4y) is embedded by a compact operator into Cj(4), the totality of
continuous functions on A4 with bounded continuous derivatives up to the
jth order, equipped with the norm

Il = 3 sup |0, f(0)].
veNko, |v|<j O0e4

Here the multiindex is defined similarly as in Section 2. In particular, for
some C(m,n, 4)>0

Hf” Cl(4) < C(’”, n, A)HfH W 2n( A)

for fe W™ 2(4).
Take y so that O <y <3. Define ®'=(0,1)x ©° and F' by

F'(w, e (n,0))=F(w,ne, 0), (n,0)e®’

for functional F(w,e,0) on Wx[0,1)xO0° Let m,, n,eN satisfy
my> (k+1)/2ny+ 2. The derivative operator with respect to # is denoted
by J,. For 0, €07, ¢>0, and £ (0, 1), let

Ri(w)=c||G'(w, ¢, -;0,)—G'(0, -; 90)“%/;3101"0(@')
+c |'gl 727(505G), (w, & (-, 00); 90)|2 H%/VI 2((0, 1))
and let R§(w)=0.
LeMMA 7.1. Assume that (C1) and (C2) are satisfied.
(1) ForleN,veM and p>1,

Sup HéfyévG’(M}a &, (779 6)9 00) _65751'G’(05 (’79 0)5 HO)H

(n7,0)e®’

< CI(L vap) 81\/ 13

p.0

e [0, 1), for some constant C\(L, v, p).
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(2) Let myneN. For p>2n, there exists a positive constant
Cy(m, n, p, ©") such that

G (w, & -5 00) = G'(0, -3 Op) | wn2u01) | 0 < Colm, m, p, O7) - &

for ee[0,1).
(3) ForleN,veN<*! and p>1,

sup H5575\75G,(M;7 & (’77 0)7 00)“[), 0 < C3(Za vV, p)

(n7,0)e @
¢e[0,1)

for some constant C5(1, v, p)>0.
(4) For p>2 there exists constant Cy(p, k) >0 such that

[11(690G)" (w, &, (-, By); 90)|2 [ . 2((0, 1)) Hp,o S Cyp, k)< oo

foree[0,1).
(5) Fora>0,c>0, and neN, P(Ri(w)>a)=0(e") as ¢ 0.
(6) If Ri(w) <1, then

HG(Wa 8’9 ) 00) - G(Oa " 00)”(‘%(@) < C(mO» no, @’) c
for 0<e' <e, p,=1/2ny;

sup |61727(505G)(M}3 ne, HOa 00)' < C(la 19 (Oa 1))1/2 C71/4;

7€(0,1)

and
|8’_2y5G(W7 ‘9,’ 007 00)| < C(la 17 (07 l))1/2 C_l/4

for 0<¢' <e.

Proof. (1) ForveM and p>1,

Sup HévG’(M}) &, (77) 9)’ HO) _5VG,(M}5 0’ (’77 8)7 HO)”[),O

(1,06’
= Sup HévG(Wa e, 99 00) - 5VG(W5 Oa 09 00)”1},0
(n,0)e 0’
1
= sup nef (000,G)(w, sne, 0; 0,) ds
(7, 0)e 0’ 0 P, 0

1
< sup_ e[ 1(600,G)(w. sz, 0: 00) .0 ds

(1.0)c 0’

< Cl(oa V;p) 85
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ee[0,1), by (Cl). Since

égévG,(W; 07 (77’ 9)7 90) = 0
for/>1,

sup ”5175LG/(W3 &, (’79 0)’ HO) _525\YGI(M}’ 09 (;7’ 6)’ 60)“1},0

(n,.0)e®’
= Sup Héfx/évG,(W’ &, (’73 6)’ 00)”p,0
(n,0)e 0’
= sup [&'(969,G)(w, e, 05 0) .0
(n,0)e @’

< Cl(la v, p) 8[9
e€[0,1), by (Cl). This shows (1).
One has (2) form (1), (3) form (C1), and (4) from (3), respectively.
(5) For p>2n,,
P(R{(w)>a)=P(c ||G'(w, &5 00) — G'(0, 5 0) | 5. 20006
+clle' =*(3,0G) (w, &, (-, 0); QO)IZH%/VLZ((O, ks a)
S P([G'(w, & -5 00) = G'(0, -3 00) | fymo. 200y > (27 'ac=1)7270)
+P([[1(690G)" (w, & (-, 0,); 00)|2H2p€1-2((0, 1))
> (zflacfl)p 87411(1 72))))
< (271ac71)7p/2n0 CZ(m09 n()»pa @/)p Sp
+(27\ac 1) TP Cy2p, k)P R,
¢€(0, 1). Let p >max{2n,, n/4(1 —2y), n}, which completes the proof.
(6) If RYw)<1, by definition we see that
1G"(w, & -5 00) — G'(0, 5 00) | ymo. 2000y < €~ 270
and
Ile' =27(600G)" (w, &, (-, 0,); O0)|? | w20, 1) S c 2

By Sobolev’s inequality

[G'(w, e, -5 00)—G'(0,-; ‘90)”C§(9') < C(my, ny, O) ¢
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and
Ile' =(60G) (w, &, (-, 00); 00)I* ] 0.1 < C(1, 1, (0, 1))e 12,
from which we have the first two assertions. Finally, since 6G(0, 8,; 6,) =0,

sup &' ~70G(w, &, 0g; 0o)| = sup |(e) = 3G(w, ne, 0,3 0|

O0<ée' <e¢ 0<y<l1

1
< sup (ne)' 7 [ 1(600G) (o, g, 0y 00)] ds

0<y<l1

1
< sup [ [e'2(800G)(w, sz, 003 00)] ds

0<y<1'0
<C(1, 1,(0, 1) 2 e
from the above result. ||

The functional R{(w)eD* for ¢>0 and e€[0,1). Let 4, denote
the minimum eigenvalue of the positive definite bilinear form [(6,)=
—0%G(0, 0,; 0,). Choose ¢, >0 and d, >0 for 0, € ©° so that

<t (7.1)
and
|62G(0, 0; 0,) — 5°G(0, Oy; 0,)| < ¢, (7.2)
for |0 —0,] <d,. Next, take ¢ > 0 large enough so that
C(my, ny, ©')c "' <min{ § 4, aod;} (7.3)
and
d,C(1,1,(0, 1)< g Ay, (7.4)

where p, =1/2n,. Let y,(w) =0 if & >d, and y (w)=y(R}(w)) if e" < d,.
The following lemma ensures the existence and the smoothness of the
maximum likelihood estimator under truncation.

Lemma 7.2. Assume that (Cl) and (C2) are satisfied. Suppose that
positive constants ¢, d,, and c satisfy (7.1)-(7.4). Then

(1) For each ¢€[0,1), the functional w— iy (w)e D and 0<
Y (w) <l

(2) If ¢<d, and Ri(w)<l, there exists a maximum likelihood
estimate 0,(w; 0,).
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(3) 6%°G(w, &, 0; 0,) are uniformly negative definite. More precisely, for
10—0,]<d,,

sup 0°G(w, ¢, 0; 0,)[&, E]1< —34,
[gl=1

if e <d; and R(w) < 1.

i (4) If ¢'<d, and Riw)<]l, the maximum likelihood estimate
0,w; 0,) is a unique solution in {0:10—0,|<d,} of the equation
oG(w, ¢, 0; 0,)=0.

i (5) O.w;0,) can be extended to a functional on W and (w)
0.(w; 0,) e D*(R").

(6) For any neN,y (w)=1—0(&") in D* as ¢ 0.

Proof. (1) is easy to show. We verify (2), (3), and (4). For £ e R* and
0eB,|0—0, <d,,

3’G(w, &, 05 0,)[ ¢, &]
<%G(0, 095 00)[ &, E1+ [0°Gw, &, 0; 0,) — 97G(0, 0; 0,)] |€]*
+16%G(0, 0; 0,) — 5°G(0, Oy; 0,)| |¢]?
<(—2A,+ Clmg, ng, O') c 7' +¢y) |E|?
<(=T+g+3) A €17
=—3h &P
from Lemma 7.1(6), (7.1), (7.2), (7.3) if R{(w) < 1. Then

sup e~ 7G(w, &, 0; 0,)

£7<10—00] <d

< sup e"6G(w, &, 005 00)[0—0,]

e’ <|0— 00| <d

+  sup e T¥PG(w, e, 0, 0,)[0—0,, 0—0,]
£7<10—00| <dy
0 —00] <di

<dl C(ls 19 (09 1))1/2 C71/4

+ osup 3e (=34 10— 0,1%)

£7<|0—00] <d

1
<—54, <0
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from Lemma 7.1(6) and (7.4) if R{(w)<1. On the other hand, from (C2)
and (7.3),

sup  G(w, ¢, 0;0,)

d1<10—0o|

= sup [G(0,08;0,)+(G(w,e 0;0,)—G(0,0;0,))]

d1<10—00]

< sup (—=ag |0—0,1?)+ C(mg.ng, ©') ¢~
d1<10—00|

< —aydi+ C(my-ny, ©') ¢ 7!

<0
if R{(w) < 1. Thus we obtain

sup  G(w,& 0,0, <0

e’ < |0—0¢|

if &2 <d, and R{(w) < 1. This shows that a maximum likelihood estimate
exists in |0 —6,| <e&’. Moreover, for |0 —0,|<d,,

sup 0°G(w, &, 0;0,)[&, £1< — 34,

g =1

if &<d, and R{w)<1, as shown above, so that 5°G(w, e, 6;0,) are
uniformly negative definite and, hence, the maximum likelihood estimate is
a unique root in {6; |0 —0,| <d,} of the equation dG(w, ¢, 0; 0,) =0.

For each /e H, constructing versions G, 55:,, etc. and R3 naturally,
we can show (5) [15].

Finally, by Lemma 7.1 (5) and applying chain rules with respect to
H-derivatives to (R(w)) we obtain (6). [

Remark 7.1. We can also prove that if ¢ <d, and R¢(w)<1, then
for 0<é& <e the maximum likelihood estimate 6,(w;6,) exists in
{0, 10—0,] <&’} and is a unique solution in {0; |0—0,|<d,} of the
equation 0G(w, &', 0; 0,) =0. Moreover, for |0 —0,| <d,,

sup 6°G(w, &', 0; 0)[ &, E1< —34,.

[g1=1

For each ¢e(0,1), ¥, (w)0.(w;0,) is a C([0,e] - R¥)-valued smooth
functional.
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LEMMA 7.3.  Assume that (Cl) and (C2) are satisfied. Then
W (w) e N(0x(w; 0,) — 0y) € D*(R¥) has the asymptotic expansion

Waw) &= (03(w; 00) — 00) ~ fo+&fy +

in D*(RX) as & | 0 with f,, f;,...e D*(RX).

Proof. Suppose that &5 <d,. Let R;(w)<1. Then, for & &' <g,, there
exist &(|&—¢| < |¢' —¢]) and 0,10,—0 (w 0o)] < 10,(w; 04) — 0,(w; 0,)]) for
which

0= 5G(M}a 8,, éa’(M}; 90)! 00) _5G(M}> &, él:(uj; 00)5 00)
l ~ A A
= f 0*G(w, &, 0,; 00) ds[0,.(w; 05) — 0.(w; 00) ]

+3,0G(w, & 0,(w; 0,); 0,)(¢ —¢).

From this equation, Remark 7.1 and (C1) we see that if 0 <& <e¢,, 0,(w; 0,)
is continuous in ¢ and differentiable in &:

500,\1:(“}; 90) = - [52G(M}9 &, é{(Wa HO)) HO)] ! 505G(M}3 &, és(M}; 00)9 00)
Since both sides are differentiable,

530” (w; 0,)

5 00)] - 5(2‘)5G(M}> &, HAL‘(M}; 00)! 00)
s 00)] - 53G(M}7 &, 0"8(11}; 00)9 00)[ i) 600£(Wa 00)3
3 6o)

if 0 <e<eg,. The higher order derivatives with respect to ¢ also exist and
can be calculated in a similar way. We note that if R (w) <1, 0. (w; 0,) is
the unique solution of the estimating equation and smooth on [0, ¢,],
which is a consequence of the choice of R (w). See Remark 7.1. Then we
have the expansion

2

0.5 00) = B+ 22 (3)o 0.3 00) + 2 (90)3 0. 6) +

j7
&} A

N '
] (Go)d™ " 0.(w; 0) + ¢} L = (1—s)/~1
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It is not difficult to show from this equation that

W(w) 371(08(“’; 0y) —0o)

1 A o
90 1 80D 0.0 00) +.00) 37 (60)3 0.0: 0) + -
1 A N
NT!(&))O@ (w; 0,) + 2, (50)(216-(W§ 0o) +

in D*(R*) as ¢ 0 since Y (w)=1—0(&") in D as ¢ |0 for neN. |

Let aX(w) = (g% (w))* -1, 0<e&<1, denote the Malliavin covariance of
Y (w)e ' [0X(w; 0,) — 0,], that is,

aXi(w) = (D, (w) e [OX(w; 0,) — 0,1},
D{y(w) e '[0X(w; 0,) — 0,17} >

for i, j=1,2---, k. Similarly, define o ,(w) for ¥ (w) e '[0,(w; 0,) — 0,].

Lemma 7.4. Assume that (C1)-(C3) are satisfied. Then for 0,€®°,
€ (0, 1), and c > 0 satisfying (7.3) and (7.4), there exists a Wiener functional
E(w) with the following properties:

() 0<é(w)eD™.
(2) IfEm <1, R¥(w) <1
(3) There exists positive constant a, such that if & (w)<1,

mf oXw)[v,v] =a.
\LU\EEI

for any ne N,

lim & =" P(|¢,(w)| > 3) =0

)
Proof. For e<min{d|”, (2 ||6b||..)~"?}, ¢;>6¢, and ¢5> 0, let
&2 (w) = RA(w) + ¢ [la(w, & -) — 1(0,)|? sz;}”l-zm(um <1})
where a(w, &, u) = ([a(w, & u)]"); ,_, with

[o(w, & u)]7=<e"'D,G(w, & 0y +&"u; 0,), e~ 'D6,G(w, & 00+ &"u; 0) > 1y
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for ueRX, |u| < 1. Let &2 =2 for other ¢. Let m,, n, e N, m; >k/2n, + 2.
Define & (w) =& “(w). Assertions (1) and (2) are trivial. If £ <1 then

Sup |O-(W» 85 u)_1(00)| < C(ml’ nls {|u| < 1})1/2 c;l/4n1’
ul <1
sup |0°G(w, &, 0, + &'u; 0,) — 5°G(0, 0,; 0,)| < C(myg, ny, @) c; 7' + ¢,

lul <1

and
sup |&20b(0y +e"u)| <3

lul <1

for |ul<1,e<min{d”, (2 ||0b||..)~"?}. We know that the Malliavin
covariance
o, (w)=[02G(w, &, O,(w; 0,): 0,)]1 " a(w, &, ¢ 7(0,(w; 0,) — 6,))
x [62G(w, &, 0,(w; 0,); 0,)] "
and
a(w) = (L= &3b(0,(w; 00))) 0, (w)(1 — £°0b(0,(w; 0,)))
if £,(w) <1 since then (w)=1 and Dy (w)=0. Thus if we choose ¢,, ¢4

large enough, (3) holds.
Finally we show (4). The Malliavin covariance of d,0G(w, 0, 8,; 6,) is

1(0,). We have
e 'DOG(w, ¢, 0+ e"u; 0y) = D3y 0G(w, 0, 04; 0,) +&7r (u),

where r.(u) is given by the Bochner integral
1
riw =2~ [ (1=n)(DS3OG)(w, ne, O+ &7 00) iy

0

1
+ [ (D6,0°G)(w, 0, Oy + se7t; 0) ds[ -, u].
0

From this fact we obtain (4) by estimating the Sobolev norm of the

difference of Malliavin covariances.
n__ ny nj
, a"=a'l'---aj* for

For multiindex n=(ny, .., n.), let nl=n,!-..n,
aeRF and 9"=07" ... 0%, where 9,=0/0x",i=1, ..., k.

LemMmA 7.5. Assume that (C1)—(C3) are satisfied. Then the generalized

Wiener functional

Y(EW) L (w) e~ (0X(w; 05) — 0,)),
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AeB*, is well defined and has the asymptotic expansion

Y(EW)) Labo(w) e (BF(w; 00) = 00)) ~ Dy o+ 6Dy s + -

in D=% as & | 0 uniformly in AeB* with @, o, @, ,...€ D~ determined by
the formal Taylor expansion

1
L(fo+el fi+efs+ - ])=Zn—!8"1A(f0)[8f1+82f2+ SR
=D, 0teP, +

In particular,

¢A, 0= IA(fO):
gDA, 1 :filaiIA(fo)'

Proof. We obtain the results from Lemmas 7.3 and 7.4 above and
Theorem 4.1 of [13].

LEmMMA 7.6. For A eBF,

ELS{0i 1] =] palx)dx.

where

pi(x)=—=0{q}(x) p(x: 0, 1(0,) ")}

Proof. Using the integration by parts formula in the Malliavin calculus,
for some smooth functional F(w, f;) we have

ELS{ 8L f0)] = ELFOn /) Lifo)] = [ pi(x) do,

where
pi(x)=E[F(w, f1) | fo=x1(x; 0, 1(05) ).
To get p,(x), let A, =[x', 0)x --- x[x¥, 00). Then
pl(x):(_l)kal "'akE[fiaiIAx(fO)]
= —O.ELS10.(fo)]
= —0AELS1 ] fo=x16(x;0,1(0,) ")} 1
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Proof of Theorem 4.1.  We obtain Theorem 4.1 from Lemmas 7.5 and 7.6.

Next, by Lemmas 6.4(2) and 7.5, we have the following.

Lemma 7.7. Assume that (C1)—(C3) and (C5) are satisfied. Let 6,€ ®°
and let K be any compact set in R*. Then

F“®&(w) =95 “(w) exp{e >G(w, ¢, 0y + eu; 0,)}
XY(E ) LW (w) &= (0F(w; 0p) — 0))
is well defined and has the asymptotic expansion

Fefm V(@ ety o),

in D=* as ¢| 0 uniformly in AeB* and ue K with ®*_, @, | ... determined
by the formal Taylor expansion

(1+eP{+P5+ - NPy o+eD, + ) =D (+eP |+ .
In particular,
D o= Li(fo), DY =110, 14(fo) + 1T L4 fo):

Proof of Theorem 4.2. The validity of the asymptotic expansion can be
proved in a similar fashion as in the proof of Theorem 3.2. From integration
by parts we see that each term on the right-hand side of the asymptotic
expansion of E[ F*“®(w)] of Lemma 7.7 is represented by an integration of
some smooth function on the set 4. We determine pg“ and p{“. Let
A+u={x;x—ueA}. We have

o =1 fo, u] — 31 u, u].

Using Lemma 7.7 for A +u in place of A, we have
Lo — L, u
E[e/0 &Y, o 1=E[e/ 1, .(fo)]

= [ exp{Lx, ul— HTw ul} g(x:0,17") dx

A+u

:f d(x —u; 0, I~ 1) dx
A+u

=L G(y;0,17") dy.
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Next,
E[/V' P, ]
= ELe/0 10, Ly o)1+ ELe/V 111, ()]

=|  —OE[e/V ' I6.(fo)] dx+ E[e/ [, (fo)]

=] [-odexpliln ] 30w ul} ELF 1 fo=2] 4(x:0.171)
+exp{I[x,u] —3[u,ul} E[fT" | fo=x]¢(x;0,1"")] dx

= [ —0:(qy(x) d(x —u; 0, 171) + g5 “(x) p(x —u; 0, 1~ ") ] dx

= [ [=0ugyr+u) 9z 0.1 + b () $(3: 0.1 ] dy.

This completes the proof.

ACKNOWLEDGMENTS

I am grateful to the editor, the associate editor, and the referees for their valuable com-
ments.

REFERENCES

1. AkAHIRA, M., aAND TAkEUCHI, K. 1981. “Asymptotic Efficiency of Statistical Estimators:
Concepts and Higher Order Asymptotic Efficiency,” Lect. Notes Statist., Vol. 7, Springer-
Verlag, Berlin/Heidelberg/New York.

2. Kusuoka, S. 1982. Dirichlet forms and diffusion processes on Banach spaces, J. Fac. Sci.
Univ. Tokyo Sect. 14 29 79-95.

3. Kusuoka, S. 1982. The nonlinear transformation of Gaussian measure on Banach space
and its absolute continuity, I, J. Fac. Sci. Univ. Tokyo Sect. 14 29 567-597.

4. KUTOYANTS, YU. A. 1984. “Parameter Estimation for Stochastic Processes” (B. L. S.
Prakasa Rao, Ed.), Heldermann, Berlin.

5. Le Cam, L. 1960. Locally asymptotically normal families of distributions, Univ. California
Publ. Statist. 3 37-98.

6. LIPSTER, R. S., AND SHIRYAYEV, A. N. 1977. “Statistics of Random Processes I,” Springer-
Verlag, Berlin/Heidelberg/New York.

7. SuaciTA, H. 1985. On a characterization of the Sobolev spaces over an abstract Wiener
space, J. Math. Kyoto Univ. 25 717-725.

8. TAKANOBU, S., AND WATANABE, S. 1993. Asymptotic expansion formulas of the Schilder
type for a class of conditional Wiener functional integrations (K. D. Elworthy and



36

NAKAHIRO YOSHIDA

N. Ikeda, Eds.), Asymptotic problems in probability theory: Wiener functionals and
asymptotics, Proceedings, the Taniguchi International Symposium, Sanda and Kyoto, 1990,
pp. 194241, Longman, Harlow, UK.

. WATANABE, S. 1983. Malliavin’s calculus in terms of generalized Wiener functionals,

in “Lecture Notes in Control Inform. Sci.,” Vol. 49, pp. 284-290, Springer-Verlag, Berlin/
Heidelberg/New York.

. WATANABE, S. 1984. “Lectures on Stochastic Differential Equations and Malliavin

Calculus,” Tata Institute of Fundamental Research, Springer-Verlag, Berlin/Heidelberg/
New York.

. WATANABE, S. 1987. Analysis of Wiener functionals (Malliavin calculus) and its applications

to heat kernels, Ann. Probab. 15 1-39.

. YosHIDA, N. 1992. Asymptotic expansions of maximum likelihood estimators for small

diffusions via the theory of Malliavin-Watanabe, Probab. Theory Related Fields 92
275-311.

. YosHIDA, N. 1992. Asymptotic expansion for statistics related to small diffusion,

J. Japan Statist. Soc. 22, No. 2, 139-159.

. YosHIDA, N. 1993. Asymptotic expansion of Bayes estimators for small diffusions, Probab.

Theory Related Fields 95 429-450.

. YosHIDA, N. 1993. “Banach Space Valued Functionals and Smoothness of M-Estimators,”

Research Memorandum 494, Institute of Statistical Mathematics.



