Bull. Sci. math. 125, 6-7 (2001) 431-456
0 2001 Editions scientifiques et médicales Elsevier SAS. All rights reserved
S0007-4497(01)01095-8/FLA

MALLIAVIN CALCULUSAND MARTINGALE EXPANSION "

BY

NAKAHIRO YOSHIDA

Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba,
Meguro-ku, Tokyo 153, Japan

ABSTRACT. — We proved the validity of the asymptotic expansion for the distribution
of a martingale with jumps. A sufficient condition is presented in terms of the decay
of certain integrations of Fourier type. In order to estimate such Fourier type integrals,
we use the Malliavin calculus and show that it becomes a key to our progr&@01
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1. Introduction

Asymptotic expansion is now admitted to be fundaments of the
higher-order asymptotic statistical theory beyond the first-order theory;
cf. Akahira and Takeuchi [1], Bhattacharya and Ghosh [2], Ghosh [5],
Pfanzagl [14,15], Taniguchi [20]. This is also the case when we consider
statistical problems for semimartingales. In spite of the importance, the
asymptotic expansion of martingales is rather a new topic discussed in the
latest mathematical statistics. Mykland [11] is a prominent work which
presented, for continuous martingal@g, ;: 0 <t < 7,), an asymptotic
expansion of the expectatiafi[g(M, 7, )] for a class ofC?-functionsg.
Consecutively, in [12,13], he presented expansions for martingales with
discrete time parameter and for martingales with jumps, in a clag$-of
functionsg.

In certain problems, for instance, problems of confidence intervals, sta-
tisticians need asymptotic expansion withoutdHeregularity condition.

* This work was in part supported by the Research Fund for Young Scientists of the
Ministry of Science, Education and Culture, and by Cooperative Research Program of
the Institute of Statistical Mathematics.
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Generally speaking, it is possible to remove such a regularity condition if
we may assume a condition which ensures the regularity of the distribu-
tion of M, 7, . Itis well known that the so-called Cramér condition serves
as such a condition for independent observations.

In this article, we will consider asymptotic expansion for martingales
with jumps. In order to validate the expansion for martingales it will be
necessary to examine the order of the decay of certain Fourier integrals.
For this purpose, we will take advantage of the Malliavin calculus. In fact,
by means of the associated integration-by-parts setting, it is possible to
prove the validity of the expansion @&[g(M,, 7,)] for any measurable
function g. It seems to be the only handy method which universally
applies to functionals appearing in statistics for stochastic processes
with continuous-time parameter. In the previous paper [26], continuous
martingales were treated, however the same methodology can be applied
to general martingales with jumps. The aim of this article is to clarify the
idea and to carry out this program for martingales admitting jumps.

For functionals ofe-Markov processes with mixing property, the
cal approach provides an efficient way to the asymptotic expansion (cf.
Gotze and Hipp [6,7], Kusuoka and Yoshida [10], Yoshida [28] and
Sakamoto and Yoshida [18,19]). However, the present martingale ap-
proach ¢lobal approach) still has advantages of being widely applied:

a class of diffusion processes and estimation of a diffusion coefficient
([26]), the M-estimator over Wiener space (Sakamoto and Yoshida [17]),
and the second order expansions in the smatheory ([22—-25], Der-
moune and Kutoyants [4]). Besides, in order to illustrate another merit,
we will in Section 3 give a simple example of a long-range-dependent-
energy martingale to which the geometric-mixing approach cannot apply
but our martingale method is still applicable.

The organization of the present article is as follows. First, we will
summarize the Malliavin calculus for jump processes in Section 2. The
main result will be stated in Section 3 and the proof of it will be presented
in Section 4. Since it is not yet clear whether the embedding technique for
martingales preserves the smoothness of functionals in the sense of the
Malliavin calculus, we do not use the embedding technique as Mykland
did (of course, in his case, such smoothness is not necessary because of
the smoothness of functiorny. The method here is based on the Fourier
analysis rather classical.
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2. Malliavin calculusfor jump processes

In this section, we give a review of the Malliavin calculus for jump
processes formulated by Bichteler, Gravereaux and Jacod [3] among
many other possible formulations. Any formulation is possible to use if a
sufficiently higher order integration-by-parts formula in differential form
or in difference form is available in it.

Let (®, B, IT) be a probability space. The following formulation of the
Malliavin calculus was adopted by Bichteler et al. [3].

DEFINITION. —A linear operator £ on D(L) € (,., LP(IT) into
Np-1 L7 () iscalled a Malliavin operatorif:

(1) Bisgenerated by D(L).

(2) For f e C2(R"),neN,and F e D(L)", f o F € D(L).

(3) Forany F,G e D(L), E'[FLG]=E"[GLF].

(4) For F e D(L), L(F?) > 2F LF. Namely, the bilinear operator I
on D(L) x D(L) associated with £ by I'(F,G) = L(FG) —
FLG — GLF isnonnegative definite.

(5) For F=(F',...,F")eD(L)",neN,and f € C3(R"),

n ) l n . .
L(foF)=) 8 foFLF + 5 > 0:0;f o FT(F', F/).
i=1 i,j=1

Let (£, D(L)) be a Malliavin operator. We definpUHDg by
IFllpz = I1Fll, + 1£F 1, + |[TY2(F, B,

for p > 2. Denote bny, the completion ofD(L£) with respect tq| - || D2
Then spacesD[%, II - ||D§) become Banach spaces with natural inclusions
between them. Let
D%_= () Da.
p=2
There exists an integration-by-parts setting (IBPS). See Theorem 8-
18 of [3], p. 107, for details. We shall rewrite the integration-by-
parts formula for a partially nondegenerate situation. et detor,
or = (op){,_;, whereop! = I'(F', F/) andoy; ;) is the (i, i')-cofactor
of or. Assume thatF e Dgo_(Rd). Also we suppose that a trunction
functional v satisfies the condition thah = 0= A%y =0 a.s,



434 N. YOSHIDA/ Bull. Sci. math. 125 (2001) 431-456

henceA- A1y =y as. Ifo;) € D2_ and A=Yy € D2 _, then the
integration-by-parts formula holds, i.e., fgre C2(R?),

(1) E" (3 f(F)yy] = E"[f(F)T" ],
where the operator

JF{¢¥: © > RsuchthatA ™y € D2 _} — (] L,(T)
p>1

is defined by

d
Ty ==Y {247 oy LF" + I'(A ™ Yoy, F')}.
i'=1

Fork e N, de_fineS,Q[F] andS;[y] as follows:

Si[Fl:={op’:i,j=1,...,d}if Fe D2 _(R%);

Si{[Fl:i={op), LF, (S, 4[F), F)):i,j=1,...,d}if Fe D2 _(R%
andS; ,[F1c D?_;

Sily; Fl:={A7'y)if A=0impliesA~'y =0;

S{: F1 = (A7) Y F1LLATIC(S) [y F1LF): i =1,....d)
if Sy ,[¥;F] c D2_ and if A =0 implies A=YS! j[v; F]1 U
AIC(S! [y F1, F) = {0}.

Moreover, we prepare the following notation:

A= AF.

Saly; F1:= Si[F1U S{[y; F1if F € D5, _(RY);

Sl Fl:= Si_aly; FIUS[F1US/[y; F1if F € D3,_(RY), S;_4[F]
c D2, andS; ,[y; F1c D2,_,and if A =0 impliesA~1S; ,[v; F]U
A7 (S!_J[¥; F1, F) = {0}. Here we denoted (A, B) = {I"(a, b):
a € A, b € B} for function setsA and B.

PROPOSITION 1. — Supposethat F € D2 _.If S;[v; F]1C D2 _,then
for f e C{™H(RY),

E™[8;,0;, - 0 f(F)¥] :En[f(F)jikF"'\Z'zF‘wa'

Proof. — From assumption thatS.[vy; F] C Dgo_, it follows that
ATYTE - TE W) (1< j <k — 1) are well defined, and that 7" ---
Zf(w) € L{S}/H[w; F} ® AIgR(S}H[F]). The assertion of the propo-
sition can be proved by this fact and by induction with the aid of the

integration-by-parts formula (1).0
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3. Main result

We consider a sequence éfdimensional random vectofs(,} with
stochastic expansion:

Xn = Mn,T,, + rnNn»

where M, r, and N,, ared-dimensional random vectors, both of which
are defined on a probability space”, 7", P"), and M, = (M,)c0.1,]

is ad-dimensional local martingale with respect to a filtratidff’ ), (0,7,
over (2", F", P"). We assume thaM, o = 0 and denote byV/¢ the
continuous part oM, and by M¢ the purely discontinuous part of,,.
{r,} is a sequence of positive numbers satisfying,lig r, = 0. Here
we use the parametere N, however it is clearly possible to consider
any directed set in place of for our results.

The optional quadratic covariation process of the local martingale
M, is denoted by[M,] = [M,, M,] = ([M,Q,M,{])f.{j:l, and the pre-
dictable covariation process is denoted WW,) = (M,, M,) =
(M}, MI){;_,. Moreover we putg, = o*[M,] + B*(M,) and &, =
2, — I, where/ is the identity matrix. Though we will take* = 1/3
andp* = 2/3 later as Mykland found it, we will leave them for a while to
see why those numbers should be chosen in this wa;gnléutr,;lé‘n’n.

For semimartingalé, ¥ denotes the integer-valued random measure

onR, x R?, and it is defined by
X (w; dt, dx) = Z Liax,#08(s, ax,) (dt, dx).

s>0
It is well known that there exists a unique random measutev* which
compensates.*. The random measure, denotes the compensator
corresponding tee, = uMn.

In this section, we assume that ea@gR”, 7", P") has a Malliavin
operator£” with corresponding™ and D2 . Let k, = r; 2|x|* s .1,
and leth,, = . 2|x|* x v, 1,. PutS", = {M,, 1,, N,}. Given a nonnegative
random variable, on 2", S is defined only whe$”, c D%% by

Sg = {SVH O—M,,VT” ’ Fn(Mn,Tny Nn)a GNna Mn,Tna éna Nna Kna )‘n}

The setS; is defined only wherSi ¢ D%2 by S = (£"X,} U Si U
(S, X,). Fork e N, k > 2, S} is defined only wheis} ; ¢ D2 by
S =8 U TS g, Xn).
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We will assume that
[A1] For a random vectofZ, &, n) taking values irR? x (R ® RY)
x R4,
(Mn,Tn"‘;:n’ Nn) _>d (Z,f‘;:, 77) asn — 0.

[A2] The setS; is bounded with respect t- ||, p+ uniformly in
neNforanyp > 1.
We denote by¢ the d-dimensional standard normal density. De-
fine A:R? - R?®@ R’ and B:R? — R? by A(x) = (A*(x))},_; =
P[£|Z =x] and B(x) = (B/(x))?_, = P[n|Z = x]; moreover, let

1 d
ST Z 30 (AT ()P (X)) — 1 >3, (B/ (x)(x)).
jik=1 j=1
Remark 1. — Under the assumptions, it is easy to show the existence
of the derivatives ofA/* and B/, and the integrability of the each term on
the right-hand side of the above definitiongf.

Let £(M, y) be the set of measurable functiofisR¢ — R satisfying
that| f (x)| < M(1+ |x|"). The following is our main result:

THEOREM 1.— Let Y, denote either X, or M, . Suppose that
conditions [Al] and [A2] for some [ > 2d + 4. Moreover, suppose that
sup,en P"[s, 71 < oo for any p > 1, and that lim,_, ., P"[detoy, > s,]
=1.Then,forany M >0,y > 0,a; > (3+d)/( —d) and a; < 1, there
exist a constant C and a sequence ¢,, = o(r,,) such that

Pn(x) =¢(x) +

P"[f(X,)] = / f @) pa(x)dx + Cr, “* P"[detoy, < s,1°? + &,

foranyn e Nandany f € E(M, y).

Remark 2. — The differentiability index in Theorem 1 is greater than
the one given in [27]. It would be natural because what we treat here is
essentially the expansion of the (local) densitygfdifferently from the
distribution function as in [27].

In [10,18,19,21], we treated functionals of a continuous-time parame-
ters-Markov process with geometrical mixing propertgadal approach).
The result in the present article can also apply to a class of such models
to derive the second order expansions. Here, we give a simple applica-
tion of our result. Our previous result by (unconditional) local approach
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cannot apply to this example since it is based on a long-memory process
breaking the geometric mixing condition.

Example 1. — Consider a regression model defined by:
X, =0Z;+e,

where Z = (Z,);en and e = (e;);en are independent and is an
i.i.d. sequence withE[e;] = 0 and Vafe,] = 1. Given observations

(X:, Z;)i=1.... 1, the least square estimat@y for 6 is given by
T
~ C .7 T
VT (br —0)= —E’:; ’6’2/‘/_.
Zt:l Zt/T

In the present situation, we can naturally embed the processes
(X:, Z;)i=1,... 7 into the continuous-time processes |, Zj;)):<r, » and to
simplify our argument, for a while, let us confine our attention to the mar-
tingale which forms the principal part: the martingale’ = (M), cr,
defined by

t
1
MtT:—/Z[s+l] dws,
VT

where w = (w;);cr, IS @ Wiener process independent 6f and the
reference filtration(7;),cr, is given byF, =o[Z, (n € Z,), w, (s <1)].
Let(Z,).cz, be astationary Gaussian sequence satisffiiig, | = 0 and
Var[Z,] = 1. Then(M") = [;Z%_,,ds/T and hence, for the Hermite
polynomial H, of degree 2,

T
Er=r; T Hy(Z))
t=1

for T € Z, . Suppose that the autocovariance function
r(n):= E[ZoZ,] ~ In|"7L(n)

asn — oo for some constany (0 < ¢ < 1) and some slowly varying
function L. By Herglotz’ theorem, there exists a measursuch that
rin) = ["_ €™ p(dx). Moreover, it is known that there exists a weak
limit v, of the sequence of measungsdx) = nqL(n)‘lv(% U[—m, 7))

on B;. Let X () be the second order Hermite process corresponding to
Voo. It is then known that for; = TY7L(T) (T € N),
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T
ATYY THo(Z) - X (1)
=1

asT — oo, T €N, if ¢ <1/2. Takery = A7/ T. Then we see that

E[exp(iuM] + ivér)]
T

1 . d
exp(—E MZT_l/Z[ZH_l] dr + |uA;1ZH2(Zt)>

0 t=1

=E

— E [exp(—% u?+ ivX(l))} ;

thus (M1, &7) =4 (Z', X (1)), whereZ’ is independent o (1). From

our theorem, it is possible to obtain the asymptotic expansion of the
distribution of M1 . The order of the second termrg~ T~7L(T); since

the conditional expectation gfgiven Z’ vanishes, what we obtained is a
Berry—Esseen type bound, i.e., for aqly< ¢, there exists a constant
independent of such that

supP[MF < x] —®(x)|=0(r,) <CT Y.
xeR

In a similar way, we can also obtain a uniform bound for the
distribution of the least square estimatgrif we use our present result
and the Delta-method. Note that this example does not follow from our
previous result on the asymptotic expansion for geometric strong mixing
processes.

It is also possible to generalize the above argument to non-gaussian
models. In the general case, we do not use the embedding of the
martingale to a continuous martingale but use our result for jump
martingales directly. A longer discussion will be necessary to describe
the strong dependency and limit theorems to compute the higher order
term. Available is the result by Ho and Tsing [8] on a moving average
with slowly decaying coefficients.

Robinson and Hidalgo [16] more precisely studied the first-order
asymptotics of the stochastic linear regression model.

Another treatment of the asymptotic expansion by the partial mixing is
in [28].
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4. Preliminaries and proofs

Suppose that we are given a one-dimensional random variable (trun-
cation functional)y, : 2" — [0, 1] for eachn € N. We will use the

multi-index: forx = (xq, .. xd) eRYando = (a1, ..., 04) € Zi, x% =
x7t---xg’; moreoverg® = 8 <9y with 3; =9/9,,,i=1,...,d
Fora = (ay, ... ad)EZ let

§%(u) = P"[d"Xny, X°].
We defineg” : R? — R by
1 d
g, (x) = (—) / e "% u)du, xeRY,

2
R4

if ¢ is integrable. The functiorR? is referred to as the local density
of X,,. Itis easy to see that under regularity conditions,
g () = x“ g0 (x)

for x e R? anda € Z4.
Definec, € R by ¢, = P"[y,]; moreover, for € Z4 andx € R?, let
h*(x) = x*h%(x), where

d
ho(x) = cap (x) + Ern > 90 (A ()P (x) —r > 9; (B () (x)).
j=1

2 Jj.k=1
Define A, (u, x) and B, (u, x) by:

d
Ag(u,x)="> " A (i) (u)*x* + (iu)’ 3x*
jik=1

+ (k3 x* +8;9x"),
and
d . .
By(u,x)=>_ B/ (x)((in)/x* +9;x%),
j=1

respectively. Set

ﬁg(u):/é“'x [cnx“ + %rnAa(u,x) + 1 By (1, x) | (x) dx.

R4
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Denote byS? the set of alld x d-symmetric matrices. Fax € Z<,
u,z e R andr € 8%, defineP, (u, z,r) and Q4 (u, z, r) by

P,(u,z,r)= exp(—iu -7 — %r(u, u)) (—i9,)”

X exp(iu -7+ %r(u, u)),
and

1
Q(X(u’ Z? r) = e?r(M’M)POl(Mv Za r)v

respectively. Clearly,

. . 1 -
(—i9,)* exp(lu -7+ > r(u, u)) =€e"*Q,(u,z,r).

In the sequel, we often denodé, 7, simply by M,,. The integralg? (u)
of Fourier type will be approximated UA;{;‘(M). The gap between them is
decomposed into three parts as follows:

8% (u) — he(u) = J(u) + K%(u) + L% (u),
where
JE () = P" [y, X% €"Xn]
_p [m 3 (“) (N )™ O (1, My, By 1) é""‘"}

0B p

— %rnE[ej”‘ZAa(u, 7)),
K(u)=P" [wn > (;) (raN)* ™ Qg (u, My, B 1,) é""‘"}
0B

— P" [ Qu(u, My, E,.1,) €M) — 1, E[€"7 By (u, 2)]

and
Lii(u) = P" [ Qu (1, My, E,.1,) €]
— P" [y (=ig) e 2.

ForgeZ,u eR?andr e S?, let

1 1 .
Sp(u,r) =€ 2"0gh gar) — jlfl pyy, 0, 7).
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LEMMA 1. -
(1) There exist constants ¢!' (independent of u, r) such that

18I
|Sg(u,r)| < Zc‘jﬂ‘ |/ |r|UF1BD/2
j=0

and that c&/&"= 0 and c399 =0

even—

(2) Foru,zeR?, re &7,

Po(u,z,r)= > (Z)(—i)ﬁza_ﬁSﬁ(u,r).
0<B<a

Proof. — It is easy to show (1). For (2), we may use the multi-index
Leibniz rule:

(—i9,)” eXp(iu -+ %r(u, u))
= (=D > (a) (@) v @) e D
0B p

Letg > 1 andp > 0. Before applying the Malliavin calculus, we will
clarify what kind conditions should be verified to obtain the asymptotic
expansion.

[C1]

Squ’r;2(|x|4 * U, + |x|* % vp 1) |, < oo
ne

[C2] () v, —?1lasn— oo.

(i) Foranypi, p2, ps€Zy,
SUPP" [y, | M, |7*[£,|7?| N, |7%] < oo.

neN
(iii) Assumption [A1] is satisfied.
[C3] Forb, =r?,|&,.1,| < b, a.s. on the set), > O}
[C4] There exists a constamt independent of: € N such that on
(¥, > 0},

r? suplAMY | <A as.
s<Ty

and



442 N. YOSHIDA/ Bull. Sci. math. 125 (2001) 431-456

ry? supA(MET, METY <A as.
s<Ty

foralli=1,...,d.
[C5], Foranya € Z4,

sup sup |lu|' P"[€" %y, X¥]| < o0.

nEN w: julr,?
[C6]; Foranya €24,
sup  sup [ul|P"[e“ %y, AY ]| < 0o,
Ny 1<ul<r,
where

1 o
A= N a=p
= A Dy 2 (§) oo

<p<a
x {Qp(u, My, 0) — Qp(u, My, 1,8,) }-
[C7]« Foranya €24,
sup  sup [ul‘|E[€“%y,BY, ]| < o0,
neN u 1 ul<ry
where

1 «
Ba = nNn 0{—/3 9Mn= nsSn
(1+|u|)rn{0<%:@<5)(r FErCs s Ma, 1)

- Qot (”a Mn, rng:n) e—iu-rnNn }

We will denote byC a generic constant independentrondu. Also
we write F(n,u) < G(n,u) if there exists a constanf independent
of n andu such thatF(n,u) < CG(n,u) for anyn andu. For a fixed
positive numbep, let A = {u e R%; 1< Ju| <r?} and A = {u e RY;
lul < r;*}. Pute, = (8.;)%; € RY: the kth vector of the standard basis
of R?. We assume [C3].

LEMMA 2. — If [C2] is satisfied, then J¢(u) = o(r,) (n — oo) for
each u € R?. Moreover, if [C6]; holds, then

ry I @) |11 ) < CA+ Ju)"U2
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for any u € R. Under [C2] and [C6];, if j > d + 2, then

r;l/\J;(u)\lAg(u) du— 0

Rd
asn — 0.
Proof. — Put
jfl,n(u):v/n Z (Z) (rnNn)a_ﬁ
B 0B
18I a|-1
x { Qp(u, My, 0) — Qp(u, My, r,&,) } €%

and

jgn(u) = wn{Qa(u, Mn, 0) — Qa(u’ M”’ rn‘i:n)} eiu-Xn'

Clearly, [C2] implies that, > P"[| j,(u)|] = o(1) for eachu € R?. On
the other hand, sinc@,, (u, z, 0) = z¢ (multi-index),

Z (3‘) (_i)\j\Mg—j

1. -1
b ) = Y {M;f—
J: 0<j<a

l .
X 8 (1, 1af) eﬁ’"f"“““)} g

. 1
— elLt-X,7 wnrn—l{Mg _ Mfll egrngn(uau)

d
a o ‘ 1
_Z( )(")Mﬁf p,£F .y g2rmEnl)
=1 \ ¢k

- ( ! >(—1)M,‘i“e"l‘“"2
€kl+€k2

k1,ko: 1<k <ko<d

d d
1
% <rn§r/l<1k2 T Z Z r’fgflllgr/lczlzullbllz) @2/ nnu,u)

11=11=1

-2 (“f)<—')'f'M,‘;“fS,-(u,rnsn>e%’"f"<“’“>}.
JJjsa J
lj1=3

Write « = (a1, ..., ay) € Z4. 1t follows from [C2] and the implied
uniform integrability that
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r, P j3, )]
eiu-Z{_

o a—l1—Ip k1ko
+ Z (6k1+€k2)z E[S |Z]}

ka,k2: 1Ski<ko<d

d
Z°E[E1Z)u,u) + Y i Z*“E[EYZ] - u
k=1

NI

— E

T2

ei"‘Z{ zd: (iu’) (iu*) AT*(2)z*

k=1

d d
+2> (i) AY (D)o e=z + D aklakz(x“)u_zAklkZ(Z)}
Jik=1 k1,ko=1

= %E[ej”‘zAa(u, 2)].

Thus we have obtained the first assertion. With [C&king limit, we
have

|E[€7 Ay, 2)]| S QL+ Jul)V2,
and then the second and the third assertions are easy consequences.

LEMMA 3. — If [C2] is satisfied, then K¢ (4) = o(r,) (n — oo) for
each u € R?. Moreover, if [C7]; holds, then

r"_1|Kz(”)|1A,1(M) <CA+ |u))~*D

for any u € R?. Under [C2] and [C7];, if k > d + 1, then

r;l/|K,‘j‘(u)|1A’9(u)du -0
Rd

asn — oo.
Proof. — Let
kS, =Y Qu(ut, My, 1, &,) (€% — M)
T & (a> (ra N Qg u, My, 1) €47

B: 0SB« p
IBl=la|-1
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and

kg’n:wn Z (a) (rnNn)a_ﬁQﬁ(”aMn,rn%—n) eiu-Xn.
B: 0B p
1BI< || -2

Clearly, [C2] implies that,* P"[kg ,(u)] — O and that

ry Pk, )] — E{Z“ L+ > (“) n“ Pz~ é“'z}
b o<p<a P
[Bl=la|-1

asn — 0. Since
E[ei“'Z{Z“(iu) YEIDY (;) Zﬁna—ﬂH

B: 0 p<a
[Bl=la]-1

:E_ei”'Z{Z"‘(iu)-B(Z)JF > (“)ZﬁB(Z)“‘ﬂH

B: 0B p
[Bl=la]-1

r d
=F ei”'Z{Z“(iu) -B(Z)+ Z(8jx°‘) |x=zB(Z)j}

j=1

= E[€"?B,(u, Z)],
it holds that
r K w) =1, P [kS, +k%,] — E[€"“B,(u, Z)] — 0

asn — oo. This shows the first assertion. What rest easily follow
from [C7),. O

Though the following lemma is more or less well known, we will state
it here for later convenience.

LEMMA 4. — Quppose that

112 % fan 7,

Then the following inequalities hold true:
(1) 0 < A<Mgng>s = fRdx®2vn({s}adx) - ()%n,s)®2 = fRdx®2 X
v, ({s}, dx), where x,, s = [pa xv,(-; {s}, dx) =0.
(2) 1AM, M)s12 = [ra x®20,({s}, dx) 2 < [ [x]*v, ({5}, d).

1<OO.
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LEMMA 5.— Leto* = £ and g* = £. Suppose that conditions [C1],
[C2], [C3] and [C4] are satisfied. If p > 2¢(2¢ — 1)~1, then for some
constants C;) and C,, (independent of p), it holds that

| Ly )| Ly0 () < C5 (1uf® + D)1 — L, + Car? (Jul* + 1)
for any n € N and u € R?. Moreover,
L@ L0t < €3l 7D g, = 1]+ Clr2r e
4
for any n € N.
Proof. — Step 1. Let

En,[(uv I/l).

NI

Yn,l = IM . Mn’[ +
Define a stopping time, by

T, = inf{t; sup én,,(u, u) > bn},

u: lul=1
whereb, = r?’. Define®;,i =1, ..., 5, as follows:
CD]_ =P" [wn eYn’_ : (IM : Mn)rn} s

(note that on the right-hand side, the first dot stands for the stochastic
integration and the second one for the inner product)

&, = %(oz* —1)p" {wn Z elns- (AM,‘f’S)‘gz(u, u)}

STy

+ %ﬂ*P” [V €™ - (M), ()],

1 1\ .
I e LA S YR o

3 ST,

1.
Pa= %" P" [vfn > e AMY () A(M) (u, Mﬂ :

s< Ty

and

@5 = P" [V, {Ro,n(u) + Rz, () + Ra,(u)}].
HereR; ,(u),i =2, 3,4, are defined by:
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R, (u) == Ze"f-mns) — Py, (u),

v<n
Ran(u) =% Z e (AY,,)° — Z e i (AM ) * u, u, )
€<Tn 9<Tn
and
Ren) =g 3 el /(AYn DAL - v)° e ds,
s<n
where

1 | o
Pr)=3" em{z (AM? ) (u, iu) — éa*(AMis)@g(lu,lu,lu)
s<Ty

1.
-5 P AM! @ AMY) (u; u, u)}.
Note that ife* = 1/3 andg* = 2/3, we haved; = 0 and
=—= P" [%{Z s (AM? ) (u, u) — €. (M), (u, M)H.
ST
We then have a decomposition b (u):
5
(2) LYuwy=>_&;.
i=1

In fact, by using I1td’s formula, we see that a.s.{ah, > 0},

(3) enm — g 3l

=e" .M, (iu)
1
+5 el . (a* Z(AMS’S)iZ(M, w)+ (M, M), (u, u))
s<-
+ 3 e[ — 1w AY, ],
STy

whereM,, (1) denotes the 1-form¥,, - u. In view of the choice of numbers
o* andB*, we see
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1
Lo(u) = @1+ @y + > P" {wn D el (AM,‘f’S)®2(u, u)}

STy

+ P [wn 2 [ 1~ i“”’“ﬂ

S<Ty

1
= ¢l 4+ @2 + E pP" l:wn Z e = (AMZS)@)Z(M, M):l

S<Ty

+P 0, Y & (an, 072

STy

+ P" {wn Z e (AYn,s)3/3':| + Pn v/nR4n(u)}

STy

:¢1+¢2+P"{wn —i%/2)a* > (AMY)) (u,u,u)}

s< Ty

b p[un(<2) i T At @ A(E. M) )]

STy

+ P" Yy Ron(w)] + P" [wn > el <AY,1,S>3/3!} + P"[Y, Ry 1]

s< Ty
=P+ Dy + P" [v/n R3,n(u)}
+ @y + P [YyRon ()] + P [y Ry (u1)]

5
=Zq§i,
i—1

which is the desired decomposition (2).
Differentiating L by u, we obtain

5
Ly) =) (=i8,)"®;
i=1

Sep 2: By Burkholder—Davis—Gundy’s inequality, Holder’s inequality
and Doob’s inequality, we have

- M)z,

<cliplg,

oMz, 1 lg
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for R?-valued (bounded) predictable processeand p,q,r > 1 with
1/p + 1/q = 1/r. Here dot means both the inner product and the
stochastic integration. Use the above inequality #ee U (u, M, E,),
where

U(M, Z, r) — (_iau)a [éu‘z+%r(u,u) “4 ,

we see that/ (u, M,,, 5,)_ - M, ., ~. is a uniformly integrable martingale,
and hence, the marginal mean vanishes andpfqgy' > 1 (1/p+1/p’
=1,

(=180 @1| = [P" [y U (u, My, 5,)— - My, ]
= ‘Pn [(wn - 1)U(M, an En)— . Mn,r,,]
SClYn = LU, ||U @, My, E))— - M, o,
< M — 11, C(lu| + 1) €221,
Next we will consider®,. Fork =1, ...,d, let
d d d d

My=1[(M,)", (M;)"] = ((M,)". (M;)").
Then M7 € M", the set of (element-wise) uniformly integrable martin-

gales. Indeed, from [9] 1.4.50(b)M ¢ ™)2 — [M4™ M4-%] € M"; sim-

ilarly from [9] 1.4.2., (M®™)2 — (M%) € M". For j,k=1,...,d and
[ € Z,, we have the estimate:

(M7 2)" - Ma)
SN 2)' - My, (M72) - M)
S )5 | M, Mal 2
<1 L (1l 5 g1, )

Here p”’, p1 > 1,2 < p>, <29 (1/p1 + 1/p>, = 1/p”), and we used
the Burkholder—Davis—Gundy inequality, the Holder inequality, and the
estimate:

My, Ml = > (AMy)?

p/

1/2
Tn

"

b

p2
1/2 4
P2/2+ |||x| *vn,T,,

< 2[2 (AMHD* + 37 (a(mby!, (M5

4 4
L 2[|x|* % pn1, + x| % v 1, |
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by Lemma 4 in the last inequality. Therefore, taking the derivatives of
Y, s— into account, we see that for (p” > p/(p — 1), in particular,

p>2q/(2q — 1)),
|(—i8)*®5| < 1, — 111, (Juf? + 1) €221

foru e A°.
Put

Ma=(A(M)) - My

Here the integration on the right-hand side reads as a tri-linear form
valued process. Then

1.
(=8 Pa=—3 i28* P [y, (—8,)" (6" - Mo, (us u, u))].
Since

1
Mz, [y S NP % ) 2,

for u € A% and A(M?, M%) < (3/2)&, is bounded on{y, > 0} a.s.
because of [C4], we obtain for, p; >1(1/p+ 1/p1 < 1),

1
(=) ®a| < 1 — 1, (1 [u]®) €220 (14 || (112 5 1.0, ) 2|

for u € A.
Sep 3: It follows from definition that

2
(4) Ry,== Z ghns- { (%a*) (AMZVS)@M(M, W, u,u)

/

n

2
+ (%ﬂ) (A(M?, MDY ) w5 u, u)

1
+ Eoﬁﬁ*(AM,;{S)@’Z ® AMY, MY (u,usu, u)}.

Differentiating (4) and using [C1] and [C2] (moment), it is not difficult
to obtain
(B)  |P"[Yn (=8 R ()] | <r2(1+ [u|*) €22 Py, (v ul),
whereP, , is a polynomial.

With X7 =i/ AM®), Y5 .= Lo uluk AMEI AMEF and Z7F .=
B uluk AQMEI, M&*),, R, (u) is expressed as
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3
R =g ¥ {(S Syt + Y 2#)
6S<Tn J J.k Jk
—ZZZXjX"XZ}.
ik

This is a third order homogenous polynomial &f, Y/*, Z/k without
the termst/ X* X! . Differentiating this expression and taking [C1], [C4]
and Lemma 4 into account, we obtain the estimate:

6) | P"[Y(=0)Ran@)]| <P (lu* + 1)r2 Py o (rP|u)),

whereP,, is a polynomial independent afandu.
In a similar way, it is easy to show

(7) |Pn [wn(_au)aR4,n(u)} |
1 1
<rg (L4 |ul*) Pa (rf ul]) exp<§(a* + B ATl + S bn|u|2)

for some polynomialPs ,.

Thus from (5), (6) and (7), we see that fare Z4, there exists a
polynomial P, independent of andu such that

1 1
|(=8,)% Ps| < rZ(lul* + 1) Pu (1] |ue]) exp(é A% ul?rif + Ebn|u|2).

Step 4: Finally, we will estimatel?. From above Steps, it follows that
for some constam?f; andC?,

5
Lo () |1 p0(u) <D [(=10,)% ®; |1 40 (1)
i=1

< CY(lulP+ D) 1Y — L p + CorZ(Jul* + 1)
for anyn € N andu € R?. Consequently,
/\Lg(u)|1Ag(u) dlu
R4
< /cg(|u|3+ 1) dully, — 11, +r,f/(|u|4+ 1) du
A9 A9
~ Co(@r, " Ny, — 1, + C (d)r, DT,
which completes the proof of Lemma 50
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LEMMA 6. — Suppose conditions [C1]-[C7]; are satisfied. Suppose
that j >d +2,k>d+1,1>2d+4and p > 29(2g — 1)~*. Then, for
p satisfying ( —d)™! < p < (4+d)~! and for each « € Z4,, there exists
a constant C% such that

suplgy (x) — k2 (x)| < Cor P Dy, — 1, + 0(ry).

xeRd
Proof. — It follows from the Fourier inversion formula that
(8) sup|gs (x) — h (x)|
xeRd
INY [ s .
= sup (—) /e (8% (u) — h%(u)) du
xeRd 27'[ g
R

1 ¢ A ra
<(52) [ Uzl i) d

RI—A9
1\* .
+(50) [leze —hgaoae
T
A7
By Lemmas 2, 3 and 5, one has

/|£’Z‘(u) — h%(u)| du < /(\J,f‘(u)\ + | K2 )] 4 | L% (w)|) du
A9 A9
<o(r,) + Cﬁgdr”—l)(3+d)”wn _ l”p + Ca,drf—p(4+d)
=0(ry) + Cpr "V, — 1)
On the other hand, condition [G5}ields

T C
) / 18 ()| du < / p4-lgy ~ 00 Zor,).
Rd—AO rﬂ*ﬂ (l + r)

We then obtain the result from (8), (9), and a similar estimate for the
integration ofz%. This completes the proof.O

PROPOSITION 2. — Let M,y > 0. Under the same assumptions as
Lemma 6, there exist constants C; = C1(M, v, d, p), Co = Co(M, v, d)
and a sequence ¢, with ¢, = o(r,,) such that
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|P"[f(X)] = Plf1] < [MsuleJr X,

o+ Cur Py, -1y,

+ CollYn, — L1+ &,

foranyneNandany f € E(M, y),wherep'=p/(p—1 and P,[f] =
Jra f(X) pa(x) dx.

Proof. —Define a measurgd” on 2" by dQ" = c; 'y, dP". By
condition [C5], we see that the characteristic function

Ch2"[X,1(u) = ¢, P" [€"Xny,]

of the distribution£{X, | 0"} is du-integrable, and henc&{X, | 0"}
has a density which is nothing begttg?. In particular, P"[ £ (X,)¥,] =
Jrd f(x)g%x)dx. Letd’ be the minimum even number greater than
y’ the minimum even number greater or equaltoandk’ =d’ + y’.
Clearly, forf e E(M, y),

/ FOO(£200) — hO(x)) dhx

R4

gM/(1+|x|d’)‘ldx.cd¢y/ S suplgl(x) — Ko,
e o Ja|<k R
|a]: even

By using this inequality and applying Lemma 6, we have
|P"[f(X)] = PLA]
<[P [f (X)) — P"[f (Xw)]]
[ regman — [ runleds
R4

R4

/ FOR() dr — / 00 pa(x) |
Rd Rd
<ML+ 1, 7y — 11,

+C(M,y,d, p)r, S|y, — 1|, + o(r,)

FL-al [ ME+ e dr,
Rd
from which one has the result.c

+

+
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Proof of Theorem 1. —Sincea; > (d + 3)/(I — d) andl > 2d + 4,
we can takep so that ¥(I — d) < p < minf{a;/(d + 3),1/(d + 4)}. Let
a=1-2pandb=2a. Take a smooth functiop : R — [0, 1] satisfying
that p(x) = 1 if |x| < 2, and¢(x) = 0 if |x| > 1. Define truncation
functionaly,, on 2" by

_ ( Sn ) ‘40r,,N,, 2) ‘ a ‘2 b( )\’)
Un=1¢ 3 dety, w( ” @ (|l e (ry, (kn 4 An)).

In order to apply Proposition 2, we shall verify Conditions [C1]— [g:?]
By definition of ¥, if ¥, > 0, thenr?|&,] <1 and henceun | <r2
i.e., [C3] holds.

The definition ofy, also implies that ify, > 0, thenr’«, < 1 and
rbx, < 1a.s. Remembering, = r2|x|* x u,.7,, we see that if},, > 0,

1/4
SUpIAM,| < (Z |AMS|4) — ()Y <

s<Ty s<T,

since(2 — b)/4 = p. Similarly, using Lemma 4, we have

12
suplA(MZ, M) <Z|A M M) ) < (Ix[*# v, 7,) 7

s<Tu s<Ty

( 2k ) (2 h)/2 2p

if ¥, > 0. Thus we obtained [C4] witih = 1. Note that||x|? x .z, Il

< oo for anyg > 1; indeed, from Doob’s inequality and the Burkholder—
Davis—-Gundy inequality, we see thiai, |} € L?P and that|[M,, M,,]|

e L?, and hence thatc|? % u, 7, € L”.

Condition [C1] holds sinceS; C (,., LP(P") by [A2]. Condition
[C2] (iii) is nothing but [A1]. It is not difficult to verify condition [C2]
(i) by definition of ¢, and by L2-boundedness of ! andoy,, and L1-
boundedness d,, «,, A,. SinceS; is L”-bounded uniformly im € N
for everyp > 1, condition [C2] (ii) holds true.

Using the chain rule for’”, we see that Proposition 1 can apply to the
case wherd” = X,,, ¥ = ¥,,, ¥, A% ,, ¥, BY,,, and f (x) = €. Noticing
that|u?r,| < 1if |u| <r;*, itis possible to verify Condition [C5][C6],
and [C7].

Moreover, it is easy to show that spp. |u|'|E[€"%Z%x]| < oo for
x =&7,n/ and anya € Z4. Therefore, a version of the function—
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yP 8;'(E[Z°‘X |Z =ylo (), li| <d + 4, is continuous, tending to zero as
|y| = o0, and integrable with respect to the Lebesgue measure for any
a, B € Z4. This completes the proof.O
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