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1 Introduction

Let X be a diffusion process defined by the stochastic differential equation
dX, = Vo(X,, 0)dt + eV(X,)dw,, te [0, T],ee(0, 1]

1.1

(D Xo=Xg,

where a k-dimensional unknown parameter 6€ @: a bounded convex domain of
R*, T is a fixed value, x, is a constant, V' =(V,,...,V,) is an R‘®@R"-valued

smooth function defined on R?, V, is an R%valued smooth function defined on
R?x @ with bounded x-derivatives and w is an r-dimensional standard Wiener
process. The unknown parameter 0 requires to be estimated from the observation
{X,;; 0 <t < T}. We are interested in the asymptotic properties of the maximum
likelihood estimator 6, of & when ¢ — 0. The maximum likelihood estimator is
consistent, asymptotically normal and efficient in the first order, see Kutoyants [6].

The notions of the second order efficiency of estimators were introduced by
R.A. Fisher, C.R. Rao [11], [12], Takeuchi~Akahira, and Ghosh—Subramanyam
[2] mainly for independent observations. Akahira—Takeuchi [1] mentions to an
autoregressive process. Taniguchi [13], [14] studied for Gaussian ARMA pro-
cesses. When we consider Takeuchi-Akahira’s criterion of the second order effici-
ency of estimators, the required mathematical tools are the asymptotic expansions
of the probability distributions of the estimators and some related statistics.

For the small diffusion we will prove the asymptotic expansions of probability
distributions by means of the Mailliavin calculus, extending Yoshida [18]. For this
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theory see Malliavin [9], [10], Watanabe [16], Kusuoka—-Strook [5], Ikeda and
Watanabe [3], [4]. Watanabe [15] introduced the notion of the generalized
Wiener functional, the pull-back of Schwartz distribution under Wiener mappings,
and in his celebrated work [17] he exploited the asymptotic expansion of the
generalized Wiener functionals in some Sobolev space and derived from this
various expansion formulas for heat kernels. In the present paper, this method will
prove to be useful to show quite directly the asymptotic expansions for statistical
estimators.

In the next section, we present the results used later on. Section 3 gives
expansion formulas for the bias corrected maximum likelihood estimator and the
likelihood ratio statistic. In Section 4 we present non-degeneracy of the Wiener
functionals and we will derive the asymptotic expansions of the probability distri-
butions of statistics considering the composite functions of the indicator functions
together with those statistical Wiener functionals. In the last section the second
order efficiency of the maximum likelihood estimator is proved.

2 Fundamental results

Let (W, P) be the r-dimensional Wiener space and let H be the Cameron-Martin
subspace of W endowed with the inner product

T
Chyhy) = j hy,  hy . dt
0

for hy, h,eH. For a Hilbert space E, |- |, denotes the L?(E)-norm of E-valued
Wiener functional, i.e., for Wiener functional f:(W, P) - E

If15= §1f1% P(dw).
w

Let L be the Ornstein-Uhlenbeck operator and define | f||, ; for E-valued Wiener
functional f, seR, pe (1, o) by

1 fllps = 1L = LY2f I, -

The Banach space Dj(E) is the completion of the totality P(E) of E-valued
polynomials on the Wiener space ( W, P) with respect to | - ||, . Let D*(E) be the
set of Wiener test functionals of Watanabe [16]:

D=(E)= (] () DiE).

s>0 1<p<ow

Then,
DE)= U D;E)

§>0 1<p<w
and

D=*E)y=1J) [\ D;%E)

5>0 1<p<cw



Asymptotic expansion for small diffusion 277

are the spaces of generalized Wiener functionals. Moreover, let

D*E)=() | DYE).

>0 1<p<ew

We suppress R when E = R. The Fréchet space S(R?) is the totality of rapidly
decreasing smooth functions on R? and S'(R?) is its dual. The space Cy,
k=0, +1, +2,...is the completion of S(R?) with respect to the norm
1t 2k = supy | A*u(x)|, where 4 = 1 + |x]*> — $4. We owe the following theorem
to S. Watanabe.

Theorem 2.1 Let FeD*(R?) and e D*. Let y: R - R be a smooth function such
that 0 < Y (x) £ 1 for xeR, Y(x) = 1 for |x| £ 5 and y(x) = 0 for |x| = 1. Suppose
that for any pe(1, o), the Malliavin covariance or of F satisfies

(21) E[1{|5|§1} (dCtO'F)_p] < 0.

Then, there exists a linear mapping TeS'(RY) — TeD ™" satisfying the following
conditions: .

(1) if TeS(R?) then T = Y(¢)T(F)eD™,

(2) for k=0,1,...and pe(l, o) there exists a constant C(p, k) such that

I Ty, -2 S CP. R I T -2
for Te C_,,. This mapping is uniquely determined.

Proof. Let Te S(R?). Using integration by parts formula, which is applicable by the
condition (2.1), we see that for Je D,

KU T(F), I = [P (& A ATFT(F), T
= [KAT*T(F), @w; J))1 < CIT -2 g, 2

for a smooth functional ®{w;J), any ¢ > 1 and some C > 0. So that for
k=0,1,...and p > 1 there exists C(p, k) > O such that

T () T(F) ) p. -2 = Clp, RN T - 21

for TeS(R?). Defining T as the continuous extension of Y(E)T(F) we have the
result. [

If F is nondegenerate in the usual sense of Malliavin,

p-= (T, I Ype = p-a {T(F), Y(&)J Ype

for Je D®. Thus T is denoted by W(&) T+ F or y(&) T(F) if there is no confusion.
Let us consider a family of E-valued Wiener functionals (or generalized Wiener
functionals) { F,(w)}, e€(0, 1). For k > 0 if

: FE s
hmsup%< w0 ,
g

£l0
we say F,(w)= 0(*) in DY(E) as ¢}0. It is said that F,(wye D*(E) has the
asymptotic expansion

Fow)~fo+efi+-
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inD*(E)ase|0withfy, f1,...eD®(E)ifforeveryp>1,s>0and k=1,2,...
Fw)—(fo+efi +  + & Yor) = 0(")
in D3(E) as € 0. We say that Fs(w)eﬁw(E) has the asymptotic expansion

Fw)y~fo+efi +- -

in D*(E)as el 0 with fo, f;,...eD®(E)ifforeverys >0 and k= 1,2, . . . there
exists p > 1 such that F.(w), fo, f1, ... €D3E) and

Fow)— (fo+efi + - + &7 fiey) = O(F)

in D3(E) as ¢]0. Moreover, we say that F,(w)eD™®(E) has the asymptotic
expansion
Fw)~fo+efi+ -

in D"®(E)Yas ¢ [0 with fy, f1,... e D7”®(E) if for every k = 1,2, . . . there exist
p> 1 and s > 0 such that F,(w), fo, /1, ... €D, *(E) and

Fw) = (fo+efy +- -+ &7 fioy) = O(")

in D,%(E) as ¢|0. Similarly, we say that Fs(w)eﬁ ~®(E) has the asymptotic
expansion
Fow)~fo+efi+---

in D~’°°(E) as ¢ | 0 with fo, f1, .. .eﬁ_w(E) if for every k = 1,2, . .. there exists
s > 0 such that for every p > 1 F {w),f5,f1,...€D,*(E) and

Fw)—(fo+efi+ 4+ ficy)=0()

in D, *(E) as ¢} 0. The generalized means of these expansions yield the ordinary
asymptotic expansions.
The following theorem will be our fundamental tool.

Theorem 2.2 Let W be a function defined in Theorem 2.1. Let A be an index set.
Suppose that families {F,(w); e€(0, 1]} < D*(R?), {&(w); ¢€(0,1]} = D* and
{Ty; e A} < S'(RY) satisfy the following conditions.

1) For any pe(l, )

sup E[1{|58|§1} (thO'FS)_p] < 0O .
£e(0, 1]

2) {F,(w); e€(0, 1]} has the asymptotic expansion
F.wW~fo+efi+--- inD*R%asel0

with fie D®(R9),

3) {&(w); £€(0, 1]} has the asymptotic expansion in D® as ¢ 0.
4) Foranyn=1,2,..., .

lim ™" P{MS] > ~} =0.

£l0 2
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5) For any n = 1,2, ..., there exists a nonnegative integer m such that A " T, e
CR?) for all Le A and

sup Y ["AT" T, < 0,

€A i< n

wheren = (ny, . .., ny) is a multi-index, [nj = ny + -+ +n,, 8" =07 .. 0%, 6=
0/0x', i=1,...,d. Then the composite functional Y (&,)T,(F,)eD™> is well-
defined and has the asymptotic expansion

‘p(és)Tl(Fa)N ¢1,0 + g(p;”l +:in 5_00 as aiO

uniformly in Ale A with @, 4, @, 1, .. .eD™® determined by the formal Taylor
expansion

1
Tifo+lefi+&f+ 1= Z;l*!a“Tz(fo) [ef; + &2f> +

=&, 0+el, 1+,
where nl = ny! ... ngl, a = a¥ . .. a% for aeR". In particular,

(p/l,o = T/l(fo) s

951,1 = Zfﬁ aiTz(fo) s

i=1

%z—Zfz@T (fo) + fo]aéTz(fo)

1]1

Proof. We follow the proof of Theorem 2.3 of Watanabe [17]. Fix
k=1,2, ... arbitrarily. For T, eS'(R?), there exists a positive integer m = m(4, k)
and ¢,(x)e CERY) such that T, = A™ ¢, for all Ae A. For JeD®,

p- =W (&) T5(F,), I Dp= = E[ §s(F,)l(J)]
by the integration by parts formula, where

2m

le(J) = Z <P£,ia DiJ>H® o @H

i=0

and P, ; is a polynomial in F,, ¥(¢&,), y(e) =0 F , L-derivatives of F, and their
H-derivatives. Here we used the condition 1). From the regularity of ¢ s

bF)= Y G U= foT + Vise,

nf<k—1""

then for p’e(l, o), there exists a constant ¢, independent of 1e A and =€(0, 1]
such that
[ Viely < cre*

for ee(0, 1]. Let ¢’ satisfy 1/p' + 1/¢ = 1 and let g > ¢'. Then

“ls(J)Hq’ é CZHJ Hq,Zm
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for all e€(0, 1], Je D®, where ¢, is a constant independent of Ae A, £€(0, 1] and
JeD®. Therefore,

VELVi 2 I S Ve 2l 1)l

é C1Co H J Hq,ngk

for ¢e€(0, 1] and Je D™,
On the other hand, as [ F, — f].(J) has the asymptotic expansion,

1 _
Z _yan G F.—foI"l(J)=Zso+eZ, 1+ +6  Zyoy + Upois

mj<k—-1""
where
2m
Zl,iz Z <Q;_’i,j,DJJ>H®...®H, i=0,...,k—1,
j=0

J

Q0,15 a H® - - - @H-valued polynomial in " ¢,(f5), for f1s -+ > W, ¥y - -
(W) ~Yo+ e +-) V0,715--.(y(e) ~v0+ ey, +---), L-derivatives of
F, and their H-derivatives; and

ELU 6]l = ca* I llg, 2m »
where c; is a constant independent of 4, ¢ and J. Let

(2-2) ‘1)/1,1' = Z D Ql,i,j s

J
then

|p-={ W (&) To(Fy), I dp= — p-={ Y 526 6D, 1, J Dp=|
SIELU, cxdl + 1EL V5, L(J)]I
< (crca + ¢3)E T g am -

By the duality,

k-1

(&) TH(F,) — Z 8iq§l,i”p,'2m Sleyen + c3)ét .
i=0

Here we take p such that 1/p + 1/g = 1. pe(1, o) is arbitrary, so that
V(T (F)~ P, 0+ 6Py 1+ in D=

with &, 4, P, 4, .. .eD™> uniformly in Aed. Define the mapping Te
S'RY) - @,(T)e D™ as in (2.2). Again by the argument of duality, we see that
for positive integer m', there exist s >0, pe(l, o) and C >0 such that
1D T)p-s S C||T| -2m for TeC_,,, . For ¢ eS(R?) let @}, D, . . . be the coef-
ficients defined by the (formal) Taylor expansion of ¢(fy + [F, — fo]). Then,
W(E)P(Fo) ~ Y(E,) (D6 + ey + -+ )
~ @+ e+
in D*. The last equivalence is by the fact that for any pe(1, oo ) and any s > 0,

=¥ (&)lps = O(")
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forn=1,2,.... Therefore, &;(¢p) = &;,i =0, 1,.... By continuity we have the
result. [

Lemma 2.1 Forn=1,2, ..., there exists a positive integer m such that

sup Y, AT gl < 0,

BeBi|njzn

where B? denotes the Borel o-field of R
Proof. The operator A~! is an integral operator

A7) = § A ) f()dy,

d
with kernel R

Alx, y) = [ e7'pi(t, x, y)dt
0

where p;(¢, x, y) is the transition density of a Brownian motion corresponding to
the forward equation

5p1 1
==A 2
o = Ap— [yI“p1 s

see pp. 474-475 of Tkeda and Watanabe [4]. We note that for Be B
MA ™ Ig(x) = f& A™m5,(x)dy .

Integrability of 0% A~ " 0,(x) follows from a direct estimate using above representa-
tion of A~ 1. Then, we see that

FAT™S,(X)|dy S ————
Rfdl (x)|dy NG

for some m and p > 0, which completes the proof. [

The composite function of a measurable function and a Wiener functional has
a usual meaning.

Lemma 2.2 For y, & F given in Theorem 2.1 and any measurable function f(x) of
polynomial growth order,

Y (&) foF =y(&)f(F)
in D™ *.

Proof. For simplicity let d = 1. For any measurable function f(x) of polynomial
growth order and any ¢ > 0, there exist ke N and ¢ e S(R') such that

sup [A7Ff(x) — ¢(x)| <e

xeR!
and hence
I f— Ak¢”—2k <e.
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In fact, this follows from the inequality

%0 0 1/2
| A7 f(%)] é[fe"dt | pitx, y)dyJ

© © 1/2
X [ fe7dt | pitx, 02y dy}

0 —

<C(t+x))7t I: _}0 %e*ﬁlylfz(x — y)dy]l/2 .

Therefore, there exist a sequence ¢,(x)e S(R') and some k > 0 such that ¢, — fin
C_,. So we have
Y& fo F =y(S)f(F)

in D~ * by definition of composite functionals. ]

3 Expansion of statistics

Let X*° be the solution of the stochastic differential equation (1.1) for 6. Let P, 4 be
the induced measure from P on C([0, T'], RY) by the mapping w — X*%(w). The
Radon-Nikodym derivative of P, , with respect to P, 4, is given by the formula (e.g.,
Liptser and Shiryayev [8])

A,(0; X) 4,805 X)),

where

A(0; X) —exp{fs“z Vo(VV')' (X, 0)dX,
0
T
il

(VYT Vo(X,, 0)dt} .

Here A" denotes the Moore-Penrose generalized inverse matrix of matrix 4. We
assume that Vy(x, 0) — Vo(x, 00)e M{V(x)}: the linear manifold generated by
column vectors of V(x), for each x, 0 and 6,. When 0,€ @ is true, the maximum
likelihood estimator 8,(w; 8,) is defined by

(0, (w3 O); X>%(w)) = max A,(0; X (w)) .
6e®

Next, we prepare several notations. Fix any 0, € @ and X ¢ denotes X%, Let X2 be
the solution of the ordinary differential equation
dx?
de

= Vo(X?,00), te[0,T],

X8=XO.
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Let an R‘@R“-valued process Y?(w) be the solution of the stochastic differential
equation

dYi=aVo(X7%,00) Yidt + & ), 0V (X7)Yidwi, te[0,T],

a=1
Yo=14,
where [0V,19=0,;V.,0;=08/0x',i,j=1,...,d,a=0,1,...r Then, Y= Y7 is
a deterministic R‘“@R%valued process. For a function f(x, 6) we abbreviate
fi0) =1(X7,0),
0:fi(0) = 0. f(X:, 0)
and similarly 6;f7, 8;0,17(0), 0;6,f(0), . .;éwhere ;= 0/00. 1t is known that

! satisfies the stochastic differen-

£=0

¢ — X #% is smooth. In particular, D,:=
tial equation
dD, = 0V (6,)D,dt + V?dw,,te[0,T],
D,=0.
Then, D, is represented by

t
={Y, Y, 'Vidw, te[0,T].
0

Put
gs = Ys_1 Vg VS(VS I/.(s),)Jr 5 Vg,s(eo)
= Y10V 4(00)
where [6a(0)1" = 0a’(0)/00,j=1,...,d,1=1,..., kfora(®) =(a'®),...,dn).
The Fisher information matrix I(6y) = (I;;(0)) is defined by
Lij0,) = jé Vo (8o (VV')068; V3, (6o)de
fori,j=1,...,k Let

T
m((iy, - .., p)/0) = [ [8i ... 65, Vo(VV)" VIP(0o)dw, ,
0
T d
m((iy, .., L)) ={ Y [6:{6; ...8, Vo(VV') V}1(00)Didw,,
0i=1
n((i1s - -5 0p) (s - - 25 Jg)/0) = j[éu...éipV’(VV’) 05, Vo1 (B0)dt

and

Y La{6i ... 0, Vo(VV)T

d
=1

n((gs ooy ip) (as -« dd/D) = |

d;

1
. 8;,V0}10(B0)Didr .

Ji*
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Let 6" =01'6% ... 0 andlet [v|=v, + vy + -+ v forv=(v,vs,...,%).In
this article we assume the following conditions.

(1) Vo, Vand (VV"')* are smooth in (x, 6).

(2) There exists a constant C such that

[Volx, 0)] = C(1 + |x])

for all x and 8.
(3) For [n| 2 1, F = Vo, V,(VV')*, sup, o|"F| < ©.
(4) For |y 2 1 and |n| = 0, a constant C, , exists and

sup |3%0” V| £ Cyull + |x)
[’}

for all x.
(5) 1(0), € O, are positive definite. For 0, € ©, there exists a, > 0 such that

f [V6.:6) — V3,400)T (VV') [V 40) — ¥3,:(80)] dt 2 ao|6 — 0|

0

for fe .

Remark 3.1. To derive the results in this article, we can relax the above conditions.
By large-deviation argument, they can be replaced by a certain set of regularity
conditions about ¥V, and ¥ near the neighborhood of the path of X?.
Let
1:(8; 8o) = log A,(0; X>*) .

For matrix 4 = (AY),let |A|* = Y ;| 4¥|%. Choose y so that 0 < y < £. Let mg, noe
N satisfy my > 55 + 2. The Sobolev space W™-2"(@) is the Banach space en-
dowed with the norm

1/2no
||u||Wmv-2"°(@)=< Y !15"14”1%:1(@)) ,

In| < mq

where L,(®) denotes the L, space on @ with respect to the Lebesgue measure.
Then, by Sobolev’s lemma, the inclusion W™ 2" (@) = C2(@) is continuous, that
is, there exists a positive constant C (my, 2n,, 2, @) such that

lullcx @) = Clmo, 2n, 2, @)l o200
for ue W™ 2" (@), where

lullcey= Y, suplému(®)].

Inj 2 00
For 6, @ let
T
Qi (w,e,0) = [ 8,V .0 (V V') 26,V (0)dt ,
[¢]

j,l=1,... k where X
8V5..0) = [ 8V (B + u(0 — 6,))du
(0]
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and let @, (w, &, 0) = (Q¥(w, ¢, 0)). Moreover, let

Q2(w, &, 0) = f[V A0) = Vo,00)(VV'), [ V5,:(0) — V,.(00)1dt .

When & =0, Q;(w, 0, 8) and Q,(w, 0, 8) are deterministic and denoted by Q,(0, 6)
and Q,(0, 8), respectively. For 5¢(0, 1), define

fiw, & n,0) = Qi (w,ne, 0) — 0{(0,0),

faw, &, 0) = Q2(W> ne, 0) — 0,(0, 0)
and

T
faw, 6,1,0) =& 72 [ [VE(0) — VE.(00)] (V V'), ™ ViEdw, .
o]
For 8,€® and ¢ > 0 let

k
r:,n(w) =c Z ”fjll(wy &, na')H%/I,}?"OZ (@) +c Z ||f(W &1, “ W"‘OZO @) -
Jjl=1
For each (0, 1], ¢ > 0 and we W, the function # — r{ ,(w), n€(0, 1), is smooth.
Let

Riw) = |78 W) Gn2(0,1)) -

There exists a positive constant C(1, 2, 0,(0, 1)) such that

#llcy 0.1y = C(1,2,0 L, DYl e (0,1

for ue W2((0, 1)), where lulley (0.1 = SUPre(o, 1y lu(m)]. Let
Co = C(my, 21y, 2, B C(1, 2, 0,(0, 1))!/2
There exists d; > 0 such that {6; 0 — 6,| < d,} < @,

1
up 104(0,0) — 1) <3 4
10—80|<dy
and

1 1
sup  |=62Q,(0,6) — I(6,) <Zi1,

[6—80] =d1 2

where 4; = infi; =, £'1{6,)¢&, the minimum eigenvalue of 1(6,).

Lemma 3.1 Let ¢, satisfy Coco? < min{gg A1, 1 aod}}, where p; = 7&;. Suppose
¢ > ¢qy. Then,

(1} Ife* < dy and Ré(w) < 1, a maximum likelihood estimate 9 (w; 8y ) exists and is in
{6;10 — 0ol <&} for ¢ S e.

(2) If & < dy and Ri(w) < 1,

sup £'62821,(0; 00)¢ < ——/11,

&=
16— Ool<d1

for & Ze.
3) If g < d, and RS(w) < 1, the maximum likelihood estimate 0 (w 8,) is a unique
solution in {6; 10 — 04| < d; } of the equation d1,.(0; 6,) =0 for ¢ < e
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(4) Let Y (w)=y(R¥*Ww)) if ¢ <dy and let Yy, w)y=0 if & =d,. Then,
0= y,(w) £ 1 and y,(w)e D™, .

(5) 6,(w; 0,) can be extended to a functional on W and ,(w)0,(w; 0)e D™ (R¥).
(6) Foranyn=12,... . y,w)=1—-0(")in D* as ¢|0.

Proof. (1) Suppose ¢’ < dy and Ri(w) < 1. By definition of Ri(w) and Sobolev’s
inequality, we have

sup [|Q¥(w, ¢,") — Q’i’(o,')ﬂcj(@) < Coe™

g=Ze
sup | Qa2(w, &) — QZ(O,')ch(@) < Coe ™™
g =¢

and

é C()C_pl .
Cie)

sup

&g

T
e IVE() = Vo 00)T(VV), Vi dw,
0

Since ¢ > ¢, from Condition (5), we see that

inf  &7*Qy(w,e,0)= inf & 7*[Q,(0,68) — Coc™™]

d1<]8—0¢] dy <|6—60]
g <¢g &' Ze
> & P [agd] — Coc™™]
3
= ayd?
4
and
inf 770w, ¢,0) = inf &0 — 0o) Q1(w, ¢, 0) (0 — 0o)
B T T Y e7<|0—-80|<dy
g'<e g'Se

[\

inf é,Ql(Wa 8,5 0)5
[g]=1,2'=¢
e7Z|8—6of=dy

1\%

inf  'Q4(0,0) — kCoc™™

13
g7S|0—00|$dy

1%
N =

/11 — k(jocgp1

Ay

1%
oo W

Therefore, 3 ]
inf &72Q0,(w,¢,0)= min{‘—1 apd?, gﬂvl} =C,.

e7=16 - 00|
&' =<e



Asymptotic expansion for small diffusion 287

Then,
1
sup & 2ETI[L(0; 80) — L (Bo; 00)] £ Coc ™7 — 2 G

8/7< 10— 6g|
fe@,e'<¢

8 16
Therefore, if ¢’ < d;, and Ri(w) < 1, there exists a maximum likelihood estimate
0. (w; 0,)e{0; |0 — 0,| < &7} for & < e This proves (1).
(2) If & <dy and Ri{(w) < 1,

sup  [£2621.(6; 0o) + 1(6,)]

16 —080| =d4
¢’ =e

1 1
< max{——aodf, — il} <0.

1
<2Coc™+ sup | -5 8%0,(0,0) + 1(6,)

[0—80j=d1

17N
Moo=

241.

Consequently,

1
sup  £'0%&%1(0; 0)¢E S — <Ay
[¢l=1.¢'<e 2
|6—80]| <dy

(3) Since 6 - 1,(8; 6,) is smooth, ég/(W; By) 1s a root of the estimating equation
0l (8;00)=0. From (2) we see that this root is a unique solution in
{10 — 0o] = dy}.
(4) is easy.
(5) Let 0.(w;00)=10, if " =2d; or ¢ <d; and Ri(w)= 1. Suppose & < d;.
For heH, if Ri(w) <1, there exists to(w, h) > 0 such that Ri(w + th) <1 for
|t| < to(w, h). Then, |8,(w + th; 6,) — 6| < & and

Ol (B.(w + th; 00); 0o)[w + th] =0 .

By the uniform non-degeneracy of the bilinear forms &2621,(6; 6,) and the Taylor
formula, we have

100w + th; 0) — 0,(w; 06)] < 221 1 8281,(0,(w + th; 0,); 66) [w]|
= 217 1e28L,(0,(w + th; 0,); 0o) [W]
— e281,(6,(w + th; 6,); 6) [w + th]|
3.1
G1) < 205" sup|e261,(0; 00)[w] — £251,(6; 00) [w + ¢h]]

0@

Let H; be any bounded setin (H, | - | z). We define the process X7 = sup, <, X,| for
process X. From the stochastic differential equation (1.1), we have for he H,,

t

Xiw+ h)— X0 = [ eW(X O)hods + [ {LVo(X20v + h), 00) — Vo(X?, 60)]
0 0
+ e[ V(Xw + b)) — V(X0)]h) ds

+ iaV(Xﬁ(w + h))dw; .
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By Lemma 3.2 (1) below we have

(3.2) sup | XF(w + h}l|2, <
£e(0,1)
heH1

forp = 1.

Next, let Z:i(t,n, h) = Xi(w + tnh) — Xiw) for se[0, T], ¢€(0, 1), t,ne(0, 1)
and he H. Then, Zi(t, n, h) satisfies

Zi(t,n. by = [ emV(Xo(w + mh))h,du
0

[ V(X500 + k), Bo) — Vo(X5(w) 60)] du
0

+ ¢ } [V(Xiw + tyh)) — V(X iw))]dw, .
0

Using Lemma 3.2 (1) below we have for peN, = 2,
1ZF (@t hl, < Cilten|

for some C; > 0 depending on Conditions (2), (3), d,r, p, X, T and ||k || z. More-
over let

0
Wit n, h) = n Xsw + tmh)

se[0,T], e€(0,1), t,n€(0, 1) and he H. Then, Wi(t, n, h) satisfies the stochastic
integral equation

Wt n, h) = j teV(XE(w + tnh))h, du
4]
+ [Z A Vo(Xi(w + tnh), 00) [Wit, n, )]
0 i
+ten Y. V(X (w + tmh) [WE(t, n, h)]fﬁu} du

+¢& ff Y V(X iw + mh) [ Wilt, n, ] dw, .
03

Again by Lemma 3.2 (1) and (3.2) we have
W@ n hl, < Cate

for peN, p = 2, where C, depends on Conditions (2), (3), d,r, p, xo, T and | k|| 4.
After all we obtain
p

(%)l(Xi(w + tph) — Xiw))| -0 ast—0

sup E sup
ne(0,1) O0=s=T
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for! =0,1, he H, each ¢ and all p = 2. From this we obtain, using the Burkholder-
Davis-Gundy inequality and (4),

a vo 14
sup EK—) 0" (81.(0; 0o) [w + tnh] — 61.(0; 6) [w])| — O
7e(0,1) on
fc®@
ast—0for vy, vy,..., 20, vo+v,+ - +w<1,heH eachcandall p > 1.
Consequently,

<a_an> 5°(81,(0; 00) [w + tnh] — 81,(0; 6,) [w])

p
dnd6> 0

B ]
©0,1)xe

ast—0forvg,vy,..., % 20,vg+v, + - -+w=<1,heH,eacheand all p> 1.
By Sobolev’s lemma, we see that there exists a sequence {t,} | 0,g =1,2,...,such
that

sup [61.(8; 8o) [w + t,qh] — OL(0; 05) [Ww]| =0, as.
nee(é)él)
as g — oo for he H, each & Consequently, we see that the right hand side of (3.1)

tends to zero a.s. as t - 0 and obtain

lim és(w + th; 8y) = é;(w; 0y), a.s.

t—0

if Ri(w) < 1.

If REw)=1, R¥(w)>1 and hence for any heH and some t;(w, h) >0,
Y w+th)y=0 if [t] <ti(w,h). Therefore, lim, .o, (w+ th)0,(w + th; 6,) =
V. (w) 0,(w; 8,) for he H, we W, ¢€(0, 1). Functionals ,(w)60,(w; 0,) are bounded
and in ﬂp>1LP( W, P). Next, we calculate H-derivatives of these functionals. For
Ri(w) < 1, he H and |t] < to(w, h),

e201,(0,(w + th; 05); 80) [w + th] — 281,(0,(w; 00); 00) [w + th]
= —201,(0,(w; 05); B0) [w + th] + £281,(0,(w; 00); 80)[W] .
Fori=1,...,k, there exist @ and 7 such that
18— B,(w; 00)] < 10,(w + th; 60) — 6,(ws o) ,
|] < |t| and
£285,1,(6; 00) [w + th](B,(w + th; 05) — 0,(w; 6,))
= —t(D,e28:0.)(0,(w: 0); 60) [w + Th] .
Dividing both sides by ¢ and t — 0 we have
D, 0,(w; 0o) = — [62621,(0,(w; 05); 60) [w]1™* (D431, (0(w; 00); o) [W]
for he H if 8 < d; and Ri(w) < 1. Then H-derivative of we(w)és(w; fy) exists and

D, LY, (w)0,(w; 05)] = [Dathr,(w)16,(w; 80) + (W) D, 8,(w; 05) .
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When Ri(w) =1, R¥*(w)>1 and y,(w+th)=0 if |t| <t,(w,h). Therefore,
Dy, (w)8.(w; 8,)] exists and equals zero. Thus we see that xﬁg(w)@(w; By) is
H-differentiable on whole W. The H-derivative is in L,(W, P), p > 1. In fact, this
follows from uniform non-degeneracy of §26%,(0;0,) and the integrability of
Supg.g | De201,(0; 0,)|us, which is obtained by estimating the Sobolev norm

E[[[1De?8L(+; 00) [w1lis [ mn o] -

For a representation of DJl,(6; 0,) see Section 4. Similarly we can verify existence
and integrability of higher order H-derivatives, which completes the proof of (5).
(6) From the following Lemma 3.2 (3) for any neN and ¢; >0,
P(R{(w) > ¢;) = 0(&") as ¢ | 0. From this fact we can show (6) in view of the chain
rule for H-derivatives. This completes the proof. [

Lemma 3.2. (1) Let £5(t), te[0, T], e€(0, 1), 0 @ (an index set), be d-dimensional
nonanticipative processes given by

E5(t) = my(0) + J w5()Y(s)ds + & | fo(s) dws,
0 0

where n§ is an R%-valued continuous nonanticipative process, a§ is an R* ® R™-valued
nonanticipative process, 5 is an R* @ R’-valued nonanticipative process, \ is an
R™-valued function satisfying

J Iy (s)Fds <

0

and w is an r-dimensional Wiener process. Suppose that there exist positive constants
K;, i=1,2,3, such that

log(s)] = K1 15(5)]

and

1Ba(s)l = K2 (I1E5(9)] + K3)

as. forany e€(0,1),0€0,0 < s £ T. Assume that for allneN, ee(0, 1) and 00O,

E[ sup mz(m"] <o0.

0StsT

Then, for any n = 2, there exists positive constant C, = C,(T, d, r, K, K,) such that

supE< sup lé%(ﬂl”)éCnexp{CnGW(s)lzds)z}

fec@® O0=t=T
><<E< sup |n§(t)|"> +K§a">
O=t=T

Jor e€(0, 1).
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(2) Under Conditions (1), (2) and (3), for neN there exist positive constants ¢, ¢,
independent of € such that

sup E( sup IX?E—X?\”>§C18"

#e(0, 1) 0=t=T
and
a n
sup E< sup | —XF >§c28”
ne(0,1) 0=t=<T

for (0, 1).
(3) For neN,c>0and a > 0,

P(R{(w) > a) = O(g") .
Proof. (1) Let
oy=inf{t 2 0[O Z N} AT
for NeN. For some Cy >0

T
1&01° < Co(lné(t)l2 + K§ [ lag(s)1* ds +
0

& ] Bols) dw,
0

)
where Ko = ({g|¢(s)|*ds)*/. By the Burkhélder-Davis-Gundy inequality
d

tef0,T], ¢€(0,1), Be B, for some Cy(n, T, K,, d, r) > 0. Using assumptions we
have

%®n

J B5(s) dw, > < Cin, T, K, d, V)( 5+ [ EI&(s A ow)l" dS) ,
0 0

tAON

E(1&515 60 = Ca(1 + K'&)<E(M§I’%”) + iE(Ié‘é Shon) ds + Kie :) ,
te[0,T7, ¢€(0,1), 0@, for some C, = Cy(n, T, Ky, K, d, r) > 0. By Gronwall’s
lemma we have

E(|&51T 0 0n) < €T 5OTCo (L + KB)[E(In5l5") + K3e"]
¢e(0, 1), 6€O. Letting N — oo we have the result.
(2) We know that (X T X0, % X "E> satisfy the stochastic differential equation

~

d(X7 = X7) = [Vo(X T, 00) — Vo(X 7, 00)]dt + neV (X ) dw,

0 o 0
d— X" =0Vo(XT, 0p) — XTdt + | noV (XP)— X" + V(XT) |dw,
Jon on on
XF—X3=0
0

—XF=0.
“ oy Y
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Since éV,(+, 8y) and ¢V are bounded and V;(-, 8,) and V are of linear growth
order, we can apply (1) to this case and obtain the resulit.

(3) It suffices to show that for any me N there exists n€ N such that E[|R{(w)|"] =
O(c™) as ¢ | 0. We can estimate the norms of the parts of R{(w) corresponding to
f% and f, by (2). For the part corresponding to f5, we obtain a similar estimate
using (2) and the Burkholder-Davis-Gundy inequality, which completes the
proof. [

In the context of the higher order statistical asymptotic theory we need to
modify the maximum likelihood estimators to get efficient estimators. We call an
estimator 0% a bias corrected maximum likelihood estimator if

x =0, — £2b(0,) ,

where b(0) is a bounded smooth function. Then, ws(w)ég“ is well-defined. The
following lemma gives its expansion formula.

Lemma 3.3 y,(w)e ™ 2(0%(w; 8,) — 6o)e D™ (R¥) has the asymptotic expansion
0% (w; 8,) — 0
wa(w)—%——g~fo +efy+--inD*R") asel0

with fo, f1,...€ D®(R¥). In particular,
fo=1(00)"'B,
£ = —b(0g) + 511 (0)T + 11 1(00)01 ~(80)B, . . . ,
where B = (B'), T = (') and Q = (Q; ;) are defined as follows.
Bi=m((i))0), i=1,...,k,
[i=2m(@)/), i=1,...,k

k
Qij= > [IB6) *BI"Nyjm+24;; ij=1,...k,

m=1

where
Nijom = — [((ji)(m)/0) + n((im) ( j)/O) + n((mj)()/0)], ijm=1,...,k,
4;,;=m((ji)/0) — n(()H(D/1), Lj=1....k.

Proof. Suppose &} < d; and RS (w) < 1. Let F(0, &, w) = §251,(6; 0,) [w]. The map-
ping (g, 8) > F(6, &, w) is smooth and A(6, &, w):= F (0, &, w) is non-singular for
& < gg and 0 satisfying |6 — 6,| < dy uniformly. Moreover, by Lemma 3.2 (1), it can
be proved that for a.s. we Wand ¢ = 0,

lim sup |F(8, & + u,w) — F(0,e,w)| =0.
u—0 0@

Therefore, the mapping & — 01(w; 8o) is continuous. Hence, we have

63 2 0.0500) =~ AGw b e ) S 0.0 00) 6
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for ¢ £ &,. In particular,

o= lim 2 5(w;60) = 160)'B .

el O
o\ A
Differentiate (3.3) once more we get <%> 0¥(w; 8¢) and f;. Similarly, we have

o\ - . . .
<§> 0%(w; 0y), i = 3,4, ... and their limits in terms of A, F, B, their derivatives

with respect to 6 and ¢, and és(w; 0,). Therefore, éf(w; 8,) is smooth on [0, g).
Then we have the expansion

2

0 (w; 65) = 0 +4 (50)00*(W 0o) +—(5o)09*(w f0) +

gd—1
+ gy 00400 )

+ sfj (1 — )77 2(8o), 6% (w; 05) ds

— !
for ¢ < &, where (J,), denotes the e-derivative at &. Hence,

2

Yo(W) 02 w5 00) = Yo (w)0o + Yo (w) 18'( 0)o0*(w; 80) + Yro(w ) (50)00*(W 0o)

1

+..,+l/,£(w)8jj(; P

This expansion holds on W. The H-derivatives of the integrands of the residual
term take the form of (1 — s)' ™! G(O,,(w; 0y), w), where G(O,w)isan H® - - ®
H-valued random field on @. Estimating the norm

E[ ” |G( B W)|%1s ”;’V”‘o’z"o(@)] s

p > 1, before substituting §se(w; f,) for 8, we can show

(1 — 5771 (80)4,0%(w; 65)ds .

09 B 0 00) — B) ~ 0) 7 Go)o 0 ) + ) (3o)30% 0 60)

1 A -
3 (B0)o 0% 0w B0) + 37 (00)30% 0v: 60) +

in D*(R¥) as ¢ | 0since ¥/,(w) =1 — O(e") in D* as ¢ | O for neN. This completes
the proof. [J

Remarks 3.2. (1) Formally, we may write

), i=1,...,k,
gl O a

. 0*Ft .

F‘:limF(Be(w;Oo),s,w), i=1,...,k

el 0
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d A -
Qi = lim = [ A(8.(w; o), &, w) "/

el 048
62 i ~
+£1lrr(1)2aaej( Lw; 00),e,w), G, j=1,...,k,
Nijom = lim 3,8, F (B,(w; 0o), &, w), i,j,m=1,... k,
¢l 0
. O*F' 4 ..
Ai,j = 1lﬁm(ga(w, 60), &, W), 1,] = 1, RN ,k .

(2) Kutoyants [7] proved an expansion formula for the maximum likelihood
estimator of one dimension. We will need a smooth truncation to apply Malliavin’s
calculus.

For he R* we denote the log likelihood ratio

le,h(w; 8o) = L.(O0 + &h; 85) — 1.(64; 6,) .
Then,

T
Ln(W; 00) = | 671 [ V5,100 + eh) — V5,.(0)T (VV') "V i dw,
o]

1 T
EI THVo,:(00 + eh) — Vi (00)1 (VV'); LV (8o + eh) — V§ ,(B0)]dt .
0
The following lemma gives the expansion of the likelihood ratio, which is rather
easy to show and the proof is omitted.

Lemma 3.4 The log likelihood ratio I, ,(w; 0y)eD® and has the asymptotic
expansion

Law; ) ~f5+eff+---inD® ase 0,
with [§, f%,...eD®. In particular,
f6=HB—5H10)h,
k
fi= Y Fm(()/1) + 5 Z Whm((if)/0)
i=1

111

-2 )y hihjn((i)(j)/l)—% > EWR (i) m))0), . . ..

2’i,j=1 i,jym=1

This expansion holds uniformly in any compact set of R .

4 Asymptotic expansions of probability
First, we know that for he H

t
DyXiP =¢ [ YiYe ' Vihds.
0
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For he H, the H-derivative of F(0, ¢, w) in the direction of & is

T
DyF(0, 6, w)=¢ [ [V o(VV')" V1:(0)h,dt
0

T
+ e[S a8V o(VV’)* V}I0)D,X % dw,
01

T

— [ X La{oVo(ry)* (Ko, 0) — Vo(-, 0o )} 1 (O) Dy X 77" dt
01

T

= [ [Vo(VV')* VIEO)hdt + 82j1< (O)h,ds

<

T
- gz (9 - QO)j jl Kaz,j,s(e)]/isds s
j 0
where

f[@,{éV’O(VV/ VTVIEO Y™ dw, [YELVE]™

m,l

and
T
2,550 = [ [a {6V (-, 0/ (VV") §5Vo
I s

(-, 00+ u(@ — Oo))du} ELYE]-de Ve e .
Let y,(w) = y(R3(w)) for some fixed ¢ > ¢o. Then, if /,(w) > 0
Dy (W)B,(w; Bo) = — A(0,(w; 0o), & w) ™2 Dy F(B,(w; 05), & w) .
Therefore, the Malliavin covariance of ¥r.(w)e _1(é (w; 8g) — Bp) is
=(Dye 1§ .(w; 6,), DY, ) (W 00)>

Oe™18,w80) —

= A(0,(w; 8,), &, w) ™! f {8V o V) VIB.(w; 85))
0

+ K4 (0,9 00)) — 3 [0,005 80) — 801 K5, ;,4(6.(w; 60)) )

(.. .Y dsA(0,(w; Op), &, w)™*

and this can be denoted by

295

A(G,(w; 0o), & W)~ {T°(w) + eR5 (W) + R5(W) (0. (w; 00) — 00)} A(D.(w; o), W)™,

where .,
I*w) = [ [0V (V') 8V, 10, (w; 05)) ds
(4]

5(w) is a 3-liner form and R5(w)(x} = R5(w) [x,-, ]
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The Malliavin covariance of zﬁea_l(ég“(w; 0y) — B,) is given by

0y 1v0m 00y = i — 200,00 00)))0,, 114, 00y Ty, — £20b(0,(w; 0p)))

if x/78(w) >0
Let
fO(W’ &, 6) = QO(Wa &, 9) - QO(Oa 9) 5

where

T

Qo(w, &,8) = [ [6Vo(VV')" 6V, 14(0) ds

0

Define

RG*(w) = |l | fo(w, & ) [* |74 2, 0)

for¢ >0,m;,n,eN, m; >—.

2n1
Let
&.(w) = [¢'2Ri(W)]? + |62 R5(W)|* + RG> *(w) + R*(w) .

Then, &, (w)eD®, since we can replace ée(w; 8y) in the right hand side of the
representation of o, 14, o) bY ¥,0.(w; 6).

Lemma 4.1 For some ¢o > 0 and ¢’ > 0,
sup E[1z, < 1) (det oy, 165, 00)) "1 < 0
e<gg

Jor all p > 1.
Proof. It |&,| < 1, |8,(w; 85) — 05| < & and
115 (w) — 1(80)] < | fo(w, & G,(w; 06))] + 1Q0(0, O,(w; 05)) — 1(0)

S Cie A 4+ sup  1Q0(0.0) — Qo(0, 6y)l

|16 — o] < &'
where C{ stems from the Sobolev inequality for @. Moreover, if |£,| < 1,
|eRg (w)] < &'/

and )
R5(w) (6.0 86) — B0)] < &| R5(w)| < 7.

From the proof of Lemma 3.1 (2), we see that if &” < d; and R{(w) < 1, the operator
norm of A(f,(w; 6y), &, w) £ 2 + 2) L1, where 4, is the maximum eigenvalue of I(6,).
Thus there exist small &g, large ¢’ and some ¢’ > 0 such that

1
det oy, .-14xw; 00) = €

for ¢ < gy if £,(w) £ 1. This completes the proof.
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Lemma 4.2 &,(w) has an asymptotic expansion in D* and for neN and ¢, > 0,
Pl|&] > ci]=0(")
ase | 0.
Proof. From Lemma 3.2 (2) we see that for neN and ¢; > 0
P[RG*(W) > ¢1]1= 0(")
as ¢ | 0. Applying Lemma 3.2 (1) to Y¢ — ¥, and Y:~! — Y ! we have

E|: sup IY?I":'—I—E[ sup |Y§_1|"}<oo
0StST 0SisT

for all neN. For neN, ¢; >0and ¢ >0
P[s“ sup |K5 ;(0) > cl} = 0(")
se[0,T]
0e@®
ase | Ofor j=1,...,k Applying the Burkholder-Davis-Gundy inequality to
T T

§La{ovo(vv)* VIREO LY dw, = [ [6,{0Vo(VV")" VIO [ Yi1™ dw,

s 0
~ [ [a{oVo(VV) VIO [ Y™ dw,
0
and its derivatives in 8, we have

sup E[ sup ||K81’s(')||gyl,2m(@):| <
£e(0,1) s€[0, T]
for I, m, neN. By Sobolev’s lemma we see that for any « > 0, neN and ¢; >0
P |:s“ sup sup |K3 (0)] > c1:| = 0(")
se[0,T] 8@

as ¢ | 0. Since
P[]l > c¢1] = P[I&| > ¢, Riw) < 1] + PLRi(w) = 1]

and Iés(w; By) — 8| < &” if Ri(w) < 1, it is not difficult to show this lemma by
Lemma 3.2 (3). O

Let ¢(x; u, 2) be the probability density function of the k-dimensional normal
distribution with mean u and covariance matrix X. Let I~ 1(0,) =171 = (I9).
Then, we have the following theorem.

Theorem 4.1 The probability distribution of the bias corrected maximum likelihood
estimator G%(w; 0,) has the asymptotic expansion

Sy
P[WEA} ~ [pox)dx + e pi(x)dx + - -ase |0, AeB*.
A A
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The expansion is uniform in Borel sets AeB*. In particular,

Po(x) = ¢(x;0,171),

[Z 194, ;,x'+ Y IVB; ;! —Zb (O} '

i,j,1 i,j,!l

— Y Ay xXxxt =) - B”lxx’ :|¢(x;0,11),...,

i, j,1 i, J, l
where
ITr d
”n=§H Y [0 {6:Vo(VV) 6, ¥} 17 (06) Y gy dsdt
00Lm=1
and
B ;.= n((i)(1)/0) .

Proof. Let

Tt d

Afin=11 Y [a{6:VoVV)Y VT @) [V (VV')" 6,;Ve]17 (00) Yimgy" dsde
005Lm=1

Tt d
A¥¥, = H Y L& VoWV VIR O0) [0V (VV') 6;Vo} 1 (B0) Yim g dsde .
00

=1
Then, 4f;, = A}, and
A= (A:k] n+ AFL) .
It suffices to verify the conditions of Theorem 2.2 for
F, = .8 (620w 0o) — bo)

and ¢, given above. The condition 2) is presented by Lemma 3.3. The condition 1)
follows from Lemma 4.1. Conditions 3) and 4) are by Lemma 4.2. Lemma 2.1 gave
5). Therefore, for A B, we have the asymptotic expansion

W(EN (o™ (G (w; 0) — 00)) ~ P+ Py + - inD ™™ ase |0
uniformly in 4 €B¥, where

‘DA,O = IA(fO):
a1 = L S10Lafo)- -

Hence, by Lemmas 4.2, and 2.2,

[ 000t ] o g v 0000 )
- £ piate (. = )

~E[®40] +cE[Py]+"
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as ¢ | 0, uniformly in AeB* Therefore, the rest is to calculate E[®, ],
i=0,1,....From the regularity of f; and integration by parts formula,

E[®,4;] = E[G:W) °fo] = E[G:(W)I4(fo)]
= f E[Gi(W)| fo = x1pg,(x)dx
for some smooth functional G;(w). Therefore, each term is represented by an

integration of a smooth function. We will only determine po and p;. po is trivial.
Considering 4 = {y = (y); y'>x\i=1,...,k}, x = (x")eR", we see

pilx) = (—1)ko, - - akEliZfilaiIA(fo)‘J
@41 = (_l)kzai'51 © 01 0i4 " akE[filHXI(f(l)) e 5Xi(f€)) cee ka(flé)]

—_ZaE[fl —25 {ELf11fo = xTpsX)}
where H,(y) = 1jx, ) ( ¥) for x, yeR. Let
a, =171V (06) (VV'), OV

and
= [a{6:Vo(VV') V1P (0,) -

Then, by Lemma 4.3 below we have

E[m((0)/1)|fo = x] = E[fZV%,zDidwtlfo = X]
o 1

T t
=¥ 5| [ J 072V V2w,
(o] 0

1

? a,dw, = x:I
0

ZTr<ﬁ VoV V) V12(00)

1 00

L8V (VV')"8,V5}10(00) [ ¥ 1" godsdt(xx’ — I*))

= Z A?fj,l(xjxl - Iﬂ) 5
J.l

E[m((ji)/0)| fo = x] = E[f[é,-éiVb(Vnyng’(eo)dw, ?a,dwt = x}
ZI [6;8:Vo(VV')"6,Vo]7 (Bo)dex’

:‘Z l]lxl
1
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and

[08:Vo(VV')70;V0} 17 (B0) Y. "

-

4
jys! Vfdws>dt
0

T
| a.dw, = x}
0

= [ [2L0{0:Vo(V V') 6;Vo} 10 (00)[Y,]" gsdsdex
01

Hence, the conditional expectations appearing in the right hand side of (4.1) are
E[filfo=x1= —b'(0) + 3E[[I*I'Y|fo=x]+3E[[I ' QI"*BT| fo = x]
= —b'(0) + Y I"E[m((j)/ DI fo = x]
j

(42) CLY 19 (1) (m)/0) + n((im)(7)/0) + n((jm)(1)/0)]

Jslim

+ Y 19X EDm((j1)/0) — n((H(D)/ D1 fo = X]
I

. . 1, .
— ) IMmARE XX =Y EI""B,,J-,mx’xl

Jsl,m Jil.om

—bi(0o) — Y, I™I AFE .

Jlm

Then, the function p;(x) can be derived from (4.1) and (4.2). This completes the
proof. O

Lemma 4.3 Let w be an r-dimensional Wiener process and let functions a,, b,, ¢, on
[0, T] be deterministic. Let £ = {7 a,a;dt.

(1) Let a, be R* @R™valued and let b, be R"-valued. Then,
T

E lij b dw,
0

(2) Let a,, b, and c, be R*® R", R" ® R" and R™ ® R"-valued, respectively. Then,

T t ’
E[I (j b, dws> c,dw,
0 \0O

Here Tr stands for the trace.

T T
[a,dw, = xJ =x'27" [ ab.dt.
0 0

T Tt
f a,dw, = x] =Tr | [Z ' ac;bsai 2~ (xx' — Z)dsdt .
0 00
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To prove the optimality of the maximum likelihood estimator we need the asymp-
totic expansion of the likelihood ratio process. As the maximum likelihood es-
timator we can show the non-degeneracy of the Malliavin covariance of the log
likelihood ratio and obtain the following theorem.

Theorem 4.2 Let h € R* and h # 0. The probability distribution of the log likelihood
ratio l, y(w; 8o) has the asymptotic expansion

P[l4(w; 00) € A1~ [ pi(x)dx + e f pi(x)dx + - -+, ase|0,4eB'.
A A

The expansion is uniform in A € B, In particular,

p6(x) = ¢(x;0,J),

ph(x) = [ y Ai,,.,lhihfhl]J*[i3 — J%% —3J% + J21$(%;0,J)

i, j,1
1 o
+ 5[ Y B,-,,.,,hlhfhl]rz[xz —Jx —J] ¢(x;0,J),
i, j, 1

where J = hI(0g)h and x = x +4J. The probability distribution function of
I, w(w; 8o) has the asymptotic expansion

P[lsyh(W; 60) é x] ~ @(55, 0, J) — 8{[ Z Aigj,lhihjhli|¢]_2[)€2 —Jx — J:l

i1
1 o
+§|: Y Bi!j,,h’hfh']J_l[i - J]}qﬁ(a?; 0,J)+ -,
L.l

where ®(x; u, 62) is the probability distribution function of the one-dimensional
normal distribution with mean p and variance 2.

Proof. Constructing an appropriate smooth truncation functional the non-
degeneracy of the Malliavin covariance is proved in the sense of Theorem 2.2 and
we have the composite functional with a tempered distribution I 4, the asymptotic
expansion of the generalized functional and the expansion for distribution

Pll. (w; 85) € A1~ E[®] o] + eE[®5, 1+ -

ase | 0, 4 € B!, where &4 o = I,(f%), ®4.1 =f101,(f5), . . . . The expectation

E[®%,1] = | pi(x)dx,
A
where

pi(x) = —{EL f11 f§ = xIpr(x)} -

Let
ay = WoVy (6o) (VV') VY.
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302
Then, by Lemma 4.3 we have
T T
E[m((i)/1)| f§ = x] = E[f YLo{a:Vo(VV') V1 (00)Di dw, || d,dw, = f}
0
Tt
= [ [V (VY)Y VIO {V' (VV')6:Vo}1°(B6) Yigshdsdt
00

JAx? -]

= ZA, aWRI T EE ),

T
j a,dw, = i}
0

E[m(()/0)| f6 = x] = EI:,“:éiéj Vo(VV) V17 (00) dw,
0

WOV (VY)Y V12(00) [0:0;Vo(V V') V1P (0) deJ ~1x

Il

O ey N O<—;’~]

WOV V') 6:8;V010 (0)deJ ' x

= ZBi,j,lhlJ71

1

and

E[m(()()/ DI f6=x]= E[fZ[az 8 Vo (VV')T6;70}17(00)Didt
01

Il
=
—

T
| a.dw,
0

[0{5,Vo(VV')*6;V0}10(00) Vg, dsdt J ~ L h

O ey =

S 24, hT"
14

Then, from Lemma 3.4 we have the conditional expectation

. 1 o
ELS31f6=x]1= Y FE[m(()/D]f§=x]+ EZ. hW E[m((i)/0)] f§ = x]
le,..;
- EZ KW En(()(j)/D]f§ = x]

1% KR 0)/0)

i j,m

= |: Z Ai’j’lhihjhl}J—Z[x"Z - J}Z - J:I

i, j.1
1 R
+§ Z Bi,j)lhthjh J [X —J:I .
i.j,1
From this equation we obtain p%(x), which completes the proof.
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The statistical theory of the asymptotic efficiency is deeply related to the
problem of testing statistical hypotheses. To calculate the power of test statistics
requires the asymptotic expansions of distribution functions under contiguous
alternatives. The following lemma enables us to transform the expansion of the
composite functional into those under contiguous alternatives in the space of the
generalized Wiener functionals.

Lemma 4.4 Let (&) T;(F,) be the generalized Wiener functional given in Theorem
2.2. Suppose that A*(w) € D® has the asymptotic expansion

A~ AL+ e (W) + E2W,W) + - -) inD®ase |0,

with AW, AW, .. . eD® Then, A*WW(E)T.(F,) has the asymptotic
expansion

AW ()T, (F,) ~ Ao[dg/;,o + 893;,,1 + -], inD *ase 0,

uniformly in e A with A°®, o, A°®, 1, ... € D™® determined by the formal
Taylor expansion

(1+eP +2P 4+ N Pro+ePy,+ - )=By0+eD,, + .
In particular,
qu,o =P,
G, =D, + D 0¥y, ...
Proof. We can show this lemma by Theorem 2.2 (ii) of Watanabe [17]. O

Lemma 4.5. (1) For 0, € © and h € R¥, there exist functionals ¢*, e (0, 1), on
C([0, T, RY) satisfying the following conditions for any compact set K = R¥.

() 0< Pr(X) <1, X € C([0, T], RY).

(i) ¢HX>%W)=1—0@")inD* ase | Ouniformlyinhe K forn=1,2,....
(i) p*(X=%T*(w))=1—0(")inD®ase | Quniformlyinhe Kforn=1,2, .. ..
(iv) For all p > 1,

Sup E[l{(ﬁ:(X"e"(w)) > 0} eXp{pleyh(W; 00)}] < 0.
ee(0,1}
heK

(2) Let 0o € © and let K be any compact set of R, Then, p2(X =) exp {1, 4(w; 05)}
has the asymptotic expansion

PHX>%)exp {l, (w; 00)} ~ e/o(1 + e¥y + 2P, + - +)
inD® ase | O with ¥, ¥,, ... € D* determined by the formal Taylor expansion
explefT+efi+ -} =14V +&¥P,+ -,
This expansion is uniform in h € K.
Proof. (1) For X € C([0, T],RY), let
G:(X) = Y(QUX) — WI(Oo)h)
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where
T
QMX) =2 [[Vo(X:, 00 + eh) — Vo(Xo, 00)1 (V)T (X))
0

"[Vo(X:, 0o + eh) — Vo(X,, 6o)]dt .
Using Lemma 3.2 (1) for X&%*eh _ x 9.0+ we have
sup P( sup |X&botsh . X000 > a1> = 0(e")
heK O0=t=T

as¢ | Oforany n € N and a; > 0. Then, it is easy to show (i), (ii) and (ii1). Let p > 1.
Then,

T
E[Ligrocsmy > 0 eXp { ple,n(w; 00) } 1 < <E[exp{pq8‘1 fIVo(X 3%, B, + eh)
0

- Vo(Xf’eo, 0o)1
1/q
(Vv V(Xy%)dw, — %W]Q?(XS’BO)}}>
“(E[1(grxwr) > 0 XP {3rq QE(X =)} 1)
< (exp{3rq [W1(Bo)h + 11})H7,

where ¢ > 1,4 > 1,1 + % =1 and r = p?q. This proves (iv).
(2) Let G, = I, 4(w; 6,). Then, from Lemma 3.4

Go~fh+efs+
in D™ uniformly in & € K. We have the expansion
(Ge =S5 = tgn1 + * + &7 g + ET(w, )
with gy 15+« s gni—1 € D®, ry(w, &) = O(1) in D* as ¢ | 0. Using the formula

1
e"=1+—x+" "+ x4+ Ry(x),

1 =1
where |R;(x)] £ 4(e* + 1)|x]|!, for x = G, — f§ we obtain

eGe=fo=1+e¥ 4+ - +& ¥ +érw, ¢ + R(G, —f5),
-1

where r(w, &) = Y, ;I-Tr,,(w, ¢). Then,

ol

[ pt(X=%)e% —efo(1 + e+ + &7 ¥ 1)p0

< [ ph(XoP)els[eC o — (1 4+ &P + - + &7 )]0
+ [(@MX =) — Defo(t + e+ - + &7 W) lo

< | pH(X*%)eSsRY(G, — [§) [0 + & | pE(X > )elsr(W, &)l .0
+ 1 (Pa(X>%) — Defo(l + ey + - + &7 WPii)lp0

< | @E(X > 7)e s R(G, — f§) 5.0 + O(E")
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uniformly in h € K. The first term in the right hand side is
| ¢2(X>%)e/sR(G, = f§) Il .0

1 1 .

< 79X “*)e%(G, — 5 o + T 9HX = *)eSS(G, = 1) I
1

= il [ 1{¢:(XE'”°)> 0}€G£|| 20,0 11Ge = f§1H]2p,0 + O(€")

= O(Sl)

as ¢ | 0 by (1). We can show that a similar estimation holds for |- ||, --norms,
p > 1,5 > 0. This proves (2). [

Using Lemma 4.4 for
A= ¢Q(XE’GO)GXP{ls,h(W; 00)}
, ~APA + &P, + &P, + - -)inD®ase | O,
where A5 = exp{ f§}, we see
SW(ENTUF,) ~ A [y 3.0 + 6@y 2,1+ 1 inD “ase |0

uniformly in 4 € A with 43,,, 1,0 (5,,, i1, - .. €D7* determined by the formal Taylor
expansion

4.3)

exp{efT+ e f5+  J(@ro+edyi+ )= Pp0+ Py +
In particular,
5}:,/1,0 = 45/1,0,
By 1 =Po1 + 1P,
For statistic S(X) and a measurable function f,

Egra fSENI= [  fS®))P;,g0+anldx)
C([0,T1,R?)

dP; g,
= [z
C([0,T],R%) &, 6o

dPe,00+eh
=Eeo[ T (X)f(S(X))]

Let K be any compact set of R¥. Since (4.3) is uniform in h € K,
Pyogsen[FE[X] € A] = E[I(FF[X>%**])]
~ E[$h(X 500+ ey (Fe[X =P+ ])]
= E[¢H(X*%)exp{l, »(w; 00)} - L (FS[X>%])]
~ E[UX %) exp{l,n(w; 00) } ¥ (&) L4(F[X**])]
= E[¢*(X>%)exp{l, n(w; 00) 1 (&) 4o (F[X5%])]
~ E[AY®y 4.0] + cE[A®y 411 + -

(%) P, 6,(dx)
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uniformly in K for k-dimensional regular statistic F°[ X | with some truncation
¥(&,) and A € B¥, where @, 4 ; are corresponding to I 4o F¢ for T, F?, ie,

@h,A,O =Py
Ppoa1=Pu1+ 5Pa0,. ..,
where @4 0, Py.1, ... € D~ are coefficients of the expansion
W(E) Lao (FP LX) ~ @0+ 6Py + -

in D~ ase | 0. From this argument we can obtain the asymptotic expansions of
distributions of the bias corrected maximum likelihood estimator and the log
likelihood ratio under the contiguous alternative without expanding them again.

Theorem 4.3 The probability distribution of the bias corrected maximum likelihood
estimator 0F(w; 0y + eh) under the contiguous alternative P, g, has the asymptotic
expansion

P|:é§(w; 00 + ) — (0o +¢h) _
e

]~§p6(y)dy+8§pi(y)dy+
A A

ase [ 0, AeB* heRk

where p%, p5, . .. are smooth functions. The expansion is uniform in A € B* and
h € K. In particular,

po(y) = ¢(y;0,171),

pi(y) =Y, A [—y' vy —hyy + 199+ 1R ] d(y;0,177)

il

+ ) Bi,j,l|: - Ey’y’yl — hiylyt + 1'yI + I”hf}ﬁ(y; 0,171
[N

- Z bj((}o)lﬂy’qﬁ(y; 0,17%).
1
Proof. First, we note that

P[é;"(w; 0o + eh) — (0 + ¢h) . A} _ P[éf(w; 0o + eh)— 0

OeA—f‘h},
£ ;

where A + h={xe R x —he A}. Let y = x — h. All what to do is to find p§
and p9.

E[A;?éh,AM,o]: j AS(X)Pfo(x)dx: .f qb(y;O,I_l)dx,

A+h A+h

where Af(x) = exp{W'Ix — W' Ih} and &, 4 o, = I ,. We see that
ELAR 1 Lavn(fo)] = ELAR(fo)Lavn(SO)EL 11 fo1]
= [ ELS%1fo=x16(y; 0,17 )dx

A+h
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and for a smooth function p(x),

k

Z E[AhflaIAJrh(fO)]_ j pi(x)dx

i=1 A+h

By Lemma 4.3, we have

E[fTlfo=x1= ) AF (% =1+ ) B”zhh’
(44) i, d.l 1]1
‘—ZAljlhhjx—”‘ZBljlhhjhl

i,j,l l]l

On the other hand, for B= {z;z' > x,i=1,...,k},

Pi(x) = (=101 ... &Y E[4Rf10:15(fo)]

(4.5) = —YOE[ARf16:(/o)]

= Y {ARWEL £l fo = x]ps)}

= AR(x)ps(x) — Z[h'I] ARC)ELf11fo = x1pso(x) -
Since

pi( =iy + W+ ELfilfo=y+ (0,171,
(4.4), (4.5), Theorem 4.1 and (4.2) lead to
Piy) = { Y A il —x'xixt + 2hixIxt — Kihx! 4+ 19x']

i, .l

1 L
+ Y B z[ —5% xix! 4+ 2h'x‘x’ += hh’x + Iilxd — h‘hfh’:|

i,j,1
— Y b L(x — hj)}¢(y; 0,I7%).
i
Substituting y + h for x we obtain the result. O

For the likelihood ratio statistic we obtain the following theorem.

Theorem 4.4 Let h € R* and h # 0. The probability distribution of the log likelihood
ratio I, y(w; 8y + &h) has the asymptotic expansion

Pll u(w; 06 + eh) e AT~ [ pb*(x)dx + ¢ [ pF(x)dx + - -+, ase|0,AeB'.
4 A
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The expansion is uniform in A € B'. In particular,

pee(x) = ¢(x;0,J),

pie(x) = [Z Ai,j,lhihjhl:|']_3[>_c3 +2Jx* = (3] = J*)x — 2771 (x; 0, J)

i, j,l
1 o
- E[.ZzBi,j,zh‘h’h’JJ"z[zz +Jx ~J1(x:0,7),
bty
where x = x —4J. The probability distribution function of I, ,(w; 0o + €h) has the

asymptotic expansion

Pl w00 + eh) = x] ~ &(x;0,J) + g{[z Ai’jflhihjhl:|‘]—2[_ X2 2x+J —J?]

il

+ %|: Z Bi,j,lhihjhl:lj_l[—)_c — .]:I}(;S()_cJ 0, J) 4o

ij,l
Proof. With some truncation functional 2(w) € D® we have
YeW Ll n(w; 00)) ~ Pi 40 + 8Pk a1 + -
in D™ as & | 0 with @ 4 o, D% 4 1,... € D™= In particular,
455,,4,0 = IA(fIG)
d’ﬁ,;m =f11‘51A(f16) .
By the above argument, we obtain the expansion
P(l,,(w; 0o + eh) € A) ~ E[ARDF 4 0] + eE[ARPE 4]+ - -,
where
‘55,,4,0 = IA(flé)
Ph a1 =S1OLfE) + FHLASE) -
Then,
ELAR L 4,0] = ELARL(f§)] = E[efs14(f5)]

= [ ¢(x;0,J)dx = [ $(x; 0, J)dx .
A A
Hence, p§(x) = ¢(x; 0, J). On the other hand,
E[ARfY0L4(f8)1 = | q1(x)dx ,
A

where

—OE[AR f16.(/5)]
—0{e*ELf1]f6 = x]o(x;0, )}
—{ELSTIf6=x]1¢(x;0,J)}

g:(x)
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= {[ Y Aiyj,,h"hjhl}J_3(3_63 + Jx* —3Jx — J?)
i,

+ % |: > Bi,j,thihjhl:|J_2(>_cz - J)}qb(g; 0,J).

i1

Moreover,
E[ARfYL(f6)] = | q2(x)dx ,
A
where
q2(x) = € E[ f{| f§ = x]1¢(x;0,J)
= E[f1] /5 =x]¢(x;0,J)
= {[ y Ai,j,zhfhfhl].f*uzz + 2% - J?)
i, 1
+%[23mﬂﬁ%ﬂfﬂ§}M&QJ%
i, 751

Since !

prx) = q1(x) + q2(x) ,

we obtain pi(x). O

5 Second-order asymptotic efficiency of the maximum likelihood estimator

The notion of second order efficiency of statistical estimators has been introduced
by Fisher, Rao [11], [12], Takeuchi—Akahira, Ghosh-Subramanyam [2] and
other authors. Here, as an example of statistical applications of our expansion
formulas, we adopt Takeuchi-Akahira’s criterion by probability of concentration
and show that a bias corrected maximum likelihood estimator is second order
asymptotically efficient. For simplicity, we only treat a one dimensional parameter
6, though all is ready for the multiparameter case.

Definition 5.1. An estimator 7, is second order asymptotically median unbiased
(second order AMU) if for any 0y € ® and any ¢ > 0

lim sup e P o[T.—0<0]—3|=0
el0 e @0 — Oy < ec
and

lim sup e P o[T,—020]—3]=0.
£l0 Pe @6 = By < &

Given a second order AMU estimator T, if

lim e~ [P go[e™ (T, — Oo) = h] — Golh, 80) — £G4 (h, 60)| = 0,

el0
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then Gy(h, 05) + eG4 (h, 8,) is called a second order asymptotic distribution of T.
Consider testing hypothesis H™: 6 = 8, + ¢h against K: 0 = 6, where h is any
positive number.
Letc, = +J + ep + q,, where g, = o(¢) is a sequence. From Theorem 4.4, we see

Pl w00 +eh)Scl=%+¢e{p+ A FP[J ' —1]—=%By 1 1 h*}¢(0;0,J)
+q,9(0;0,J) + 0(c?) .
If we take
p=—A; (WP[J ' =1]+{By 1
and
q: =& + ¢(0; 0, J) '[Py ggeenle™ (T, — 00 — eh) < 0] — 31,
then we sec by Neyman-Pearson’s lemma
Pl u(w; 00) < ;12 Py g,[e™ (T, — o) < h]
for small &. Therefore, by Theorem 4.2, for h > 0,
lminfe ' {@(J;0,J) + e[ Ay 1 1 h* + 3By (1 A*1¢(J;0,J)

&l0
- Pa,()o[‘g_l(Ta - 90) é h]} g 0 .
Similarly, for h < 0 we have
limsup e™ {®(—J;0,J) —e[Ay  1h* + 3B 1 1#*]$(J;0,J)
£l0
- Ps,ﬂo[g_l(TE - 90) é h]} é 0 .
In this sense
D(J;0,J) + e[A1,1,1h + 3By 1, R*14(J; 0, J)
and
P(—-J;0,J) — 3[:141,1,1}13 + %31,1,1h3]¢(¢]; 0,J)

are called the bounds of second order distributions. An AMU estimator attaining
these bounds for any h > 0 and h < 0 is called to be second order efficient.
The bias corrected maximum likelihood estimator 67F(w; 8,) with

b(0o) = — Ay,1,:11(00)*

is second order AMU by Theorem 4.3 and it is seen that §¥(w; 0y) attains the
bounds of the second order distributions. Therefore, the bias corrected maximum
likelihood estimator is second order efficient.

In conclusion, we note that we have already got the asymptotic expansions for
various risk functions, e.g., E[|67(w;0o) — 00|71, p 2 1 if we take a tempered
distribution T'(x) = | x|? and notice that for any p = 1, 8F (w; 8,) has LP-moments,
see Chap. 3 of Kutoyants [6].
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