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Abstract. Information criteria based on the expected Kullback–Leibler information are presented by
means of the asymptotic expansions derived with the Malliavin calculus. We consider the evaluation
problem of statistical models for diffusion processes with small noise. The correction terms are essen-
tially different from the ones for ergodic diffusion models presented in Uchida and Yoshida [34, 35].
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1. Introduction

Akaike’s information criterion AIC [2, 3] is a model evaluation–selection tool ob-
tained by estimating the expected Kullback–Leibler information of the fitted model
with respect to the true model. It can be derived under the assumptions: (i) the data
are independent random samples from an unknown distribution, (ii) estimation is
done by the maximum likelihood method, and (iii) the parametric family of dis-
tributions includes the true model. Takeuchi [33] derived Takeuchi’s information
criterion TIC from the assumptions (i) and (ii), relaxing the assumption (iii) to
the case where the model class may be misspecified. Konishi and Kitagawa [13]
recently proposed a generalized information criterion GIC under the assumption
(i) and for functional-type estimators instead of the assumption (ii).

In this paper, based on the Kullback–Leibler divergence, we consider informa-
tion criteria, which work for (i′) diffusion processes with small noise, (ii′) various
estimators including M-estimators, and (iii′) generally misspecified cases. For de-
tails of diffusion models with small noise, see [16, 18]. There are many applications
of diffusion models with small noise to finance, see [12, 14, 31, 36, 41] and ref-
erences therein. In order to treat sampled data, it is the first step for statisticians
to consider continuous-time stochastic models, as it was the case for ergodic
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diffusions. It was after inference for continuous-time was established when several
authors studied sampled data as a modification: see [4, 7–9, 11, 25, 26, 42] for
detailed history of the inference in continuous-time and discrete-time observation
settings. Genon-Catalot [6] and Laredo [19] treated discretely observed diffusion
processes with small noise, and recently, Sørensen [30] investigated small diffusion
asymptotics for martingale estimating functions from discrete observations.

For the derivation of information criteria, the emphasis is put on the use of the
asymptotic expansion of an estimator of the Kullback–Leibler divergence. From
asymptotic expansion’s point of view, the determination of the existing information
criteria AIC, TIC, GIC and others is nothing but to find the second-order correction
terms so that the estimator of the Kullback–Leibler divergence becomes expecta-
tion unbiased up to the second order in each setting. That is, in each case, the
validity of the choice of the correction term has been explained by this expectation
unbiasedness. On the other hand, from the decision theoretic point of view, those
choices are based on the quadratic loss, and it may be a natural question how
the correction procedure should change for other loss functions. Besides the tra-
ditional expectation unbiased corrections, in order to show another possibility, we
will present the median unbiased correction, as it corresponds to the absolute loss,
and hence the median unbiased information criterion (MUIC). Though the newly
presented MUIC is just an example of information criteria not based on expectation
unbiasedness, it should be noted that all those corrections are derived in a unified
way from the asymptotic expansion of the estimator of the divergence. In fact, as it
was shown in [34, 35], it is possible to construct f -unbiased information criteria,
that is, the f -bias E[f (discrepancy)] = 0 up to the second order, where each f is
a measurable function, for example, f (x) = x, 1(−∞,0](x)− 1/2, etc.

In order to derive asymptotic expansions for diffusion processes with small
noise, we will use the Malliavin calculus. Some fundamentals are summarized
in Section 4. For more details of the Malliavin calculus, see [10, 21–24, 27, 28,
38, 40]. Watanabe [37] presented the concept of the generalized Wiener functional
(i.e. the Schwartz distribution on the probability space), the pull-back of Schwartz
distribution under Wiener mappings, and in his renowned work [39] he formu-
lated the asymptotic expansion of the generalized Wiener functionals in some
Sobolev space. To use this theory, the crucial step is to show the nondegeneracy
of the Malliavin covariance of functionals. However, it is not easy to check this
even for a simple statistical estimator, whose Malliavin covariance is given by an
integration of some nonadaptive process. In addition, as for estimators such as max-
imum likelihood estimators, we cannot ensure their existence on the whole sample
space in general. This difficulties has been solved by Takanobu and Watanabe [32]
and Yoshida [14] in the modification of Watanabe’s theory with truncation. For
more details of asymptotic expansions for diffusion processes with small noise,
see [5, 43, 45, 47].

In the previous papers, Uchida and Yoshida [34, 35] obtained two information
criteria which work for mixing processes including ergodic diffusion processes



INFORMATION CRITERIA FOR SMALL DIFFUSIONS 37

as application, and for (ii′) and (iii′). It took advantage of the valid asymptotic
expansion of the distribution of the estimators of the divergence for ε-Markov,
geometric mixing stochastic processes with continuous-time parameter (cf. [15,
29]). Both the present paper and the previous ones are based on the Malliavin
calculus. However, the asymptotics are utterly different; in fact, the former uses
the expansion of generalized Wiener functionals as mentioned above and the lat-
ter used the method called ‘local approach’ [15]. This difference also reflects the
different forms of correction terms: there is no full correspondence between the
correction terms in the present paper and the previous ones in [34, 35].

The organization of the paper is as follows. In Section 2, information criteria
with general estimators are heuristically derived, but for rigorous statements we
will be later given in Section 5. In Section 3, as a special case, the information
criteria which work for M-estimators are obtained. In Section 4, we review the
fundamental results of Malliavin calculus. In Section 5, we state our main results.
By using the asymptotic expansion of the distribution of the estimators for diffusion
processes with small noise, a general theory is developed. Therefore, the results of
previous sections are special cases of the ones in Section 5. Proofs of these results
are given in Section 6.

2. Asymptotic Expansion and Information Criteria

Let X = {Xt; t ∈ [0, T ]} be a d-dimensional diffusion process defined by the
stochastic differential equation (true model)

dXt = V0(Xt ) dt + εV (Xt) dwt, t ∈ [0, T ], ε ∈ (0, 1], (1)

X0 = x0,

where T is a fixed value, x0 is a constant, V = (V1, . . . , Vr) is an Rd ⊗ Rr-valued
smooth function defined on Rd , V0 is an Rd-valued smooth function defined on Rd

with bounded x-derivative and w is an r-dimensional standard Wiener process.
Consider d-dimensional diffusion process defined by the stochastic differential

equation (statistical model)

dXt = Ṽ0(Xt , θ) dt + εV (Xt) dwt, t ∈ (0, T ], ε ∈ [0, 1], (2)

X0 = x0,

where a p-dimensional unknown parameter θ ∈ �: a bounded convex domain of
Rd , Ṽ0 is an Rd-valued smooth function defined on Rd ×�, T , x0, V and w are the
same as (1).

Let Xε,θ be the solution of the stochastic differential equation (2) for θ . Let Pε,θ

be the induced measure from P on C([0, T ];Rd) by the mapping w → Xε,θ (w).
The Radon–Nikodym derivative of Pε,θ with respect to Pε,θ0 is given by the formula
(e.g. [20])

�ε(θ;X)�ε(θ0;X)−1,
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where

�ε(θ;X) = exp

{∫ T

0
ε−2Ṽ

′
0(V V

′
)+(Xt, θ) dXt−

− 1

2

∫ T

0
ε−2Ṽ

′
0(V V

′
)+Ṽ0(Xt , θ) dt

}
. (3)

Here A+ denotes the Moore–Penrose generalized inverse matrix of a matrix A and
A′ indicates the transpose of a matrix A. We assume that Ṽ0(x, θ) − Ṽ0(x, θ0) ∈
M{V (x)}: the linear manifold generated by column vector of V (x), for x, θ and θ0.

From (3), the log likelihood function is given by

lε(X; θ) =
∫ T

0
ε−2b̃(Xt , θ) dXt +

∫ T

0
ε−2c̃(Xt , θ) dt, (4)

where b̃(x, θ) = Ṽ
′

0(V V
′
)+(x, θ), c̃(x, θ) = −(1/2)Ṽ

′
0(V V

′
)+Ṽ0(x, θ). From (1)

and (4), the log likelihood function under the true model is given by

lε(X; θ) =
∫ T

0
ε−1b(Xt , θ) dwt +

∫ T

0
ε−2c(Xt, θ) dt, (5)

where b(x, θ) = b̃(x, θ)V (x), c(x, θ) = c̃(x, θ)+ b̃(x, θ)V0(x).
Next, we prepare several notations. Let X0

t be the solution of the ordinary
differential equation

dX0
t

dt
= V0(X

0
t ), t ∈ [0, T ], X0

0 = x0.

Let an Rd ⊗Rd-valued process Y ε
t (w) be the solution of the stochastic differential

equation

dY ε
t = ∂V0(X

ε
t )Y

ε
t dt + ε

r∑
α=1

∂Vα(X
ε
t )Y

ε
t dwα

t , t ∈ [0, T ],

Y ε
0 = Id,

where [∂Vα]i,j = ∂jV
i
α , ∂j = ∂/∂xj , i, j = 1, . . . , d, α = 0, 1, . . . , r. Then,

Yt := Y 0
t is a deterministic Rd ⊗ Rd-valued process. For a function f (x, θ) we

abbreviate

f ε
t (θ) = f (Xε

t , θ), ∂if
ε
t (θ) = ∂if (Xε

t , θ)

and similarly δjf
ε
t (θ), δj δlf

ε
t (θ), ∂iδjf

ε
t (θ), . . . , where δj = ∂/∂θj . It is known

that ε → Xε
t is smooth. In particular, Dt := ∂Xε

t /∂ε|ε=0 satisfies the stochastic
differential equation

dDt = ∂V 0
0,tDt dt + V 0

t dwt, t ∈ [0, T ], D0 = 0.

Then, Dt is represented by

Dt =
∫ t

0
YtY

−1
s V 0

s dws, t ∈ [0, T ].
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Et := ∂2Xε
t /∂ε

2|ε=0 satisfies the stochastic differential equation

dEt =
d∑

i,j=1

∂i∂jV
0

0,tD
i
tD

j
t dt +

d∑
i=1

∂iV
0

0,tE
i
t dt +

+ 2
d∑

i=1

∂iV
0
t D

i
t dwt, t ∈ [0, T ],

E0 = 0.

Then, Et is represented by

Et =
∫ t

0
YtY

−1
s

d∑
i,j=1

∂i∂jV
0

0,sD
i
sD

j
s ds +

+ 2
∫ t

0
YtY

−1
s

d∑
i=1

∂iV
0
s D

i
s dws, t ∈ [0, T ].

First of all, in order to explain the ideas heuristically, we assume the existence
of an estimator θ̂ε which admits the stochastic expansion

θ̂ε − θ0 = εζ (0) + 1
2ε

2ζ (1) + op(ε
2)

for some θ0 ∈ � under the true model. Here ζ (0) = ∫ T

0 gt dwt for some function
g ∈ L2([0, T ], dt). Let

S̄∗ε = ε

{
lε(X

ε(w), θ̂ε(w))−
∫
W

∫
W

lε(X
ε(w′), θ̂ε(w))P (dw′)P (dw)

}
−

− εb(θ̂ε(w)),

where b is an R-valued smooth function defined on Rp. As in [34], in order to
derive information criteria, we need the second-order asymptotic expansion of the
distribution of S̄∗ε . It follows from the formal expansion that

S̄∗ε =
∫ T

0
b(X0

t , θ0) dwt +
∫ T

0
∂c(X0

t , θ0)Dt dt + ζ (0)′
∫ T

0
δc(X0

t , θ0) dt +

+ ε

∫ T

0
∂b(X0

t , θ0)Dt dwt + εζ (0)′
∫ T

0
δb(X0

t , θ0) dwt + εζ (0)′ ×

×
∫ T

0
∂δc(X0

t , θ0)Dt dt + 1

2
εPR1⊥ [ζ (1)′]

∫ T

0
δc(X0

t , θ0) dt +

+ 1

2
ε

∫ T

0
∂2c(X0

t , θ0)PR1⊥[(Dt ,Dt)] dt + 1

2
ε

∫ T

0
∂c(X0

t , θ0)×

× PR1⊥[Et ] dt + 1

2
εPR1⊥

[
(ζ (0))′

(∫ T

0
δ2c(X0

t , θ0) dt

)
ζ (0)

]
−

− εb(θ0)+ op(ε)

=: f0 + ε(F1 − b(θ0))+ op(ε) (say),

where PR1⊥ is the projection to the space orthogonal to the space R1 in L2(P ).



40 MASAYUKI UCHIDA AND NAKAHIRO YOSHIDA

For M > 0 and γ > 0, the set E(M, γ ) of measurable functions from R → R
is defined by

E(M, γ ) = {f : R → R, measurable, |f (x)|�M(1+ |x|)γ }.
Let φ(x;0) be the probability density function of the one-dimensional normal
distribution with mean 0 and variance 0 = Var[f0].

From the viewpoint of the second-order statistical inference, we will use the
following asymptotic expansion

E[f (S̄∗ε )] =
∫

R
f (x)φ(x;0) dx − ε

∫
R
f (x)∂x ×

× {E[F1 − b(θ0)|f0 = x]φ(x;0)} dx + o(ε)

=
∫

R
f (x)φ(x;0) dx − ε

∫
R
f (x)∂x{E[F1|f0 = x]φ(x;0)} dx +

+ εb(θ0)

∫
R
f (x)∂x{φ(x;0)} dx + o(ε)

for any f ∈ E(M, γ ). See Section 5 for technical details. For M > 0 and γ > 0,
the set E ′(M, γ ) of measurable functions from R → R is defined by

E ′(M, γ ) =
{
f ∈ E(M, γ )

∣∣∣∣
∫

R
f (x)φ(x;0) dx = 0,∫

R
f (x)∂x{φ(x;0)} dx �= 0

}
.

For any f ∈ E ′(M, γ ), let ICf (X; θ̂ε) = εlε(X, θ̂ε)− εbf (θ̂ε), where

bf (θ0) =
∫

R f (x)∂x{E[F1|f0 = x]φ(x;0)} dx∫
R f (x)∂x{φ(x;0)} dx

.

Then, under certain regularity conditions, ICf is the f -unbiased information cri-
terion for f ∈ E ′(M, γ ), that is,

E

[
f (ICf (X; θ̂ε)− ε

∫
W

∫
W

lε(X
ε(w′), θ̂ε(w))P (dw′)P (dw))

]
= o(ε).

In particular, for f (x) = x, we obtain the asymptotically expectation unbiased
information criterion (EUIC). Moreover, for f (x)= 1(−∞,0) − 1/2 and
f (x)= 1(0,∞) − 1/2, we also have the second-order asymptotically MUIC. For
details of the second-order asymptotically median unbiasedness, see [1].

Information criterion 1 (EUIC). Let IC1(X; θ̂ε) = εlε(X, θ̂ε) − εb1(θ̂ε), where
b1(θ0) = E[F1]. Then

E

[
IC1(X; θ̂ε)− ε

∫
W

∫
W

lε(X
ε(w′), θ̂ε(w))P (dw′)P (dw)

]
= o(ε).
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Information criterion 2 (MUIC). Let IC2(X; θ̂ε) = εlε(X, θ̂ε) − εb2(θ̂ε), where
b2(θ0) = E[F1|f0 = 0]. Then

P

[
IC2(X; θ̂ε)− ε

∫
W

∫
W

lε(X
ε(w′), θ̂ε(w))P (dw′)P (dw) < 0

]
= 1

2
+ o(ε),

and

P

[
IC2(X; θ̂ε)− ε

∫
W

∫
W

lε(X
ε(w′), θ̂ε(w))P (dw′)P (dw) > 0

]
= 1

2
+ o(ε).

Remark 1. For the deviation of IC1 in the misspecified case, we need to esti-
mate unknown functions V0(X

0
t ) and ∂V0(X

0
t ) in order to calculate the biased term

b1. Using the kernel-type estimator V̂ ε
0,t presented by Kutoyants [17], we can obtain

the estimated biased term b̂1. It is also possible to derive IC2 for the misspecified
model in a similar way.

3. Information Criteria with M-estimators

In this section, we consider the information criteria which work for an M-estimator
defined as a solution of a given estimating function.

Define a functional 2ε by

2ε(X; θ) =
∫ T

0
ε−2B̃(Xt, θ) dXt +

∫ T

0
ε−2C̃(Xt, θ) dt, (6)

where B̃, C̃ are given functions. From (1) and (6), the functional 2ε under the true
model is given by

2ε(X; θ) =
∫ T

0
ε−1B(Xt, θ) dwt +

∫ T

0
ε−2C(Xt, θ) dt, (7)

where B(x, θ) = B̃(x, θ)V (x), C(x, θ) = C̃(x, θ)+ B̃(x, θ)V0(x).
Let θ̂ε be the M-estimator, that is,

θ̂ε :=
{

argmax
θ

2ε(X
ε, θ) if maximum exists in �,

arbitary, otherwise.
(8)

ASSUMPTION 1. V, V0, B and C satisfy the following conditions.

(i) V (x) ∈ C∞b (Rd → Rd ⊗ Rr ), that is, V (x) is an Rd ⊗ Rr-valued smooth
function defined on Rd with bounded x-derivatives.

(ii) V0(x) ∈ C∞b (Rd → Rd).
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(iii) B(x, θ) ∈ C∞↑ (Rd × � → R ⊗ Rr(∼= Rr)), that is, B(x, θ) is an Rr-valued
smooth function defined on Rd×� and for any i, j ∈ N there exist m1, C1 > 0
such that

sup
θ∈�
|δi∂jB(x, θ)|�C1(1+ |x|)m1

for any x ∈ Rd .
(iv) C(x, θ) ∈ C∞↑ (Rd ×� → R). Moreover, there exist θ0 ∈ � and a0 > 0 such

that ∫ T

0
{C(X0

t , θ)− C(X0
t , θ0)} dt � − a0|θ − θ0|2.

Define several functions as follows.

λt,s = YtY
−1
s V (X0

s ),

λi
t,s = [YtY

−1
s V (X0

s )]
i·, i = 1, . . . , d,

µi,t,s = YtY
−1
s ∂iV (X0

s ), i = 1, . . . , d,

µ
j

i,t,s = [YtY
−1
s ∂iV (X0

s )]
j ·, i, j = 1, . . . , d,

νi,j,t,s = YtY
−1
s ∂i∂jV0(X

0
s ), i, j = 1, . . . , d,

νl
i,j,t,s = [YtY

−1
s ∂i∂jV0(X

0
s )]

l , i, j, l = 1, . . . , d,

I (θ0) =
∫ T

0
δ2C(X0

t , θ0) dt,

I (θ0)
i,j = [I (θ0)

−1]i,j , i, j = 1, . . . , p,

bi
0,t = −

p∑
j=1

I (θ0)
i,j

{
δjB(X0

t , θ0)+
d∑

α=1

∫ T

t

∂αδjC(X0
s , θ0)λ

α
s,t ds

}
,

b
j,k

1,t = δj δkB(X0
t , θ0)+

d∑
α=1

∫ T

t

∂αδj δkC(X0
s , θ0)λ

α
s,t ds,

bi
2,t = δib(X

0
t , θ0)+

d∑
α=1

∫ T

t

∂αδic(X
0
s , θ0)λ

α
s,t ds,

C0 = E

[
1

2

p∑
i=1

∫ T

0
δic(X

0
t , θ0) dtζ (1)

i +

+ 1

2

d∑
α,β=1

∫ T

0
∂α∂βc(X

0
t , θ0)D

α
t D

β
t dt + 1

2

d∑
α=1

∫ T

0
∂αc(X

0
t , θ0)×

× Eα
t dt + 1

2

p∑
i,j=1

∫ T

0
δiδj c(X

0
t , θ0) dtζ (0)

i ζ
(0)
j


 .

at = b(X0
t , θ0)+

d∑
α=1

∫ T

t

∂αc(X
0
s , θ0)λ

α
s,t ds +

p∑
i=1

∫ T

0
δic(X

0
t , θ0) dtbi

0,t .
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Under Assumption 1, ε−1(θ̂ε − θ0) has the asymptotic expansion

ε−1(θ̂ε − θ0)
i ∼ ζ

(0)
i + 1

2εζ
(1)
i + · · ·

as ε ↓ 0 in some sense, where

ζ
(0)
i =

∫ T

0
bi

0,t dwt, (9)

ζ
(1)
i = −

p∑
j=1

I (θ0)
i,j

[
2

d∑
α=1

∫ T

0
∂αδjB(X0

t , θ0)D
α
t dwt+

+ 2
p∑

k=1

∫ T

0
b
j,k

1,t dwt · ζ (0)
k +

d∑
α,β=1

∫ T

0
∂α∂βδjC(X0

t , θ0)D
α
t D

β
t dt +

+
d∑

α=1

∫ T

0
∂αδjC(X0

t , θ0)E
α
t dt +

+
p∑

k,l=1

∫ T

0
∂j∂k∂lC(X0

t , θ0) dt · ζ (0)
k ζ

(0)
l

]
. (10)

For a rigorous statement of the asymptotic expansion of ε−1(θ̂ε−θ0), see Lemma 4.
Moreover, under Assumption 1, S̄∗ε has the asymptotic expansion

S̄∗ε ∼ f0 + ε(F1 − b(θ0))+ · · ·
as ε ↓ 0 in some sense, where

f0 =
∫ T

0
at dwt,

F1 =
d∑

α=1

∫ T

0
∂αb(X

0
t , θ0)D

α
t dwt +

p∑
i=1

∫ T

0
bi

2,t dwtζ
(0)
i +

+ 1

2

p∑
i=1

∫ T

0
δic(X

0
t , θ0) dtζ (1)

i + 1

2

d∑
α,β=1

∫ T

0
∂α∂βc(X

0
t , θ0)D

α
t D

β
t dt +

+ 1

2

d∑
α=1

∫ T

0
∂αc(X

0
t , θ0)E

α
t dt +

+ 1

2

p∑
i,j=1

∫ T

0
δiδj c(X

0
t , θ0) dtζ (0)

i ζ
(0)
j − C0. (11)

For a rigorous and general statement of the asymptotic expansion of S̄∗ε , see Lemma 5.
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THEOREM 1 (EUIC). Suppose that Assumption 1 holds true. Let IC1(X; θ̂ε) =
εlε(X, θ̂ε)− εb1(θ̂ε), where

b1(θ0) =
p∑

i=1

∫ T

0
bi

0,t (δib(X
0
t , θ0))

′ dt +

+
p∑

i=1

d∑
α=1

∫ T

0
bi

0,t

(∫ T

t

∂αδic(X
0
s , θ0)λ

α
s,t ds

)′
dt.

Then,

E

[
IC1(X; θ̂ε)− ε

∫
W

∫
W

lε(X
ε(w′), θ̂ε(w))P (dw′)P (dw)

]
= o(ε).

Remark 2. In particular, in the correctly specified and MLE case, since
δc(X0

s , θ0) = 0,

bi
0,t = −

p∑
j=1

I0(θ0)
i,j δjb(X

0
t , θ0),

where I0(θ0) =
∫ T

0 δ2c(X0
t , θ0) dt . We then have AIC:

b1(θ0) = −
p∑

i,j=1

I0(θ0)
i,j

∫ T

0
δjb(X

0
t , θ0)(δib(X

0
t , θ0))

′ dt

= p (dimension of parameter space).

ASSUMPTION 2. There exists t ∈ [0, T ] such that at �= 0.

For R⊗ Rr-valued function ht ,

Ci
2(h)T =

∫ T

0

∫ t

0
ath

′
tλ

i
t,sa

′
s ds dt, i = 1, . . . , d.

For R⊗ Rr -valued functions bt and ct , put

C2(b, c)T = 1

2

∫ T

0

∫ T

0
at [b′t cs + c′t bs]a

′
s ds dt.

Let

C
i,j

2 (t) = C2(λ
i
t,·I{·� t}, λ

j
t,·I{·� t})T .

For the second-order asymptotically MUIC, it is necessary to calculate
E[F1|f0 = x] explicitly. For this purpose we prepare the following lemma. The
proof is easy and is omitted.
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LEMMA 1. Let w be an r-dimensional Wiener process and let functions at , bt , ct

on [0, T ] be deterministic. Let 0 = ∫ T

0 ata
′
t dt .

(1) Let at , bt and ct be R⊗ Rr -valued functions. Then

I 11(bt , ct )(x) := E

[∫ T

0
bt dwt

∫ T

0
ct dwt

∣∣∣∣
∫ T

0
at dwt = x

]

= 1

2

∫ T

0

∫ T

0
at [c′t bs + b′t cs]a

′
s0

−2(x2 − 0) ds dt +

+
∫ T

0
btc

′
t dt.

(2) For R⊗ Rr -valued function ht ,

J 1
i (ht )(x) := E

[∫ T

0
htD

i
t dwt

∣∣∣∣
∫ T

0
at dwt = x

]
= [Ci

2(h)T ]0−2(x2 −0).

(3) For R-valued function ht ,

J 2
i,j (ht )(x) := E

[∫ T

0
htD

i
tD

j
t dt

∣∣∣∣
∫ T

0
at dwt = x

]

=
∫ T

0
ht [Ci,j

2 (t)] dt0−2(x2 −0)+

+
∫ T

0

∫ t

0
htλ

i
t,s(λ

j
t,s)

′ ds dt.

(4) For R-valued function ht ,

J 3
α (ht)(x) := E

[∫ T

0
htE

α
t dt

∣∣∣∣
∫ T

0
at dwt = x

]

=
∫ T

0
ht

∫ t

0
να
i,j,t,s [Ci,j

2 (t)] ds dt0−2(x2 − 0)+

+
∫ T

0
ht

∫ t

0

∫ s

0
να
i,j,t,sλ

i
s,u(λ

j
s,u)

′ du ds dt +

+
∫ T

0
ht [Ci

2(2µ
α
i,t,·)t ] dt0−2(x2 −0).

THEOREM 2 (MUIC). Suppose that Assumptions 1 and 2 hold true. Let
IC2(X; θ̂ε) = εlε(X, θ̂ε)− εb2(θ̂ε), where

b2(θ0) =
d∑

α=1

J 1
α (∂αb(X

0
t , θ0))(0)+

p∑
i=1

I 11(bi
2,t , b

i
0,t )(0)−

− 1

2

p∑
i,j=1

I (θ0)
i,j

∫ T

0
δic(X

0
t , θ0) dt

{
2

d∑
α=1

J 1
α (∂αδjB(X0

t , θ0))(0)+
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+ 2
p∑

k=1

I 11(b
j,k

1,t , b
k
0,t )(0)+

d∑
α,β=1

J 2
α,β(∂α∂βδjC(X0

t , θ0))(0)+

+
d∑

α=1

J 3
α (∂αδjC(X0

t , θ0))(0)+

+
p∑

k,l=1

∫ T

0
∂j∂k∂lC(X0

t , θ0) dtI 11(bk
0,t , b

l
0,t )(0)

}
+

+ 1

2

d∑
α,β=1

J 2
α,β(∂α∂βc(X

0
t , θ0))(0)+ 1

2

d∑
α=1

J 3
α (∂αc(X

0
t , θ0))(0)+

+ 1

2

p∑
i,j=1

∫ T

0
δiδj c(X

0
t , θ0) dtI 11(bi

0,t , b
j

0,t )(0)− C0.

Then,

P

[
IC2(X; θ̂ε)− ε

∫
W

∫
W

lε(X
ε(w′), θ̂ε(w))P (dw′)P (dw) < 0

]

= 1

2
+ o(ε),

and

P

[
IC2(X; θ̂ε)− ε

∫
W

∫
W

lε(X
ε(w′), θ̂ε(w))P (dw′)P (dw) > 0

]

= 1

2
+ o(ε).

4. Fundamental Results: Malliavin Calculus with Truncation1

Let (W,P ) be the r-dimensional Wiener space and let H be the Cameron–Martin
subspace of W endowed with the inner product 〈h1, h2〉H = ∫ T

0 (ḣ1,t , ḣ2,t ) dt for
h1, h2 ∈ H . For a Hilbert space E, ‖ · ‖p denotes the Lp(E)-norm of E-valued
Wiener functional, that is, for Wiener functional f : (W,P ) → E, ‖f ‖pp =∫
W
|f |pEP (dw), where |f |E = 〈f, f 〉1/2

E and 〈·, ·〉E is the inner product of E. For
s ∈ R and p ∈ (1,∞), the norm ‖ · ‖p,s on the totality of E-valued Wiener
functional f is defined by ‖f ‖p,s = ‖(I − L)s/2f ‖p, where L is the Ornstein–

1A simple exposition of the Malliavin calculus towards statistics may be seen in [46].
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Uhlenbeck operator (see [38]). The Banach space Ds
p(E) is the completion of

the totality P(E) of E-valued polynomials on the Wiener space (W,P ) with re-
spect to ‖ · ‖p,s . The set of Wiener test functionals of Watanabe [38] is denoted
by D∞(E) = ⋂

s>0

⋂
1<p<∞Ds

p(E). Then, D−∞(E) = ⋃
s>0

⋃
1<p<∞D−s

p (E)

and D̃−∞(E) = ⋃
s>0

⋂
1<p<∞D−s

p (E) are the spaces of generalized Wiener
functionals. We suppress R when E = R. The Fréchet space S(Rd) is the to-
tality of rapidly decreasing smooth functions on Rd and S ′(Rd) is its dual. Let
A = 1+|x|2−(1/2)?, where ? =∑d

i=1(∂/∂x
i)2, and A−1 is an integral operator.

The space C2k, k = 0,±1,±2, . . . is the completion of S(Rd) with respect to
the norm ‖u‖2k = supx |Aku(x)|. We owe the following theorem. For details, see
[27, 32, 38, 40].

THEOREM 3 (Yoshida [40]). Let F ∈ D∞(Rd) and ξ ∈ D∞. Let ψ : R → R be
a smooth function such that 0 �ψ(x)� 1 for x ∈ R, ψ(x) = 1 for |x|� 1/2 and
ψ(x) = 0 for |x|� 1. Suppose that for any p ∈ (1,∞), the Malliavin covariance
σF of F satisfies

E[1{|ξ |� 1}(det σF )
−p] <∞.

Then, there exists a linear mapping T ∈ S ′(Rd) → T̂ ∈ D̃−∞ satisfying the
following conditions:

(1) if T ∈ S(Rd) then T̂ = ψ(ξ)T (F ) ∈ D∞;
(2) for k = 0, 1, . . . and p ∈ (1,∞) there exists a constant C(p, k) such that

‖T̂ ‖p,−2k �C(p, k)‖T ‖−2k

for T ∈ C−2k. This mapping is uniquely determined.

If F is nondegenerate in the usual sense of Malliavin,

D−∞〈T̂ , J 〉D∞ = D−∞〈T (F ),ψ(ξ)J 〉D∞
for J ∈ D∞. Thus T̂ is denoted by ψ(ξ)T ◦F or ψ(ξ)T (F ) if there is no confusion.

Let us consider a family of E-valued Wiener functionals (or generalized Wiener
functionals) {Fε(w)}, ε ∈ (0, 1). For k > 0 if

lim sup
ε↓0

‖Fε‖p,s

εk
<∞,

we say Fε(w) = O(εk) in Ds
p(E) as ε ↓ 0. It is said that Fε(w) ∈ D∞(E) has the

asymptotic expansion

Fε(w) ∼ f0 + εf1 + · · ·
in D∞(E) as ε ↓ 0 with f0, f1, . . . ∈ D∞(E) if for every p > 1, s > 0 and
k = 1, 2, . . .

Fε(w)− (f0 + εf1 + · · · + εk−1fk−1) = O(εk)
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in Ds
p(E) as ε ↓ 0. Similarly, we say that Fε(w) ∈ D̃−∞(E) has the asymptotic

expansion

Fε(w) ∼ f0 + εf1 + · · ·

in D̃−∞(E) as ε ↓ 0 with f0, f1, . . . ∈ D̃−∞(E) if for every k = 1, 2, . . . there
exists s > 0 such that for every p > 1 Fε(w), f0, f1, . . . ∈ D−s

p (E) and

Fε(w)− (f0 + εf1 + · · · + εk−1fk−1) = O(εk)

in D−s
p (E) as ε ↓ 0. The generalized means of these expansions yield the ordinary

asymptotic expansions.
The following theorem will be our fundamental tool.

THEOREM 4 (Takanobu and Watanabe [32] and Yoshida [41]). Let ψ be a func-
tion defined in Theorem 3. Let � be an index set. Suppose that families {Fε(w); ε ∈
(0, 1]} ⊂ D∞(Rd), {ξε(w); ε ∈ (0, 1]} ⊂ D∞ and {Tλ;λ ∈ �} ⊂ S ′(Rd) satisfy
the following conditions.

(1) For any p ∈ (1,∞)

sup
ε∈(0,1]

E[1{|ξε |� 1}(det σFε
)−p] <∞.

(2) {Fε(w); ε ∈ (0, 1]} has the asymptotic expansion

Fε(w) ∼ f0 + εf1 + · · · in D∞(Rd) as ε ↓ 0
with fi ∈ D∞(Rd).

(3) {ξε(w); ε ∈ (0, 1]} is O(1) in D∞ as ε ↓ 0.
(4) For any n = 1, 2, . . . ,

lim
ε↓0

ε−nP {|ξε| > 1
2 } = 0.

(5) For any n = 1, 2, . . . , there exists a nonnegative integer m such that A−mTλ ∈
Cn

b (R
d) for all λ ∈ � and

sup
λ∈�

∑
|n|� n

‖∂nA−mTλ‖∞ <∞,

where n = (n1, . . . , nd) is a multi-index, |n| = n1+· · ·+nd , ∂n = ∂
n1
1 · · · ∂nd

d ,
∂i = ∂/∂xi , i = 1, . . . , d. Then the composite functional ψ(ξε)Tλ(Fε) ∈ D̃−∞
is well defined and has the asymptotic expansion

ψ(ξε)Tλ(Fε) ∼ 2λ,0 + ε2λ,1 + · · ·
in D̃−∞ as ε ↓ 0 uniformly in λ ∈ � with 2λ,0,2λ,1, . . . ∈ D̃−∞ determined
by the formal Taylor expansion

Tλ(f0 + [εf1 + ε2f2 + · · · ]) =
∑

n

1

n!
∂nTλ(f0) [εf1 + ε2f2 + · · · ]n

= 2λ,0 + ε2λ,1 + ε22λ,2 + · · · ,
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where n! = n1! · · · nd!, an = a
n1
1 · · · and

d for a ∈ Rd . In particular,

2λ,0 = Tλ(f0), 2λ,1 =
d∑

i=1

f i
1∂iTλ(f0),

2λ,2 =
d∑

i=1

f i
2∂iTλ(f0)+ 1

2

d∑
i,j=1

f i
1f

j

1 ∂i∂jTλ(f0).

Remark 3. If we consider the asymptotic expansion of E[f (Fε)] for a particular
measurable function f , there is no need for Theorem 4 to assume condition (5).

LEMMA 2 (Yoshida [40]). Let M,γ > 0. For n = 1, 2, . . . , there exists a positive
integer m such that

sup
f∈Ẽ(M,γ )

∑
|n|� n

‖∂nA−mf ‖∞ <∞,

where Ẽ(M, γ ) = {f : Rd → R, measurable, |f (x)|�M(1+ |x|)γ (x ∈ Rd)}.
The composite function of a measurable function and a Wiener functional has a

usual meaning.

LEMMA 3 (Yoshida [40]). Let M,γ > 0. For ψ, ξ, F given in Theorem 3 and
any f ∈ Ẽ(M, γ ),

ψ(ξ)f ◦ F = ψ(ξ)f (F )

in D̃−∞.

5. Information Criteria with General Estimators

In this and the next sections, we will return to the information criteria for general
estimators given in Section 2, and provide a rigorous mathematical basis for the
heuristic argument there. The proofs will be put in Section 6. The results in Sec-
tion 3 are merely corollaries of the ones in this section, and proved in Section 6.
In order to treat our problem in a rigorous way, we need the so-called truncation
technique explained in Section 4. We will suppose a weak Assumption 3 for the
estimator θ̂ε. It may seem slightly technical, involving the existence of a truncation
functional, however, the following lemma shows that Assumption 3 is satisfied for
the M-estimators.

LEMMA 4. Suppose that Assumption 1 holds true. Then there exists Rε = O(1)
in D∞ such that for every K > 0 and c > 0,

lim
ε↓0

ε−KP [|Rε| > c] = 0,
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and for ψε = ψ(3Rε), the functional ψεε
−1(θ̂ε − θ0) is in D∞(Rp) and has the

asymptotic expansion

ψεε
−1(θ̂ε − θ0) ∼ ζ (0) + 1

2εζ
(1) + · · ·

in D∞(Rp) as ε ↓ 0 with ζ (0), ζ (1), . . . ∈ D∞(Rp). In particular,

ζ (0) = −I (θ0)
−1

[∫ T

0
δB(X0

t , θ0) dwt +
∫ T

0
∂δC(X0

t , θ0)Dt dt

]
,

ζ (1) = −I (θ0)
−1

[
2
∫ T

0
∂δB(X0

t , θ0)Dt dwt + 2
∫ T

0
δ2B(X0

t , θ0) dwt · ζ (0)+

+
∫ T

0
∂2δC(X0

t , θ0)(Dt,Dt) dt + 2
∫ T

0
∂δ2C(X0

t , θ0)Dt dt · ζ (0) +

+
∫ T

0
∂δC(X0

t , θ0)Et dt +
∫ T

0
δ3C(X0

t , θ0) dt · (ζ (0))⊗2

]
.

Hence, in general, we may suppose the following assumption for the estimator
θ̂ε.

ASSUMPTION 3. There exists Rε = O(1) in D∞ such that for every K > 0 and
c > 0,

lim
ε↓0

ε−KP [|Rε| > c] = 0,

and for ψε = ψ(3Rε),

ψεε
−1(θ̂ε − θ0) ∼ ζ (0) + 1

2εζ
(1) + · · ·

in D∞(Rp) as ε ↓ 0 with ζ (0), ζ (1), . . . in D∞(Rp), where ζ (0) = ∫ T

0 gt dwt for
some function g ∈ L2([0, T ], dt).

We then have the following lemma.

LEMMA 5. Let ψ̄ε = ψ(9Rε). Suppose that Assumption 3 holds true. Then ψ̄εS̄
∗
ε ∈

D∞ has the asymptotic expansion

ψ̄εS̄
∗
ε ∼ f0 + εf1 + · · ·
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in D∞ as ε ↓ 0 with f0, f1, . . . ∈ D∞. In particular,

f0 =
∫ T

0
b(X0

t , θ0) dwt +
∫ T

0
∂c(X0

t , θ0)Dt dt + ζ (0)′
∫ T

0
δc(X0

t , θ0) dt,

f1 = F1 − b(θ0),

F1 =
∫ T

0
∂b(X0

t , θ0)Dt dwt + ζ (0)′
∫ T

0
δb(X0

t , θ0) dwt +

+ ζ (0)′
∫ T

0
∂δc(X0

t , θ0)Dt dt + 1

2
PR1⊥ [ζ (1)′]

∫ T

0
δc(X0

t , θ0) dt +

+ 1

2

∫ T

0
∂2c(X0

t , θ0)PR1⊥[(Dt ,Dt)] dt +

+ 1

2

∫ T

0
∂c(X0

t , θ0)PR1⊥ [Et ] dt +

+ 1

2
PR1⊥

[
(ζ (0))′

(∫ T

0
δ2c(X0

t , θ0) dt

)
ζ (0)

]
.

Let a∗t = b(X0
t , θ0)+∑d

α=1

∫ T

t
∂αc(X

0
s , θ0)λ

α
s,t ds +∑p

i=1

∫ T

0 δic(X
0
t , θ0) dt gi

t .

We then have f0 =
∫ T

0 a∗t dwt and σf0 =
∫ T

0 a∗t (a∗t )′ dt .

ASSUMPTION 4. There exists t ∈ [0, T ] such that a∗t �= 0.

Under the nondegeneracy of f0, we obtain a stochastic expansion of the
pull-back of a Schwartz distribution under S̄∗ε in a space of generalized Wiener
functionals.

LEMMA 6. Let ξε = 2(σψ̄εS̄∗ε − σf0)/σf0 and ψ∗
ε = ψ(ξε). Suppose that

Assumptions 3 and 4 hold true. Then for any T (x) ∈ S ′(R), ψ∗
ε T (ψ̄εS̄

∗
ε ) ∈ D̃−∞

has the asymptotic expansion

ψ∗
ε T (ψ̄εS̄

∗
ε ) ∼ G0 + εG1 + · · ·

in D̃−∞ as ε ↓ 0 uniformly in every class {T } satisfying the condition (5) of
Theorem 4, and G0,G1, . . . in D̃−∞ are determined by the formal Taylor expan-
sion. In particular,

G0 = T (f0), G1 = f1 · ∂T (f0).

Finally, we obtain the asymptotic expansion of S̄∗ε .

THEOREM 5. Let M,γ > 0. Suppose that Assumptions 3 and 4 hold true. Then
for any f ∈ E(M, γ ),

E[f (S̄∗ε )] ∼
∫

R
f (x)p0(x) dx + ε

∫
R
f (x)p1(x) dx + · · ·
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as ε ↓ 0 uniformly in f ∈ E(M, γ ). In particular,

p0(x) ≡ pf0(x) = φ(x;0), p1(x) = −∂x{E[f1|f0 = x]pf0(x)}.

Remark 4. In Theorem 5, if f is a smooth function, there is no need to suppose
Assumption 4.

From Theorem 5, we have the following three theorems.

THEOREM 6 (f-unbiased information criterion). Let M,γ > 0. Suppose that
Assumptions 3 and 4 hold true. For any f ∈ E ′(M, γ ), let ICf (X; θ̂ε)=
εlε(X, θ̂ε)− εbf (θ̂ε), where

bf (θ0) =
∫

R f (x)∂x{E[F1|f0 = x]φ(x;0)} dx∫
R f (x)∂x{φ(x;0)} dx

.

Then, ICf is the f-unbiased information criterion for f ∈ E ′(M, γ ), that is,

E

[
f (ICf (X; θ̂ε)− ε

∫
W

∫
W

lε(X
ε(w′), θ̂ε(w))P (dw′)P (dw))

]
= o(ε).

THEOREM 7 (EUIC). Suppose that Assumption 3 holds true. Let IC1(X; θ̂ε) =
εlε(X, θ̂ε)− εb1(θ̂ε), where

b1(θ0) = E

[
(ζ (0))′

(∫ T

0
δb(X0

t , θ0) dwt +
∫ T

0
∂δc(X0

t , θ0)Dt dt

)]
.

Then

E

[
IC1(X; θ̂ε)− ε

∫
W

∫
W

lε(X
ε(w′), θ̂ε(w))P (dw′)P (dw)

]
= o(ε).

THEOREM 8 (MUIC). Suppose that Assumptions 3 and 4 hold true. Let
IC2(X; θ̂ε) = εlε(X, θ̂ε)− εb2(θ̂ε), where b2(θ0) = E[F1|f0 = 0]. Then

P

[
IC2(X; θ̂ε)− ε

∫
W

∫
W

lε(X
ε(w′), θ̂ε(w))P (dw′)P (dw) < 0

]

= 1

2
+ o(ε),

and

P

[
IC2(X; θ̂ε)− ε

∫
W

∫
W

lε(X
ε(w′), θ̂ε(w))P (dw′)P (dw) > 0

]

= 1

2
+ o(ε).
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6. Proofs

To begin with, we will prove the general results of Section 5 because Theorems 1
and 2 of Section 3 are special cases of Section 5.

Proof of Lemma 4. In Section 3, in order to consider the M-estimator, the
functional G(X; ε, θ) = ε2{2ε(X; θ) − 2ε(X; θ0)} is given explicitly. From the
smoothness of G(X; ε, θ) and coefficients in the stochastic differential equation
(1), we can show that G(X; ε, θ) satisfies the following conditions:

(C1) The functional G(·; ·, ·) : W → C([0, 1] × � → R) is smooth, where
G(X; 0, θ) = limε↓0 G(X; ε, θ).

(C2) For each θ ∈ �, G(X; 0, θ) is deterministic (G(0, θ), say), and there exists
a0 > 0 such that −G(0, θ)� a0|θ − θ0|2 for any θ ∈ �.

(C3) There exist h(i) ∈ H , i = 1, 2, . . . , p, such that

δεδiG(X; 0, θ0) =
∫ ∞

0
ḣ(i)
s · dws,

for i = 1, . . . , p, where δε = ∂/∂ε.

See [44] for smoothness in (C1). For M-estimator θ̂ε, in the same way as [44,
45], it follows from the conditions (C1)–(C3) that there exists Rε = O(1) in D∞
such that for every K > 0 and c > 0,

ψ(3Rε)ε
−1(θ̂ε − θ0) ∼ ζ (0) + 1

2εζ
(1) + · · ·

in D∞(Rp) as ε ↓ 0 with ζ (0), ζ (1), . . . in D∞(Rp), where limε↓0 ε
−KP [|Rε| >

c] = 0.
From (7), we have

G(X, ε, θ) = ε

∫ T

0
{B(Xt, θ)− B(Xt, θ0)} dwt +

+
∫ T

0
{C(Xt, θ)− C(Xt , θ0)} dt.

From the results in [44, 45], it is enough for the proof of the first statement to show
that it follows from Assumption 1 hat G(X; ε, θ) satisfies the conditions (C1)–(C3).

From Assumption 1, as in the last part of Section 3 of Yoshida [44], we see that
G(X; ·, ·) is smooth in the sense of Malliavin calculus. G(0, θ) = ∫ T

0 {C(X0
t , θ)−

C(X0
t , θ0)} dt is deterministic. From (iv) in Assumption 1, there exists a0 > 0 such

that −G(0, θ)� a0|θ − θ0|2. It follows from Itô’s formula that

δεδiG(X; 0, θ0) =
∫ T

0
ḣ(i)
s dws,

where

ḣ(i)
s = δiB(X0

s , θ0)+
∫ T

s

δi∂C(X0
u, θ0)YuY

−1
s V (X0

s ) du.

We then obtain h(i) ∈ H . This completes the proof of the first statement.
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Next, we compute ζ (0), ζ (1) in the same way as Lemma 7.3 in [45]. The follow-
ing is formal computation but for details of rigorous proof, see Lemma 7.3 in [45].
Let

F(θ, ε) := ε2δ2ε(X, θ)

= ε

∫ T

0
δB(Xt, θ) dwt +

∫ T

0
δC(Xt, θ) dt.

Since it follows from the definition of θ̂ε that F(θ̂ε, ε) = 0,

0 = δεF (θ̂ε, ε)

= δF (θ, ε)|θ=θ̂ε
δεθ̂ε + δεF (θ, ε)|θ=θ̂ε

,

where

δF (θ, ε) = ε

∫ T

0
δ2B(Xt, θ) dwt +

∫ T

0
δ2C(Xt , θ) dt,

δεF (θ, ε) =
∫ T

0
δB(Xt, θ) dwt + ε

∫ T

0
∂δB(Xt, θ)δεXt dwt +

+
∫ T

0
∂δC(Xt, θ)δεXt dt.

Since ζ (0) = limε↓0 δεθ̂ε, we obtain the result.
In the same way as above,

0 = δ2
εF (θ̂ε, ε)

= δε

(
δF (θ, ε)|θ=θ̂ε

δεθ̂ε + δεF (θ, ε)|θ=θ̂ε

)
= δ2F(θ, ε)|θ=θ̂ε

(δεθ̂ε)
⊗2 + 2δεδF (θ, ε)|θ=θ̂ε

δεθ̂ε +
+ δF (θ, ε)|θ=θ̂ε

δ2
ε θ̂ε + δ2

εF (θ, ε)|θ=θ̂ε
,

where

δ2F(θ, ε) = ε

∫ T

0
δ3B(Xt, θ) dwt +

∫ T

0
δ3C(Xt, θ) dt,

δεδF (θ, ε) =
∫ T

0
δ2B(Xt, θ) dwt + ε

∫ T

0
∂δ2B(Xt, θ)δεXt dwt +

+
∫ T

0
∂δ2C(Xt , θ)δεXt dt,
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δ2
εF (θ, ε) = 2

∫ T

0
∂δB(Xt, θ)δεXt dwt

+ ε

∫ T

0
∂2δB(Xt, θ)(δεXt )

⊗2 dwt +

+ ε

∫ T

0
∂δB(Xt, θ)δ

2
εXt dwt +

+
∫ T

0
∂2δC(Xt , θ)(δεXt )

⊗2 dt +
∫ T

0
∂δC(Xt , θ)δ

2
εXt dt.

Thus, we obtain ζ (1) = limε↓0 δ
2
ε θ̂ε. This completes the proof. �

Proof of Lemma 5. From Assumption 3, we see that

ψεε
−1(θ̂ε − θ0) = ζ (0) + 1

2
εζ (1) + · · · + 1

k!
εk−1ζ (k−1) + εkζ (k)

ε ,

where ζ (k)
ε = O(1) in D∞(Rp). Moreover, in case that |Rε| < 1/9, it follows from

the definition of ψε that ψε = ψ(3Rε) = 1 and

1 · ε−1(θ̂ε − θ0) = ψεε
−1(θ̂ε − θ0)

= ζ (0) + 1

2
εζ (1) + · · · + 1

k!
εk−1ζ (k−1) + εkζ (k)

ε . (12)

First, expanding ψ̄εεlε(X
ε(w), θ̂ε(w)) in a Taylor series around θ0 and substituting

(12) in the resulting expansion, we obtain the second-order stochastic expansion as
follows:

ψ̄εεlε(X
ε(w), θ̂ε(w))

= ψ̄ε

[
εlε(X

ε(w), θ0)+ ε(δlε(X
ε(w), θ0))

′(θ̂ε(w)− θ0)+

+ 1

2
ε(θ̂ε(w)− θ0)

′(δ2lε(X
ε(w), θ0))(θ̂ε(w)− θ0)+

+ 1

2
ε

∫ 1

0
δ3lε(X

ε, θ0 + u(θ̂ε(w)− θ0))(1− u)2 du(θ̂ε(w)− θ0)
⊗3

]

= ψ̄ε

[ ∫ T

0
b(Xε

t , θ0) dwt + ε−1
∫ T

0
c(Xε

t , θ0) dt +

+
(∫ T

0
δb(Xε

t , θ0) dwt + ε−1
∫ T

0
δc(Xε

t , θ0) dt

)′
×
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×
(
εζ (0)(w)+ 1

2
ε2ζ (1)(w)+ ε3ζ (2)

ε (w)

)
+

+ 1

2

( ∫ T

0
δ2b(Xε

t , θ0) dwt + ε−1
∫ T

0
δ2c(Xε

t , θ0) dt

)
×

×
(
εζ (0)(w)+ 1

2
ε2ζ (1)(w)+ ε3ζ (2)

ε (w)

)⊗2

+

+ 1

2

∫ 1

0

(∫ T

0
δ3b(Xε

t , θ) dwt

∣∣∣∣
θ=θ0+u(θ̂ε(w)−θ0)

+

+ ε−1
∫ T

0
δ3c(Xε

t , θ0 + u(θ̂ε(w)− θ0)) dt

)
×

× (1− u)2 du

(
εζ (0)(w)+ 1

2
ε2ζ (1)(w)+ ε3ζ (2)

ε (w)

)⊗3]

= ψ̄ε

[
ε−1

∫ T

0
c(Xε

t , θ0) dt +
∫ T

0
b(Xε

t , θ0) dwt +

+
(∫ T

0
δc(Xε

t , θ0) dt

)′
ζ (0)(w)+ ε

( ∫ T

0
δb(Xε

t , θ0) dwt

)′
ζ (0)(w)+

+ 1

2
ε

( ∫ T

0
δc(Xε

t , θ0) dt

)′
ζ (1)(w)+

+ 1

2
ε

( ∫ T

0
δ2c(Xε

t , θ0) dt

)
(ζ (0)(w))⊗2 + ε2f

(2)
1 (Xε

t , θ0)

]
,

where

f
(2)
1 (Xε

t , θ0)

= 1

2

(∫ T

0
δb(Xε

t , θ0) dwt

)′
ζ (1)(w)+ ε

( ∫ T

0
δb(Xε

t , θ0) dwt

)′
ζ (2)
ε (w)+

+
( ∫ T

0
δc(Xε

t , θ0) dt

)′
ζ (2)
ε (w)+ 1

2

(∫ T

0
δ2b(Xε

t , θ0) dwt

)
×

× (ζ (0)(w))⊗2 + 1

2

(
ε

∫ T

0
δ2b(Xε

t , θ0) dwt +
∫ T

0
δ2c(Xε

t , θ0) dt

)
×

× ε

(
1

2
ζ (1)(w)+ εζ (2)

ε (w)

)⊗2

+ (ζ (0)(w))′ ×

×
(
ε

∫ T

0
δ2b(Xε

t , θ0) dwt +
∫ T

0
δ2c(Xε

t , θ0) dt

)
×

×
(

1

2
ζ (1)(w)+ εζ (2)

ε (w)

)
+
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+ 1

2

∫ 1

0

(
ε

∫ T

0
δ3b(Xε

t , θ) dwt

∣∣∣∣
θ=θ0+u(θ̂ε(w)−θ0)

+

+
∫ T

0
δ3c(Xε

t , θ0 + u(θ̂ε(w)− θ0)) dt

)
×

× (1− u)2 du

(
ζ (0)(w)+ 1

2
εζ (1)(w)+ ε2ζ (2)

ε (w)

)⊗3

.

Since ψ̄ε = 1−OM(εK) for any K > 0, where OM(εK) means O(εK) in D∞, we
have

ψ̄ε

∫ 1

0

∫ T

0
δ3b(Xε

t , θ) dwt

∣∣∣∣
θ=θ0+u(θ̂ε(w)−θ0)

(1− u)2 du = OM(1),

ψ̄ε

∫ 1

0

∫ T

0
δ3c(Xε

t , θ0 + u(θ̂ε(w)− θ0)) dt (1− u)2 du = OM(1).

Therefore, we obtain ψ̄εf
(2)
1 (Xε

t , θ0) = OM(1) and

ψ̄εεlε(X
ε(w), θ̂ε(w))

= ψ̄ε

[
ε−1

∫ T

0
c(Xε

t , θ0) dt +
∫ T

0
b(Xε

t , θ0) dwt +

+
(∫ T

0
δc(Xε

t , θ0) dt

)′
ζ (0)(w)+ ε

( ∫ T

0
δb(Xε

t , θ0) dwt

)′
ζ (0)(w)+

+ 1

2
ε

( ∫ T

0
δc(Xε

t , θ0) dt

)′
ζ (1)(w)+ 1

2
ε

(∫ T

0
δ2c(Xε

t , θ0) dt

)
×

× (ζ (0)(w))⊗2

]
+OM(ε2).

Next, expanding Xε
t in a Taylor series around X0

t , we obtain

ψ̄εεlε(X
ε(w), θ̂ε(w))

= ψ̄ε

[
ε−1

( ∫ T

0
c(X0

t , θ0) dt + ε

∫ T

0
∂c(X0

t , θ0)Dt dt +

+ 1

2
ε2

∫ T

0
∂2c(X0

t , θ0)(Dt,Dt) dt + 1

2
ε2

∫ T

0
∂c(X0

t , θ0)Et dt +

+ 1

2
ε3

∫ 1

0

∫ T

0
δ3
ε c(X

ε
t , θ0) dt

∣∣∣∣
ε←uε

(1− u)2 du

)
+

+
(∫ T

0
b(X0

t , θ0) dwt + ε

∫ T

0
∂b(X0

t , θ0)Dt dwt+
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+ ε2
∫ 1

0

∫ T

0
δ2
εb(X

ε
t , θ0) dwt

∣∣∣∣
ε←uε

(1− u) du

)
+

+
(∫ T

0
δc(X0

t , θ0) dt + ε

∫ T

0
∂δc(X0

t , θ0)Dt dt +

+ ε2
∫ 1

0

∫ T

0
δ2
ε δc(X

ε
t , θ0) dt

∣∣∣∣
ε←uε

(1− u) du

)′
ζ (0)(w)+

+ ε

(∫ T

0
δb(X0

t , θ0) dwt + ε

∫ 1

0

∫ T

0
δεδb(X

ε
t , θ0) dwt

∣∣∣∣
ε←uε

du

)′
ζ (0)(w)+

+ 1

2
ε

( ∫ T

0
δc(X0

t , θ0) dt + ε

∫ 1

0

∫ T

0
δεδc(X

ε
t , θ0) dt

∣∣∣∣
ε←uε

du

)′
ζ (1)(w)+

+ 1

2
ε(ζ (0))′

(∫ T

0
δ2c(X0

t , θ0) dt +

+ ε

∫ 1

0

∫ T

0
δεδ

2c(Xε
t , θ0) dt

∣∣∣∣
ε←uε

du

)
ζ (0)(w)

]
+OM(ε2)

= ψ̄ε

[
ε−1

∫ T

0
c(X0

t , θ0) dt +

+
∫ T

0
b(X0

t , θ0) dwt +
∫ T

0
∂c(X0

t , θ0)Dt dt +

+
(∫ T

0
δc(X0

t , θ0) dt

)′
ζ (0)(w)+ ε

∫ T

0
∂b(X0

t , θ0)Dt dwt +

+ ε

(∫ T

0
δb(X0

t , θ0) dwt

)′
ζ (0)(w)+ ε

(∫ T

0
∂δc(X0

t , θ0)Dt dt

)′
ζ (0)(w)+

+ 1

2
ε

( ∫ T

0
δc(X0

t , θ0) dt

)′
ζ (1)(w)+ 1

2
ε

∫ T

0
∂2c(X0

t , θ0)(Dt,Dt ) dt +

+ 1

2
ε

∫ T

0
∂c(X0

t , θ0)Et dt + 1

2
ε(ζ (0)(w))′ ×

×
( ∫ T

0
δ2c(X0

t , θ0) dt

)
ζ (0)(w)+ ε2f

(2)
2 (Xε

t , θ0)

]
+

+ OM(ε2),

where

f
(2)
2 (Xε

t , θ0) = 1

2

∫ 1

0

∫ T

0
δ3
ε c(X

ε
t , θ0) dt

∣∣∣∣
ε←uε

(1− u)2 du+

+
∫ 1

0

∫ T

0
δ2
εb(X

ε
t , θ0) dwt

∣∣∣∣
ε←uε

(1− u) du+

+
( ∫ 1

0

∫ T

0
δ2
ε δc(X

ε
t , θ0) dt

∣∣∣∣
ε←uε

(1− u) du

)′
ζ (0)(w) +
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+
( ∫ 1

0

∫ T

0
δεδb(X

ε
t , θ0) dwt

∣∣∣∣
ε←uε

du

)′
ζ (0)(w)+

+ 1

2

(∫ 1

0

∫ T

0
δεδc(X

ε
t , θ0) dt

∣∣∣∣
ε←uε

du

)′
ζ (1)(w)+

+ 1

2
(ζ (0))′

( ∫ 1

0

∫ T

0
δεδ

2c(Xε
t , θ0) dt

∣∣∣∣
ε←uε

du

)
ζ (0)(w).

Since ψ̄ε = 1−OM(εK) for any K > 0, we have

ψ̄ε

∫ 1

0

∫ T

0
δεδb(X

ε
t , θ0) dwt

∣∣∣∣
ε←uε

du = OM(1),

ψ̄ε

∫ 1

0

∫ T

0
δ2
εb(X

ε
t , θ0) dwt

∣∣∣∣
ε←uε

(1− u) du = OM(1),

ψ̄ε

∫ 1

0

∫ T

0
δεδc(X

ε
t , θ0) dt

∣∣∣∣
ε←uε

du = OM(1),

ψ̄ε

∫ 1

0

∫ T

0
δεδ

2c(Xε
t , θ0) dt

∣∣∣∣
ε←uε

du = OM(1),

ψ̄ε

∫ 1

0

∫ T

0
δ2
ε δc(X

ε
t , θ0) dt

∣∣∣∣
ε←uε

(1− u) du = OM(1),

ψ̄ε

∫ 1

0

∫ T

0
δ3
ε c(X

ε
t , θ0) dt

∣∣∣∣
ε←uε

(1− u)2 du = OM(1).

It then follows that ψ̄εf
(2)
2 (Xε

t , θ0) = OM(1) and

ψ̄εεlε(X
ε(w), θ̂ε(w))

= ε−1
∫ T

0
c(X0

t , θ0) dt +
∫ T

0
b(X0

t , θ0) dwt +
∫ T

0
∂c(X0

t , θ0)Dt dt +

+
(∫ T

0
δc(X0

t , θ0) dt

)′
ζ (0)(w)+ ε

∫ T

0
∂b(X0

t , θ0)Dt dwt +

+ ε

(∫ T

0
δb(X0

t , θ0) dwt

)′
ζ (0)(w)+ ε

(∫ T

0
∂δc(X0

t , θ0)Dt dt

)′
ζ (0)(w)+

+ 1

2
ε

( ∫ T

0
δc(X0

t , θ0) dt

)′
ζ (1)(w)+ 1

2
ε

∫ T

0
∂2c(X0

t , θ0)(Dt,Dt ) dt +

+ 1

2
ε

∫ T

0
∂c(X0

t , θ0)Et dt + 1

2
ε(ζ (0)(w))′ ×

×
( ∫ T

0
δ2c(X0

t , θ0) dt

)
ζ (0)(w)+OM(ε2).
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Similarly, we obtain

ψ̄ε

∫
W

∫
W

εlε(X
ε(w′), θ̂ε(w)) dP(w′) dP(w)

= ε−1
∫ T

0
c(X0

t , θ0) dt +

+ 1

2
ε

( ∫ T

0
δc(X0

t , θ0) dt

)′ ∫
W

ζ (1)(w) dP(w)+

+ 1

2
ε

∫
W

∫ T

0
∂2c(X0

t , θ0)(Dt,Dt) dt dP(w′)+

+ 1

2
ε

∫
W

∫ T

0
∂c(X0

t , θ0)Et dt dP(w′)+

+ 1

2
ε

∫
W

(ζ (0)(w))′
(∫ T

0
δ2c(X0

t , θ0) dt

)
ζ (0)(w) dP(w)+OM(ε2).

Since ψ̄ε = 1−OM(εK) for any K > 0 and ψ̄ε

∫ 1
0 δb(θ0+u(θ̂ε−θ0)) du = OM(1),

we see that

ψ̄εεb(θ̂ε) = ψ̄εεb(θ0)+ ψ̄εε
2
∫ 1

0
δb(θ0 + u(θ̂ε − θ0)) du×

×
(
ζ (0) + 1

2
εζ (1) + ε2ζ (2)

ε

)
= εb(θ0)+OM(ε2).

We then have

ψ̄εS̄
∗
ε = ψ̄εεlε(X

ε(w), θ̂ε(w))−
− ψ̄ε

∫
W

∫
W

εlε(X
ε(w′), θ̂ε(w)) dP(w′) dP(w)− ψ̄εεb(θ̂ε)

=
∫ T

0
b(X0

t , θ0) dwt +
∫ T

0
∂c(X0

t , θ0)Dt dt +

+
(∫ T

0
δc(X0

t , θ0) dt

)′
ζ (0)(w)+ ε

∫ T

0
∂b(X0

t , θ0)Dt dwt +

+ ε

(∫ T

0
δb(X0

t , θ0) dwt

)′
ζ (0)(w)+

+ ε

(∫ T

0
∂δc(X0

t , θ0)Dt dt

)′
ζ (0)(w)+

+ 1

2
ε

(∫ T

0
δc(X0

t , θ0) dt

)′
ζ (1)(w)−
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− 1

2
ε

( ∫ T

0
δc(X0

t , θ0) dt

)′ ∫
W

ζ (1)(w) dP(w)+

+ 1

2
ε

∫ T

0
∂2c(X0

t , θ0)(Dt,Dt ) dt −

− 1

2
ε

∫
W

∫ T

0
∂2c(X0

t , θ0)(Dt,Dt) dt dP(w′)+

+ 1

2
ε

∫ T

0
∂c(X0

t , θ0)Et dt − 1

2
ε

∫
W

∫ T

0
∂c(X0

t , θ0)Et dt dP(w′)+

+ 1

2
ε(ζ (0)(w))′

( ∫ T

0
δ2c(X0

t , θ0) dt

)
ζ (0)(w)−

− 1

2
ε

∫
W

(ζ (0)(w))′
(∫ T

0
δ2c(X0

t , θ0) dt

)
ζ (0)(w) dP(w)−

− εb(θ0)+OM(ε2).

From the second-order asymptotic expansion of S̄∗ε as above, f0 and f1 are deter-
mined.

In the same way as the second-order asymptotic expansion, we can see that for
any k ∈ N,

ψ̄εS̄
∗
ε = ψ̄ε(f0 + εf1 + · · · + εk−1fk−1 + εkf (k)

ε ),

where f (k)
ε = OM(1). Moreover, since ψ̄ε = 1 − OM(εK) for any K > 0, we

obtain

ψ̄εS̄
∗
ε ∼ f0 + εf1 + · · ·

in D∞ as ε ↓ 0. This completes the proof. �
Proof of Lemma 6. From definition, |ξε| > 1 if σψ̄εS̄∗ε < (1/2)σf0 or σψ̄εS̄∗ε >

(3/2)σf0 . In case that (3/2)σf0 � σψ̄εS̄∗ε � (1/2)σf0 , we obtain (2/3)σ−1
f0

� σ−1
ψ̄εS̄∗ε

�
2σ−1

f0
. Therefore, it follows from Assumption 4 that for any p ∈ (1,∞),

sup
ε∈(0,1]

E[1{|ξε |� 1}(σψ̄εS̄∗ε )
−p] <∞.

From Lemma 5, ψ̄εS̄
∗
ε ∈ D∞ has the asymptotic expansion

ψ̄εS̄
∗
ε ∼ f0 + εf1 + · · ·

in D∞ as ε ↓ 0 with f0, f1, . . . ∈ D∞. We then have ψ̄εS̄
∗
ε = f0 + εf (1)

ε , where
f0 ∈ D∞, f (1)

ε = O(1) ∈ D∞. Since

|σ 1/2
ψ̄εS̄∗ε

− σ
1/2
f0
|� σ

1/2
ψ̄εS̄∗ε−f0

= σ
1/2

εf
(1)
ε

= εσ
1/2

f
(1)
ε

,
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we have

|σψ̄εS̄∗ε − σf0 | = |σ 1/2
ψ̄εS̄∗ε

− σ
1/2
f0
||σ 1/2

ψ̄εS̄∗ε
+ σ

1/2
f0
|� εσ

1/2

f
(1)
ε

(σ
1/2
ψ̄εS̄∗ε

+ σ
1/2
f0

).

Hence, it follows that there exists C > 0 such that for any p > 1,

‖σψ̄εS̄∗ε − σf0‖p �Cε. (13)

From definition, ξε = O(1) in D∞ as ε ↓ 0. It follows from Chebyshev’s inequality
that for any a > 0, K > 0,

P [ξε > a] � P

[∣∣∣∣2(σψ̄εS̄∗ε − σf0)

σf0

∣∣∣∣ > a

]

� 1

aK

∥∥∥∥2(σψ̄εS̄∗ε − σf0)

σf0

∥∥∥∥
K

K

.

It follows from (13), Hölder’s inequality and Assumption 4 that for any K > 0,∥∥∥∥2(σψ̄εS̄∗ε − σf0)

σf0

∥∥∥∥
K

K

= O(εK).

We then see that for any a > 0, K > 0,

P [ξε > a] = O(εK). (14)

From (14), we see that for any p > 1,

‖1− ψ∗
ε ‖p = ‖1− ψ(ξε)‖p � ‖1{|ξε |>1/2}‖p = O(εK).

In view of the chain rule for H-derivatives,

D(1− ψ∗
ε ) = −Dψ∗

ε = −ψ ′(ξε)Dξε.

Since ‖ψ ′(ξε)‖p = O(εK), we see that for any p > 1,

‖D(1− ψ∗
ε )‖p = O(εK).

Similarly, it follows that for any p > 1 and j > 0,

‖Dj(1− ψ∗
ε )‖p = O(εK).

Therefore, we see that for any K > 0, ψ∗
ε = 1 − O(εK) in D∞. By using

Theorem 4,

ψ∗
ε T (ψ̄εS̄

∗
ε ) ∼ ψ∗

ε T (f0 + εf1 + · · · )
∼ ψ∗

ε (G0 + εG1 + · · · )
∼ G0 + εG1 + · · ·

in D̃−∞ as ε ↓ 0 with G0,G1, . . . in D̃−∞. This completes the proof. �
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Proof of Theorem 5. From Lemmas 2, 3 and 6, we have

E[f (S̄∗ε )] ∼ E[ψ∗
ε f (ψ̄εS̄

∗
ε )]

= E[ψ∗
ε f ◦ (ψ̄εS̄

∗
ε )]

∼ E[I0]+ εE[I1]+ · · ·
as ε ↓ 0 uniformly in any f ∈ E(M, γ ). Therefore, the rest is to calculate E[Ii],
i = 0, 1, . . . . From the regularity of f0 and integration by part formula,

E[Ii] = E[Gi(w)f (f0)]

=
∫

R
f (x)E[Gi(w)|f0 = x]pf0(x) dx

for some smooth functional Gi(w). Therefore, each term is represented by an in-
tegration of a smooth function. We will only determine p0 and p1. It is easy to
show that p0(x) ≡ pf0(x) = φ(x;0). Moreover, we obtain

E[I1] = E[f1∂f (f0)]

= E[∂f (f0)E[f1|f0]]

= −
∫

R
f (x)∂x{E[f1|f0 = x]pf0(x)} dx.

We then have p1(x) = −∂x{E[f1|f0 = x]pf0(x)}. This completes the proof. �
Proof of Theorem 6. In Theorem 5, for any f ∈ E ′(M, γ ), let b(·) = bf (·).

From the point of view of the second-order statistical inference, it then follows that

E[f (S̄∗ε )] =
∫

R
f (x)φ(x;0) dx −

− ε

∫
R
f (x)∂x{E[F1 − bf (θ0)|f0 = x]φ(x;0)} dx + o(ε)

=
∫

R
f (x)φ(x;0) dx − ε

∫
R
f (x)∂x{E[F1|f0 = x]φ(x;0)} dx +

+ εbf (θ0)

∫
R
f (x)∂x{φ(x;0)} dx + o(ε)

= o(ε).

This completes the proof. �
Proof of Theorem 7. In Theorem 5, putting f (x) = x and b(·) = b1(·), we

obtain

E[S̄∗T ] = E[f0]+ εE[f1]+ o(ε)

= εE

[
(ζ (0))′

∫ T

0
δb(X0

t , θ0) dwt + (ζ (0))′
∫ T

0
∂δc(X0

t , θ0)Dt dt

]
−

−εb1(θ0)+ o(ε)

= o(ε).

This completes the proof. �



64 MASAYUKI UCHIDA AND NAKAHIRO YOSHIDA

Proof of Theorem 8. In Theorem 5, putting f (x) = 1{(0,∞)}(x)−1/2 and b(·) =
b2(·), we obtain

P [S̄∗T > 0]− 1

2
=

∫ ∞

0
φ(x,0) dx − 1

2
− ε

∫ ∞

0
∂x{E[f1|f0 = x] ×

× φ(x,0)} dx + o(ε)

= εE[F1|f0 = 0]φ(0, 0) − εb2(θ0)φ(0, 0)+ o(ε)

= o(ε).

Similarly, putting f (x) = 1{(−∞,0)}(x)− 1/2 and b(·) = b2(·), we have

P [S̄∗T < 0]− 1
2 = −εE[F1|f0 = 0]φ(0, 0) + εb2(θ0)φ(0, 0)+ o(ε)

= o(ε).

This completes the proof. �
Proof of Theorem 1. It follows from Theorem 7 and Itô’s formula that we obtain

b1(θ0) =
p∑

i=1

E

[( ∫ T

0
bi

0,t dwt

)( ∫ T

0
δib(X

0
t , θ0) dwt +

+
d∑

α=1

∫ T

0
∂αδic(X

0
t , θ0)D

α
t dt

)]

=
p∑

i=1

[∫ T

0
bi

0,t

(
δib(X

0
t , θ0)

)′
dt +

+
d∑

α=1

E

[( ∫ T

0
bi

0,t dwt

)( ∫ T

0

∫ T

t

∂αδic(X
0
s , θ0)λ

α
s,t ds dwt

)]]

=
p∑

i=1

[∫ T

0
bi

0,t

(
δib(X

0
t , θ0)

)′
dt +

+
d∑

α=1

∫ T

0
bi

0,t

( ∫ T

t

∂αδic(X
0
s , θ0)λ

α
s,t ds

)′
dt

]
,

which completes the proof. �
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Proof of Theorem 2. From Theorem 8, we compute b2(θ0) = E[F1|f0 = 0].
From (9)–(11) and Lemma 1, we have

E[F1|f0 = x] =
d∑

α=1

J 1
α (∂αb(X

0
t , θ0))(x)+

p∑
i=1

I 11(bi
2,t , b

i
0,t )(x)+

+ 1

2

p∑
i=1

∫ T

0
δic(X

0
t , θ0) dt E[ζ (1)

i |f0 = x]+

+ 1

2

d∑
α,β=1

J 2
α,β(∂α∂βc(X

0
t , θ0))(x)+

+ 1

2

d∑
α=1

J 3
α (∂αc(X

0
t , θ0))(x)+

+ 1

2

p∑
i,j=1

∫ T

0
δiδj c(X

0
t , θ0) dt I 11(bi

0,t , b
j

0,t )(x)− C0,

where

E[ζ (1)
i |f0 = x] = −

p∑
j=1

I (θ0)
i,j

{
2

d∑
α=1

J 1
α (∂αδjB(X0

t , θ0))(x)+

+ 2
p∑

k=1

I 11(b
j,k

1,t , b
k
0,t )(x)+

+
d∑

α,β=1

J 2
α,β(∂α∂βδjC(X0

t , θ0))(x)+

+
d∑

α=1

J 3
α (∂αδjC(X0

t , θ0))(x)+

+
p∑

k,l=1

∫ T

0
∂j∂k∂lC(X0

t , θ0) dt I 11(bk
0,t , b

l
0,t )(x)

}
.

This completes the proof. �
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