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Abstract

In the present article, we will consider a conditional limit theorem and conditional asymptotic
expansions. Our discussion will be based on the Malliavin calculus. First, we treat a problem of
lifting limit theorems to their conditional counterparts. Next, we provide asymptotic expansions in
a general setting including the so-called small �-models. In order to give a basis to the asymptotic
expansion scheme for perturbed jump systems, we will build an extension to the Watanabe
theory in part. Finally, we derive the asymptotic expansions (double Edgeworth expansions) of
conditional expectations.
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1. Introduction

The Malliavin calculus is nowadays recognized as an important instrument from
a practical computational point of view in theoretical statistics, stochastic numerical
analysis and mathematical @nance as well as probability theory. It enables us to apply a
usual di<erential calculus to irregular functionals, which very often appear, for example,
as coverage probabilities, non-di<erentiable payo< functions, and so on.
The conditional expectation may be one of the most irregular functionals. For a

continuously distributed conditioning variable, it requires the analysis over a null set.
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Without doubt, the conditional stochastic calculus features in statistics: suEcient statis-
tics in unbiased estimation and testing hypotheses (e.g., Lehmann-Sche<Ge theorem,
Rao-Blackwell theorem, Neyman structure), conditional likelihood and conditional in-
ference, conditionally Gaussian experiments as limits in LAMN situations, approxi-
mation formulas connected with the conditional distribution such as the p∗ (magic)
formula of Barndor<-Nielsen, @ltering problems, recently introduced partial mixing,
etc. In spite of the importance, conditional asymptotics does not seem to be so well
founded as to ful@ll the practical purpose.
In the present article, we will consider conditional limit theorems and conditional

asymptotic expansions. Our discussion will be based on the Malliavin calculus, i.e.,
integration-by-parts (IBP) formulas, since it would be the most possible way to de-
velop a theory applicable to functionals in practice, especially to stochastic di<erential
equations. In Section 2, we will treat a problem of lifting limit theorems to their
conditional counterparts. In non-ergodic statistical theory, a conditional limit law (i.e.,
a mixture of normal distributions or more generally a mixture of in@nitely divisible
laws) is usually deduced from the stable convergence of the limit theorems. It would
be deeply related; however, it is not a conditional limit theorem. Indeed, previously,
Prof. Sweeting (1986) showed his great skill to derive a conditional limit theorem for a
branching process. So it may be a natural question when unconditional limit theorems
can be lifted to conditional ones.
In the later sections, we will con@ne our attention to the so-called small �-theory.
Section 5 provides, in a general setting, asymptotic expansions under small pertur-

bations. The small �-theory has been well developed in statistics. Kutoyants (1994)
thoroughly investigated inference for di<usion-type processes with small noises. Asymp-
totic expansions were presented by Yoshida (1992a,b, 1993) by means of the Malli-
avin calculus and Prof. Watanabe’s theory. See also Dermoune and Kutoyants (1995);
Sakamoto and Yoshida (1996), Yoshida (1996), and Uchida and Yoshida (1999) for
more statistical applications. As a byproduct, the asymptotic expansion scheme to com-
pute the values of options was provided in Yoshida (1992b). There are many studies
thereafter in this direction: Kunitomo and Takahashi (1998, 2001), Takahashi (1995,
1999), Kim and Kunitomo (1999), SHrensen and Yoshida (2000), Takahashi and
Yoshida (2001), Kashiwakura and Yoshida (2001).
Recently, modeling with LGevy processes is attracting attention in @nancial statistics.

In order to give a basis to the asymptotic expansion scheme for perturbed jump sys-
tems, we will in Section 5 build an extension to the Watanabe theory. We adopted
the Malliavin calculus formulated by Bichteler et al. (1987). Di<erently from the orig-
inal form of Watanabe’s theory (Watanabe, 1987) for Wiener functionals (also see
Watanabe, 1983; Ikeda and Watanabe, 1990), we do not use (have) Sobolev spaces
of generalized functionals in our setting. For this reason, we will go through by the
generalized integral operator for Schwartz distributions.
After preparing asymptotic expansions for generalized expectations, it is straightfor-

ward to obtain our main results. The asymptotic expansion of the conditional expec-
tation will be derived in Section 6 together with several variants. They are called the
double Edgeworth expansions. In the present article, we only treat most simple double
expansions. We will present other variants (e.g., Edgeworth-saddlepoint approximation)
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elsewhere by applying Schilder-type expansions of densities (cf. Kusuoka and Stroock,
1991; Takanobu and Watanabe, 1993).
As for the role of the asymptotic expansion in the theoretical statistics, we refer the

reader for example to Barndor<-Nielsen and Cox (1994), Ghosh (1994). An introduc-
tion to the Malliavin calculus from statistics is Yoshida (1999).

2. Lifting of limit theorems to conditional laws

Let (�;F; P) be a complete probability space. Let F :�→ Rd1 be a d1-dimensional
random variable. For k ∈N, de@ne GF

k by

GF
k = { ∈L1; there exist functionals IF

(i1 ;:::;ik )( )∈L1(P)

((i1; : : : ; ik)∈{1; : : : ; d1}k) such that
P[(@i1 · · · @ikf) ◦ F ] = P[f ◦ FIF

(i1 ;:::;ik )( )]

for any f∈C∞
B (Rd1 ) and (i1; : : : ; ik)∈{1; : : : ; d1}k}:

Lemma 1. Suppose that there exists an integer k ¿d1 such that cos(u · Z) and
sin(u · Z)∈GF

k for all u∈Rd, and that IF
(i1 ;:::;ik )(cos(u · Z)) and IF

(i1 ;:::;ik )(sin(u · Z))
are u-locally L1-bounded. Then

(a) F has a continuous probability density function pF with respect to the Lebesgue
measure.

(b) For every u∈Rd and x∈Rd1 , let

’Z=F(u; x) =
1

(2�)d1

∫
Rd1

e−iv·xP[eiu·Z+iv·F ] dv;

then it is a C-valued continuous function of (u; x), and

’Z=F(u; x) = P[eiu·Z |F = x]pF(x) dx-a:e:

Proof. Though this lemma is more or less well known, we shall give a proof for
convenience of reference. The existence and the continuity of ’Z=F(u; x) follow from
the assumption, since

sup
v∈Rd1

|ivi1 · · · ivid1+1P[eiu·Z+iv·F ]|¡∞

for every u∈Rd and every (i1; : : : ; id1+1)∈{1; : : : ; d1}d1+1. In particular, by Fourier
inversion, we know that pF(x) = ’Z=F(0; x) is a probability density of L{F}. Set
hu(x) = P[eiu·Z |F = x]pF(x). Then hu ∈L1(dx;C) and

P[eiu·Z+iv·F ] =
∫
Rd1

eiv·xhu(x) dx =F[hu](v):
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Since the mapping v 	→ F[hu](v) = P[eiu·Z+iv·F ] is in L1(dv;C), hu(x) = F−1

F[hu](x) = ’Z=F(u; x) dx-a.e.

Remark 1. For x∈ S := {x∈Rd1 ;pF(x)¿ 0}, de@ne �(u; x) by

�(u; x) =
’Z=F(u; x)
pF(x)

:

For arbitrary �1; : : : ; �n ∈C and u1; : : : ; un ∈Rd,

n∑
a;b=1

�a P�b’Z=F(ua − ub; x) =
1

(2�)d1

∫
Rd1

e−iv·xP



∣∣∣∣∣

n∑
a=1

�aeiua·Z
∣∣∣∣∣
2

eiv·F


 dv: (1)

Since |∑n
a=1 �aeiua·z|2 is a sum of exponential functions of iz, it follows from our

assumption that P[ · · · ] is integrable. Applying an elementary property in Fourier anal-
ysis, we see that

n∑
a;b=1

�a P�b’Z=F(ua − ub; x) = P



∣∣∣∣∣

n∑
a=1

�aeiua·Z
∣∣∣∣∣
2
∣∣∣∣∣∣F = x


pF(x)¿ 0 dx-a:e: (2)

The left-hand side is continuous in x because of (1). This together with (2) implies
n∑

a;b=1

�a P�b’Z=F(ua − ub; x)¿ 0 (∀x∈Rd1 ):

Thus, �(·; x) has positivity for x∈ S. Since �(0; x) = 1, �(·; x) is a characteristic func-
tion of some probability measure #x for each x∈ S. 1 We de@ne #x adequately on Sc,
then #x is nothing but a regular conditional probability of Z given F . In the sequel,
we choose a version of the conditional law L{Z |F = x} as

L{Z |F = x}= #x:

Thus, its characteristic function completely coincides with �(u; x) for all u and x.

Let (Zn) be a sequence of d-dimensional random variables and (Fn) be a sequence
of d1-dimensional random variables. Put

Cn(u) = {cos(u · Zn); sin(u · Zn)}:

Theorem 1. Let k ¿d1. Suppose that the following conditions are satis6ed:

(i) (Zn; Fn)→d (Z; F) as n→∞.

1 In place of the positivity, one may use a result on the limits of characteristic functions in the above
passage.
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(ii) Cn(u) ⊂ GFn
k for all u∈Rd, and {IFn

(i1 ;:::;ik )
( );  ∈Cn(u); (i1; : : : ; ik)∈{1; : : : ; d1}k ;

u∈K; n∈N} is bounded with respect to the L1-norm for every compact set
K ⊂ Rd.

Then (a) Fn and F have continuous densities pFn and pF , respectively, and

pFn(x)→ pF(x) (n→∞)
for every x∈Rd1 .
(b) If pF(x)¿ 0, then

L{Zn |Fn = x} ⇒L{Z |F = x} (n→∞):

Proof. By (ii), there exists a constant C such that

|P[eiv·Fn]|6 C
|v|k

for any v∈Rd1 and n∈N. 2 Since Fn →d F , the representation of the density

pFn(x) =
1

(2�)d1

∫
Rd1

e−iv·xP[eiv·Fn] dv

yields

pFn(x)→ pF(x) :=
1

(2�)d1

∫
Rd1

e−iv·xP[eiv·F ] dv

as n→∞, with the help of Lebesgue’s theorem. In the same fashion, we see
’Zn=Fn(u; x)→ ’Z=F(u; x) (n→∞):

Therefore, when pF(x)¿ 0, the conditional characteristic function ’Zn=Fn(u; x)=p
Fn(x)

converges to ’Z=F(u; x)=pF(x) for every u∈Rd.

Example 1. If

Zn
d→Z (stably)

and if F is non-degenerate (in Malliavin’s sense), then from Theorem 1, we obtain

L{Zn |F = x} ⇒L{Z |F = x}:
For example, if there are random variables Zn; B; C on (�;F; P) with C ¿ 0 a.s., and
if Zn converges stably to Z = C1=2& with & independent of F, then

L{(B; Zn) |F = x} ⇒L{(B; Z) |F = x};
suppose that F = f(B; C) is non-degenerate.
It is also possible to consider conditioning by Fn if (Fn) is uniformly non-degenerate.

2 For this proof, it is suEcient to use (ii) for (i; i; : : : ; i) among (i1; i2; : : : ; ik).
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Genon-Catalot and Jacod (1993), and Jacod (1996) treated stable convergences for
estimation of volatility parameters. This example is a model of the asymptotics in
non-ergodic statistical inference. B corresponds to the observed information and C to
the energy of the score.

Remark 2. Condition (ii) of Theorem 1 may seem to be diEcult to verify for the
reader unfamiliar with the Malliavin calculus. However, a suEcient condition for it is
the uniform non-degeneracy of the Malliavin covariance of Fn, plus the boundedness
of the Soborev norms of (Zn; Fn). Those properties have been thoroughly investigated.
See Ikeda and Watanabe (1990), Bichteler et al. (1987), Nualart (1995), and Malliavin
(1997). The form of Condition (ii) is a minimal suEcient one for our use in this paper.
It is easy to give a more smart (but restrictive) suEcient condition to (Zn; Fn) on a
certain probability space. For instance, if (Zn; Fn) are functionals de@ned on a Wiener
space, Condition (ii) follows from the non-degeneracy of the Malliavin covariance
(i.e., the boundedness of Lp-norms of det �−1

Fn
) and the boundedness of the Ds;p-norms

‖(Zn; Fn)‖s;p. It is also the case for a Wiener–Poisson space. For functionals stem-
ming from stochastic di<erential equations, the non-degeneracy is a consequence of
non-degeneracy of either di<usion part or jump part, and the boundedness of norms
comes from coeEcients’ regularity such as smoothness. Thus, for it is just an exercise,
we shall not rephrase here those known suEcient conditions to give possible corollaries
to our results. The same remark holds in Sections 5 and 6.

3. A class of smooth functionals and IBP

In the following sections, we will con@ne our attention to perturbed models and
derive conditional asymptotic expansions (double expansions). First, we will extend
Watanabe’s methodology (Watanabe, 1987) to include jump-type processes. Let L be
a Malliavin operator on a probability space (�;F; P), cf. Bichteler et al. (1987). Let
D2;p be the completion of the domain D(L) by the norm

‖F‖2;p = ‖F‖p + ‖((F; F)1=2‖p + ‖LF‖p
for F ∈D(L), p¿ 2. Denote D2;∞ =

⋂
p¿2 D2;p.

Let C∞
↑ (Rd) denote the set of smooth functions q :Rd → R such that q and all

derivatives @*q are of at most polynomial growth. We shall consider a linear space
D̂ ⊂ D2;∞ such that

(i) If F;G ∈ D̂, then L(FG)∈ D̂.
(ii) For any ’∈C∞

↑ (Rn) and F1; : : : ; Fn ∈ D̂, ’(F1; : : : ; Fn)∈ D̂.
It is then easily seen that

(iii) 1∈ D̂.
(iv) F ∈ D̂⇒ LkF ∈ D̂ (∀k ∈N).
(v) F;G ∈ D̂ ⇒ FG ∈ D̂ and ((F;G)∈ D̂.

Also, (i) is obviously equivalent to
(vi) If F ∈ D̂, then L(F2)∈ D̂.
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For example, in Wiener case, Watanabe’s space D∞ (cf. Watanabe, 1984; Ikeda
and Watanabe, 1990) serves as D̂. In Wiener–Poisson case, we may take D̂ as D̂ =⋂

m∈N D2m;∞, where algebras D2m;∞ are inductively de@ned by D2(m+1);∞ = {F ∈
D2m;∞; LF ∈D2m;∞; ((F; F)∈D2m;∞}. It is a routine job to verify that a given func-
tional for a stochastic di<erential equation with jumps belongs to D̂.
Let F ∈ D̂(Rd) = (D̂)d, -∈ D̂. Then �F ∈ D̂(Rd ⊗Rd), where �F = (((Fi; Fj)), and

/ := det�F ∈ D̂. Let  ∈C∞(R; [0; 1]) such that  (x) = 1 for |x|6 1=2 and  (x) = 0
for |x|¿ 1. Identify �F with the set {�ij

F}, F with {Fi}, LF with {LFi}, and so on.
For S ⊂ D̂, de@ne Gi(S;F) (i∈Z+) as follows:

G0(S;F) = �F ∪ S;

G1(S;F) = LF ∪ G0(S;F) ∪ ((G0(S;F); F);

Gi(S;F) = Gi−1 ∪ ((Gi−1(S;F); F) (i¿ 2):

Note that

Gi(S;F) ⊂ D̂:

For example, if S = {-}, then
G0({-};F) = {�ij

F ; -};
G1({-};F) = {LFi; �ij

F ; -; ((�
ij
F ; F

k); ((-; Fk)};

G2({-};F) = {LFi; �ij
F ; -; ((�

ij
F ; F

k); ((-; Fk);

((LFi; Fk); ((�ij
F ; F

k); ((-; Fk); ((((�ij
F ; F

k); Fl); ((((-; Fk); Fl)}:
The following IBP formula is known.

Proposition 1. Suppose that F ∈ D̂(Rd) and G; -∈ D̂. Let /= det �F . Suppose that

P[1{|-|61}/−p]¡∞
for every p¿ 1. Then, for any f∈C∞

↑ (Rd),

P[(@i1 · · · @ikf) ◦ F (-)G] = P[f ◦ FIF
(i1 ;:::;ik )(G; -;  )]:

The functional IF
(i1 ;:::;ik )(G; -;  ) has a representation:

IF
(i1 ;:::;ik )(G; -;  ) =

∑
j;l

/−K(k) (l)(-)Gj;l (6nite sum)

for some K(k)∈N, where
Gj;l ∈Alg[Gk({-; G};F)]

(more precisely, Gj;l is G-linear).
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Proof. Extend the original probability space to the product space with a d-dimensional
Wiener space. We attach the Ornstein-Uhlenbeck operator to this Wiener space. Then,
L can be extended to this product space. If we replace F by F2=F+2W1, then the IBP
formula is valid with / replaced by /2=det(�F+22Id). This new Malliavin covariance
matrix is uniformly positive de@nite, so that we can obtain a similar representation of
IF
(i1 ;:::;ik )(G; -;  ) as the given one. Note that at this stage, it includes factors involving

W1. For example, P ⊗W [@if(F2) (-)G] = P ⊗W [f(F2)I
F2
(i)(G; -;  )] with

IF2
(i)(G; -;  ) =−

d∑
i′=1

{2/−1
2  (-)G�F2

[i; i′]LF
i′
2 + ((/−1

2  (-)G�F2
[i; i′]; F

i′
2 )}:

Here �F
[i; i′] denotes the (i; i

′)-cofactor of �F . Higher-order IBP formulas can be written
in a similar manner. Letting 2 ↓ 0 (it is possible, because of the non-degeneracy under
truncation), we obtain the desired IBP formula and the representation.

4. Generalized integral operator for Schwartz distributions

De@ne a second-order di<erential operator A by:

A= 1 + |x|2 − 1
2

d∑
i=1

@2i :

Let

p(t; x; y) =8d
i=1(2�(sinh

√
2t)2−1=2)−1=2

×exp
{
−
√
2
2
(coth

√
2t)[(xi)2 − 2xiyisech

√
2t + (yi)2]

}
:

S denotes the Schwartz space and S′ its dual. Let m∈N. For g∈S′(Rd) for which
the function t 	→ tm−1e−t

S′(Rd)〈g; p(t; x; ·)〉S(Rd) is absolutely integrable on (0;∞) for
any x∈Rd, the integral operator A−m : g→ A−mg is de@ned by

A−mg(x) =
∫ ∞

0

tm−1e−t

((m) S′(Rd)
〈g; p(t; x; ·)〉S(Rd) dt:

See Ikeda and Watanabe (1989), or Sakamoto and Yoshida (1996) for details. It is
known that

AmA−m = A−mAm = Id on S(Rd):

Let

C̃−2m(Rd) =
{
g∈S′(Rd); A−mg∈ Ĉ(Rd); and there exists gn∈S(Rd such that

lim
n→∞ ‖A

−mgn − A−mg‖∞ = 0
}
;
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where Ĉ(Rd) is the set of continuous functions f(x) tending to zero when |x| → ∞.
Then it is also known that⋃

m∈N
C̃−2m(Rd) =S′(Rd):

By Proposition 1, it is easy to obtain:

Proposition 2. Suppose that F ∈ D̂(Rd) and G; -∈ D̂. Let /= det �F . Suppose that

P[1{|-|61}/−p]¡∞ (3)

for every p¿ 1. Then, for any f∈S(Rd),

P[Amf ◦ F (-)G] = P[f ◦ F9F
2m(G; -;  )]:

The functional 9F
2m(G; -;  ) takes the form:

9F
2m(G; -;  ) =

∑
j;l

/−M (m) (l)(-)G̃j; l ( 6nite sum)

for some M (m)∈N, where
G̃j; l ∈Alg[G2m({F; -; G};F)]

(more precisely, G̃j; l is G-linear).

Notice that F appears in G̃j; l as {F; -; G} because of the multiplication of F in the
operator A.
Fix g∈S′(Rd) arbitrarily. There exist a number m∈Z+ and a sequence g̃n ∈S(Rd)

(n∈N) such that
‖A−mg̃n − A−mg‖∞ → 0 (4)

as n→∞. Then the sequences
P[ (-)g̃n(F)G] = P[A−mg̃n(F)9F

2m(G; -;  )]

→ P[A−mg(F)9F
2m(G; -;  )]

as n → ∞, for all G ∈ D̂, simultaneously. Clearly, this limit does not depend on the
choice of the number m and the sequence g̃n satisfying (4), therefore, a linear functional
I( (-)G;F) : C̃−2m → R is well de@ned by

I( (-)G;F)(g) = P[A−mg(F)9F
2m(G; -;  )]:

Because of the compatibility for di<erent m’s, this linear functional can be extended
to the one over S′(Rd). Intuitively speaking, we may regard I( (-)G;F)(g) as “P[ (-)
g(F)G]” for g∈S′(Rd). But of course, this expectation itself in general does not make
sense.
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We denote by F↑(Rd) the set of measurable functions on Rd of at most polynomial
growth.

Proposition 3. If F ∈ D̂(Rd) is non-degenerate (without truncation, i.e., (3) with
- ≡ 0), then it has a smooth density pF and for g∈F↑(Rd) and G ∈ D̂,

I(G;F)(@*g) =
∫
Rd

g(z)(−@)*(P[G|F = z]pF(z)) dz (*∈Zd
+):

The di8erentiability and the integrability in the above expression hold true.

Proof. It follows from a modi@cation of Lemma 1 that the measure P[G|F=x]PF(dx)
has a density Pp given by:

Pp(x) =
1

(2�)d

∫
Rd
e−iv·xP[Geiv·F ] dv:

From the fast decay of P[Geiv·F ] together with the IBP, we see that Pp∈S(Rd).
Now, by de@nition, for each g∈S′(Rd) and *∈Zd

+, there exists an m∈N such that

I(G;F)(@*g) = P[A−m@*g(F)9F
2m(G; 0; 1)]:

The same proof as that of Lemma 4 of Sakamoto and Yoshida (1996), taking suE-
ciently large m, shows that there exists a sequence gn ∈S(Rd) for which

‖A−m@*gn − A−m@*g‖∞ → 0

and simultaneously,

‖A−mgn − A−mg‖∞ → 0

as n → ∞. We will later use similar approximations in a few places. The proofs of
them are elementary and omitted. But formulas convenient for proofs will be presented
in Appendix. We see

I(G;F)(@*g)← P[A−m@*gn(F)9F
2m(G; 0; 1)]

= P[@*gn(F)G] (IBP-formula)

=
∫
Rd

@*gn(x) Pp(x) dx

=
∫
Rd

gn(x)(−@)* Pp(x) dx:

Since gn → g in C̃−2m, gn → g weakly in S′(Rd). Due to the fact that Pp∈S(Rd),
the last integral converges to∫

Rd
g(x)(−@)* Pp(x) dx;

and this completes the proof.
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In the sequel, we will use more convenient, and more intuitive notation than
I( (-)G;F)(g):

P[ (-)g(F)G] = I( (-)G;F)(g) (g∈S′(Rd)):

5. Asymptotic expansion

De@ne Ki(S) by

K0(S) = S;

Ki(S) =Ki−1(S) ∪ L(S) ∪ ((Ki−1(S);Ki−1(S)) (i¿ 1):

Put

K∞(S) =
⋃
i

Ki(S):

De)nition 1. (i) Let S ⊂ D̂. We say that K∞(S) is �-@nite if there exists an increasing
sequence of subsets Sj in S such that S =

⋃
j Sj and Ki(Sj) is Lp-bounded for every

i; j; p∈N.
(ii) For a family of sequences S2=(S

(1)
2 ; S(2)2 ; : : :) ⊂ D̂, we say that {K∞(S2)}2∈(0;1]

is uniformly �-@nite if for every n; p∈N, Kn({S(1)2 ; : : : ; S(n)2 }) is Lp-bounded uniformly
in 2.
(iii) We say that (-2)2∈(0;1] is uniformly bounded in D̂ if for every n; p∈N, the

family {Kn({-2})}2∈(0;1] is Lp-bounded.

For one sequence S = (S(1); S(2); : : :) (independent of 2), the �-@niteness of K∞(S)
is equivalent to the uniform �-@niteness of {K∞(S)}. Indeed, if S is �-@nite, for any
n∈N, there exists m∈N such that {S(1); : : : ; S(n)} ⊂ Sm and so Kn({S(1); : : : ; S(n)})
is Lp-bounded (i.e., all elements are Lp-@nite) for every p∈N. Converse direction is
obvious if one sets Sj = {S(1); : : : ; S(j)}.
De@ne rk(2) by

rk(2) = 2−k(F2 − [f0 + 2f1 + · · ·+ 2k−1fk−1]):

De)nition 2. Let (-2)2∈(0;1] ⊂ D̂. We say that (F2)2∈(0;1] has a smooth stochastic
expansion associated with -2

F2 ∼ f0 + 2f1 + 22f2 + · · · (2 ↓ 0)
if F2; f0; f1; : : :∈ D̂(Rd0 ) and if {K∞(S2)}2∈(0;1] is uniformly �-@nite for

S2 = (-2; F2; f0; r1(2); f1; r2(2); f2; : : :):

When -2 ≡ 1, we simply say that (F2)2∈(0;1] has a smooth stochastic expansion.
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In spite of its apparent complexity, a smooth stochastic expansion is easy to derive
and validate. A strong solution X 2

t admits an expansion if the stochastic di<erential
equation has smooth coeEcients depending on 2 smoothly. It is also the case for smooth
functionals like a stochastic integral involving X 2

t . See Remark 2 for references.

Theorem 2. Suppose that
(i) the d0 + d2-dimensional sequence (F2; H2)2∈(0;1] has a smooth stochastic

expansion

F2 ∼ f0 + 2f1 + 22f2 + · · · ;
H2 ∼ h0 + 2h1 + 22h2 + · · · (2 ↓ 0):

(ii) lim sup2↓0 P[/
−p
F2
]¡∞ for every p¿ 1.

Then, for every g∈S′(Rd0 ) and q∈C∞
↑ (Rd2 ), P[g(F2)q(H2)] has an (ordinary)

asymptotic expansion:

P[g(F2)q(H2)] ∼ P[>0] + 2P[>1] + 22P[>2] + · · · ;

where >i are determined by the formal Taylor expansion of g(F2)q(H2) around
(f0; h0). In particular,

>0 = g(f0)q(h0);

>1 =
d0∑
a=1

@ag(f0)f
(a)
1 q(h0) +

d2∑
b=1

@bq(h0)h
(b)
1 g(f0):

Here we dared to use d0 for the dimension of F2, for later convenience. The fol-
lowing theorem is an extension of Theorem 2 to the case of non-degeneracy under
truncation, cf. Takanobu and Watanabe (1993), Yoshida (1992b) for Wiener spaces.
The truncation technique makes the proof of the non-degeneracy essentially easy;
moreover, in many cases in statistics, the non-degeneracy does not hold without such
localization.

Theorem 3. Let -2 ∈ D̂(2∈ (0; 1]). Suppose that the following conditions are satis6ed:
(i) The d0 +d2-dimensional sequence (F2; H2)2∈(0;1] has a smooth stochastic expan-

sion associated with (-2):

F2 ∼ f0 + 2f1 + 22f2 + · · · ;
H2 ∼ h0 + 2h1 + 22h2 + · · · (2 ↓ 0):

(ii) For every p¿ 1,

lim sup
2↓0

P[1{|-2|61}/
−p
F2
]¡∞;
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and for every k ∈N,

P
[
|-2|¿ 1

2

]
=O(2k):

Then, for every g∈S′(Rd0 ) and q∈C∞
↑ (Rd2 ), the generalized integral P[ (-2)g(F2)

q(H2)] has an asymptotic expansion:

P[ (-2)g(F2)q(H2)] ∼ P[>0] + 2P[>1] + 22P[>2] + · · · ;

where >i are determined by the formal Taylor expansion of g(F2)q(H2) around
(f0; h0) as Theorem 2.

Proof. Theorem 2 follows from Theorem 3 if we take -2 = 0, so we shall prove
Theorem 3. Let k ∈Z+. For g∈S′(Rd0 ), there exists m∈N such that A−mg∈Ck+1

B (Rd0 ).
Here we use A with the dimension d0. By de@nition and Taylor’s formula, we obtain:

P[ (-2)g(F2)q(H2)] = P[A−mg(F2)9
F2
2m(q(H2); -2;  )]

=
∑

*:|*|6k

P[(*!)−1@*A−mg(f0)[2f1 + · · ·+ 2kfk + 2k+1rk+1(2)]*9
F2
2m(q(H2); -2;  )]

+
∑

*:|*|=k+1

P[Rk+1; *(2)[2f1 + · · ·+ 2kfk + 2k+1rk+1(2)]*9
F2
2m(q(H2); -2;  )];

where

Rk+1; *(2) = c(k; *)
∫ 1

0
(1− @)k@*A−mg((1− @)f0 + @F2) d@:

We will show that 9F2
2m(q(H2); -2;  ) has an asymptotic expansion in 2-power in Lp

sense for every p¿ 1. First,

((F2; F2) =(

(
k∑

i=0

2ifi + 2k+1rk+1(2);
k∑

i=0

2ifi + 2k+1rk+1(2)

)

=((f0; f0) +
k∑

i=1

2iVi + 2k+1Rk+1(2);

where Rk+1(2) is written out by ((fa
i ; f

b
j ), ((f

a
i ; r

b
k+1(2)) and ((rak+1(2); r

b
k+1(2)). Vi

have similar expressions. By assumption, Vi and Rk+1(2) are bounded in Lp uniformly
in 2 for every p. In particular, the truncation non-degeneracy condition for F2 and
Fatou’s lemma, we see that the limit f0 is non-degenerate without any truncation.
 (l)(-2) = Al;0 − O(2K) in Lp sense for every p and K ¿ 0, therefore, by applying
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Taylor’s formula to 1=x, we obtain an Lp-expansion:

/−M (m)
F2

 (l)(-2) =
k∑

i=0

2iBi + 2k+1Ck+1(2);

Bi; Ck+1(2) being uniformly Lp-bounded. In Proposition 2, we saw that 9F2
2m(q(H2); -2;  )

takes the form:

9F2
2m(q(H2); -2;  ) =

∑
j;l

/−M (m)
F2

 (l)(-2)G̃j; l(2) (@nite sum) (5)

and

G̃j; l(2)∈Alg[G2m({F2; -2; q(H2)};F2)];

precisely, G̃j; l(2) is q(H2)-linear. It is trivially seen that each G̃j; l(2) is uniformly
(in 2) Lp-bounded from the assumption. Therefore, the terms with l¿ 1 on the right-
hand side of (5) are all O(2k+1) in Lp-sense. For l = 0, G̃j; l(2) does not include
“derivatives” of -2, and we may write

G̃j;0(2)∈Alg[G2m({F2; q(H2)};F2)]:

Thus, we can expand it by using expansion of (F2; H2):

G̃j;0(2) =
k∑

i=0

2i�j; i + 2k+1�̃j; k+1(2)

with �j; i; �̃j; k+1(2) being uniformly bounded in Lp. Consequently, we obtain Lp-
asymptotic expansion of 9F2

2m(q(H2); -2;  ).
After expanding 9F2

2m(q(H2); -2;  ) into an asymptotic expansion and rearranging
terms, we see that P[ (-2)g(F2)q(H2)] has an asymptotic expansion:

P[ (-2)g(F2)q(H2)] ∼ c0(g) + 2c1(g) + 22c2(g) + · · · (2 ↓ 0):

We note that each ci(g) takes the form of

ci(g) =
∑

*:|*|6k

P[@*A−mg(f0)Gi;*] (6)

for some Gi;* described by f1; f2; : : : ; fk , h1; : : : ; hk , @*q(h0) (|*|6 k) and their deriva-
tives. We here used the fact that  (-2)− 1 and its derivatives (i.e., (’s involving -2)
are of O(2k+1) in Lp. For g̃∈S(Rd0 ),

P[ (-2)g̃(F2)q(H2)] ≡ P[ (-2)g̃(F2)q(H2)] (usual expectation);

and ci(g̃) is of the same form as ci(g).
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If we expand P[ (-2)g̃(F2)q(H2)] without taking the IBP formula, we obtain an
asymptotic expansion

P[ (-2)g̃(F2)q(H2)] =
k∑

i=0

2iP[>i(g̃; q)] + O(2k+1):

Here each >i(g̃; q) takes the form:

>i(g̃; q) =
∑

*:|*|6k

@*g̃(f0)Hi;*

for some

Hi;* ∈Alg(f0; f1; : : : ; fk ; h1; : : : ; hk ; @*q(h0) (|*|6 k)):

Consequently, we see that

ci(g̃) = P[>i(g̃; q)]

=
∑

*:|*|6k

P[A−m@*g̃(f0)9
f0
2m(Hi;*; 0; 1)] (g̃∈S(Rd0 )):

The last line is of course due to the IBP.
On the other hand, it is known that for every g∈S′(Rd0 ) and k ∈N, if we take

large m, then there exists a sequence (gn)∈S(Rd0 ) such that

@*A−mgn → @*A−mg in CB(Rd0 ) (∀* : |*|6 k)

and simultaneously

A−m@*gn → A−m@*g in CB(Rd0 ) (∀* : |*|6 k)

as n → ∞ (cf. Sakamoto and Yoshida, 1996). Thus, ci(gn) = P[>i(gn; q)] converges
and by de@nition,

lim
n→∞ ci(gn) = P[>i(g; q)]:

Furthermore, since ci(gn)→ ci(g) by (6), we @nally obtain

ci(g) = P[>i(g; q)]:

This was what we wanted to prove.

6. Double Edgeworth expansion

Theorem 4. Let x∈Rd1 and let g∈F↑(Rd) and q∈C∞
↑ (Rd2 ). Assume the following

conditions:

(i) (Z2; F2; H2)2∈(0;1] has a smooth stochastic expansion associated with (-2)2∈(0;1]
⊂ D̂:

Z2 ∼ &0 + 2&1 + 22&2 + · · · ;
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F2 ∼ f0 + 2f1 + 22f2 + · · · (2 ↓ 0);
H2 ∼ h0 + 2h1 + 22h2 + · · · ; (7)

(ii) lim sup2↓0 P[/
−p
F2
]¡∞ for every p¿ 1.

(iii) (�) lim sup
2↓0

P[1{|-2|61}/
−p
(Z2;F2)]¡∞ for every p¿ 1.

(D) P[|-2|¿ 1
2 ] = O(2

k) (2 ↓ 0) for every k ∈N,
(B) P[(1−  (-2))g(Z2)q(H2) |F2 = x] = O(2k) for every k ∈N.
Then, if (a smooth version) pf0 (x)¿ 0 at a point x, then

P[g(Z2)q(H2)|F2 = x] ∼ c0(x; g) + 2c1(x; g) + 22c2(x; g) + · · · (2 ↓ 0): (8)

In particular,

c0(x; g) = P[g(&0)q(h0)|f0 = x];

c1(x; g) =
∫
Rd

g(z)(−@z) · (P[q(h0)&1|(&0; f0) = (z; x)]p&0 ;f0 (z; x)) dz=pf0 (x)

+
∫
Rd

g(z)(−@x) · (P[q(h0)f1|(&0; f0) = (z; x)]p&0 ;f0 (z; x)) dz=pf0 (x)

+
∫
Rd

g(z)P[@q(h0)[h1]|(&0; f0) = (z; x)]p&0 ;f0 (z; x) dz=pf0 (x)

−P[g(&0)q(h0)|f0 = x] (−@x) · (P[f1|f0 = x]pf0 (x))=pf0 (x); (9)

where dot stands for the inner product (i.e., divergence), and di8erentiability and
integrability of appearing functions are implied by the assumptions. Asymptotic ex-
pansion (8) is uniformly valid on every compact set in {x :pf0 (x)¿ 0} if (iii) (B) is
uniform on it.

Remark 3. Condition (iii) (B) of the above theorem more precisely means that there
exists a smooth (in x) version P[ (-2)g(Z2)q(H2)|F2 = x] under the assumptions, and
for this version, we assume the existence of a version of P[g(Z2)q(H2)|F2 = x] for
which

P[ (-2)g(Z2)q(H2)|F2 = x]− P[g(Z2)q(H2)|F2 = x] = O(2k)

for every k ∈N. Theorem 4 asserts the validity of (8) for such a nice version of
P[g(Z2)q(H2)|F2 = x]; any assertion would be meaningless unless selecting a nice
version of the conditional expectation.

Remark 4. When Z2 and F2 are independent and q ≡ 1, the second and the last terms
on the right-hand side of (9) cancel out, and also the third term vanishes; thus the
expansion coincides with the unconditional expansion for P[g(Z2)].
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Remark 5. The principle of double expansions is very simple and various extensions
are possible. For example, if pF2 admits a saddlepoint expansion, then we can imme-
diately obtain an Edgeworth-saddlepoint expansion.

Lemma 2. Let x∈Rd1 and let g∈F↑(Rd). For g, take L su;ciently large, then there
exists a sequence (gn)∈S(Rd) such that

gn → g in L1((1 + |z|2)−L dz)

as n→∞, and that for some number m,

gn ⊗ Ax → g⊗ Ax in C̃−2m(Rd+d1 ):

Indeed, it follows in a similar way as Lemma 4 of Sakamoto and Yoshida (1996,
p. 51).

Proof of Theorem 4. (a) Let Z ∈ D̂(Rd) and F ∈ D̂(Rd1 ) such that F is non-degenerate
without truncation and that (Z; F) is non-degenerate under truncation by  (-)∈ D̂. Let
g∈F↑(Rd). Take gn ∈S(Rd) as in Lemma 2. Then by de@nition, for G ∈ D̂,

I( (-)G; (Z;F))(gn ⊗ Ax)→ I( (-)G; (Z;F))(g⊗ Ax)

as n→∞.
We will show that for gn ∈S(Rd),

I( (-)G; (Z;F))(gn ⊗ Ax) = P[ (-)Ggn(Z)|F = x]pF(x) (10)

and that

P[ (-)Ggn(Z)|F = x]pF(x)→ P[ (-)Gg(Z)|F = x]pF(x) (11)

as n→∞. Once those relations are established, we obviously have

P[ (-)Gg(Z)|F = x]pF(x) = I( (-)G; (Z;F))(g⊗ Ax):

Applying it to -2; F2; Z2; H2, one has

P[ (-2)q(H2)g(Z2)|F2 = x] =
I( (-2)q(H2);(Z2;F2))(g⊗ Ax)

I(1;F2)(Ax)
;

and it is then not diEcult to prove the theorem by expanding both numerator and de-
nominator @rst with Theorems 3 and 2, and next by expanding the fractional expression,
and @nally by using Proposition 3 for each resulting term.
(b) We denote by p1 the kernel “p(t; x; y)” of dimension d1. Similarly, W9(Z;F)

2m
denotes “9·

2m”-operator for (Z; F) of dimension d0 = d+ d1. Let H ∈S(Rd1 ). Denote
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gn by f. Then∫
I( (-)G; (Z;F))(f ⊗ Ax)H (x) dx

=
∫

P[A−m(f ⊗ Ax)(Z; F) W9
(Z;F)
2m (G; -;  )] dx

=
∫
dxH (x)P

[∫ ∞

0
dt((m)−1e−t tm−1

×
∫

p(t; Z; y′)f(y′) dy′p1(t; F; x) W9
(Z;F)
2m (G; -;  )

]

=P
[∫ ∞

0
dt((m)−1e−t tm−1

×
∫

p(t; Z; y′)f(y′) dy′
∫

p1(t; F; x)H (x) dx W9
(Z;F)
2m (G; -;  )

]

=P[A−m(f ⊗ H)(Z; F) W9(Z;F)
2m (G; -;  )]

=P[ (-)Gf(Z)H (F)]

=
∫

P[ (-)Gf(Z)|F = x]H (x)pF(x) dx:

Therefore,

I( (-)G; (Z;F))(f ⊗ Ax) = P[ (-)Gf(Z)|F = x]pF(x)

and we obtained (10).
(c) For a while, let us assume that g is a bounded measurable function with compact

support. De@ne q(z; x) by

q(z; x) =
1

(2�)d+d1

∫ ∫
e−i(u·z+v·x)P[ (-)Geiu·Z+iv·F ] du dv:

Under the assumption, q(z; x) is well de@ned and all derivatives of q are integrable.
We denote by ∨ the Fourier inversion. For h∈C∞

K (Rd1 ),∫
h(x)g(z)q(z; x) dz dx =

∫
dz
∫
dxh(x)g(z)

× 1
(2�)d+d1

∫ ∫
e−i(u·z+v·x)P[ (-)Geiu·Z+iv·F ] du dv

=
∫ ∫

(g⊗ h)∨(u; v)P[ (-)Geiu·Z+iv·F ] du dv
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=
∫ ∫

(g⊗ h)∨(u; v)(P[ (-)G|(Z; F) = (z; x)] · P(Z;F))∧(u; v) du dv

=
∫ ∫

g(z)h(x)P[ (-)G|(Z; F) = (z; x)]P(Z;F)(dz; dx):

Disintegrate P(Z;F) by the regular conditional probability PZ=F(dz|x) of Z given F :

P(Z;F)(dz; dx) = PZ=F(dz|x)pF(x) dx:

From the above equation,∫
g(z)P[ (-)G|(Z; F) = (z; x)]PZ=F(dz|x) =

∫
g(z)

q(z; x)
pF(x)

dz;

and hence, if pF(x)¿ 0, then

P[ (-)G|(Z; F) = (z; x)]PZ=F(dz|x) = q(z; x)
pF(x)

dz

as measures. As a result, we see that for bounded measurable g,

P[ (-)Gg(Z)|F = x] = P[P[ (-)G|Z; F]g(Z)|F = x]

=
∫

P[ (-)G|(Z; F) = (z; x)]g(z)PZ=F(dz|x)

and hence

P[ (-)Gg(Z)|F = x] =
∫

g(z)
q(z; x)
pF(x)

dz:

From the Lp-integrability of Z and q(z; x) in z, the last relation holds for g∈F↑(Rd).
It follows from this and the integrability of q(z; x) in z that

P[ (-)Ggn(Z)|F = x]→ P[ (-)Gg(Z)|F = x]

if gn ∈S(Rd) satisfy

gn → g in L1((1 + |z|2)−L dz);

which implies (11), and completes the proof.

If the joint random vector (Z2; F2) is completely non-degenerate, then we can obtain
an expansion for Schwartz distributions g∈S′(Rd). The proof of the following theorem
is easier than Theorem 4, so omitted.

Theorem 5. Let x∈Rd1 . Assume the following conditions hold:
(i) (Z2; F2; H2)2∈(0;1] has a smooth stochastic expansion (7);
(ii) lim sup2↓0 P[/

−p
(Z2;F2)]¡∞ for every p¿ 1.

Then, if (a smooth version) pf0 (x)¿ 0 at the point x, then for any q∈C∞
↑ (Rd2 )

and g∈S′(Rd), the double Edgeworth expansion (8) is valid suppose that P[g(Z2)
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q(H2)|F2 = x] is interpreted as P[(g ⊗ Ax)(Z2; F2)q(H2)]=P[Ax(F2)]. The coe;cients
ci(x; g) have the same expressions as Theorem 4 if one interprets

∫
Rd g(z)

�(z) dz as the coupling S′(Rd)〈g; �〉S(Rd) and P[g(&0)q(h0)|f0 = x] as P[g ⊗ Ax

(&0; f0)q(h0)]=P[Ax(f0)].

If g is smooth function, we do not need non-degeneracy condition for Z2, that is,
we easily obtain the following result.

Theorem 6. Let x∈Rd1 . Assume the following conditions hold:
(i) (Z2; F2; H2)2∈(0;1] has a smooth stochastic expansion (7);
(ii) lim sup2↓0 P[/

−p
F2
]¡∞ for every p¿ 1.

Then, if (a smooth version) pf0 (x)¿ 0 at the point x, then for any q∈C∞
↑ (Rd2 )

and g∈C∞
↑ (Rd), the double Edgeworth expansion (8) is valid. The coe;cients ci(x; g)

(i = 0; 1) are in particular given by

c0(x; g) = P[g(&0)q(h0)|f0 = x];

c1(x; g) = {(−@x) · (P[g(&0)q(h0)f1|f0 = x]pf0 (x))}=pf0 (x)

+P[@(gq)(&0; h0)[(&1; h1)]|f0 = x]

−P[g(&0)q(h0)|f0 = x] {(−@x) · (P[f1|f0 = x]pf0 (x))}=pf0 (x):

Proof. We take (Z2; H2) for H2 in Theorem 4 and prepare a new variable Z2 = Z0
which is non-degenerate and independent of all given random variables. For the proof,
it suEces to apply Theorem 4 with -2 = 0.

7. Examples

Illustrative simple examples will be presented in this section.

Example 2. Consider a system of stochastic di<erential equations

dX 2
t = A0(@2

t−) dt + A1(@2
t−) dL

∗
t + A2(@2

t−) dL
†
t ;

X 2
0 = x0

and

dY 2
t = B0(@2

t−) dt + B1(@2
t−) dL

∗
t + B2(@2

t−) dL
†
t ;

Y 2
0 = y0;

where L∗ and L† are independent LGevy processes with nice regular distributions. The
process @2

t is a hidden (Markov) process, and we assume that it satis@es a stochastic
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di<erential equation:

d@2
t = C0(@2

t ) dt + 2C(@2
t−) dLt;

@2
0 = #0;

where Lt is a LGevy process independent of L∗ and L†, for simplicity. We consider
the Malliavin operators corresponding to the shifts of L∗ and L†. Then under non-
degeneracy of A and B, Z2 = X 2

1 and F2 = Y 2
1 are non-degenerate. It is possible to

treat more complicated, non-linear stochastic di<erential equations with jumps. In such
cases, the suEcient conditions for non-degeneracy presented by Bichteler et al. (1987)
are useful.
Computations of coeEcients would be not so complicated. If noises are Wiener, then

there is no problem: there are formulas for the conditional expectation of a multiple
Wiener integral given a Wiener integral (Yoshida, 1992a; Kunitomo and Takahashi,
1998; Takahashi, 1995, 1999). If the conditioning variables are written out by Wiener
integrals, then computations will not be diEcult.
Only as an illustration, let us consider a simple case. In particular, the case where

Ai and Bi (i = 1; 2) are constants is specially easy. In this case,

&0 = X 0
1 =

∫ 1

0
A0(@0t ) dt + A1L∗

1 + A2L
†
1 ;

f0 = Y 0
1 =

∫ 1

0
B0(@0t ) dt + B1L∗

1 + B2L
†
1

and the derivatives X (1)
t = (@2)0 X 2

t and Y (1)
t = (@2)0Y 2

t are determined by

&1 = X (1)
1 =

∫ 1

0
@A0(@0t )@

(1)
t dt;

f1 = Y (1)
1 =

∫ 1

0
@B0(@0t )@

(1)
t dt;

where @0t is a deterministic process satisfying the ordinary di<erential equation

d@0t = C0(@0t ) dt;

@00 = #0

and @(1)t = (@2)0@2
t is determined by

d@(1)t = @C0(@0t ) @(1)t dt + C(@0t ) dLt;

@ (1)0 = 0:

Independence yields

P[&1|(&0; f0) = (z; x)] = P[&1] =
∫ 1

0
@A0(@0t )P[@

(1)
t ] dt;
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P[f1|(&0; f0) = (z; x)] = P[f1|f0 = x] = P[f1] =
∫ 1

0
@B0(@0t )P[@

(1)
t ] dt;

which simplify computations in the second order. The deterministic process P[@(1)t ] is
a solution of an ordinary di<erential equation, and non-zero in general unless the mean
of L equals zero.
Finally, in order to compare the asymptotic expansion scheme with Monte-Carlo

simulation, we shall reduce the model to a simplest one, namely,

A0(@) = A@; A1(@) = A1; A2(@) = A2;

B0(@) = B@; B1(@) = B1; B2(@) = B2;

C0(@) = 0; C(@) = 1;

and let L∗; L†; W be independent standard Wiener processes, and take Lt=C(mt+Wt).
Here is an outcome of a numerical study among several studies. 3 We chose the para-
meter values as follows: C=2:0, A=1:3, A1=0:5, A2=1:0, B=−0:5, B1=1:0, B2=0:8,
m = 0:5, x = 0:05, 2 = 0:1. For g(z) = z, the closed form of V := E[g(Z2)|F2 = x] is
given by

V =
A1B1 + A2B2 + 22ABC2=3

B21 + B22 + 22B2C2=3

(
x − 2

mBC
2

)
+ 2

mAC
2

;

and for parameters given above, V = 0:123935.
The time interval [0; 1] was divided into 1000 subintervals of equal length to generate

approximate stochastic processes. We set a window of length 0.05 including the point x,
and the simulated F2’s hit this interval 15 475 times among 1000000 repetitions. The
estimated value of V by the Monte-Carlo simulation based on those 15 475 hits was
0.128308. The Monte-Carlo simulation with 2 GHz consumed 25 minutes.
On the other hand, we obtained

c0(x; g) =
A1B1 + A2B2

B21 + B22
x = 0:039634;

2c1(x; g) = 2
mC
2

[
A− B

A1B1 + A2B2
B21 + B22

]
= 0:084817;

therefore the estimated value of V by the asymptotic expansion up to the second-order
was 0:124451. This value was better than the Monte-Carlo estimate. It may be said that
the second-order term fairly improved the accuracy, compared with the @rst-order term.
The asymptotic expansion scheme has an advantage that we can obtain a new estimate
immediately even when coeEcients of the equations are changed. Multi-dimensional
conditioning will make the di<erence between them clearer. According to Masuda’s
studies of LGevy cases with jumps and of multi-dimensional conditioning cases, our
approach achieved satisfactory precision and reduced computational time, for example,

3 I owe the numerical study and the comparison with the true value to Mr. Hiroki Masuda.
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from about 300 min for each by Monte-Carlo methods on 2 GHz PC (10000000
repetitions for comparable precision) to almost zero second.

Example 3. Let us consider a system of D + D1 stochastic di<erential equations

dX 2
t =

r∑
�=0

V�(X 2
t−; Y 2

t−; 2) dL�
t ; X 2

0 = x0;

dY 2
t =

r∑
�=0

V ′
�(X

2
t−; Y 2

t−; 2) dL�
t ; Y 2

0 = y0; (12)

where L0t = t and L1t ; : : : ; L
r
t are LGevy processes whose LGevy measures have moments

of any order on a region apart from the origin. 2 is parameter in (0; 1], and x0 and
y0 are constants independent of 2: x0 is here observable only for simplicity. L1; : : : ; Lr

may be dependent or have non-zero means. Time-dependent equations are included in
this model if one takes t as an argument. Moreover, since coeEcients can degenerate,
noises driving X 2 and Y 2 can be independent, as it is rather often assumed in practical
situations. Suppose that V� ∈C∞

b (RD+D1×(0; 1];RD) and V ′
� ∈C∞

b (RD+D1×(0; 1];RD1 ).
Here C∞

b stands for the set of smooth functions such that all derivatives of order ¿ 1
are bounded.
In this example, V� and V ′

� are general non-linear functions; however, we will put
the deterministic limit condition:

V�(·; ·; 0) = 0 and V ′
�(·; ·; 0) = 0 (�= 1; : : : ; r):

Model (12) forms a @ltering model with a system process X 2 and an observation
process Y 2. Several authors dealt with @ltering problems in small di<usion settings (cf.
Picard, 1991, Zeitouni, 1988). Recently, Del Moral et al. (2001) studied @ltering with
discrete-time observations and presented error bounds for certain Monte-Carlo @ltering
schemes. Here we will view the @ltering problem based on discrete-time observations
or more generally @nite dimensional functionals from a small-�-theoretical aspect.
For @xed maturity T ¿ 0, let T = [0; T ]. Let t = (t1; : : : ; tm)∈Tm and put Xt =

(Xt1 ; : : : ; Xtm). Similarly, Ys = (Ys1 ; : : : ; Ysn) for s= (s1; : : : ; sn)∈Tn. Among many possi-
bilities, we here consider the following two functionals:

WZ(X·) =
(∫

Tm
Zl(Xt)#l(dt)

)
l=1;:::; d

and

WF(Y·) =
(∫

Tn
Fk(Ys)*k(ds)

)
k=1;:::; d1

;

where Zl ∈C∞
↑ (RDm), Fk ∈C∞

↑ (RD1n), #l are @nite signed-measures on Tm, and *k are
@nite signed-measures on Tn. Functionals WZ and WF are very simple, but they include,
e.g., @nite samples (Ys01

; : : : ; Ys0n), anticipative integrals like
∫ T=2
0 XtXT−t dt, and so on.

Our results can apply if the functional admits a von Mises-type expansion the residual
term of which has a representation compatible with L-operations.
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Let

Z2 = 2−1( WZ(X 2
· )− WZ(X 0

· )) =
(∫

Tm
2−1(Zl(X 2

t )− Zl(X 0
t ))#l(dt)

)
l=1;:::; d

and

F2 = 2−1( WF(Y 2
· )− WF(Y 0

· )) =
(∫

Tn
2−1(Fk(Y 2

s )− Fk(Y 0
s ))*k(ds)

)
k=1;:::; d1

:

It is then easy to show that Z2 and F2 admit smooth stochastic expansions Z2 ∼ &0 +
2&1 + · · · and F2 ∼ f0 + 2f1 + · · · with

&0 =
(∫

Tm
@Zl(X 0

t )[X
[1]
t ]#l(dt)

)
l=1;:::; d

;

&1 =
(∫

Tm

1
2
{@2Zl(X 0

t )[(X
[1]
t )⊗2] + @Zl(X 0

t )[X
[2]
t ]}#l(dt)

)
l=1;:::; d

;

f0 =
(∫

Tn
@Fk(Y 0

s )[Y
[1]
s ]*k(ds)

)
k=1;:::; d1

;

f1 =
(∫

Tn

1
2
{@2Fk(Y 0

s )[(Y
[1]
s )⊗2] + @Fk(Y 0

t )[Y
[2]
s ]}*k(ds)

)
k=1;:::; d1

:

Here the component limit processes and derivatives X 0
t , Y

0
t , X

[1]
t , Y [1]

t , X [2]
t , Y [2]

t are
determined by

dX 0
t = V0(X 0

t ; Y
0
t ; 0) dt; X 0

0 = x0;

dY 0
t = V ′

0(X
0
t ; Y

0
t ; 0) dt; Y 0

0 = x0;

dX [1]
t = @V0(X 0

t ; Y
0
t ; 0)[(X

[1]
t ; Y [1]

t ; 1)] dt +
r∑

�=1

@2V�(X 0
t ; Y

0
t ; 0) dL

�
t ; X [1]

0 = 0;

dY [1]
t = @V ′

0(X
0
t ; Y

0
t ; 0)[(X

[1]
t ; Y [1]

t ; 1)] dt +
r∑

�=1

@2V ′
�(X

0
t ; Y

0
t ; 0) dL

�
t ; Y [1]

0 = 0;

dX [2]
t = @(x;y)V0(X 0

t ; Y
0
t ; 0)[(X

[2]
t ; Y [2]

t )] dt + @2V0(X 0
t ; Y

0
t ; 0)[(X

[1]
t ; Y [1]

t ; 1)⊗2] dt

+
r∑

�=1

(@2V�)(X 0
t ; Y

0
t ; 0)[(X

[1]
t− ; Y [1]

t− ; 1)⊗2] dL�
t ; X [2]

0 = 0;

dY [2]
t = @(x;y)V ′

0(X
0
t ; Y

0
t ; 0)[(X

[2]
t ; Y [2]

t )] dt + @2V ′
0(X

0
t ; Y

0
t ; 0)[(X

[1]
t ; Y [1]

t ; 1)⊗2] dt

+
r∑

�=1

(@2V ′
�)(X

0
t ; Y

0
t ; 0)[(X

[1]
t− ; Y [1]

t− ; 1)⊗2] dL�
t ; Y [2]

0 = 0:
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In the above equations, the terms @2(x;y)V� and @2(x;y)V� in @2V� and @2V ′
� vanish

for �= 1; : : : ; r as a matter of fact.
If one uses Kt de@ned by

dKt = @(x;y)

[
V0

V ′
0

]
(X 0

t ; Y
0
t ; 0)Kt dt (matrix product);

K0 = ID+D1 ;

then the derivatives are expressed in[
X [1]
t

Y [1]
t

]
=

r∑
�=0

∫ t

0
KtK−1

s @2

[
V�

V ′
�

]
(X 0

s ; Y
0
s ; 0) dL

�
s (L0s = s);

and [
X [2]
t

Y [2]
t

]
=
∫ t

0
KtK−1

s

{
@2
[
V0

V ′
0

]
(X 0

s ; Y
0
s ; 0)[(X

[1]
s ; Y [1]

s ; 1)⊗2] ds

+
r∑

�=1

(
@2
[
V�

V ′
�

])
(X 0

s ; Y
0
s ; 0)[(X

[1]
s− ; Y [1]

s− ; 1)⊗2] dL�
s

}
:

Therefore, under non-degeneracy condition, we can obtain an expansion of P[g(Z2)|F2

= x] (@ltering and smoothing).
Functionals &0 and f0 are linear LGevy integrals, and &1 and f1 are double LGevy inte-

grals. The second-order terms may involve computational problems. If L� are Gaussian,
there is no problem. In this case, all terms appearing in the expansion have closed
forms. Otherwise, for general LGevy processes, it is not necessarily easy to give explicit
expressions of the conditional expectations of double LGevy integrals given linear LGevy
integrals. However, in such cases, we can still apply rough Monte-Carlo simulations to
the second-order terms. This is called the hybrid I method investigated in Kashiwakura
and Yoshida (2001).

Example 4. Consider a (D+D1)-dimensional stochastic process (X 2; Y 2) satisfying the
stochastic di<erential equation:

dX 2
t = AX

0 (@
2
t )X

2
t dt + AY

0 (@
2
t )Y

2
t dt +

r∑
�=1

A�(@2
t ) dw

�
t ; X 2

0 = x0;

dY 2
t = BX

0 (@
2
t )X

2
t dt + BY

0 (@
2
t )Y

2
t dt +

r∑
�=1

B�(@2
t ) dw

�
t ; Y 2

0 = y0;

where AX
0 ; A

Y
0 ; A�; BX

0 ; B
Y
0 ; B� are matrix-valued smooth functions, @2

t is a vector-valued
stochastic process, and w� are Wiener processes independent of @ 2. @2

t and X 2
t are

latent variables and Y 2
t are observable. We assume that @

2
t converges to a deterministic
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process @0t as 2 ↓ 0, and moreover that @2
t is smooth in 2. This is a partial non-Gaussian

state space model which recently attracts time series analysts; see Shephard (1994),
also Kitagawa (1987).

As the preceding example, we consider random variables

Z2 =
(∫

Tm
Zl(X 2

t )#l(dt)
)
l=1;:::; d

and

F2 =
(∫

Tn
Fk(Y 2

s )*k(ds)
)
k=1;:::; d1

:

In particular,

&0 =
(∫

Tm
Zl(X 0

t )#l(dt)
)
l=1;:::; d

; &1 =
(∫

Tm
@Zl(X 0

t )[X
[1]
t ]#l(dt)

)
l=1;:::; d

;

f0 =
(∫

Tn
Fk(Y 0

s )*k(ds)
)
k=1;:::; d1

; f1 =
(∫

Tn
@Fk(Y 0

s )[Y
[1]
s ]*k(ds)

)
k=1;:::; d1

:

It is easy to see

dX 0
t = AX

0 (@
0
t )X

0
t dt + AY

0 (@
0
t )Y

0
t dt +

r∑
�=1

A�(@0t ) dw
�
t ;

dY 0
t = BX

0 (@
0
t )X

0
t dt + BY

0 (@
0
t )Y

0
t dt +

r∑
�=1

B�(@0t ) dw
�
t ;

dX [1]
t = AX

0 (@
0
t )X

[1]
t dt + AY

0 (@
0
t )Y

[1]
t dt + @AX

0 (@
0
t )[@

[1]
t ]X

0
t dt + @AY

0 (@
0
t )[@

[1]
t ]Y

0
t dt

+
r∑

�=1

@A�(@0t )[@
[1]
t ] dw

�
t ;

dY [1]
t = BX

0 (@
0
t )X

[1]
t dt + BY

0 (@
0
t )Y

[1]
t dt + @BX

0 (@
0
t )[@

[1]
t ]X

0
t dt + @BY

0 (@
0
t )[@

[1]
t ]Y

0
t dt

+
r∑

�=1

@B�(@0t )[@
[1]
t ] dw

�
t

with

X 0
0 = x0; Y 0

0 = y0; X [1]
0 = 0; Y [1]

0 = 0:

Thus, PX t = [X 0
t
′; Y 0

t
′; X [1]

t
′; Y [1]

t
′]′ forms a linear system admitting a representation:

d PX t = Kt PX t dt + Lt d Pwt; PX t = Px0
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for Pwt = (w�
t ). Kt and Lt are random matrices described by @0t and @[1]t . Trivially,

PX t = e
∫ t
0 Ks ds

[∫ t

0
e−

∫ s
0 Ku du Ls d Pws + Px0

]
:

It will be possible to give an explicit expression, to some extent, of conditional
expectations of &1; f1 given (&0; f0). If Zl and Fk are linear, it is easy to do by
conditioning @rst with @0· and @[1]· , and by integration next.
We do not go into details but we may use the partial Malliavin calculus which shifts

only w� and leaves @ 2 unchanged. Then, under a non-degeneracy condition, we @nally
obtain an expansion of P[g(Z2)|F2=x]. See Masuda and Yoshida (2002) for a practical
numerical scheme.
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Appendix

We will here list formulas for the symmetric transition kernel p(t; x; y) given in
Section 4. Those were used in Sakamoto and Yoshida (1996). For n∈Zd

+, |n|= n1 +
· · · + nd, and @n = @n1

1 · · · @nd
d , @i = @=@xi. Denote by �(x) the d-dimensional standard

normal density function, and let

Hn(x) = �(x)−1(−@)n�(x); �(t) =

(
tanh
√
2t√

2

)1=2
;

g(x; t) =
exp(−�2(t)|x|2)√

cosh
√
2t

d :

Then p(t; x; y) has representations:

p(t; x; y) =
g(x; t)
�(t)d

�

(
y − x sech

√
2t

�(t)

)
=

g(y; t)
�(t)d

�

(
x − y sech

√
2t

�(t)

)
:

Moreover,

@nxp(t; x; y) =
1

(−�(t))|n|Hn
(

x − y sech
√
2t

�(t)

)
p(t; x; y)

and the derivatives of g(x; t) are given by

@nxg(x; t) = (−
√
2�(t))|n|Hn(

√
2�(t)x) g(x; t):
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