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1. Introduction: Basic Concepts in Model Selection

The purpose of the present article is to provide a new perspective to the model
selection problem from aspects of the higher order statistical inference theory.
The proposed method enables us to obtain new information criteria in a unified
way as well as the traditional criteria, and moreover, to treat a statistical model of
mixing processes with continuous time parameter. Here mixing processes include
diffusion processes with jumps, mixing point processes, and also nonlinear time
series models with discrete time parameter embedded in continuous time.

Since our discussion will be concerned with the fundamentals of the theory
of information criteria, in fact, the traditional method will be changed, let us re-
mind the reader the concept of the information criterion. For simplicity, we shall
begin with independent observations taking values in Rd . Suppose that Xn =
{X1, . . . , Xn} are independent random samples from an unknown distribution G(x)
with density function g(x). With the information contained in the observations
Xn, we choose a parametric model {f (x|θ); θ ∈ 
} among competing parametric
models. The statistical model {f (x|θ); θ ∈ 
} may or may not contain the true
density g(x), but it is expected that its deviation from the statistical model is not
so large. We fit the selected parametric model {f (x|θ); θ ∈ 
} to the real data
by replacing the unknown parameter θ with some estimator θ̂ , for example the
maximum likelihood estimator. Then a future observation z from the true density
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g(·) is predicted by the statistical model f (z|θ̂). A basic procedure in the theory
of information criteria is to assess the goodness-of-fit of the predicted distribu-
tion f (z|θ̂) to the true density g(z) generating real data. The Kullback–Leibler
information (Kullback and Leibler (1951)) given the observed data Xn is defined
by

I {g(z);f (z|θ̂)} = EG

[
log

g(Z)

f (Z|θ̂ )
]

and is used for measuring the divergence of f (z|θ̂) from g(z). For a distribution
with density, it can be expressed as

I {g(z);f (z|θ̂)} =
∫

Rd

g(z)logg(z) dz−
∫

Rd

g(z)logf (z|θ̂ ) dz.

The first term does not depend on the statistical model and only the second term
is relevant to comparing different models. The second term, which is called the
expected log likelihood, depends on the observed data Xn through θ̂ . We choose
a statistical model f (z|θ̂) for which the value of the Kullback–Leibler informa-
tion I {g(z);f (z|θ̂)} is minimized among competing models. Moreover, it is also
possible to choose a model for which the expected Kullback–Leibler information
EG[I {g(z);f (z|θ̂)}] is minimized. In this case, the information criterion is re-
garded as an estimator of the expected divergence which is an unknown parameter.
Uchida and Yoshida (1999) derived information criteria from this standpoint; the
obtained information criteria are different from the criteria we obtain in this paper.
Contrarily, the information criterion here is regarded as a predictor of the con-
ditional Kullback–Leibler information. In practice, since one uses f (z|θ̂) which
is determined only by the present data Xn, the conditional Kullback–Leibler in-
formation is the real divergence between the model used for prediction and the
true model. In this sense, the different models should be compared by their con-
ditional divergence, and this is a reason why we here take the conditional di-
vergence. Furthermore, it is also found that, under the expectation-unbiasedness
condition, both approaches lead to the same information criteria; it is the case for
traditional criteria. However, if we generalize unbiasedness apart from expectation-
unbiasedness, the resulting criteria vary according to the approach we take.

Minimizing I {g(z);f (z|θ̂ )} is equivalent to maximizing
∫

Rd g(z)logf (z|θ̂ ) dz.
However, since g(·) is unknown, we must estimate

∫
Rd g(z)logf (z|θ̂ ) dz. A simple

estimator of
∫

Rd g(z)logf (z|θ̂) dz is given by the (average) log likelihood

∫
Rd

logf (z|θ̂) dĜ(z) = 1

n

n∑
α=1

logf (Xα|θ̂ ),

which is obtained by replacing the unknown distribution G(·) with the empirical
distribution Ĝ(·). Usually the average log likelihood 1

n

∑n
α=1 logf (Xα|θ̂ ) provides
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an optimistic assessment (overestimation) of the expected log likelihood∫
Rd g(z)logf (z|θ̂ ) dz, because the same data are used both to estimate the para-

meter of the model and to evaluate
∫

Rd g(z)logf (z|θ̂) dz. We therefore consider the
bias correction of the average log likelihood 1

n

∑n
α=1 logf (Xα|θ̂ ). The asymptotic

bias of the log likelihood in the estimate of the expected log likelihood is given by

EG

[
1

n

n∑
α=1

logf (Xα|θ̂ )−
∫

Rd

logf (z|θ̂ ) dG(z)

]
= 1

n
b(θ0)+ o

(
1

n

)
,

where expectation is taken over the true distribution G(·) and a particular θ0 ∈ 
.
If the bias b(θ0) can be estimated by an appropriate procedure, then the unbiased
estimator of the expected log likelihood is given by

1

n

n∑
α=1

logf (Xα|θ̂ )− 1

n
b(θ̂).

Thus, we choose a statistical model for which the value of

IC(Xn; θ̂ ) = 1

n

n∑
α=1

logf (Xα|θ̂ )− 1

n
b(θ̂)

is maximized among competing models. The bias corrected log likelihood
IC(Xn; θ̂ ) is commonly called an ‘information criterion’. For details, see Konishi
and Kitagawa (1996).

Akaike’s information criterion AIC (Akaike, 1973, 1974) is a model evaluation-
selection tool based on minimizing the Kullback–Leibler divergence between the
fitted model and the true model. It can be obtained under the assumptions:

(i) the data are independent random samples from an unknown distribution,
(ii) estimation is done by the maximum likelihood method, and
(iii) the parametric family of distributions includes the true model.

With the development of various modeling techniques, the construction of criteria
capable of evaluating various types of statistical models has been required. Sev-
eral attempts to construct information criteria which work for various types of
statistical models have been made, and the proposed criteria have been examined
from theoretical and practical aspects (cf. Shibata, 1980, 1981; Barron, 1986, 1989;
Knight, 1989; Hall, 1990; Hurvich and Tsai, 1993, 1995; Burman and Nolan, 1995;
Laud and Ibrahim, 1995; Portnoy, 1997; Burnham and Anderson, 1998; Yang and
Barron, 1998; Barron et al., 1999, and references therein). In particular, Takeuchi
(1976) derived Takeuchi’s information criterion TIC from the assumptions (i) and
(ii) in the misspecified model. Konishi and Kitagawa (1996) proposed general-
ized information criteria GIC under the assumption (i) and with functional-type
estimators instead of the assumption (ii).

There seems to be no doubt that the expectation-unbiasedness is a very handy
unbiasedness. Nevertheless, from decision theoretic aspects, it does not appear that
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there exists a decisive basis for approving only expectation-unbiasedness in case of
the information criterion. The expectation-unbiasedness corresponds to a quadratic
loss, and in a natural way it can be extended to other loss functions, absolute loss,
Lp-loss, etc. In fact, as we will discuss later, it is possible to construct a median-
unbiased information criterion. All existing criteria including AIC, TIC and GIC
modify an estimator of the expected log likelihood to cancel the expectation-bias
in the second order. In other words, obtaining the information criteria is equivalent
to finding the bias term b1(·) such that

EG

[
√
n

(
1

n

n∑
α=1

logf (Xα|θ̂ )− 1

n
b1(θ̂)−

∫
Rd

logf (z|θ̂ ) dG(z)

)]
= o

(
1√
n

)
.

We then obtain the expectation-unbiased information criterion 1
n

∑n
α=1

logf (Xα|θ̂ )− 1
n
b1(θ̂) as an expectation-unbiased estimator of

∫
Rd logf (z|θ̂ ) dG(z).

Though the first order asymptotic theory was sufficient for the derivation of the
expectation-unbiased information criteria, for the median-unbiasedness, it is ne-
cessary to consider the second order asymptotic expansion of the distribution of
the error of an estimator of the expected log likelihood. More precisely, we need to
find the bias term b2(·) such that

P

[
√
n

(
1

n

n∑
α=1

logf (Xα|θ̂ )− 1

n
b2(θ̂)−

∫
Rd

logf (z|θ̂ ) dG(z)

)
> 0

]

= 1

2
+ o

(
1√
n

)

and

P

[√
n

(
1

n

n∑
α=1

logf (Xα|θ̂ )− 1

n
b2(θ̂)−

∫
Rd

logf (z|θ̂ ) dG(z)

)
< 0

]

= 1

2
+ o

(
1√
n

)
.

We then obtain the median-unbiased information criterion 1
n

∑n
α=1 logf (Xα|θ̂ ) −

1
n
b2(θ̂) as a second order asymptotically median-unbiased estimator of

∫
Rd log

f (z|θ̂) dG(z). For details of the second order asymptotically median-unbiased es-
timator, see Akahira and Takeuchi (1981). The first goal of this article is to formu-
late the model selection problem in terms of the higher order asymptotic theory in
a unified way, and to show other possibilities than the usual expectation-unbiased
criteria, with the median-unbiased information criterion.

Recently, together with the development of the statistical inference for stochastic
processes, the problem of the model selection for stochastic processes has been
important both in theory and in applications to natural sciences, neural networks,
engineering, economics, etc. It is known that the asymptotic expansion is, mainly
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in independent cases, a promising tool to investigate problems in the higher order
statistical inference. Battacharya and Ghosh (1978) established the validity of the
asymptotic expansion for a functional of an independent sequence. Götze and Hipp
(1983, 1994) gave a valid asymptotic expansion of the distribution of a functional
of a discrete-time process under a mixing condition and a conditional type of
Cramér condition. Furthermore, for an ε-Markov process, Kusuoka and Yoshida
(2000) presented a valid asymptotic expansion of the distribution of an additive
functional.

With asymptotic expansions, we are now able to reformulate the model se-
lection problem in the light of the higher order asymptotic theory, and to extend
objects of consideration to more general stochastic models with continuous time
parameter. Thus, the second goal of this article is to propose information criteria
which work (i) for stochastic processes with continuous-time parameter, (ii) for
various estimators, for example M-estimator, and (iii) for misspecified cases.

The organization of the article is as follows. In Section 2, we state our main res-
ults. By using the asymptotic expansion of the distribution of an estimator based on
the conditional Kullback–Leibler divergence for mixing processes with continuous-
time parameter, a general theory is developed and two information criteria are
proposed. In Section 3, the information criteria proposed are applied to diffusion
processes. Section 4 presents proofs of the results.

2. Asymptotic Expansion and Information Criteria

Let (X T ,AT ) be a measurable space for each T > 0. Given a probability space
(�,F, P ), let XT denote an XT -valued random variable with an unknown dis-
tribution QT (·) = P(X−1

T (·)) having a probability density function qT (·) with
respect to a reference measure. Let θ̂T : (XT ,AT ) → 
 be a measurable func-
tion, where 
 ⊂ Rp. The Borel σ -field of Rp is denoted by Bp. Estimation is
done within a parametric family of distributions {PT,θ(·); θ ∈ 
} with densities
{fT (·, θ); θ ∈ 
}, which may or may not contain qT (·). The ‘predictive’ density
function fT (z, θ̂T ) for the ‘future’ observation XT (ω

′) = z (for ω′ ∈ �) can be
constructed by replacing the unknown parameter θ with θ̂T .

As a fundamental basis for information criteria, we use the concept of model
selection based on minimizing the Kullback–Leibler information I {QT ;PT,θ̂T },
where

I {QT ;PT,θ̂T } :=
∫
XT

logqT (z)QT (dz)−
∫
XT

logfT
(
z, θ̂T (XT (ω))

)
QT (dz)

=
∫
�

logqT (XT (ω
′))P (dω′)−

−
∫
�

lT
(
XT (ω

′), θ̂T (XT (ω))
)
P(dω′), (1)

and lT (x, θ) = logfT (x, θ).



78 MASAYUKI UCHIDA AND NAKAHIRO YOSHIDA

The first term on the right-hand side of (1) does not depend on the statistical
model and only the second term may be taken into account. A simple estimator of
the expected log likelihood, that is,

∫
�
lT

(
XT (ω

′), θ̂T (XT (ω))
)
P(dω′), is given by

lT (XT (ω), θ̂T (XT (ω))). Let

"T := lT (XT (ω), θ̂T (XT (ω)))−
∫
�

lT (XT (ω
′), θ̂T (XT (ω)))P (dω

′),

"∗
T := "T − b(θ̂T (XT (ω))),

"̄T := rT"T ,

"̄∗
T := rT"

∗
T = "̄T − rT b(θ̂T (XT (ω))),

where rT = 1/
√
T and b is an R-valued function defined on Rp.

In this section, we consider the second order asymptotic expansion of the dis-
tribution of "̄∗

T . First of all, in order to explain the ideas heuristically, we assume
that there exists a parameter θ0 ∈ 
 such that

rT
−1(θ̂T − θ0) = ζ̄

(0)
T + op(1) (2)

for a functional ζ̄ (0)T satisfying conditions put later.
Set

Z
(0)
T := lT (XT (ω), θ0)−

∫
�

lT (XT (ω
′), θ0)P (dω

′),

Z̄
(0)
T := rT Z

(0)
T ,

Z
(1)
T := ∂θ lT (XT (ω), θ0)−

∫
�

∂θlT (XT (ω
′), θ0)P (dω

′), ∂θ = ∂

∂θ
,

Z̄
(1)
T := rT Z

(1)
T .

Intuitively, expanding lT (XT (ω), θ̂T (XT (ω))) and
∫
�
lT (XT (ω

′), θ̂T (XT (ω)))

P (dω′) in a Taylor series around θ0 and substituting (2) into the resulting expan-
sion, we obtain stochastic expansions as follows:

"T = lT (XT (ω), θ0)−
∫
�

lT (XT (ω
′), θ0)P (dω

′)+
{
∂θ lT (XT (ω), θ0)−

−
∫
�

∂θ lT (XT (ω
′), θ0)P (dω

′)
}′
(θ̂T (XT (ω))− θ0)+

+1

2
(θ̂T (XT (ω))− θ0)

′
{
(∂θ )

2 lT (XT (ω), θ0)−

−
∫
�

(∂θ)
2 lT (XT (ω

′), θ0)P (dω
′)
}
(θ̂T (XT (ω))− θ0)+ op(1)

= Z
(0)
T + Z̄

(1)′
T ζ̄

(0)
T + op(1),
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where A′ denotes the transposition of A for A ∈ Rp. Here we assumed a central
limit theorem and a law of large numbers.

Let R∗
T be the remainder term in the expansion "̄∗

T :

"̄∗
T = Z̄

(0)
T + rT (Z̄

(1)′
T ζ̄

(0)
T − b(θ0))+ R∗

T . (3)

Remark. (i) For an M-estimator θ̂T , in the same way as Sakamoto and Yoshida
(1998, 1999), it is possible to show that for some E0 > 1, 0 < ε0 < 1 and r.v.
ζ̄
(0)
T , rT −1(θ̂T − θ0) = ζ̄

(0)
T + RT , where P [θ̂T exists uniquely in U(θ0, r

ε0
T ) and

|RT |� r
ε0
T ] = 1 − o(r

E0
T ) and U(θ0, r

ε0
T ) is the closed ball of radius rε0

T centered at
θ0.

(ii) From (i) and some regularity conditions, we can also show that there exist
constants E > 1 and ε > 1 such that P [|R∗

T |� rεT ] = 1 − o(rET ) for R∗
T in (3).

2.1. ε-MARKOV MODEL

We describe the underlying probabilistic structure of the random variables Z̄(0)
T ,

Z̄
(1)
T and ζ̄ (0)T in (3). Let (�,F, P ) be a probability space, Y = (Yt)t∈R+ an Rd2-

valued càdlàg process defined on �, and X = (Xt)t∈R+ an Rd1-valued càdlàg
process defined on �. Suppose that for any t ∈ R+, BX,Y[0,t ] is independent of BdX[t,∞),
where

BX,Y[0,t ] = σ [Xu, Yu : u ∈ [0, t]] ∨ N , BdX[t,∞) = σ [Xs −Xu : s, u ∈ [t,∞)],

and N is the σ -field generated by null sets. For I ⊂ R, define sub σ -fields BdXI ,
BYI and BI by

BdXI = σ [Xt −Xs : s, t ∈ I ∩ R+] ∨ N , BYI = σ [Yt : t ∈ I ∩ R+] ∨ N ,

and

BI = σ [Xt −Xs, Yt : s, t ∈ I ∩ R+] ∨ N ,

respectively. Assume that there exists a constant ε� 0 such that for any s > 0 and
t > 0 satisfying ε� s� t ,

Yt ∈ F
(
BY[s−ε,s] ∨ BdX[s,t ]

)
,

where F(A) denotes the set of all A-measurable functions for sub σ -field A of
F . If the process Y satisfies the above condition, it is called an ε-Markov process
driven by X. Moreover, assume that for any T > 0, Z̄T ≡ (Z̄

(0)
T , Z̄

(1)
T , ζ̄

(0)
T ) in (3)

is a normalized functional of an additive functional ZT , that is, Z̄T = rT ZT for an
Rd3-valued process Z = (Zt)t∈R+ satisfying Z0 ∈ FB[0] and

Zs
t := Zt − Zs ∈ FB[s,t ], for every s, t ∈ R+, 0 � s� t,

where the dimension of Z̄(0)
T is one, and both Z̄

(1)
T and ζ̄

(0)
T are p-dimensional

functionals, that is d3 = 2p + 1.
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Let P [f ] be the expectation of f with respect to P and P [f |B] denotes the
conditional expectation of f given a sub-σ -field B of A with respect to P . In
order to present the asymptotic expansion of "̄∗

T , we will assume the following
conditions given in Kusuoka and Yoshida (2000).

[A1] There exists a positive constant a such that∥∥P [f |BY[s−ε,s]] − P [f ]
∥∥
L1(P )

� a−1e−a(t−s)‖f ‖∞

for any s, t ∈ R+, s� t , and for any bounded BY[t,∞)-measurable function f .
[A2] For any " > 0, supt∈R+,0 � h�"‖Zt

t+h‖Lp(P ) < ∞ for any p > 1, and
P [Zt

t+"] = 0. Moreover, Z0 ∈ ⋂
p>1 L

p(P ) and P [Z0] = 0.

For illustrations of the ε-Markov model, here are two examples in Kusuoka and
Yoshida (2000) as follows:

EXAMPLE 1. Let {Yn}n∈Z+ denote an Rd2-valued m-Markov chain (non-linear
time series model) satisfying the stochastic equation

Yn = Sn(Yn−1, . . . , Yn−m, ξn), n�m,

where {ξn}n�m is an Rd1-valued independent random sequence and independent of
{Yn}m−1

n=0 . Define Zn = ∑n
j=1 fj (Yj , ξj ) and Xn = ∑n

j=1 ξj . Obviously, the process
{Xn, Yn, Zn}n∈Z+ can be embedded into a process {Xt, Yt , Zt}t∈R+ with continuous
time parameter asXt = X[t ], Yt = Y[t ] and Zt = Z[t ]. Then Y is an (m−1)-Markov
process driven by the process X with independent increments.

EXAMPLE 2. Let A ∈ C∞(Rd2; Rd2), A′ ∈ C∞(Rd2; Rd3), B ∈ C∞(Rd2; Rd2 ⊗
Rr),B ′ ∈ C∞(Rd2; Rd3 ⊗Rr ),C ∈ C∞(Rd2 ×E; Rd2) and C ′ ∈ C∞(Rd2×E; Rd3),
where E is an open set in Rb. Suppose that {Yt, Zt }t∈R+ is a stochastic process
defined as a strong solution of the stochastic integral equation with jumps:

Yt = Y0 + A(Y−) ∗ t + B(Y−) ∗wt + C(Y−) ∗ µ̃t ,
Zt = Z0 + A′(Y−) ∗ t + B ′(Y−) ∗wt + C ′(Y−) ∗ µ̃t ,

where Z0 is σ [Y0]-measurable, w is an r-dimensional Wiener process, and µ̃ is a
compensated Poisson random measure on R+ × E with intensity dt ⊗ λ(dx), λ
being the Lebesgue measure on E. Under usual regularity conditions, it is possible
to regard (Yt , Zt) as smooth functionals over the canonical space� = {(y0, w,µ)},
where µ is the integer-valued random measure on R+ × E. Let F be the σ -field
generated by the canonical maps on �. In this case, the process Xt may be taken
as Xt = (wt, µt (gi); i ∈ N), where (gi) denotes a countable measure determining
family over E. Then Y is a Markov process, that is, ε = 0, driven by X with
independent increments. For more details, see III.6 and IV.10 of Bichteler et al.
(1987) and Example 2 of Kusuoka and Yoshida (2000).
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2.2. MALLIAVIN CALCULUS

We will make use of the nondegeneracy of the Malliavin covariance instead of the
conditional type Cramér condition to ensure the regularity of distributions. Taking
account of semimartingales with jumps, we here adopted the formulation of the
Malliavin calculus by Bichteler et al. (1987).

Let C2
↑(Rn) be the set of all functions f of class C2(Rn) such that f and all

of its derivatives have polynomial growth. Given a probability space (�,B,=), a
linear operator L on D(L) ⊂ ∩p>1L

p(=) into ∩p>1L
p(=) is called a Malliavin

operator if the following conditions are satisfied:

(1) B is generated by D(L).
(2) For f ∈ C2

↑(Rn), n ∈ N, and F ∈ D(L)n, f ◦ F ∈ D(L).
(3) For any F,G ∈ D(L), =[FLG] = =[GLF ].
(4) The bilinear operator ?L on D(L)× D(L) associated with L by ?L(F,G) =

L(FG)−FLG−GLF is nonnegative definite. In other words, for F ∈ D(L),
L(F 2)� 2FLF .

(5) For F = (F 1, · · · , F n) ∈ D(L)n, n ∈ N, and f ∈ C2
↑(R

n),

L(f ◦ F) =
n∑
i=1

(∂if ◦ F)LF i + 1

2

n∑
i,j=1

(∂i∂jf ◦ F)?L(F
i, F j ).

Fix a Malliavin operator (L,D(L)). For p� 2, define ‖F‖D2,p = ‖F‖p +
‖LF‖p + ‖?1/2

L (F, F )‖p. Let D2,p denote the completion of D(L) with respect
to ‖ · ‖D2,p . Then (D2,p, ‖ · ‖D2,p ) is a Banach space. The existence of a Malliavin
operator leads us to the existence of an integration-by-parts setting (IBPS). Let
D2,∞− = ∩p� 2D2,p. For F ∈ D2,∞−(Rn) ≡ (D2,∞−)n, the Malliavin covariance
matrix σF of F is defined by σF = (σ

ij

F ) = (?L(F i, F j )) for i, j = 1, . . . , n.
From Theorem 8–18 of Bichteler et al. (1987) p.107, we have the IBP formula
with truncation. For more details of IBP formula with truncation, see Propositions
1 and 2 of Kusuoka and Yoshida (2000).

2.3. PROCESS WITH FINITE AUTOREGRESSION

In addition to two conditions [A1] and [A2] in Subsection 2.1, we require another
condition, which is also assumed in Kusuoka and Yoshida (2000), concerned with
the regularity of the distribution. Let τ be a fixed constant such that τ > ε. For each
T > 0, let [u(i), v(i)], j = 1, . . . , n(T ) be sub-intervals of the interval [0, T ] such
that

0 < ε� u(1) < v(1)� u(2) < v(2)� · · · � u(n(T )) < v(n(T ))� T

and that infj,T {v(j) − u(j)} � τ , supj,T {v(j) − u(j)} < ∞. The process con-
sidered here is a process with finite autoregression; more precisely, we assume
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that for each interval Jj = [v(j) − ε, v(j)], there exists a finite number of func-
tionals Yj = {Yj,k}k=1,... ,Mj

such that σ [Yj ] ⊂ BJj and that for any bounded
B[v(j),∞)-measurable function F , P [F |B[0,v(j)]] = P [F |σ [Yj ]], a.s. For each j =
1, . . . , n(T ), a linear operator Lj on D(Lj ) ⊂ ⋂

p>1L
p(P ) is a Malliavin operator

over the probability space (�,B[u(j)−ε,v(j)], P ). The Banach space D
Lj
2,p, p� 2,

denotes the completion of D(Lj) with respect to ‖ · ‖
D
Lj

2,p

. Let C∞
B (R

n) be the

set of all functions f of class C∞(Rn) such that f and all of its derivatives are
bounded. Suppose that for any f ∈ C∞

B (R
(d1+d2)m) and any u0, u1, . . . , um satisfy-

ing u(j)−ε� u0 � u1 � · · · � um � u(j), the functional F = f (Xuk−Xuk−1, Yuk :

1 � k�m) ∈ D
Lj
2,∞− and LjF = 0. Let σZj

be the Malliavin covariance mat-

rix of Zj = (Z
u(j)

v(j) ,Yj ), and suppose that Zu(j)

v(j),l,Yj,k, σ
pq

Zj
∈ D

Lj
2,∞−, where

Z
u(j)

v(j) = (Z
u(j)

v(j),l)l=1,... ,d3 and σpqZj
= ?Lj (Z

p

j ,Z
q

j ). Note that d3 is the dimension

of Z̄T , that is, d3 = 2p + 1. Suppose supj,T Mj < ∞. The measurable function
ψj : (�,B[u(j)−ε,v(j)]) → ([0, 1],B([0, 1])) denotes a truncation functional. Put
S1[ψj ;Zj ] = {σ i,kZj

, i, k = 1, . . . , d3 +Mj, ("Zj
)−d3ψj }, and

S1,j = {("Zj
)−d3ψj, σ

kl
Zj
, LjZj,k, ?Lj (σ

kl
Zj
,Zj,m), ?Lj (("Zj

)−d3ψj,Zj,l )}
for operator Lj , where "Zj

= det σZj
. By using the terminology and notation

above, the regularity condition of the distribution is given as follows:

[A3] (i) For each j = 1, . . . , n(T ), there exists a truncation functional ψj defined
on (�, B[u(j)−ε,v(j)], P ) such that infj,T P [ψj ] > 0;

(ii) lim infT→∞n(T )/T > 0;
(iii) For each j = 1, . . . , n(T ), Zj ∈ (D

Lj
2,∞−)

d3+Mj , S1[ψj ;Zj ] ⊂ D
Lj
2,∞−,

and for any p > 1,
⋃

j=1,... ,n(T ),T>0 S1,j is bounded in Lp(P ).

With the help of Kusuoka and Yoshida (2000), we see that models in Examples 1
and 2 satisfy the finite autoregression condition. For details, see Examples 1′ and
2′ of Kusuoka and Yoshida (2000).

ASSUMPTION 1. Z̄T = (Z̄
(0)
T , Z̄

(1)
T , ζ̄

(0)
T ) satisfies conditions [A1], [A2] and

[A3].

Let us prepare some notations. Define the k-th cumulant λα1···αk
T of Z̄T by

λ
α1···αk
T = i−k∂α1 · · · ∂αk logP [eiu·Z̄T ]|u=0, ∂α = ∂

∂uα
,

and the Hermite polynomial hα1···αk by

hα1···αk (z;σαβ) = (−1)k

φ(z;σαβ)∂α1 · · · ∂αkφ(z;σαβ), ∂α = ∂

∂zα
,

where φ(z;σαβ) is the density function of the normal distribution with mean 0 and
covariance matrix (σαβ). Denote by IT the covariance matrices Cov(Z̄T ). Then
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the asymptotic expansions up to the second order of the density of Z̄T itself are
formally given by

pT,0(z) = φ(z;IT ),

pT,1(z) = φ(z;IT )

(
1 + 1

6
λ
αβγ

T hαβγ (z;IT )

)
,

where we adopt the Einstein summation convention, and α, β, γ are indices run-
ning from 0 to 2p. Divide Cov(Z̄T ) corresponding to the three subvectors Z̄(0)

T , Z̄
(1)
T

and ζ̄ (0)T of Z̄T , that is,

IT = Cov[Z̄(0)
T , Z̄

(1)
T , ζ̄

(0)
T ] =


 I

(00)
T (I

(10)
T )′ (I(20)

T )′

I
(10)
T I

(11)
T I

(12)
T

I
(20)
T (I

(12)
T )′ I

(22)
T


 (say).

The r-th cumulant χT,r (u) of Z̄T is defined by

χT,r (u) =
(
d

dε

)r

0

logP [exp(iεu · Z̄T )].

Next, define functions P̃T ,r (u) by the formal Taylor expansion

exp

( ∞∑
r=2

r!−1εr−2χT,r (u)

)
= exp

(
1

2
χT,2(u)

)
+

∞∑
r=1

εrT −r/2P̃T ,r (u). (4)

Let L̂T ,k(u) be the k-th partial sum of the right-hand side of (4) with ε = 1:

L̂T ,k(u) = exp

(
1

2
χT,2(u)

)
+

k∑
r=1

T −r/2P̃T ,r (u).

Finally, for T > 0 and k ∈ N, a signed-measure L̂T ,k is defined as the Fourier
inversion of L̂T ,k(u). In the sequel, we will assume that the second cumulant
χT,2(u) converges to a negative definite quadratic form −u′Iu as T → ∞. Fix
a symmetric matrix Î satisfying I < Î. For M > 0 and γ > 0, the set E(M, γ )
of measurable functions from R → R is defined by

E(M, γ ) = {f : R → R, measurable, |f (x)|�M(1 + |x|)γ (x ∈ R)}.
For any f ∈ E(M, γ ), r > 0 and Î(00) > 0 satisfying Î(00) > limT→∞I

(00)
T , let

ω(f, r) =
∫

R
sup{|f (x + y)− f (x)| : |y|� r}φ(x; Î(00)) dx.

Let "̃∗
T = Z̄

(0)
T + rT (Z̄

(1)′
T ζ̄

(0)
T −b(θ0)). From (3) it follows that "̄∗

T = "̃∗
T +R∗

T .

Theorem 5 of Kusuoka and Yoshida (2000), together with the formula of Sakamoto
and Yoshida (1999), gives an expansion of "̃∗

T as follows.

THEOREM 1 (Kusuoka and Yoshida (2000), Sakamoto and Yoshida (1999)). Let
M,γ > 0. Suppose that Assumption 1 holds true. Then for any K > 0,
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(1) there exist constants δ > 0 and c > 0 such that for any function f ∈ E(M, γ ),

|P [f ("̃∗
T )] −LT,1[f ]|� cω(f, rKT )+ εT ,

where εT = o(r
((1+δ)∧K)
T ) depends on E(M, γ ).

(2) The signed-measure dLT,1 has a density dLT,1(z)/dz = qT,1(z) with

qT,1(z
(0)) =

∫
R2p

pT,1(z) dz(1) dz(2) −

− rT ∂z(0)

[∫
R2p

{z(1)′z(2) − b(θ0)}φ(z;IT ) dz(1) dz(2)
]
,

where pT,1(z) = φ(z;IT )(1+ 1
6λ

αβγ

T hαβγ (z;IT )) and λαβγT is the third cumu-
lant of Z̄T .

Remark 2. In Theorem 1, we assumed the non-degeneracy of the covariance
matrix of rT ZT . Even if Cov(rT ZT ) is degenerate, it is still possible to interpret
each pT,k(z) as a Schwartz distribution, and to prove the validity of the formula for
qT,1 given in Theorem 1. For more details, see Sakamoto and Yoshida (2000).

ASSUMPTION 2. There exist constants K ′ > 0 and α > 0 such that

sup
f∈E(M,γ )

∣∣∣P [(f ("̄∗
T )− f ("̃∗

T ))1{|R∗
T |>rK′

T }]
∣∣∣ = o(rαT ),

where 1A is the indicator function of a set A.
Remark 3. Suppose that there exist constants K ′ > 1 and m > 1 such that

P [|R∗
T |� rK

′
T ] = 1 − o(rmT ). Moreover, suppose that supT>1 ||rT "̄∗

T ||Lp < ∞ for
some p > 1, and that m(p− 1)/p− γ > 1. Then, it is possible to show that there

exists a constant α > 1 such that supf∈E(M,γ )
∣∣∣P [(f ("̄∗

T )− f ("̃∗
T ))1{|R∗

T |>rK′
T }]

∣∣∣ =
o(rαT ).

We then obtain a second order asymptotic expansion of the distribution of "̄∗
T .

THEOREM 2. Let M,γ > 0. Suppose that Assumptions 1 and 2 hold true. Then,

(1) there exist constants δ > 0 and c̃ > 0 such that for any function f ∈ E(M, γ ),

|P [f ("̄∗
T )] −LT,1[f ]|� c̃ω(f, 2rK

′
T )+ ε̃T ,

where ε̃T = o(r
((1+δ)∧α)
T ) depends on E(M, γ ).

(2) The signed-measure dLT,1 has the same density dLT,1(z)/dz = qT,1(z) as in
Theorem 1.

By using Theorem 2, we have an explicit expression for a second order asymp-
totic expansion of the distribution of "̄∗

T .
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THEOREM 3. Let M,γ > 0. Suppose that Assumptions 1 and 2 hold true. Then
there exist constants δ > 0 and c̃ > 0 such that for any function f ∈ E(M, γ ),

P [f ("̄∗
T )] =

∫
R
f (z(0))φ(z(0);I(00)

T ) dz(0) +

+ 1

6
λ000
T

∫
R
f (z(0))h3(z

(0);I(00)
T )φ(z(0);I(00)

T ) dz(0) −

− rT

∫
R
f (z(0))∂z(0) ×

×
[{
CT (z

(0))− b(θ0)
}
φ(z(0);I(00)

T )
]

dz(0) + ρT (f ),

where

ρT (f ) = c̃ω(f, 2rK
′

T )+ o(r
((1+δ)∧α)
T ),

CT (z
(0)) = (I

(10)
T )′I(20)

T

(I
(00)
T )2

[(z(0))2 −I
(00)
T ] + trI(12)

T .

THEOREM 4. Suppose that Assumptions 1 and 2 for some K ′ > 1 and α > 1
hold true. Let b1(θ0) = trI(12)

T . Then

P
[
rT "T − rT b1(θ̂T )

]
= o (rT ) .

Remark 4. There is no need for Theorem 4 to suppose [A3] in Assumption 1.

Since it follows from Theorem 4 that rT"T − rT b1(θ̂T ) is asymptotically
expectation-unbiased (AEU), we can propose an information criterion based on
the asymptotically expectation-bias corrected log likelihood as follows:

Information criterion 1 (in the sense of AEU).

IC1(XT (ω)) = rT lT (XT (ω), θ̂T (XT (ω)))− rT b1(θ̂T (XT (ω))), (5)

where b1(θ0) = trI(12)
T .

Remark 5. Suppose that the data are independent random samples. Under the
assumption that θ̂T in (5) is the functional-type estimator in the misspecified model,
IC1 corresponds to GIC. By using the maximum likelihood estimator (MLE) in
the misspecified model, IC1 is equivalent to TIC. Moreover, for the MLE in the
correctly specified model, IC1 corresponds to AIC.

THEOREM 5. Suppose that Assumptions 1 and 2 for some K ′ > 1 and α > 1
hold true. Let

b2(θ0) = −1

6
rT

−1λ000
T

1

I
(00)
T

+
[

trI(12)
T − (I

(10)
T )′I(20)

T

I
(00)
T

]
.
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Then

P
[
rT "T − rT b2(θ̂T (XT (ω))) > 0

]
= 1

2 + o (rT ) ,

P
[
rT "T − rT b2(θ̂T (XT (ω))) < 0

]
= 1

2 + o (rT ) .

From Theorem 5, it follows that rT"T − rT b2(θ̂T ) is the second order asymp-
totically median-unbiased (second order AMU); see Akahira and Takeuchi (1981).
Thus we also propose another information criterion based on the asymptotically
median-bias corrected log likelihood as follows:

Information criterion 2 (in the sense of the second order AMU).

IC2(XT (ω)) = rT lT (XT (ω), θ̂T (XT (ω)))− rT b2(θ̂T (XT (ω))), (6)

where

b2(θ0) = −1

6
rT

−1λ000
T

1

I
(00)
T

+
[

trI(12)
T − (I

(10)
T )′I(20)

T

I
(00)
T

]
.

Remark 6. For suitable measurable functions f satisfying two conditions:∫
R f (x)φ(x;I(00)

T ) dx = 0 and
∫

R f (x)∂x{φ(x;I(00)
T )} dx �= 0, let bf (·) denote

bf (θ0) = −
[∫

R
f (z(0))∂z(0)

{
φ(z(0);I(00)

T )
}

dz(0)
]−1

×

×
[
r−1
T

1

6
λ000
T

∫
R
f (z(0))h3(z

(0);I(00)
T )φ(z(0);I(00)

T ) dz(0)−

−
∫

R
f (z(0))∂z(0)

[
CT (z

(0))φ(z(0);I(00)
T )

]
dz(0)

]
.

From Theorem 3 and certain regularity conditions it then follows that

ICf (XT (ω)) = rT lT (XT (ω), θ̂T (XT (ω)))− rT bf (θ̂T (XT (ω)))

is the f -unbiased information criterion, that is,

P

[
f

(
ICf (XT (ω))− rT

∫
�

lT (XT (ω
′), θ̂T (XT (ω)))P (dω

′)
)]

= o(rT ).

In particular, for f (x) = x, we obtain the asymptotically expectation-unbiased in-
formation criterion. Moreover, for f (x) = 1(−∞,0)(x)− 1

2 and f (x) = 1(0,∞)(x)−
1
2 , we also have the second order asymptotically median-unbiased information
criterion.

3. Application to Diffusion Processes

We present an application of the results in Section 2 to diffusion processes.
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Let XT = {Xt; 0 � t � T } be a d-dimensional diffusion process defined by the
stochastic differential equation (true model)

dXt = V0(Xt) dt + V (Xt) dwt, t ∈ [0, T ],
X0 = x0,

(7)

where X0 is the initial random variable (r.v.), V = (V1, . . . , Vr) is an Rd ⊗ Rr

valued smooth function defined on Rd , V0 is an Rd-valued smooth function defined
on Rd with bounded x-derivatives and w is an r-dimensional standard Wiener
process. We assume that Xt is a stationary, strong mixing diffusion process and
X0 obeys the stationary distribution ν satisfying ν(|x|p) < ∞ for any p > 1.

Consider a d-dimensional diffusion model defined by the stochastic differential
equation

dXt = Ṽ0(Xt, θ) dt + Ṽ (Xt) dw̃t , t ∈ [0, T ],
X0 = x0,

(8)

where θ is a p-dimensional unknown parameter in 
, X0 is the initial r.v., Ṽ =
(Ṽ1, . . . , Ṽr̃ ) is an Rd ⊗ Rr̃ valued smooth function defined on Rd , Ṽ0 is an Rd-
valued smooth function defined on Rd × 
 and w̃ is an r̃-dimensional stand-
ard Wiener process. The unknown parameter θ requires to be estimated from the
observation XT = {Xt; 0 � t � T }.

Let Xθ
T be the solution of the stochastic differential Equation (8) for θ . We

assume that Xθ
T is a stationary, strong mixing diffusion process with stationary

distribution νθ . Since the likelihood function of θ is defined by

LT (Xθ
T , θ) := dνθ (X0)

dx
exp

{∫ T

0
Ṽ ′

0(Ṽ Ṽ
′)−1(Xt , θ) dXt−

−1

2

∫ T

0
Ṽ ′

0(Ṽ Ṽ
′)−1Ṽ0(Xt, θ) dt

}
,

the log likelihood function is given by

lT (Xθ
T , θ) = ã(X0, θ)+

∫ T

0
b̃(Xt, θ) dXt +

∫ T

0
c̃(Xt , θ) dt, (9)

where ã(x, θ) = log(dνθ (x)/dx), b̃(x, θ) = Ṽ ′
0(Ṽ Ṽ

′)−1(x, θ) and c̃(x, θ) =
− 1

2 Ṽ
′

0(Ṽ Ṽ
′)−1Ṽ0(x, θ).

From (7) and (9), the log likelihood function under the true model is given by

lT (XT , θ) = a(X0, θ)+
∫ T

0
b(Xt , θ) dwt +

∫ T

0
c(Xt , θ) dt, (10)

where a(x, θ) = ã(x, θ), b(x, θ) = b̃(x, θ)V (x) and c(x, θ) = c̃(x, θ) +
b̃(x, θ)V0(x).
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Define a functional LT by

LT (Xθ
T , θ) := Ã(X0, θ)+

∫ T

0
B̃(Xt, θ) dXt +

∫ T

0
C̃(Xt, θ) dt, (11)

where Ã, B̃, C̃ are given functions. From (7) and (11), the functional LT under the
true model is given by

LT (XT , θ) = A(X0, θ)+
∫ T

0
B(Xt, θ) dwt +

∫ T

0
C(Xt, θ) dt,

where A(x, θ) = Ã(x, θ), B(x, θ) = B̃(x, θ)V (x) and C(x, θ) = C̃(x, θ) +
B̃(x, θ)V0(x).

Let θ̂T be the M-estimator, that is,

θ̂T := argmax
θ

LT (XT , θ). (12)

DEFINITION 1.

θ0 = argmax
θ

∫
Rd

C(x, θ)ν(dx).

Under certain regularity conditions, we can validate the following argument
(cf. Sakamoto and Yoshida, 1999).

From the definition of θ̂T it follows that

rT
−1(θ̂T − θ0) = − [

rT
2 (∂θ )

2 LT (XT , θ0)
]−1

rT ∂θLT (XT , θ0)+ op(1),

so that we define

ζ̄
(0)
T = −ν (

(∂θ )
2C(·, θ0)

)−1 ×
×

[
rT

∫ T

0
∂θB(Xt, θ0) dwt + rT

∫ T

0
∂θC(Xt, θ0) dt

]
. (13)

Z̄
(0)
T and Z̄(1)

T are given by

Z̄
(0)
T := rT [lT (XT , θ0)− P [lT (XT , θ0)]]

= rT

[
α1(X0, θ0)+

∫ T

0
b(Xt, θ0) dwt +

+
∫ T

0
{c(Xt, θ0)− ν (c(·, θ0))} dt

]
, (14)

Z̄
(1)
T := rT [∂θ lT (XT , θ0)− P [∂θ lT (XT , θ0)]]

= rT

[
α2(X0, θ0)+

∫ T

0
∂θb(Xt , θ0) dwt +

+
∫ T

0
{∂θc(Xt , θ0)− ν (∂θc(·, θ0))} dt

]
, (15)
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where α1(X0, θ0) = a(X0, θ0) − ν (a(·, θ0)) and α2(X0, θ0) = ∂θa(X0, θ0) −
ν (∂θa(·, θ0)).

For functions f satisfying ν(f ) = 0, Gf denotes the Green function such that
AGf = f , where V0 = (V i

0 ), V = (V i
j ) and

A =
d∑
i=1

V i
0∂i +

1

2

d∑
i,j

r∑
α=1

V i
αV

j
α ∂i∂j , ∂i = ∂

∂xi
.

From Itô’s formula, we see

Gf (XT )−Gf (X0) =
∫ T

0
∂Gf (Xt)V (Xt) dwt +

∫ T

0
f (Xt) dt. (16)

Define fi (i = 0, 1, 2) by f0(x) = c(x, θ0)− ν(c(·, θ0)), f1(x) = ∂θc(x, θ0)−
ν (∂θc(·, θ0)) and f2(x) = ∂θC(x, θ0), respectively. Let C∞

↑ (Rd) be the set of all
functions f of class C∞(Rd) such that f and all of its derivatives have polynomial
growth.

ASSUMPTION 3. For fi (i=1, 2), there exists Gfi ∈ C∞↑ (Rd) such that AGfi =
fi.

ASSUMPTION 4. For f0, there exists Gf0 ∈ C∞
↑ (Rd) such that AGf0 = f0.

Moreover, for f3(x) = ‖ξ (0)(x)‖2 − ν(‖ξ (0)(·)‖2), there exists Gf3 ∈ C∞
↑ (Rd)

such that AGf3 = f3. Here ξ (0)(x) = b(x, θ0)− ∂Gf0(x)V (x).

Let ζ (0)(x) = −ν (
(∂θ )

2C(·, θ0)
)−1 {

∂θB(x, θ0)− ∂Gf2(x)V (x)
}

and ξ (1)(x) =
∂θb(x, θ0)− ∂Gf1(x)V (x). For the ergodic diffusion model, we have the informa-
tion criterion in the sense of AEU by using Theorem 4.

THEOREM 6. Suppose that Assumptions 1 and 2 for some K ′ > 1 and α > 1
hold true. Moreover, suppose that Assumption 3 holds true. Then

IC1(XT (ω)) = rT

[
ã(X0, θ̂T )+

∫ T

0
b̃(Xt, θ) dXt

∣∣∣∣
θ=θ̂T

+

+
∫ T

0
c̃(Xt , θ̂T ) dt

]
− rT b1(θ̂T ),

where b1(θ0) = tr
(
ν(ξ (1)(·)ζ (0)(·)′)) and

∫ T
0 b̃(Xt, θ) dXt

∣∣∣
θ=θ̂T

should be read as

substituting θ = θ̂T for θ in the random field
∫ T

0 b̃(Xt , θ) dXt .
Remark 7. In particular, in the correctly specified and MLE case, we have AIC

for the ergodic diffusion model:

b1(θ0) = tr
[
−ν (

(∂θ )
2c(·, θ0)

)−1
ν
(‖∂θb(·, θ0)‖2

)]
= p (dimension of parameter space).
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From Theorem 5, the information criterion in the sense of AMU for the ergodic
diffusion model is given as follows.

THEOREM 7. Suppose that Assumptions 1 and 2 for some K ′ > 1 and α > 1
hold true. Moreover, suppose that Assumptions 3 and 4 are satisfied. Then

IC2(XT (ω)) = rT

[
ã(X0, θ̂T )+

∫ T

0
b̃(Xt, θ) dXt

∣∣∣∣
θ=θ̂T

+

+
∫ T

0
c̃(Xt , θ̂T ) dt

]
− rT b2(θ̂T ),

where

b2(θ0) =

ν

(
ξ (0)(·) {∂Gf3(·)V (·)

}′)
2ν

(‖ξ (0)(·)‖2
) + tr

{
ν
(
ξ (1)(·)ζ (0)(·)′)} −

−
{
ν
(
ξ (1)(·)ξ (0)(·)′)}′

ν
(
ζ (0)(·)ξ (0)(·)′)

ν
(‖ξ (0)(·)‖2

)
]
.

Remark 8. For [A1] in Assumption 1, we can refer Veretennikov (1997) and
Kusuoka and Yoshida (2000). For the assurance of [A3], see Kusuoka and Yoshida
(2000) using the relation between the Hörmander condition and the regularity of
distributions, and Yoshida (2000) applying the support theorem.

4. Proofs

Proof of Theorem 1. From Theorem 5 in Kusuoka and Yoshida (2000), we have
the second order asymptotic expansion of "̃∗

T = Z̄
(0)
T + rT (Z̄

(1)′
T ζ̄

(0)
T − b(θ0)) as

follows.
Let M,γ,K > 0. Suppose that Assumption 1 holds true. Then for any K ∈ N,

there exist smooth functions qj,1,T : R → R such that q0,1,T (z
(0)) = φ(z(0);I(00)

T )

and that for some b > 0 and B > 0,

|qj,1,T (z(0))|�Be−b|z(0)|2,

and there exist constants δ > 0 and c > 0 such that∣∣∣∣∣∣P [f ("̃∗
T )] −

∫
R
f (z(0))

1∑
j=0

T −j/2qj,1,T (z(0)) dz(0)

∣∣∣∣∣∣ � cω(f, T −K)+ ε
(1)
T

for any f ∈ E(M, γ ), where ε(1)T is a sequence of constants independent of f with
ε
(1)
T = o(T − 1

2 (1+δ)∧K).
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With the aid of Theorem 2.1 in Sakamoto and Yoshida (1999),

q0,1,T (z
(0)) =

∫
R2p

φ(z;IT ) dz(1) dz(2),

q1,1,T (z
(0)) =

∫
R2p

ST,1(z)φ(z;IT ) dz(1) dz(2) −

−∂z(0)
[∫

R2p

{
z(1)

′
z(2) − b(θ0)

}
ST,0(z)φ(z;IT ) dz(1) dz(2)

]
.

Here z = (z(0), z(1), z(2)) and functions ST,j , j = 0, 1, are defined, with the Ein-
stein summation convention, byST,0(z) = 1 andST,1(z) = r−1

T
1
6λ

αβγ hαβγ (z;IT ),
respectively.

We then obtain

qT,1(z
(0)) :=

1∑
j=0

T −j/2qj,1,T (z(0))

=
∫

R2p
φ(z;IT ) dz(1) dz(2) +

+rT
∫

R2p
ST,1(z)φ(z;IT ) dz(1) dz(2) −

− rT ∂z(0)

[∫
R2p

{
z(1)

′
z(2) − b(θ0)

}
ST,0(z)φ(z;IT ) dz(1) dz(2)

]

=
∫

R2p
pT,1(z) dz(1) dz(2) −

− rT ∂z(0)

[∫
R2p

{z(1)′z(2) − b(θ0)}φ(z;IT ) dz(1) dz(2)
]
,

where pT,1(z) = φ(z;IT )(1 + 1
6λ

αβγ

T hαβγ (z;IT )). Consequently, we have the
desired result.

Proof of Theorem 2.

|P [f ("̄∗
T )] −LT,1[f ]| � |P [f ("̄∗

T )] − P [f ("̃∗
T )]| + |P [f ("̃∗

T )] −
−LT,1[f ]|

� |P [f ("̄∗
T )] − P [f ("̃∗

T )]| + cω(f, rKT )+ εT

= S1 +S2 + cω(f, rKT )+ εT ,

where

S1 = |P [(f ("̄∗
T )− f ("̃∗

T ))1{|R∗
T | � rK

′
T }]|,

S2 = |P [(f ("̄∗
T )− f ("̃∗

T ))1{|R∗
T |>rK′

T }]|.
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From the assumption concerned with "̃∗
T , it follows that

S1 � P [sup{|f ("̃∗
T + y)− f ("̃∗

T )| : |y|� rK
′

T }]
� |LT,1[h]| + c0ω(h, r

K
T )+ εT ,

where h(x) = sup{|f (x + y) − f (x)|; |y|� rK
′

T } and c0 is a positive constant.
Note that for any δ > 0, there exists a constant C > 0 such that for any z ∈ R2p+1,

sup
T

|z|δφ(z;IT )�Cφ(z; Î).

Therefore we have

|LT,1[h]| �
∫

R
h(x)|qT,1(x)| dx

� c1

∫
R
h(x)φ(x; Î(00)) dx

= c1ω(f, r
K ′
T )

for some constant c1 > 0. Since

sup{|h(x + y)− h(x)|; |y|� r}
� sup{|h(x + y)| + |h(x)|; |y|� r}
� sup{|h(x + y)|; |y|� r} + |h(x)|
� sup{|f (x + y + z)− f (x + y)|; |y|� r, |z|� rK

′
T } + |h(x)|

� sup{|f (x + y + z)− f (x)| + |f (x + y)− f (x)|; |y|� r, |z|� rK
′

T } +
+ |h(x)|

� 3 sup{|f (x + y1)− f (x)|; |y1|� r + rK
′

T },
we obtain

ω(h, rKT ) =
∫

R
sup{|h(x + y)− h(x)|; |y|� rKT }φ(x, Î(00)) dx

� 3
∫

R
sup{|f (x + y1)− f (x)|; |y1|� rKT + rK

′
T }φ(x, Î(00)) dx

= 3ω(f, rKT + rK
′

T ).

Thus we see that

S1 � c1ω(f, r
K ′
T )+ 3c0ω(f, r

K
T + rK

′
T )+ εT . (17)

From (17) and Assumption 2,

S1 +S2 � c1ω(f, r
K ′
T )+ 3c0ω(f, r

K
T + rK

′
T )+ o(r

(1+δ)∧K
T )+ o(rαT ).



INFORMATION CRITERIA FOR MIXING PROCESSES 93

We then have that for some c̃ > 0,

|P [f ("̄∗
T )] −LT,1[f ]| � c1ω(f, r

K ′
T )+ 3c0ω(f, r

K
T + rK

′
T ) +

+ o(r
(1+δ)∧K
T )+ o(rαT )+ cω(f, rKT ) +

+ o(r
(1+δ)∧K
T )

� c̃ω(f, rKT + rK
′

T )+ o(r
(1+δ)∧K∧α
T )

� c̃ω(f, 2rK
′

T )+ o(r
(1+δ)∧K∧α
T ),

which completes the proof.

Proof of Theorem 3. In order to obtain an explicit expression for a second order
asymptotic expansion of the distribution of "̄∗

T , we need to compute the following
integral.

qT,1(z
(0)) =

∫
R2p

φ(z;IT ) dz(1) dz(2) +

+ 1

6

∫
R2p

λ
αβγ

T hαβγ (z;IT )φ(z;IT ) dz(1) dz(2) −

− rT ∂z(0)

[∫
R2p

{z(1)′z(2) − b(θ0)}φ(z;IT )dz
(1) dz(2)

]

= φ(z(0);I(00)
T )+ 1

6
(I) − rT ∂z(0)

[
(II) − b(θ0)φ(z

(0);I(00)
T )

]
,

where

(I) = −
∫

R2p
λ
αβγ

T ∂α∂β∂γ φ(z;IT ) dz(1) dz(2)

= −λ000
T (∂z(0))

3
∫

R2p
φ(z;IT ) dz(1) dz(2)

= −λ000
T (∂z(0))

3φ(z(0);I(00)
T )

= λ000
T h3(z

(0);I(00)
T )φ(z(0);I(00)

T ),

(II) =
∫

R2p
z(1)′z(2)

φ(z;IT )∫
R2p φ(z;IT ) dz(1) dz(2)

dz(1) dz(2) ×

×
∫

R2p
φ(z;IT ) dz(1) dz(2)

=
∫

R2p
z(1)′z(2)φ(z(1), z(2);µ,I)dz(1) dz(2)φ(z(0);I(00)

T ).

Here φ(z(1), z(2);µ,I) is normal with mean µ and covariance matrix I, where

µ =
[
I
(10)
T

I
(20)
T

]
(I

(00)
T )−1z(0),

I =
[

I
(11)
T − (I

(00)
T )−1I

(10)
T (I

(10)
T )′ I

(12)
T − (I

(00)
T )−1I

(10)
T (I

(20)
T )′

(I
(12)
T )′ − (I

(00)
T )−1I

(20)
T (I

(10)
T )′ I(22)

T − (I
(00)
T )−1I

(20)
T (I

(20)
T )′

]
.
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Hence

CT (z
(0)) :=

∫
R2p

z(1)′z(2)φ(z(1), z(2);µ,I)dz(1) dz(2)

= (I
(10)
T (I

(00)
T )−1z(0))′(I(20)

T (I
(00)
T )−1z(0))+ tr{I(12)

T −
− (I

(00)
T )−1I

(10)
T (I

(20)
T )′}

= (I
(10)
T )′I(20)

T

(I
(00)
T )2

[(z(0))2 −I
(00)
T ] + trI(12)

T .

From the representation of (I) and CT (z(0)), we obtain

qT,1(z
(0)) = φ(z(0);I(00)

T )+ 1

6
λ000
T h3(z

(0);I(00)
T )φ(z(0);I(00)

T ) −
−rT ∂z(0)

[{
CT (z

(0))− b(θ0)
}
φ(z(0);I(00)

T )
]
.

This completes the proof.

Proof of Theorem 4. In Theorem 3, by setting f (x) = x and b(·) = b1(·), we
see that

P ["̄∗
T ] = P

[
rT"T − rT b1(θ̂T )

]
= rT

[
trI(12)

T − b1(θ0)
]

+ o (rT )

= o (rT ) ,

which completes the proof.

Proof of Theorem 5. In Theorem 3, by putting f (x) = 1(a,∞)(x) and b(·) =
b2(·), we obtain

P ["̄∗
T > a] =

∫ ∞

a

φ(z(0);I(00)
T )dz(0) + 1

6
λ000
T




(
a

I
(00)
T

)2

− 1

I
(00)
T


 ×

×φ(a;I(00)
T )+ rT


(I(10)

T )′I(20)
T




(
a

I
(00)
T

)2

− 1

I
(00)
T


 +

+ trI(12)
T − b2(θ0)

]
φ(a;I(00)

T )+ o (rT ) .
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In particular, by setting a = 0, we have

P ["̄∗
T > 0] = P [rT "T − rT b2(θ̂T ) > 0]

=
∫ ∞

0
φ(z(0);I(00)

T ) dz(0) − 1

6
λ000
T

1

I
(00)
T

φ(0;I(00)
T ) +

+ rT

[
trI(12)

T − (I
(10)
T )′I(20)

T

I
(00)
T

− b2(θ0)

]
φ(0;I(00)

T )+ o (rT )

= 1

2
+ o (rT ) .

Similarly, by setting f (x) = 1(−∞,0)(x) and b(·) = b2(·) in Theorem 3, we obtain

P ["̄∗
T < 0] = P [rT "T − rT b2(θ̂T ) < 0]

=
∫ 0

−∞
φ(z(0);I(00)

T ) dz(0) + 1

6
λ000
T

1

I
(00)
T

φ(0;I(00)
T ) −

− rT

[
trI(12)

T − (I
(10)
T )′I(20)

T

I
(00)
T

− b2(θ0)

]
φ(0;I(00)

T )+ o (rT )

= 1

2
+ o (rT ) .

This completes the proof.

Proof of Theorems 6 and 7. From (13), (14), (15) and (16), we obtain

Z̄
(0)
T = rT

∫ T

0
{b(Xt, θ0)− ∂Gf0(Xt)V (Xt)} dwt +Op (rT ) ,

Z̄
(1)
T = rT

∫ T

0

{
∂θb(Xt , θ0)− ∂Gf1(Xt )V (Xt)

}
dwt +Op (rT ) ,

ζ̄
(0)
T = rT

∫ T

0
−ν (

(∂θ )
2C(·, θ0)

)−1 {
∂θB(Xt, θ0)− ∂Gf2(Xt)V (Xt)

}
dwt +

+Op (rT ) .

From Itô’s formula it follows that

Cov(Z̄(0)
T , Z̄

(0)
T ) = P

[
rT

2
∫ T

0
ξ (0)(Xt)ξ

(0)(Xt)
′ dt

]
+ o(1),

Cov(Z̄(1)
T , ζ̄

(0)
T ) = P

[
rT

2
∫ T

0
ξ (1)(Xt)ζ

(0)(Xt)
′ dt

]
+ o(1),

Cov(Z̄(1)
T , Z̄

(0)
T ) = P

[
rT

2
∫ T

0
ξ (1)(Xt)ξ

(0)(Xt)
′ dt

]
+ o(1),

Cov(ζ̄ (0)T , Z̄
(0)
T ) = P

[
rT

2
∫ T

0
ζ (0)(Xt)ξ

(0)(Xt)
′ dt

]
+ o(1).
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From stationarity, we obtain

I
(00)
T = ν(ξ (0)(·)ξ (0)(·)′)+ o(1), (18)

I
(12)
T = ν(ξ (1)(·)ζ (0)(·)′)+ o(1), (19)

I
(10)
T = ν(ξ (1)(·)ξ (0)(·)′)+ o(1), (20)

I
(20)
T = ν(ζ (0)(·)ξ (0)(·)′)+ o(1). (21)

Next, we compute λ000
T .

Z̄
(0)
T = rT

∫ T

0
ξ (0)(Xt) dwt + rT

{
Gf0(XT )−Gf0(X0)

} + rT α1(X0, θ0).

By using the strong mixing property, we obtain

λ000
T = P [(Z̄(0)

T )3] = rT
3P

[(∫ T

0
ξ (0)(Xt ) dwt

)3
]

+ o (rT ) .

From Itô’s formula,

λ000
T = 3rT

3 · P
[∫ T

0

(∫ t

0
ξ (0)(Xu) dwu

)
‖ξ (0)(Xt )‖2 dt

]
+ o (rT )

= 3rT
3 · P

[∫ T

0

(∫ t

0
ξ (0)(Xu) dwu

)
[‖ξ (0)(Xt)‖2 −

− ν(‖ξ (0)(·)‖2)] dt
] + o (rT )

= 3rT
3 · P

[(∫ T

0
ξ (0)(Xt) dwt

)
·
(∫ T

0
[‖ξ (0)(Xt)‖2 −

− ν(‖ξ (0)(·)‖2)] dt
)] + o (rT ) .

From 16 it follows that

λ000
T = 3rT P

[(
rT

∫ T

0
ξ (0)(Xt) dwt

)
×

×
(
rT

{
Gf3(XT )−Gf3(X0)

} − rT

∫ T

0
∂Gf3(Xt )V (Xt) dwt

)]
+

+ o (rT )

= −3rT P

[(
rT

∫ T

0
ξ (0)(Xt) dwt

)(
rT

∫ T

0
∂Gf3(Xt)V (Xt) dwt

)]
+

+ o (rT )

= −3rT P

[
rT

2
∫ T

0
ξ (0)(Xt)

{
∂Gf3(Xt)V (Xt)

}′
dt

]
+ o (rT ) .

Finally, from stationarity,

λ000
T = −3rT ν(ξ

(0)(·){∂Gf3(·)V (·)}′)+ o (rT ) . (22)
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We then obtain IC1 from (10), (12) and (19). Moreover, IC2 is given by (10),
(12), (18), (19), (20), (21) and (22). This completes the proof.
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