
Probab. Theory Relat. Fields 95, 429-450 (199)) 

Probability 
Theory ~eldted Fields 

�9 Springer-Verlag 1993 

Asymptotic expansion of Bayes estimators 
for small diffusions 

Nakahiro Yoshida 

The Institute of Statistical Mathematics, 4-6-7 Minami-Azabu, Minato-Ku, Tokyo 106, Japan 

Received January 2, 1992; in revised form October 2, 1992 

Summary. Using the Malliavin calculus we derived asymptotic expansion of 
the distributions of the Bayes estimators for small diffusions. The second order 
efficiency of the Bayes estimator is proved. 

Mathematics Subject Classification (1980): 62M05, 62F12, 60H10 

1 Introduction 

Consider a family of d-dimensional diffusion processes defined by the stochastic 
differential equation 

(1.1) dX~'~ = Vo (X~'~ O) d t + ~ V(X~'~ d wt, 

X~~ t6[0, T], es(0, 1], 

where w is an r-dimensional standard Wiener process, V 0 and V=(V~ . . . .  , V~) 
are Rd-valued and Rd| smooth functions with (bounded) derivatives 
defined on Rdx O (O is a bounded convex domain of R*) and R e respectively. 
T and xo are constants and es(0, 1] is a parameter. The parameter 0 requires 
to be estimated from the observation {X~'~ T]}. It is known that the 
maximum likelihood estimator and Bayes estimator have consistency, asymptot- 
ic normality and first-order optimality when e + 0. See Kutoyants [6]. To refine 
the normal approximation and to examine higher order properties of these 
estimators it is necessary to derive their asymptotic expansions. The asymptotic 
expansion for the distribution of the maximum likelihood estimator and its 
second order optimal property were proved in [21, 22]. It this paper, we show 
the asymptotic expansion for the Bayes estimator, from which we prove that 
it is optimal in the second order if its bias is appropriately corrected. 

The underlying mathematical tool used here is the Malliavin calculus 
advanced by Watanabe [20]. This theory has been proved to be successfully 
applicable to the problems of the higher order statistical inference, [21, 22, 
23]. Namely, it enables us to obtain asymptotic expansion of distributions of 
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various statistics quite easily and intuitively by simple computation with the 
Taylor formula if some regularity condition is verified. When we use this theory, 
the crucial step is to show the nondegeneracy of the Malliavin covariance of 
Wiener functionals. However, it does not seem easy to do this even for a simple 
statistical estimator, whose Malliavin covariance is given by an integration of 
some anticipative process, cf. [21]. The Malliavin covariance corresponding to 
the Bayes estimator is also written in a similar manner. Moreover, as for estima- 
tors appearing in parameter estimation, such as maximum likelihood estimators, 
we can not ensure their existence on the whole sample space, in general. So 
we will need a modification of this theory with truncation on the Wiener space. 

This paper is organized as follows. In Sect. 2, we state our main results. 
The second order efficiency of a bias corrected Bayes estimator is proved in 
Sect. 3. There we adopt the criterion by probability of concentration of estima- 
tors introduced and established by Takeuchi, Akahira and Pfanzagl. In Sect. 4, 
for convenience of reference, we prepare several notation and results about 
the above mentioned modification of the Malliavin calculus used later to prove 
the asymptotic expansions. Finally, Sect. 5 presents the proof of the results stated 
in Sect. 2. 

2 Main results: the asymptotic expansions of Bayes estimators 

Consider a parametric model of the d-dimensional small diffusions defined by 
(1.1). Let P~,0 be the distribution on C([-0, T], R d) of X ~'~ the solution of (1.1) 
for e and 0. The Radon-Nikodym derivative of P~,0 with respect to P~,0o is given 
by the formula (Liptser and Shiryayev [-7]) 

A~(O; X)A~(0o; X) -1, 
where 

A~(O;X)=exp e -2 V ; ( W ' ) + ( X t ,  O ) d X , - � 8 9  [. e -2 V ; ( W ' )  + Vo(X~,O)dt . 
0 

Here A + denotes the Moore-Penrose generalized inverse matrix of matrix A 
and we assume that Vo (x, 0 ) -  Vo (x, 0o)s M { V(x)} : the linear manifold generated 
by column vectors of V(x), for each x and O. 

Let OoeO denote the true value of the unknown parameter O. For h s R  k, 
the log likelihood ratio is defined by 

l~, h (w; 0o) = log A~ (0o + e h; X ~) -- log A~ (0o ; X *) 
T 

= ~ ~-1 [,Vo(X~, Oo + ~h)- Vo(X~, 0o) ] ' (w' )  + v(x~) dw~ 
0 

T 

- �89 S ~-  2 [, Vo (x~, 0o + ~ h ) -  Vo (X~, 0o) ] ' (w' )  + (x~) [ Vo (x~, 0o + ~ h) 
0 

-- V o (Xt, 0o) ] d t, 



Asymptotic expansion of Bayes estimators 431 

where X~ is the solution of the stochastic differential equation (1.1) for 0 = 0  o. 
The function X ~ is defined by the ordinary differential equation (1.1) for e = 0  
and 0 = 0o. 

Let ~i = 0/0 0 i. The Fisher information matrix I(0o)= (Iij(Oo)) is defined by 

T 

I,j(Oo) = ~ 6, Vo(X ~ 0o)' (VV') + (X ~ (Sj Vo(X ~ 0o) dt 
0 

for i, j =  1, ..., k. From now, for simplicity, denote I(0o) by I=(I i i )  and I(0o)- ~ 
by I - t = (]i1). 

For  function f ( x ,  O) of x and 0, f~(O) denotes f (X~,  0). For  n = (n  1 . . . .  , rid), 

let ~ " = 0 ] ' . . . ~  d, where Oi=~x~, and let I n l = n l + . . . + n a .  Moreover, for v 

=(Va . . . .  , Vk), let 6 ~ = @ . . .  6# ~ and let Ivl = vl  + . . .  + v~. 
In this article we assume the following conditions. 

(1) Vo, Vand (VV') + are smooth in (x, 0)eR d x O. 
(2) For  [nl > 1, F =  Vo, V, (VV') +, sup [~?"fl < oo. 

x ,O  

(3) For  Ivl = 1 and Inl __>0, a constant C~,. exists and 

sup [~" 6 ~ Vol < C~,.(1 + [xl) c~," 
0 

for all x. 
(4) For  any 0oeO, there exits a positive constant ao such that 

T 

g vo~ (0) - go~ ' (gg')~ + o E goO (0) _ goO,, (0o)3 d t => ao 1 0 -  0ol = 
0 

for 0~O. 

Let an Rd| process Yt~(w) be the solution of the stochastic differen- 
tial equation 

dYt"=OVo(Xt ~) Yt~dt+e ~ OV~(X~) Yt*dwt, te[O, Tl,  
c~=1 

Yd=Id, 

t j  ~ 0 where [&VJ' '=0~ ~ ,  i, j =  1 . . . .  , d, c~=0, 1, ..., r. Then Yr.-= Yt is a nonsingular 
. t  

d d e (j)  deterministic R |  -valued process. For  function g ,  g denotes its j- th deriva- 
tive in e at e=O. We write D~=X~ 1). Then D, is represented by 

Dr= i Yt Y~ - 1 V f  dws, te[O, T 3. 
0 

We will use Einstein's rule for repeated indices. For  matrix A, I-A] ii denotes 
its (i,j)-element. For  vector a, a i is its i-th element. 
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Let 

and 

where 

T 

A,,j..=�89 f f [a,{a, v ; ( ~ ' )  + aj Vo}]~ d~at 
0 0 

T 

Bi,j , l= ~ [Oi Oj V~(W' )  + a l Vo]~ (Oo) dr, 
o 

g~= g-*  F w ' ( w ' )  + aVo]~ = g - '  aVoL(Oo). 

Here we consider Bayes estimators with respect to the quadratic loss function 
and derive asymptotic expansions for their distributions. Let 

and 

G~(w)= ~ exp(l~,h(W; 0o) ) rc(Oo + eh)dh 
B~ 

G~(w) = ~ h exp(l~,h(W; 0o) ) rC(Oo + eh) dh, 
B~ 

where ~ denotes the Bayes prior which is a smooth positive function on O 
whose derivatives are bounded and inf re(0)>0, and B ,=  {heRk; 0o + e h~O}. 

0cO 

The Bayes estimator under 0 = 0 o is denoted by O~(w; 0o) and defined by 

OAt(O; X ~) ~(0) dO 
O's(w; 0o)= o 

A~(O; X ~) ~(0) dO " 
0 

For Borel set A c B,, let 

Then 

exp(t~,h(w; 0o)) ~(0o + eh) 
p~(h; A)= ~ exp(l~,h(W; 00)) rc(Oo + eh ) dh" 

C.(w) 
e-l(O~( w; 0o)--0o) = I h~(h;B~)dh= Q(w)" 

B~ 

In the context of the higher order statistical asymptotic theory we need to 
modify the Bayes estimator to obtain an efficient estimator. We call an estimator 
O* a bias corrected Bayes estimator if 

where ~(0) is a bounded smooth function with bounded derivatives. Let ~b (x; #, Z) 
denote the density of the normal distribution N(#, Z) on R k. The Borel a-field 
of R k is denoted by B k. Now, we have the following result. 
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Theorem 2.1 The probability distribution of the bias corrected Bayes estimator 
~*(w; 0o) has the asymptotic expansion 

p[g*(w;O~176 ~A]~ ~ ~o(x)dx+e ~ pl(x)dx+... 
A A 

as e$O, A ~ W ,  where/30, Pl . . . .  are smooth functions. The expansion is uniform 
in Borel sets A ~B k. In particular, 

p0(x)= q~(X; 0, I -  1), 
/31 (x) = [I ij Ai,ja x l -  1 iiJ Bi,j,l x l _ 5(Oo)J Iji x l + ~z(Oo)- 1 6l n (0o) x l 

! B  x ixJx  l] ~b(x; 0, I -  1). - -  A i , j ,  l x i  XJ x l - -  2 i , j , l  

More generally, we can show the asymptotic expansion of distribution of the 
bias corrected Bayes estimator under the contiguous alternative 0o +~h, h~R k. 
This is important from a statistical point of view. 

Theorem 2.2 The probability distribution of the bias corrected Bayes estimator 
~*(w; Oo + eh) under the contiguous alternative P~,oo+~h has the asymptotic expan- 
sion 

p]_O*(W;Oo+eh)-(Oo+eh) e A [ ~  I t 1 / 3 ~ o ( y ) d y + e  ~ p](y)dy+ 
l I D  

[- J ft ~ A 

as e+O, AEB k, h~R k, where P~o, /3~, ... are smooth functions. The expansion is 
uniform in AEB k and hEK, where K is any compact set in R k. In particular, 

13; (y) = q~ (y; 0, 1-1), 
/3~l (y)= Ai, j , t[_ yi yj y t_hl  yi yJ + iiJ yl + iij h l] ~b(y; 0, I -  1) 

+ Bi,j,l [ _�89 yi yj S - -  hi YJ yl_�89 lij y~+ i n h j] q~(y; 0, I - 1) 

_ ~(Oo)J ij t yl d? (y; 0, I -  1) + n (0o)- 1 6z zc (0o) yl r (y; 0, I -  1). 

3 Application: second order efficiency of a Bayes estimator 

It is known that maximum likelihood estimators and Bayes estimators are 
asymptotically efficient for regular statistical experiments induced mainly from 
independent observations. As for the small diffusions, they have consistency 
and asymptotic normality and are efficient in the first order. See, e.g., Kutoyants 
[-6]. Here we are interested in their second order efficiency. The notions of 
the second order efficiency of estimators have been introduced by Fisher, Rao 
[12, 13], Takeuchi, Akahira, Pfanzagl and others. Here we adopt the criterion 
by probability of concentration of estimators introduced and established by 
Pfanzagl, Takeuchi and Akahira. It is possible to show that these estimators 
are optimal in the second order in this criterion in various cases. See for example 
Akahira and Takeuchi [1], Pfanzagl [10, 11]. For time series see Taniguchi 
[15, 16, 17], Swe and Taniguchi [14]. The second order efficiency of the maxi- 
mum likelihood estimator was proved in [22]. 
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To avoid meaningless super-efficiency, an invariant condition is imposed on 
estimators in question. For  simplicity we consider the case k = 1. 

Definition 3.1 An estimator T~ is second order asymptotically median unbiased 
(second order AMU) if for any 0o ~ O and any c > 0 

lim sup e-11~,o[r~-o__<O]-�89 =0 
+ o OeO:lO-Ool < ec 

and 
lim sup e-l[P~,o[T~-O>O]-�89 
e + o oeo:lo-Ool < ~c 

Then we have the following theorem from Neyman-Pearson's fundamental lem- 
ma. See [22, 23] for details. For  heR,  let J = I h  2. The distribution function 
of the normal distribution N(#, a 2) is denoted by ~(x;  #, 0-2). 

Theorem 3.1 For any second order AMU estimator T~,for h > 0 

lim infe-  1 {~b(J; 0, J) + e [Aa,l,1 h 3 -t -1 B1,1,i h3] qS(J; 0, J) 
~,t0 

- P~,oo[e- l(T~-Oo)<=h]} >0, 

and for h < 0 

lira sup e- 1 { ~ ( _ j ;  0, J) -e[Al , l ,1  h 3 +�89 B1,1,1 h 3] ~b(J; 0, J) 
~$0 

--PE,0o [~- I(T~-- 0o) ~ hi} ~0 .  

Definition 3.2 

�9 (J; 0, J)-}- ~ [A1,1,1 h 3 + 1  B1,1,1 h 3] qS(J; 0, J) 
and 

�9 ( - J ;  0, J)-e[Al,1,1 h3+�89 B1,1,1 h 3] ~b(J;0, J) 

are called the bounds of second order distributions. A second order A M U  estima- 
tor is said to be second order efficient if it attains these bounds for any h > 0 
and any h < 0. 

From Theorems 2.1, 2.2 and 3.1, we obtain 

Corollary 3.1 The Bayes estimator is second order A MU  and second order efficient 
if its bias is corrected by 

~(0o) = --I(0o) -z  A1,1,1--31(0o) -2 B1,1,1 +I(0o)  -~ 7"C(0o) -1 (~ g(Oo). 

4 Preparations: the Malliavin calculus with truncation 

We begin with preparing notations used in the Malliavin calculus. For  details 
see Malliavin [8, 9], Watanabe [18, 19, 20], Ikeda and Watanabe [3, 4], and 
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Kusuoka and Stroock [5]. Let (W, P) be the r-dimensional Wiener space and 
let H be the Cameron-Martin subspace of W endowed with the norm 

T 

Ih12= ~ I/~1 z dt 
0 

for h~H.  For Hilbert space E, 1[" lip denotes the/Y(E)-norm of E-valued Wiener 
functional. Define 1} f II~,s for E-valued Wiener functional f, s~R, pc(l ,  ~) ,  by 

S 

II f I1~,, = II(I-L)2f lip, 

where L is the Ornstein-Uhlenbeck operator. The Banach space D~(E) is the 
completion of the totality of E-valued polynomials on the Wiener space (W, P) 
with respect to I1" ]]v,s. The space D~(E)= ~ (-] D~(E)is  the set of Wiener 

s >O 1 < p < a o  

test functionats and /5-  ~ (E) = U ~ D~" (E) is a space of generalized Wiener 
s >O l < p < ~  

functionals_ See Watanabe [19], We suppress R when E = R .  The Fr6chet space 
S(R d) is the totality of rapidly decreasing smooth functions on R e and S'(R d) 
is its dual. Let A = 1 + ]xl 2 - � 89  A. 

In order to apply the ideas of Malliavin and Watanabe to statistical problems, 
we need a version of their theory with truncation. Let FeD~~ G e D  ~ and 
~eD ~. Let ~: R ~ R  be a smooth function such that 0_<_O(x)=<l for xeR,  
~ ( x ) = l  for [x[< 1 and tk(x)=O for N > I .  Suppose that for any p~(1, oo), the 
Malliavin covariance a F of F satisfies 

(4.1) E [1~1r ==_ 1~ (det O-F)-P] < oo. 

Then the composite functional ~ (~) G To F ~/5- ~ is well-defined for any Ts S' (Rd). 
The composite function of a measurable function and a Wiener functional in 
this sense has a usual meaning. For 6~ ~, F, G given as above and any measurable 
functionf(x) of polynomial growth order, 

0 (~) 6fo F = 0(~) of(F)  

i n /5 -~ .  
Let us consider a family of E-valued Wiener functionals (or generalized 

Wiener functionals) {F~(w)}, e~(0, 1]. For k > 0  if 

r IIF~l~p s lm sup ~ < ~ ,  
e ~ 0  s 

we say F~(w) = 0 (ek) in D~(E) as e J 0. It is said that F~ (w) e D ~ (E) has the asymptot- 
ic expansion 

F~(w) ~fo + ef~ +... 

in D~(E)  as e l0  withfo,f~ , . . .~D~(E) ,  if for every p >  1, s > 0  and k =  1, 2, ... 

F~ (w)--  (fo + e f l  + . , ,  + e k- a f k -  1) = 0 (e k) 
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in D~ (E) as e ~ 0. Similarly, we say that F~ (w)~/3-~176 (E) has the asymptotic expan- 
sion 

F~(w)-f0 + ~f~ +. . .  

i n / 5 -  ~o (E) as ~ J, 0 with fo, f l ,  --- e /5-  oo (E), if for every k = 1, 2 . . . .  there exists 
s > 0  such that, for every p >  1, F~(w),fo,f ~ .... eDv-*(E) and 

<(w)- ( fo  + ef, +. . .  + ~ -  1k-  0 = o(zb 

in Dp ~(E) as e $ 0. The generalized means of these expansions yield the ordinary 
asymptotic expansions. 

The following theorem is a version of Theorem 2.3 of Watanabe [20]. 

Theorem4.1 Let A be an index set. Suppose that families {F~(w); 
~ (0 ,  1]} c D ~ (Ra), {~(w); e~(0, 1]} ~ D ~ and {T;~; 2~A} c S'(R a) satisfy the fol- 
lowing conditions. 

(1) For any pc( l ,  oo) 

sup E[l{l~l__<~}(det o-v,) -p] < oo. 
ee(0,11 

(2) {F~(w); s~(0, 13} has the asymptotic expansion 

F~(w)~fo+efa + . , ,  in O~~ d) as e+O 

with f inD ~~ (Ra). 
(3) r 0(1) in D ~176 as e+O. 
(4) For any n = 1, 2 . . . .  , 

lim e-" P {1~,1 >�89 =0 .  

(5) For any n=0,  1, 2 . . . . .  there exists a nonnegative integer m such that 
A - "  Tx6C~(RU)for all 2~A and 

sup ~ II0"A ~T~.II~<~. 
2 z A  Inl~n 

Let {Gu,,(w); lzeM, e~(0, 1]} be a family of Wiener functionaIs, where # e M  is 
an index set, and suppose that Gu,~(w ) has the asymptotic expansion 

G,,~(w) ~ g~,, o + sg. , ,  + . . .  

in D ~176 as e] O uniformly in # e M  with g~,o, g,,l  ...~D~~ Then the composite func- 
tional ~(~)  G~,, Tzo F,~D - ~  is well-defined and has the asymptotic expansion 

~(~)  Gu,, T~o F~q~;.,,,o + Sq~,,u,1 + ... in D - ~  as e],O 
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uniformly in (2, # ) s A  x M with ~a,u,o, ~b~,u, 1, . . .  ~ - o o  determined by the formal  
Taylor expansion 

Tz (To + [ef~ + ezf2 + . . .  3) = (gu, o + g gu,1 +- . . )  ~ 1 8" T~. (To) DT, + ~2f2 +- . .  ]" Gu,~ 

=~b~.,u,o+e~ba,u,l + .... 

where n =(n  l, . . . ,  ha) is a multi-index, n! = n l ! . . .  ne !, a " =  a]~.., a"a ~ for  a e R  a. In 
particular, 

@,,u.o = gu,o Ta(fo), 
d 

~a,u,* =gu,o Z f [  O, Ta(fo)q- gu, 1 T.~(fo) , 
i = 1  

i 1 
~ , , , 2  =gu, o f~ a, Tz( fo)+ ~ f i n  a, aj Tz(fo ) 

k l  = 1 i , j =  1 

d 
+gu, 1 ~ i f l  ~, T~(fo)+gu.2 T,(fo),  .... 

i = 1  

For  n = 0 ,  1, 2, . . . ,  there exists a positive integer m such that  

sup ~ ] I O " A - " I B I ] ~ < ~ .  
B ~ B  d In[ __<n 

5 Proof of the main results 

Let 

T 

m(( i l , . . . ,  ip)/0) = ~ [6i, ... ai,, V~(VV') + V]~ 
0 

T 

m((il ,  . . . ,  ip)/1) = I [O,{61, ... c$,p V~ (VV') + V}]t~ I dw,,  
0 

T 

n((il . . . . .  i p ) ( j  1 . . . .  , j,)/0) = ~ [ 6il ... hip V()(VV') + 6j~ ... 3 j, Vo]~ (Oo) d r, 
0 

and 

T 

n ((i 1 . . . . .  ip) (jl . . . . .  jq)/1) = ~ a t [6h. . .  5,p V~ (VV') + 6j, . . .  c$i, Vo] ~ (0o) Dlt d t. 
0 

We know that  for any % > 0 ,  there exist positive constants a i, i---1, 2, inde- 
pendent  of ~ such that  

P [ sup [X~ -- X~ > %] < a I exp { -- a 2 e-  z} 
O < t < T  
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for /3e(0, 1]. Therefore the Bayes estimator obtained from the stopped data 
{Xt,,~; O<_t<_T}, where z = i n f { t > 0 ;  IV(X~)[>2e}/x T, e =  sup Ig(x~ has 

O<_t<_T 

the same asymptotic expansion as ~(w; 0o). So to show Theorems 2.1 and 2.2 
we may assume that V is bounded without loss of generality. 

Lemma 5.1 There exists % > 0 such that for any p >= 0 

sup EE ~ IhlPP~(h;B,,)dh]<~. 
~ ' < ~ 0  B~, 

Proof. Let (p(x): R d ~  [0, 1] be a smooth function such that ~0(x)= 1 for Ixl < 2 a  
and q~(x)=0 for ]xl>3a, where a =  sup IS~ Let W(x)=9(x)(W')+(x). Then 

we see that o_<t_< r 

T 

J~(h),= ~ [V~),t(Oo + eh)-  V~,t(Oo)]'(VV') +~ [V~,,(O o + eh) - V~,t(Oo) ] dt 
0 

T 

>= ~ A~ +ah, 0o)'(VV')~ +~ A~ 0o)dt 
0 

T 

- I IA~ +eh, 0o)' {W, ' -  IV,, ~ A~ +eh, 0o)1 dt 
0 

T 

- 2  ~ I{A~(Oo+eh, Oo)-A~ 0o) }' Wt ~ A~ 0o)1 dt, 
0 

where As(O, 0o)= Vo(X~, 0)-- Vo(X~, 00). We can find, by a representation theorem 
for continuous martingales, Brownian motions w~, i = 1, 2, ..., d, for some filtra- 
tions, and a positive constant C independent of e such that 

sup IX~-S~ s 
O<_t<_T 

d 

where w* = ~ sup Iw~(t)l. Since suplA~ Oo)l < 0% 
i = 1 0 < _ t <_T  OeO 

T 

- S IA~ +eh, 0o)'{ W~"- W~~ A~ +eh, 0o)1 d t =  -C1/32 w*lh[ 
0 

for s o m e  C 1 >0. From condition (4) we obtain 

J~(h)>=Cz/32 ]hlZ-- C3 132 w*lhl 

for some C2, C a > 0. Then we can show the large deviation inequality 

E[exp~--PJ~(h);]<C4 e-c~lhl2, hsB~, e~(0, 13 
k t ~ -  ) j  
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for some constants p, C4, C5>0. See p. 91 of Kutoyants [-6]. Then we have 
in standard argument 

P [exp(l~,h(W; 00) ) > exp(-- C 6 Ihl2)] ~ C 7 e x p ( -  C 6 Ih12), h~B~, e~(O, 1] 

for s o m e  C6, C 7 > O. Following the proof of Lemma 5.2 of Chap. 1 of Ibragimov 
and Has'minskii [2], we obtain the result. [] 

6~(w) 
Lemma 5.2 ~ is well-defined on Wand in D~ k) for each e<eo. 

Proof. For any p > 1, 

(C w) .] 
E\IG~(w ) ]=E( [~  h~(h;B~)dhl p) 

Be 

<E( [. Ih[P p~(h;B~)dh)< oe 
Be 

by Lemma 5.1. For  qeH, we have 

D,7 G~(w) = ~ exp(l~,h(W; 0o) ) n(O o + eh) D,1 l~,h(W; 00) dh 
B~ 

S exp(l,,h(w;Oo))n(Oo+eh) i .i = (~,h(t) thdt dh 
B~ x o  i = 1  

= ~ ~ [ ~ exp(l~,h(W;Oo))n(Oo+~h)r dt, 
0 i = 1  B~ 

where (~,h(t) is an anticipative process for which there exist m >  0 and a random 
variable Q~ (w) such that 

sup I~,h(t)l ~(1 + Ihl m) Q~(w) 
O<t<_T 

and sup E [Q~P] < oe for any p > 1. Here we used the moment inequalitites for 
E 

random fields (or Sobolev's inequality and Burkholder-Davis-Gundy's inequali- 
ty) to estimate the moments of the form 

E sup w,~,s,O)dw~ . 
0 E O  

t e [ O , T ]  

Then 

DG~(w) 2 r 
G ~  H = G;2 ~ E [  ~ exp(l~,h(W; 0o)) n(Oo +eh) ~,h(t) dh] 2 dt. 

0 i B~ 
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O<(w)p]< 
Therefore we have [i G ~ n  j oo for p > l  from Lemma5.1.  We obtain 

similar estimates for DG~(w) and hence E [D  G~(w) P] G~ L G~(w) H] < Oe for p >  1. In a similar 

way we can estimate higher order H-derivatives, which completes the proof. []  

The log likelihood ratio l~,h(W; 0o) is in D ~~ and has the asymptotic expansion 

l~,h(W; O0)~foL +~flL + ... 

in D ~176 as e$O withfoL,f~, . . . eD ~. In particular, 

f o L = h ' B - � 8 9  h'I(Oo)h , B~=m((i)/O), 

f L  = h i m((i)/1) + �89 h i hYm((ij)/O) 

- � 8 9  i hJn((i)(j)/1)-�89 h ~ h J hmn((ij)(m)/O). 

The following lemma gives an expansion formula for the bias corrected Bayes 
estimator. 

Lemma 5.3 There exist  Wiener functionals O~(w)ED ~176 satisfying the following 
conditions. 
(1) 0==_O~(w)< 1 and O~(w) = 1 - O ( g  ") in D ~ as g J, O for  any hEN.  
(2) ~k~(w)e-1(0"* (w; 00 ) -  0o)~D ~~ (R k) has the asymptotic expansion 

~, (w) ~'* (w; 0o) -- 0 o ~"?o + e971 + ' "  in D ~ (R k) as e ,~ 0 

with f o , f  l , ... e D ~ (Rk). In particular, 

f o = l ( O o ) - l  B,  

f l  = �89 1 (0o)-1 F + �89 (0o)-1 QI (0o)-1 B - -  ~ (0o )  

+TZ(0o) -1 I(0o) -1 57Z(0o)'+�89 -1 R ,  

where B = (Bi), F = (Fi), Q = (Qi,j) and R = (Ri) are defined as follows. 

B i =  m((i)/O), i=  1 , . . . ,  k, 
F i =  2m((i)/1), i=  1 . . . . .  k ,  

k 

Qid= ~ [ I (Oo)- lB]mNi , j ,m+2Ai , j  , i , j = l ,  . . . , k ,  
m = l  

k 

R i =  ~ [I(Oo)-l]YmNid,,~, i = l , . . . , k ,  
j , m = l  

where 

Ni,j,m = - [n((ji)(m)/O)+ n((im)(])/O)+ n((mj)(i)/O)], i,j, m = 1 . . . . .  k,  

Ai,j=m((]i)/O)--n((j)(i)/1), i , j=  1 . . . . .  k. 
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Proof For Bore1 set A ~ Be, let 

U(e; A)= ~ h~(h; A) dh. 
A 

441 

For each e '<eo,  the function e ~  U(e; Be,) is smooth in [0, e']. Here we consider 
the right derivatives and left derivatives at e = 0  and e=~', respectively. It is 
possible to show that for j = 0 ,  1 . . . .  and e < e  o there exist nonnegative random 
variables Qj,~(w) which satisfy the following two conditions. 
(1) For eachj  and any p >  1, sup E[Qj,,(w) p] < oe. 

~JU e < e o  

(2) If E=<e'<eo, ~ (e; B~,) is dominated by a polynomial in Qj,e(w) and ~ Ihl v 
B c , 

p,(h;B~,)dh, p=0 ,  1 . . . . .  

Therefore, by Lemma 5.1, we have 

0Jr 
sup E [ ~ ( e ; B ~ , )  <oo 

~__<~' '<8 o 

for p >  1. From the Taylor formula, for l e N  and 0 < e < e ' < e o ,  

e l  1 
~-~ d ~?JU(o; o~(1 ~ ~ ~ U  U(GB~')=j~=o~]V. ~d B e ' ) + ~  --u)- ~vj (ue;B~,)du. 

Hence we can show that for /eN,  p > l  and s=O there exists C~,v,~>0 such 
that 

z-1  ej OjU 0 B II 
(5.1) U(~;Be)--j~__o~f. ~-ej ( ; ~) p,s~Cl,p,s~' 

if e<eo,  and also, as in the proof of Lemma 5.2 using Lemma 5ol, that (5.1) 
0 j U 

holds for leN, p >  1 and s>0 .  For j = 0 ,  1 . . . .  , define ~ - d  (0; R k) by 

v (0; = l i r a  0J V &;  ~ (0; {h; Ihl < R}). 

Let ~(w)=O(cl[M-1BI2), where c 1 is any positive constant. Then ~9~(w)=l 
-O(e")  in D ~ as e$0 for any n~N. For any p >  1 there exist positive numbers 
bl and b2 such that 

E [ ~ ( w ) (  ~ ~o(h;B~)dh)P]<ba e -b2H~ 
]hl>=O 
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k 
_ - ~  for H > 0 and e < %. Indeed, with Co = (2~) (det I)-, 
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E[{(J" exp(h'B-�89 -~ ~ exp(h'B-�89 v] 
R k lhl >= H 

=E[{co ~ exp(- �89 v] 
I h l > - H  

_<__ v(tt -~ BI>__�89 H ) + E [ ~  {tI -~ BI < 3  H} 
"co I exp ( - � 89  dh] 

Ihl > H 

< b'l e- b'~n~ 

H > O, for some positive numbers b'~ and b~ ; and we can find 6 > 0 for which 

(/,(w){l- ~ exp(h 'B- �89  h'lh)dh]-~ ~ exp(h 'B- �89  dh} p 
B~ 

_<~-p 

Hk 

for e<eo, where O - 0 o  = {0-00 ; 0EO}. We can show that, forj  = 0, 1, 2 . . . .  , p >  1 
and s>0 ,  there exist positive constants aj(p, s) and c i(p, s) such that 

(5.2) IOn(w) / aj U 8 j U ~(O;B , ) - - - f~ - j  (O;R~))lp. <=cj(p,s)e-~'"~)~-~ 

for e < eo. In fact, since 

U(O;B~)-U(O;Rk)= - ~ h~o(h;B~)dh 
R ~ - B ~  

+ ~ hpo(h;Rk)dh �9 ~ po(h;B~) dh, 
R k  R k  -- B e 

it follows that, for p > l  and s>0,  there exist positive constants ao(p,s ) and 
co(p, s) such that (5.2) holds true for j = 0 .  In a similar manner, we can show 
(5.2) for j - - l ,  2, .... From (5.1) and (5.2), it follows that, for leN, p > l  and 
s > 0, there exists positive c (1, p, s) such that 

~k~(w) U(e;B~)- l-l=oj ~ } ]  ~ 8Jg  ~ j  (0; Rk) p, ~<c(l'p's)~t= 
j =  

for ~ < eo. Therefore O~(w)U (e; B~)= O~(w)e-l(0"~(w; 0o)-0o) has an asymptotic 
expansion 

0~(w)e-a (0"~(w; Oo)-Oo)~go + eg 1 + _,. 

in D~~ k) as e$0 with go, g1 . . . .  6D~176 In particular, the first two terms 

are given by go = U(0; R k) and gx -= ~ (0; Rk). 
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Next, we determine these two terms. Put 
k 

# = (2 n)g det I(Oo) -~  exp(�89 B'I(O0)-  1 B) 

and 
#~,~2...~ = [. h i' h i2 . . . h  iv e f~ dh ,  

R k 

where fo  L = h' B -  1 h,i(Oo)h" Define q(e, h) by q(e, h) = exp(l~,h(W; 0o)) n(Oo + eh). 
Then we have Eqs. (5.3): 

lim [. q ( O , h ) d h = n ( O o ) # ,  
R - ~ ~ 1 7 6  ] h l < R  

lim 
R -+ ~176 lhl <=R 

lim 
R ~ o o  ihl< R 

lim 
R ~ o o  ihl<=R 

Oq 1 1 1 (0, h) dh  = ~(0o) [#~ m((i)/ ) + ~  #~j m((ij)/O) - ~  12~j n((i)(j)/1) 

1 
2 #ijm n((ij)(m)/O) + rc(Oo)- 1 6i n(Oo) #i] ,  

h t q(O, h) dh = n(Oo)#z, 

h I ~ ( 0 ,  h ) d h = n ( O o ) [ # , m ( ( i ) / 1 ) +  1 I~ujm((ij)/O) - 1  lh,j n((i)(j)/1) 

1 
2 #"J"  n((ij)(m)/O) + n(Oo)-  1 ~)i T~(O0)  .Lt'I~" 

Let u = I ( O o ) - 1 B .  Then we can obtain 

(5.4) #il =/~ [-u] (il) , 
•il i2 ~--- ~/([-U U] (ilia) + I ( i l  i2)), 

/~il i2~3 = ] ~ ( E U U U " [ ( i l  I2~i3)--~ - [I u](q i2i3)), 
#il i~i314 =/~ ([-u u u u](h i2 ~ i4) + [I  u u] "~ i2 i~ i~) + [ I I ]  (i, i~ i3 i,)), 

where [ ](~1...~,) denotes the sum of the terms corresponding to all partitions 
of (i1. . .  ip), e.g., [-I u] (il i~ia) = iil  i~ ui~ + li~ia uil + ii~il ui~. From (5.3) and (5.4), 

g~ = U(0; Rk)~= f h~ Po( h; Rk) dh  
Ilk 

= lira [ i q(O,h) dh-l-~ S h~q(O,h) dh  
R ~  Ihl<=R Ihl<-R 

= u ' =  [I (0o)- 1B]t. 

We note that 

(5.5) ( I U u J + I t J u i ) A i , j = [ 2 1 - 1  A I  1B]~, 

where A =(At,j), and that 

(5.6) - �89 u u j u m + I lj u i u m + I TM u i u j + [ I I ]  aijm)) n((ij)(m)/O) 

=�89 I "  u s u m N j ,,,+ 1 fli Tim ]k'l- 
, , ~ x a'ri,j, m .  
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Since 

l 8 u l  k 
g~ = y ~ - ( o ;  R ) 

= l i m ( ~ e ) o { [  S q (e ,h )dh] - I  S h tq(Gh)dh}  
R ~ m ih[<R ihl<_ R 

= lim [ I q(O,h)dh] -1 I h ~ ( O , h )  dh 
R ~ ~ 1 7 6  [h[<_R [h[<=R 

- l i m [  I q(O,h)dh] -2 I hZq(O,h) dh ~ ~e(O,h) dh, 
R U ' ~  ihl<_R ihl<=R ihl<=R 

if follows, from (5.3) and (5.4), that the right-hand side equals 

# - i  [#u m((i)/1)+ 1 #uj m((ij)/O)- �89 #uj n((i)(j)/1) 

�89 #u j,, n((ij)(m)/O)+ ~z(Oo)- 1 6i rc(Oo) #u] 

_ # -  2 #~ [#i m ((i)/1) + �89 #i~ m ((ij)/O) - �89 #ij  n ((i)(j)/1) 

1 #it,, n((ij)(m)/O)+ ~z(Oo)- 1 c~ i rc(Oo) #J  
= Ili m((i)/1) + �89 li uJ-] - I lj u i) Aid 

�89 (I u u j u m + I zj u i u m + I ~"~ u i u j + [II] "i j ' )  n ((i j)(m)/O) 

+ ~z(Oo)- 1 (~i n(Oo) I u. 

Therefore, by (5.5) and (5.6), we obtain 

gt 1 = I li m((i)/1) + [I-1  A I -  1 BIt + (3 ltt blj l'tm "~- �89 IU IJm) Ni,j,m 

+re(00) -1 ~t ~(00) I u 

= � 8 9  ~ Fit + [-1-1 AI -1B l l+ �89  

+ ) I u I j"  Ni, j,,, + rr (0o)- 1 6i ~ (0o) I u 

=�89 r],+�89 QI-IB]I+�89 [1-1 ~Z(0o),]t" 

SinceYo = go and fl  = gl -~'(0o), we have completed the proof of Lemma 5.3. [] 

Lemma 5.4 (1) For 0 o ~ 0  and h ~ R  k, there exist functionals Ca, e~(0, 1), on 
C([0, T], R d) satisfying the following conditions for any compact set K ~ R k. 
(i) 0 <  ch(x)_--< 1, X e  C([0,  Tj, Re). 
(ii) r176176 1 - 0 ( ~ " )  in D ~176 as ~ , 0  uniformly in h e K  for n= 1, 2, .... 
(iii) ~h(x~'O~ 1 --0(~") in D ~~ as e ~,O uniformly in h ~ K  for n= 1, 2 . . . . .  
(iv) For all p > 1, 

sup E [-l~r o} exp {pl~,h(W; 0o)}] < o0. 
~e(O,1) 

heK 

(2) Let 0 o ~ 0  and let K be any compact set o f R  k. Then C)(X  ~'~176 exp{/~,h(W; 00)} 
has the asymptotic expansion 

h x~,Oo ,.  ~ (  ) e x p { l ~ , h ( w ; O o ) } ~ e f ~ ( l + e T l + ~ 2 ~ 2 +  .) 
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in D ~ as 5 ~ 0 with Ta, Ta, ... ED ~ determined by the formal Tayler expansion 

exp {ef~ + 52fL + .  ,.} = 1 +eT1 +52 7"2+ .... 

This expansion is uniform in heK.  

For the proof of this lemma see Lemma 4.5 of [221. Let A + h = {zeRO; z - - h e A }  
for A c R  k and hER a. 

Lemma 5.5 (1) Define R~J(w) by the equation 

(g-  * D [O~ (w) (~* (w; 0o)-- 0o]i, 5-~ D [~, (w) (/7" (w; 0o)-- oolJ)H = I ij + 5R~J(w). 

Let 

i,j 

for e > O. Then,for large c > O, the conditions (1), (3), (4) of Theorem 4.1 are satisfied 
for F~ = ~,(w) 5-1 (/7* (w; 0o) -- 0o) and r 
(2) Let Ooe@ and let K be any compact set o f R  k. Then, for A e B  k, 

r  "'~176 exp {l~,h(W; 0o)} ~(~)  I a+ho(~(w)e-a(~*(w; 0o)--Oo)) 

Ch,A+h,O ~- 5CI)h,A +h, 1 + "'" 

in D - ~  as 5~0 uniformly in A e B  k and hEK with ~h,A+h,0, ~h,a+h,t, " " ~ / ) - %  
In particular, 

~h,A +h,O-~- A ~  (~O,A-I-h,O, 

~)h~A+h, 1 = A ~  ~i~0,A+h, 1 "~ A ~  f L q~O,A+h,O, 

where 

~)O,A +h, 1 =?il ai I A+h(?O), 
A 0 = ef~ 

foL=h' B - � 8 9  I (Oo)h, 
f ~ =- him((i)/1) + �89 h i h j m((ij)/O) 

- �89 h i h j n ((i)(])/1)- �89 h i h j h" n((ij)(m)/O). 

Proof (1) From Lemma 5.3 we have 

e - '  D [~(w)  (/7" (w; 0o) -  0oli ~ D ~  + 5D]'~ +. . .  

in D ~ (H) as e J, 0 and hence 

@ - a O [0~(w)  (/7* (w; 0o) - 0o1  i, e - * D IOn(w) (/7* (w; 0o) - OolJ)n 
= (O?~, Ofg)n+sR*j(w),  

where 
Ry(w) = <DTL DTl >,  + <DTL + 0 
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in D ~ as e~0. It is then easy to show (1), because ( D f ~ , D f d ) n = I  u and 
sup E(IR~J(w)[ ~) < oo for any n s N .  

(2) F r o m  Theorem 4.1, Lemmas  5.3, 5.4 and (1), we obtain (2). [ ]  

Let  

T t 

A.*. = + ,,,,, ~ ~ [8,{6i V•(VV') v } ]~  + 6j Vo]~ d s d t .  
0 0 

L e m m a  5.6 Let  w be an r-dimensional Wiener process and let functions at, bt, 
T 

ct on [-0, T]  be deterministic. Let  ~ = ~ at a't dt. Then 
o 

(1) Let  a t be Rk |  and let bt be Rr-valued. Then 

[i w ] E b; ~ a t d wt = x = x ' X -  ~ ~ a t b t d t. 
0 0 

(2) Let  at, b t and ct be R k |  r, R " |  r and Rm| respectively. Then 

T 

T t 

Trf Ix-1 'bs' -1 = atct a~S ( x x ' - S )  d s d t .  
0 0 

Here Tr  stands for  the trace. 
(3) 

and 

(4) 

(5) 

E Em((i)/1)l L = x] = A*ja (x j x z -  IJZ), 

E Em(U i)/0)1L = x] = Bi,ja xt 

E [n((i)(])/1)] fo = x] = 2Ai,j, t x I. 

EI-Y~lYo=Xl - - I imA*ma ; t a rlm x t ~- Xa X - - 5 1  B l , j , m  x j  

_ ~(Oo)i_ iim p t  A * j , l +  n (0o)- l i i j  Oj n (0o) 

__I TM IJl Bj, m a -  �89 1 im IJl Bt,j, m. 

E E f ~ l f o  = x] = A i*ja h i (x j x l -  I jl) + �89 Bi, ja hi hj xl 

-- Ai,j,I hi hj x z - •  i,j3 hi hJ hZ" 

Proo f  It is easy to show (1) and (2). Using (1) and (2) we obtain (3) and hence 
(4) and (5) in view of  the definition off1 a n d f ~ ,  respectively. [ ]  
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Proof of Theorems 2.1 and 2.2 It suffices to show Theorem 2.2 only. Since 
r  1-O(e") in D ~ as e+0 for any neN,  from Lemma 5.4 and Lemma 5.5 
(2) we have 

P(e-  l (O*(w; Oo + e h ) - O o -  ah)EA) 

g [(~h e ( X  t:' Oo + r.h) Ia + h ( ~  (W) e --1 ('~e (W "~ 0 0 "4- ~ h) - 0o))] 

= E [~b~h(X ~'~176 exp {l~,h(W; 0o)} 1.4 +h(r * (W; 00)-  00))] 

"~ E [-qS) (X ~'%) exp {I~,h (w; 0o) } ~ (~,) Ia + h (O~ (W) e-a (0"* (w; 0o)-- 0o))] 

=E[4)~(X ~'~176 exp{l,.h(W; 0o)} r I A+h~162 (0"*(W; 00)-- 00))] 

~ E [ (ff~h,a + h, O] -'}- ~ E  [ dZ)h,A + h, 1] Jr- . . .  

as e$0 uniformly in A ~ B  k and h~K. Each Oh, A+h, i is represented by a sum 
of the terms of the form g~" Ia+h(~O), geD ~176 Hence, we see that 

EEebh, A+h,i]= ~ p~(y)dy 
A 

for some smooth function p~(y) depending on h from the integration-by-parts 
formula in the Malliavin calculus. We shall find /~ and /~]. First, we have 
by definition 

E [4~h,A + h,0] = E [-A ~ ~O,A+h,0] = E [ef~ I A + h (jTo)] 

= ~ e x p { h ' I x - � 8 9  
A+h 

= [. ( a ( x - h ; O , I - a ) d x  
A+h 

= [. d?(Y;O,I-1)dY. 
A 

Therefore 
p~o(y)=O(y; O, i-1). 

We note that for any Wiener functional GeD ~ and any nondegenerate Wiener 
functional f e D  ~ (Rk), 

(5.7) E[Gcni Ia ( f ) ]  = S p(x) dx,  
A 

where 
p (x) = - c~ i {E [ G l f =  x] pf (x)}. 

Here ps(x) denotes the density of f. In fact, we know the existence of p(x) 
satisfying (5.7) from the integration-by-parts formula. If we take A = A x  
--- Ix1, co) x . . .  x [Xk, 00), we have 

p(x) = ( -  1) k 01... Ok E [G 0i lax (f)] 

= -- #i E [G 6x(f)] 

= -- O, {E [G I f =  x] p),(x)}. 
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From this fact, it follows that 

E[  A~ ~o,a+h,,] =E[e f~  f [  ~3i l a+h(fO)] = 
A+h 

where 

/~1 (x) dx ,  

f f l  (x) = - ~3, {E [eY~ f[  Ifo = x] p~o(X)} 

= - 0 i  {exp(h' I x - � 8 9  h' Ih) E [ f [ l ~ o = X  ] p~o(X)} 

= - ~,{E [Y/lYo -- x] ~?(x-h;  O, I -13} .  

By Lemma 5.6 (4), we obtain 

(5.8) p C l ( x ) = { I i m A * m , e  X t W I i m A * ' J  . . . .  "xJ'+�89 Iim Be,i ,m x l  + � 8 9  I imRoi , j ,m x J  

+ ( -- I i'' A*,,,,I xJ xe -- �89 I i"  Be, j,,,, xJ xt - b(Oo) i + rc (0o)- 1 iiJ 6j rc (0o) 
__ I TM l J  I A *  __ Tim lJ l  1:7l 

J at ~tm, j , l  at Jt .Uj, m, l 1). 
�89 Iim 1 ~e Bed, m ) l ip(xP-hP)} ( 9 ( x - h ;  O, I -  

On the other hand, by Lemma 5.6 (5), we have 

E[A~  f (  Cbo,a+h,O] =E[ e l~  f (  I a+h(~O)] = j 
A+h 

where 

(5.9) 

~ c 2 ( x ) d x ,  

f f2 (x )=  E [ f ( l L =  x] dp(x-h;  O,1-13 
, i j l jI  1 i j l ={Aid,  eh (x x - I  )+~Bi , j ,  eh h x 

-At , j ,e  hi hJ x e -  �89 Bid, e hi hj he} dp ( x -  h; O, I -  1). 

m l  �9 From (5.8), (5.9) and the facts that Ai,j,~-z(A~,ja+A*~,e) and that Be,j,e=Bj,~a, 
we obtain by tedious calculation 

(5.1o) 

Since 

it follows that 

~cl (X) -I- pC2 (X) 

= {Ai,j, t [ I i j  XI - -  hi hJ xl + 2 h i x j x l - x i x j x t] 

+ Bi,j,t [ -  �89 ij x z + �8 9  i h j x t 

+�89 h i x  i x  j - � 8 9  x i x  J x l + I u h ~ +�89 I ij h l_ �89 h i h J h e] 

- Iej  b (Oo)  ~ (x  j - h J) + 7r (0o)  - 1 (~i 7"C ( 0 0 )  (X  i - -  h i ) }  ~9 ( x  - -  h ;  O, I - 1). 

PCl (Y) d y =  E [  ~ h , A + h ,  1] 
A 

= E [A ~ ~o,A+h, 1] + E [ A ~  ~O,A +h,O] 

= ( [~c l (x )+~2(x ) ]c lx  
A+h 

= j [p~(y+h)+p~2(y+h)]  dy,  
A 

~ (y) = F 1 (y + h) + F 2 (y + h). 
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Then we obtain the desired form of/~] (y) by substituting y + h for x in (5.10). []  
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