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1. Introduction

Consider a family of d-dimensional diffusion processes defined by the stochastic
differential equations (statistical models)

dXE(6) = Vo(X2(0),0)dr + &V (XE(6), 0) dw,,
t €Ty, T], &€ (0,1], (1)

£(0) = xp,

where Ty and T are fixed values, x7, is a constant, a p-dimensional unknown
parameter # € ©: a bounded convex domain of R”, V; is an R?-valued smooth
function defined on R¢ x ©, V is an R¢ ® R"-valued smooth function defined on
R? x ® with bounded x-derivative and w is an r-dimensional standard Wiener
process.

Under an equivalent martingale measure P, we consider d-dimensional diffu-
sion processes defined by the stochastic differential equations

dXE(0) = Vo(X2(0),0)dr + &V (XE(6), 0) dib,,
t €Ty, T], &€ (0,1], )
£ (0) = xp,

where \70 is an R?-valued smooth function defined on R x ®, @ is an r-dimensional
standard Wiener process under P and 0, V, Ty, T and x7, are the same as (1).
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There are many applications of small diffusion models to finance, especially,
option pricing, see [7, 8, 21, 22, 31] and references therein. Many option pricing
problems associated with small diffusion are related to functionals of the form

T T
F;(0,w) = Fr, + fo(X;(0),0)dt + ¢ f(X;(0),0)dw,, 3)
To To

where I, € R¥, fo(x,0) € C?(Rd x ® — R¥), that is, fy(x, 6) is an R¥-valued
smooth function defined on R? x ® and for any i, j € N there exist my, C; > 0
such that sup, g 897 fo(x, 0)] < Ci(1 + |x[)™, and f(x,0) € C‘;O(Rd X 0 —

R*¥ ®R"). From the viewpoint of the stochastic control theory, it may be useful that
instead of the form (3), F;(0, w) is defined by

T T
Fr(0, w)=Fr, + | fo(X[(0),0)dt +& [ [f(X;(6),0)dw, + F(X7(6)),

To To
4)

where F(x) is an Rk-valued smooth function. For example, if d =k and
Fi(0,w) = X5(0), then we put Fr, = 0, fo(x,0) = 0, f'(x,0) = 0 and
F(x) = x. However, by using It6’s formula, F(X7(6)) can be represented by
the right-hand side of (3). Consequently, we will take the form (3) in place of the
form (4) for prices at time 7T .

Let

T
G0, w) = exp{—f rf(@,ﬁ))ds},
Ty
T

T
rp(0, w) = rg, —I—f ho(X7 (), 0)dr + 8/ h(X;(6),0)dw,,
To To
where rr, € R, ho(x,60) € CP(R? x © — R), h(x,0) € C*(R! x ® - RQR")
and r$ (0, w) >0 for s € [Ty, T]. To price call-options at time t = Ty we want to
calculate the expectation

E7,,60[G7 (60, ) Max{Fy7.(6p, w) — K, 0}], (&)

where Max{x, 0} = (Max{x;, 0}, ..., Max{xg, 0}) for x = (x1,...,xr) € RF,
E7, g,[-] stands for the conditional expectation operator under P given 6y € O at
time t = Ty and K is an R¥-valued striking price (see [4, 12]).

Unfortunately, we cannot obtain this expectation (5) because 6y is an unknown
parameter. Therefore, we estimate 6y and predict (5) by means of

Eq, .G 6 (w), i) Max{Fj (0 (w), W) — K, 0}], 6)

where ég(w) is an estimator of 6y independent of {w,; ¢t € [Ty, T']}. It is difficult
to obtain this expectation explicitly, so we will derive the asymptotic expansion of
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(6). For the first order asymptotic theory for small diffusion models, see [3, 9-11,
19, 20, 25, 26]. For details of asymptotic expansions for small diffusion models,
see [2, 6, 30-33, 35].

As ¢ | 0, the process X; (6) defined by (2) converges to X?(Q) satisfying the
ordinary differential equation

dXx?(9)
dr
X9 0) = xy,.

= Vo(X)(6).6), t€lTp, T,

For example, it is known that SUPT, <r<T | X7 (6o) — X?(90)| — Oas.ase | 0.
Hence, under some regularity conditions, it follows that F;.(6y, w) — f_1(6p) a.s.
as ¢ | 0, where

T
fo10) = Fry+ | fo(X2(0),0) dr.
Ty

Therefore it is more convenient to treat I:“; 0, w) =[F;(0,w) — f-1(0)]/e instead
of F; (0, w) itself. From (6), we consider the functional H; (6, w) defined by

H;.(0,0) = G50, W)(Ff (6, %) — K) 4,0 (Ff. (6, 1)), (7

where A.(0) = {x;x > (K — f_1(0))/¢e} and derive the asymptotic expansion of
the expectation

Eq, 4 o [Hz (B (w), )] ®)

In order to obtain the asymptotic expansion of (8), we must consider the
stochastic expansion of (7). Let us discuss this from a mathematical point of view.
Assume that families of random variables F; and G have the asymptotic expan-
sions:

Fj ~ fa+efotrefit---, 9)
Gi ~ g 1+ego+eig +- (10)

as ¢ | 0in some sense. If function 7'(x) satisfies a certain regularity, we then have
the stochastic expansion of 7'(F7;) defined by

T(FS) ~ g+ e®y+--- (11)

as ¢ | 0O in some sense, where ®¢, &, ... are determined by formal Taylor ex-
pansion, and in particular &y = T (fy) and ®; = f1(07/9x)(fy). If we can take
T (x) = 14(x), the indicator function of the Borel set A, the stochastic expansion
of (11) is formally given by

- o0l
1A(FE) ~ 14(fo) + efla—;(f()) T (12)
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as ¢ | 0 in some sense. From (9), (10) and (12), we obtain the expansion of
G5 (F; — K)14(Fp):

G5 (Fy — K)1a(Ff) ~ g1(fo1 — K)1a(fo) +

+ 8[{g0(f—1 — K) + g-1fo}la(fo) +
31
+g1(fo - K)fla—/‘(ﬁ))} o
X

as ¢ | 01in some sense.

However, there are three difficulties in this situation. We note that the second
term of the right-hand side of (12) is a composite function of the random variable
fo and the Schwartz distribution 91, /0dx. We have the first difficulty that there is
no usual meaning of a random variable as a measurable function on a probability
space. Therefore, we are faced with the problem of how to define or interpret such
composite functionals. Next, we meet the second question of how to justify the
formal expansion (12) after removing the first difficulty. The above two difficulties
have been solved by Watanabe [27, 29] in the Malliavin calculus. Watanabe [27]
presented the concept of the generalized Wiener functional (i.e. the Schwartz dis-
tribution on the probability space) and the pull-back of Schwartz distribution under
Wiener mappings. Moreover, he formulated the asymptotic expansion of the gen-
eralized Wiener functionals in some Sobolev space in his renowned work [29].
For more details of the Malliavin calculus and Watanabe’s theory, see [5, 13—
18, 23, 24, 28-30, 34]. To use Watanabe’s theory, the crucial step is to show the
nondegeneracy of the Malliavin covariance of functionals. However, we here have
the third problem that it is not easy to check this even for a simple statistical esti-
mator, whose Malliavin covariance is given by an integration of some nonadaptive
process. In addition, as for estimators such as maximum likelihood estimators, we
cannot ensure their existence on the whole sample space in general. This difficulty
has been solved by Yashida [31] in the modification of Watanabe’s theory with
truncation. We call this the theory of Malliavin—Watanabe with truncation. The
present paper will prove that this theory is very useful to derive quite directly the
asymptotic expansion of estimator for option price.

The organization of the article is as follows. In Section 2, the asymptotic expan-
sion of the estimator for a price of a call-option is obtained. In Section 3, we present
our main result. The first and second order asymptotically expectation-unbiased
estimators for a price of a call-option are derived. Section 4 presents proofs of the
results.

2. Asymptotic Expansion and Option Pricing

Let (W, F, P) be a probability space. Let (W: H, f’) be an r-dimensional Wiener
space with the Ornstein—Uhlenbeck operator L. It is then possible to extend L over
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the product space W=WxW (cf. [1]). We will in the sequel use the same L
for this extended Ornstein—Uhlenbeck operator over W. D) (W) is regarded as a

Sobolev space over W. Moreover, we define D>, D~°°, D~ as usual.
First, we prepare several notations. Let X(6) be the solution of the ordinary
differential equation

dx°(6)

dr
X9.0) = xz,.

= Vo(X26),0), tell,Tl,

Let an R? ® R?-valued process YF(0) be the solution of the stochastic differential
equation

dY£(0) = Vo (XE(0). O)YFO)dr + &Y dVa(XE(0), 0)Y(0) dib,
a=1

t €T, T,
Y7, (0) = 14,

where [0Vo]"/ = 8;V(, [0V, ]/ = 9;Vi, 8; = d/ox/,i,j = 1,...,d, a =

J T

1,...,r. Then, Y;(0) := Y2(0) is a deterministic R ® R?-valued process. It is
known that ¢ — X7 is smooth. In particular, D,(0) := dX?(0)/0¢|.—o satisfies the
stochastic differential equation
dD,(0) = aVo(XL(9),0)D,(0)dt + V(X(0),0)diw,, te(Tp,T],
Dg,(0) = 0.

Then, D,(0) is represented by
t
D,(0) = / Y,0)Y, (O)V(X](©),0)dwy, telTp,TI.
To
E,(0) := 3°X £0)/ &2 |,— satisfies the stochastic differential equation

d
> 8:9;Vo(X((9). 0)DL(0) D] (9) dr +

ij=1

dE; ()

d
+ > 0, Vo(X[(0). 0)E(0) dt +

i=1

d
+23 8 V(X)().0)Di(0) diby, t € [T, T],
i=1

E7,6) = 0.



194 MASAYUKI UCHIDA AND NAKAHIRO YOSHIDA

Then, E; () is represented by

P d
E,(6) = / Y)Y (9) Zal-ajf/o(xf(e),e)D;Z(e)Dj(e)ds+
Tt

0 i,j=1

t d
+ 2/ Y,(G)YS‘I(G)ZaiV(X?(G),G)Dé(G)du”JS, t €Ty, T
To i=1
LEMMA 1. F; (ég(w), W) € D®(W; RY) and it has the asymptotic expansion
Fi@:(w), 0) ~ fo1(Be(w)) + efoBe(w), 0) + &% f1 (B (w), i) + - - -
in D*(W;RY) as &0 with f10:w)), fo@(w), D), fi(Bc(w), D), ...€
D>®(W; RY). In particular,

T
f0) =Fr+ | fo(X])©),0)dr, (13)

Ty

T T
fo(G,ﬁJ)=/ 3 fo(X7(©),0)Di(0, w)dr + | f(X)(6),0)dw,, (14)

To To
1 (7 , .
f1(0, w) = E/T 3:9; fo(X}(0),0)Di(0, W) D] (6, w) dr +
0

17 -
3 / 3, fo(X°(6), ) EI 6, i) df +
To

T
+ f 5, £ (X°(8), ) DI (9, &) iy, (15)
T

0

where we use Einstein’s rule for repeated indices.
LEMMA 2. G5 (b:(w), W) € D®(W) and it has the asymptotic expansion
G5 (6 (w), ) ~ g-1(B-(w)) + £go(Be (w), B) + - --
in D®*(W) as & | 0 with g_1 0, (w)), go@:(w), W), ... € D(W). In particular,

T t
g-1(0) = exp (—/ {rTO +/ ho(XS(e),e)ds} dt), (16)
T Tt

0 0

T
g0, w) = _8—1(9)[/T {

+ / h(X?(Q),Q)dzI)S}dt:|. a7
T

0

t
/ 3iho(X%(0),0)DL (8, W) ds +
T

0
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ASSUMPTION 1. For any p € (1, 00), the Malliavin covariance O 40 6o (). of
fo@s(w), -) in Lemma 1 satisfies

sup E[(det Jfo(és(w)’_))_”] < 00.
£€(0,1] :

LEMMA 3. Let F;(@, w) = [F;(0,w) — f-1(0)]/e and ¢ : R — R be a smooth
function such that 0 < Y (x) <1 forx e R, ¥ (x) = 1for [x|<1/2and Y(x) =0
for |x| > 1. Let £&,(6, w) = 2(det Ofs9,) — detoyy,.)/ deto g,y and Yr (0, w) =
Y (£.(0, W)). Suppose that Assumption 1 holds true. Then for any T (x) € S'(R¥)
(the space of Schwartz tempered distributions), ¥} (ég (w), @)T(ﬁ; (ég(w), w)) €
D~(W) has the asymptotic expansion

Y76 (w), BT (Ff (0 (w), 1)) ~ D0, (w), ) + D1 (0 (w), i) + - -
in D™ (W)ase | 0 uniformly in every class {T} satisfying the condition (5) of

Theorem 4.1 in [31], and ®o(0.(w), 1), D, (6. (w), 0), ... in D°(W) are
determined by the formal Taylor expansion. In particular,

D0, ) = T(fo(6, D)),
©,60, W) = Y fi6, DT (fo(®, b))

From Lemmas 2.1 and 2.2 in [30] and Lemmas 1 and 3, we see that the com-
posite functional

(Ff s (w), ©) — K)WF O:(w), D)1, 5 oy, (Ff (Be(w), 1))
=: Fi(0.(w), W) (say)
is well-defined, where A.(0) = {x; x > (K — f_1(0))/¢e}, and we define
Hi (Ge(w), ©) = G50:(w), W) F5 (0. (w), 0).

LEMMA 4. Suppose that Assumption 1 holds true. Then I:If(ég(w), w) € D~
(W; RY) has the asymptotic expansion

HEB:(w), 1) ~ Eo(B:(w), 1) + 21 (0 (w), W) + - -

in D™°(W; RN as ¢ | 0, and Eo0,(w), ®), E,0:(w), W), ... in D~°(W; RF)
are determined by the formal Taylor expansion. In particular,
Eo(0, w) = g-1(0)(f-1(0) — K)14,0)(fo(0, w)),
E1(0,w) = g-1(0) fo(0, w)la, @) (fo(0, w)) +
+ 21O (f1(0) — K) f1 (6, W)d; 14,0y (fo(0, W)) +
+ 800, w)(f-1(0) — K)14,0)(fo(B, w)).
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Remark 1. Ei(ég(w), w) depends on ¢ for i = 0, 1,.... However, the same
proof as Watanabe [29] apd Yoshida [3OJ wgrks in such a situzAition. Moreover, note
that we may replace F5 (6, (w), ) by (Fg(6, (w), ©) +[f—1 G:(w)) — f_1(60)]/#)
and A, (ég (w)) by A.(6p), respectively, if necessary. The Malliavin covariance is
invariant and there is no problem in applying the partial version of Theorem 2.2
in [30]. See the second part of the proof of Theorem 1.

We will use the Einstein’s rule for repeated indices. For matrix A, [A]” denotes
its (i, j)-element. Moreover, [A]"" and [A]/ are the ith row vector and the jth
column vector of A, respectively. For vector a, a' is its ith element. Define several
functions as follows:

AL(O) =YY OVX©).01, i=1,....4d,
ul, (0) =Y, @)Y, OV X2O).0V, ij=1...4d,
Vi@ = @)Y ©3:0;Vox©),01, ij.l=1,....d,

T
a:(6) = / 90 fo(X°(0). )32, (6) ds + £(X°(6). 6),
T K
by(6) = —/ </ 8,ho(X0(0), 0)A% ,(6) du +h(X§?(9),9)) ds,

T
2(9)=f ar(@)a, ()" dt,
Ti

0

T
B() =/ a,(0)b,(0)" dt.
T

0

From (14), (15) and (17),
T

fo(9,ﬁ1)=/ a,(0) dwy, (18)

Ty

1 (7 . ‘
Fo0, ) = sz 8,0, 2(X°(8), 6)Di (8, %) Di @, ) dr +

0

T
+ lf 3 f3(X2(0), 0)El (0, w) dt +
Tt

2 0
T
+ / 8if“(X?(9), 9)Df(0, w) dw,, (19)
Ty
T
g0, w) =g 1(0) | b(0)dw,. (20)
To

For R-valued function 4;,

T pt
Ci(h,0)r = / / hihe s(0)al(0)ds dr.
Ty JTo
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For R! ® R’ -valued function #,,
. T t .
Ci(h,0)r = / f a @A (O)d(0)dsdr, i=1,....d.
To YTy
For R' ® R”-valued functions b, and c,, put
1 T T
Cy(b,c,0)r = —/ f a,(0)[b;cs + ¢;bsla,(0) ds dt.
2 To YTy

Let C57(t,0) = Co(A (O] <1y M..(O) ;. <1y, O)r. Put 67 (6) = [£(@)]V and
0, (0) = [(ZO))~'1Y.

Define A%*(0) and A% (6) by

T t
a0 = 5 [ [ aa s o 0m, @04 @) sar+
To YTy

1 T t K )
+ —/ 3 f3(X2(0), 9)/ / vfgj”(9))»§ L (0) X
2 Jg nJn, '

0

x (A ,(0)) duds dr,

1 ! i,j mn
AZe(0) = 3 /T 3;0; f(X(0), 0)[Cy (1, 0)1™ dt6 1 (0)5, (9) +

0

+ [C5@3; £ (X260, 0), ) 11" 0w (0)04n (0) +

1 (7 '
+3 /T 05 f3(X(6), 6) /T 0 vj15(0) x

0

x [C57(2,0)]"™ ds dtc (00, () +

T
+/ 0 £ (X0(0), O)[CH(UL, (0). 0) 1™ 15, (0) 04 (0).
Ti

0

Let ¢ (x; i, X) be the probability density function of the k-dimensional normal
distribution with mean vector i and covariance matrix X.

THEOREM 1. Let p > 1. Suppose that Assumption 1 holds true. Then Eg, ;
[H} (ég (w), w)] € L p(Rk) has the asymptotic expansion

ETo,ég(w)[H;(és(w), l:l:))] ~ / R PO(X, és(w)) dx +
A (0 (w))

+sz p1(x, B (w))dx + - - -
Ag (O (w))
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in L,(R¥) as & | O with [, & po(x, B (w))dx, [, o pi(x, fe(w))dx, ...
inL, (RY). In particular,
po(x,0) = g_1(O)(f-1(0) — K)o (x; 0, X(0)),
pi(x,0) = g 10)x¢(x; 0, £(8)) — g1O)(f-10) — K)[{AL%(6) +
+ AZE(0) — A(0)0,p(0) + AL ()0 (0)00, (0) —
— BY(0)0up(0) }x” — A% (0)0,(0)x"xx'|p (x; 0, Z(6)).
Remark 2. 6,(w) may be degenerate because we have used the Malliavin cal-

culus on W. In particular, we have the same result as in [31] by replacing O (w) by
6.

ASSUMPTION 2. fy(Bo, -) in Lemma 1 is nondegenerate in the sense of Malliavin,
that is,

T
det </ a; (6p)a; (00)’dt) > 0.
To

COROLLARY 1. Suppose that Assumption 2 holds true. Then Et, g,[ H; (6p, w)]
has the asymptotic expansion

Exyo0[HE (B, )] ~ / po(x, 60) dx + ¢ / p1Cr 60) dx + -
A (6p) Ae(60)

ase | 0.

3. Unbiased Estimator

ASSUMPTION 3. There exists R.(w) = O(1) in N,-1L,(W) such that for every
K >0andc > 0,

liigs_kP[|Rg(w)| >¢]=0
and for y.(w) = Yy 3R (w))andi =1,2,..., p,
Y (w)e ™ G (w) — 00) ~ ¥ (w) + LegV(w) + - -

inNparL,(Wyase | Owith”(w), £ w), ...in N1 L, (W), where ¢* (w) =
fOTO gi (1) dw, for some function g; € L*([0, Ty], dt).

Define %o (w), X (w), f1.; () and Cl“@p) fori =1,...,pandl,a =1,...,k
by

T
Fo(w) = / 52 fo(X°(60), 60) di 2 (w) +
To

T
+ / 3, fo(X2(60), 00)8: X" (8p) dr g (w),
Ty
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T
fi(w) = % / 82 fo(X0(6p), 6p) Az (w) +
T

0

1 rr 0 0.i1 )
+ 3 0i, fo(X[(6p), 00)8; X, (6p) deg; " (w) +
To

1 T
+3 / 8782 fo(X2(00), o) dr¢” (w)z " (w) +
To
1 T
+5 / 31,81, fo(X°(60), 6p) x
To
x 8: X" (00)8; X7 (00) de & ()¢ (w) +

17 ;
+5 / 3, fo(X}(00), 00)8:8, X, (B) de g (w)¢(” (w) +
To

T .
+ f 3,8 fo(X?(B0), 00)8: X} (B) de g (w)¢(” (w),
Ty

T s )
Jo(w) = — / f 18;,h0(X2(B0), 00)8: X" (60) +
To YTy

+ 5P ho(X(00), 0) } dr dsg” (w),

T
3,82 fo(X°(6), 60) D} (B, ) dt +

fri@) = /
To

T
+/ 3i, 35, fo(X{ (80), 60) D' (B0, ©)8; X" (60) dt +
T

0

T .
+ / 3, fo(X2(60), 60)8: D' (6o, W) dt +
T

0

T
+ / 5P £(X°(6y), 60) dib, +
T

0

T
+ / 3, £ (X (B0). 00)8; X" (o) dib,
T

0

T
3=/ Ct,i(eo)dﬁ)t’
Tt

0

T
Cl*(y) = / [at(eo)cé,i(eo)]la dr,
T

0

where §; = 8/80 and 8\ fo(X%(6p), 60) = 8i fo(X°(6o), 6)lo—s,-

LEMMAS. Let Ve (w) = Y (9R.(w)). Suppose that Assumption 3 holds true.
Then Y. (w) Ff (6. (w), w) € D*®(W; RY) and it has the asymptotic expansion

Ve (W) Fe@: (w), ) ~ f1(60) + & fow, W) + &% fi(w, b) + - -
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in D®*(W;R¥) as & | 0 with f_1(8y), fo(w, ), fi(w, W), ... € D®(W;R¥). In
particular,

fotw. ) = foo. B) + Fo(w). 1)
fitw, ) = f1(B0, W) + fr; (@) (w) + £ (w). (22)

LEMMA 6. Suppose that Assumption 3 holds true. Then lﬂg (w)G% (ég(w), w) €
D> (W) and it has the asymptotic expansion

Ve ()G (0 (w), ©) ~ g_1(Bp) + 8o(w, W) + - - -

in D¥(W) as & | 0 with g_1(6p), go(w, W), ... € D¥(W). In particular,

T

go(w, w) = g_1(6p) b, (6p) dw; + g—1(6p) Jo(w). (23)
To

LEMMA 7. Let 15}“9(0, w) = [lﬁg(w)F;(G, w) — f_1(6p)]/e and lﬁ;(w, w) =
(& (w, w)), where &.(w, w) = 2(det O fxe Go(w).) — det af.o(w,.))/det O f oy Sup-
pose that As:mmgtions 2 and~3 hold true. Then for any T(x) € S’ (RY,
Yi(w, w)T (F7(0:(w), w)) € D™>°(W) has the asymptotic expansion

U (w, )T (Fi (e (), 1)) ~ Do(w, ) + e®y (w, b) + - - -

in D~ (W) as e 40 umformly in every class {T} satzsfymg the condition (5) of
Theorem 4.1 in [31], and CDO(w w), <I>1(w w),...in D~ (W) are determined by
the formal Taylor expansion. In particular,

Do(w, B) = T (fo(w, W),
Oy(w, ) = Y flw, DT (fow, D).

From Lemmas 2.1 and 2.2 in [30] and Lemmas 5 and 7, we see that the com-

posite functional

Ve (W) (FE(B: (w), ©) — KW (w, )14, g (F5 B (w), ©))
=: F3*(6,(w), W) (say)

is well-defined and we define b_l}‘a(ég(w), w) = wg(w)G 6. (w), w)F*S(Q (w), w).

LEMMA 8. Suppose that Assumptions 2 and 3 hold true. Then ﬁ;g 6. (w), W) €
D~°(W; R¥) has the asymptotic expansion

HE (s (w), ©) ~ Eo(w, W) + £ &1 (w, b) + - - -
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in D°(W;R¥) as ¢ | 0, and Eo(w, W), E(w, W), ... in D~°(W: R¥) are
determined by the formal Taylor expansion. In particular,
ow, ) = g_1(00)(f-1(60) — K) 14, @) (fo(w, b)),
1w, D) = g_1(80) fo(w, D)1, a0 (folw, W) +
+ g-1(00) (f-1(80) — K) f{ (w, B)3; 14, 00) (fo(w, ©)) +
+ (f21(80) — K)go(w, W) 14,0 (fo(w, ).

o)

o>

THEOREM 2. Let p > 1. Suppose that Assumptions 2 and 3 hold true. Then
ETO’(;E(W)[H;S 0. (w), w)] € LP(Rk) has the asymptotic expansion

ETO»ée(w)[H}kg(éé‘(w)’ IZ))] ~ /

ﬁo(x,w)dx+8/ pri(x, wydx +---
Ag(e())

Ae(60)
in L,(R") as e | Owith [, o pox,w)dx, [, o pr(x,w)dx,...in L,(RY). In
particular,
Polx.w) = g_1(B0)(f-1(60) — K)o (x; Ro(w), T(6p)).
prlx,w) = g_1(6p)xp(x; Xo(w), X(0)) — g—1(60)(f-1(6p) — K) X
x [CI*(00)010(B0) 5" (w) — Fo(w) + {AZ%(B0) + AZ%(60) —
— (A% (B0) — A} (60)5"(8p) + £ (w) + B (6))0ap(00)} x
x (x — Zo(w))? — CI*(00)01 (00)0q (B0) £ (w) x
X (x — Zo(w))? (x — Zo(w))? — A% (60)0ai (69) X
X (x — Ro(w))” (x — Zo(w))? (x — Zo(w))'] x

x ¢ (x; Xo(w), Z(6o)).

We here consider the first-order asymptotically expectation-unbiased (AEU)
estimator of Eg, o [Hf (0, W)]. Let X1(6)) = X(6y) + Var[Xo(w)], where
Var[xo(w)] = fOTO d;(6p)d; (6y)’ dr and

T .
d;(60) = ( / {87 o X0 @0 60) + b1, fo(X0 B0, 60)8; X7 00 dt) 8i(s)-
Ti

0

THEOREM 3. Suppose that Assumptions 2 and 3 hold true. Let

b1(60) = g-1(60)(f-1(6b) — K) {#(x;0,21(00)) — ¢ (x50, (6p))} dx.
Ae (00)
Then ETo,ég(w)[Hf(ég(w), w)] — bl(ég(w)) is the first-order AEU estimator of
ET(),Q()[H;(QO’ ‘J))]

Next, we obtain the second-order AEU estimator of E7, g, [ H7 (69, w)].
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THEOREM 4. Suppose that Assumptions 2 and 3 hold true. Let
b2(6o) =/ / p1(x, w)dx P(dw) —/ p1(x, 6p) dx.
W J Ag (60) A (60)

Then Eq, 4 o [Hi 0. (w), )] — by (B (w)) — b (6. (w)) is the second-order AEU
estimator of Eg, o,[ H (6, W)].

Suppose that a one-dimensional small diffusion F satisfies (3), that is,
k = 1. From Theorems 3 and 4, we obtain the second-order AEU estimator of
Ex, 6, H} 6y, )].

ASSUMPTION 4. There exists t € [Ty, T] such that a, % 0.

THEOREM 5. Suppose that Fj satisfies (3) for k = 1. Moreover, suppose that
Assumptions 3 and 4 hold true. Let

b"(6) = g_1(6) X {p(x;0, 1(0) — (x50, £(0)} dx.
Ag(0)

Then Eq, 5. [Hz 0. (w), ©)]— b1 B (w)) — &by (B, (w)) is the second-order AEU
estimator of Eg, g, Hy. (6, )].

Remark 3. To derive the results in Theorems 3-5, we can relax the conditions
of C* smoothness about the drift and the diffusion coefficient functions appearing
in the stochastic differential equations concerned with these theorems.

4. Proofs

Proof of Lemma 1. Expanding X¢ in a Taylor series around X?, we have

T
f Fo(XE @B (w), W), 0. (w)) dr
Tt

0

T
= [ foX°@.(w)), b (w))dr +
To

T
+e / 3; fo(X2 (@ (w)), 0. (w)) D (B, (w), i) dr +
T

0

T iA
+ &2 {% / 3;0; fo(X (6 (w)), B (w)) D! (B (w), W) D] (6 (w), W) dr +
T

0

T
+ % / 3ifo(X?(és(w)),és(w))E,i(és(w),@)dl} +
Ty

+ & £ (X0 (w), ), B (w)),
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where
F2(XE B (), ), O (w))

1 1 T 83
= 5/ / @fo(Xf(Q,U?),@)df
0 To

From f,”(X¢(0;(w), W), 6;(w)) = Op(1), where Oy(1) means O(1) in
D>®(W; R¥), we have

(1 — u)? du

0«0, (w)

E<UE

T
Fo(XE(0.(w), ), 0. (w)) dt

To

T
= [ foX°@.(w)), 6 (w))dr +
Ty

T
+e / 3; fo(X2 (@ (w)), 0. (w)) D (B, (w), i) dr +
T

0

T o
+ & {% / 3:0; fo(X? (B (w)). B (w)) D} (B (w), ) D] (B (w), ) dr +
Tt

0

1 [T " A~ N
+ Ef 3 fo (X (0 (w)), 0. (w)) E} (B (w), lb)df} + O (e?).
Ty

Similarly, we have

T

e | FXEB(w), W), B (w)) dib,

To

T
=e | fXPO:(w)), b.(w))dw, +
Ty

T
+ & / 3 £ (X2(B.(w)), 6. (w)) D} (B.(w), ) dib, + Op ().
T

0

We then have
Fi(0:(w), W)

T
=Fp+ | foX°@.(w)), 0. (w)) dr +
Ty

T
+ s{ / 3; fo(X2 (@ (w)), 0. (w)) D (B, (w), i) dr +
T

0

T
+ [ FX°0.(w)), 6 (w)) dw,} +
To
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17 A A A A
+82{§f 39 fo(X} (B (w)), O (w)) D} (B (w), ) D (B (w), w) dt +
Ti

0

1 [T . . .
+ 5[ 3 fo(X)(0: (), B (w) E (O (w), ) dt +
Ty

T
+ / 0, F (X° @ (w)), B (w)) D} B, (w), ) dzb,} +
T

0

+ Oy (ed).

From the second-order stochastic expansion of Fj. (ég (w), w) as above, fy and f;
are determined.

In the same way as the second-order stochastic expansion, we can see that for
any m € N,

FE@.(w), ®) = f16:(w)) + efo@c(w), W) + > f1(0(w), ®) + - - - +
+ " 1 Be(w), ©) + ™ £ (B (w), W),

where fg(”’)(ég (w), w) = Oy (1). This completes the proof.

Proof of Lemma 2. In the same way as the proof of Lemma 1, we can show the
result.

Proof of Lemma 3. From the definition of &, |§s(ég(w), w)|>1 if
detoze g, ),y < (1/2)detoy g . OF detoge g )., > (B/2)detoy g ) ) In
case that (3/2) detafo(ég(w)_")> detaﬁ;(ég(w)_")>(l/2) detafo(ég(w)_"), we obtain

N -1 < s —1 < R -1 .
Tollows front esunpton 1t a2 (ooey P

S%PI]E[I{\sg(é,:,(w),w)\<1}(detaﬁ;<ég(w),~>)_p] < oo
ee(L,

From Lemma 1, F; (ég(w), W) € D®°(W; R) has the asymptotic expansion
FfBe(w), @) ~ foB:(w), ©) + efi (B (w), B) + - --

in D®(W; RY) as & | 0 with fo(@(w), i), f1(f.(w), W), ... € D(W;RF). We
then have F%(0:(w), W) = fo(6:(w), W) +&f D (0:(w), W), where f (0 (w), W) €
D>(W; R%) and £ (8, (w), ©) = Oy (1). Since

|(det o 5, ,) "> = (det oy, g, y.)

o ) 12 1/2
S (et o 4, wy,0- @) = (detog g ) )

_ ) 12
= e(deto ) )"
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we have
ldetoze Gy, = deLO 55, ) |
= (et 07 g, ).) % = (detog g,y ) 2 11(det 0 g,y )2 +
+ (det o g, .) |
Se(deto g, )" {(det Oz duan.) |+ (det Gfo(és(U)),-))l/z} '
Hence, it follows that there exists C > 0 such that for any p > 1,

|| det OF Bow)) detoy 4 .o llp < Ce. (24)

From the definition of &,, "g‘g(ég(w), W) = O(1) in D®(W) as ¢ J 0. It follows
from Chebyshev’s inequality that for any a > 0, K > 0,

o _[2(detoze 5 )y — deto, g )
PO, (w), W) >a] < P |: 7(0e(w),") So(0s(w),-) a
det o, 6, ().
K
_ 1 2(det oz g, ),y — detT g G,y )
< —
< ]
a det o, G, ). K

It follows from (24), Holder’s inequality and Assumption 1 that for any K > 0,
K

= 0(c").
K

2(det Gﬁ;(ég(w),~) — det Jfo(ég(w),~))
deto

fo@Be(w),")

We then see that for any a > 0, K > 0,
P£(0:(w), ) > a] = O(X). (25)
From (25), we see that for any p > 1,
1= @ w). D)l = I = ¥ 6O Dy <L 00,4 1o
= 0(").
In view of the chain rule for H-derivatives,
D( =y O:(w), 0)) = —DY;(6:(w), W)
= —¥'(:6:(w), 1) D& (. (w), D).
Since ||1///(§s(és(w), w)ll, = 0(eX), we see that for any p > 1,
IDA = 9B (w), w)l, = OEX).
Similarly, it follows that for any p > 1 and j > 0,
IDI (1 = 7 (e (w), D))l = O(X).
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Therefore, we see that for any K > 0, w:(ég(w), W) =1 — O0(eX) in D®(W). By
using Theorem 4.1 in [31],

(O (w), )T (Fe B (w), W) ~ Dg(6e (w), 1) + e, (0. (w), ©) + - - -
in D™°(W) as ¢ | 0 with ®y(0,(w), W), D6 (w), W), ... in D~°(W). This

completes the proof.

Proof of Lemma 4. As in the proof of Lemma 3, using Theorem 4.1 in [31], we
obtain the result.

Proof of Theorem 1. For every G € D~®(W), there exists m € Z . such that

(I —L)™"G e (| LyP).

p>1

Qenote by J(w) and J () Wiener functionals (over W) depending only on W and
W, respectively. Put

1(G, ) (w) = f (I — L)™Gw, w)(I — L)"J (@) P(d).
w
For any J(w) € L,(W, P) and J () € D*(W, P),

f 1(G, J)(w)J (w)P(dw) = /_(1—£)—mG(w,w)(1—i)m X
w

w
x (J () J (w)) P(dw, d)
= p(G(w, W), J(@)J (W) pee.

In particular, for py, po, p’ > 1 suchthat 1/p; + 1/po+1/p’ =1,

< NG, D), - | T (D)

NI @)l -
p2,2m

/ 1(G, ))(w)J (w)P(dw)
w

Thus,

G D) <16, i), - |T0D)

9

p2,2m
where p = p’/(p’ — 1). Put
Ge(w, b)) = Hi(@(w), ®) — (Eo(Be(w), ®) + B (B (w), W) + - - - +
+ & B B (w), W)).

‘We then have
k—1
lim sup gk I(H;(0s(w), w), J) — ZeVI(E},(QE(w), w), J)|| < oo.
el0 _
y=0

p
(26)
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Since
f T(H (B (w), @), ))J (w)P(dw) = p-oo(HEB(w), W), J ()] (w)) px
w

= / HE (B (w), ©)J ()] (w) x
w
x P(dw, d®)
_ / EP [H;(ég(w), w)i(w)] x
w
x J(w)P(dw),
in particular, we know
1 Gow), ), D(w) = E7 [ A7 @ (w), )]
P-a.s. It follows from W:(ég(w), W) = 1 — O(eX) in D®(W) for any K > O that
lim sup & ¥ HEP [#; 6. 0), )| - B [ @), )] ” < o0. 27)
el0 p

From (26) and (27), we have

k—1
timsupe™ | E7 | H; @), @) = Y &7 1(Ey @.(w), @), D] < oc.
el0 _
y=0
P

We can easily show that

1(Eo@:(w), B), D(w) = / Eo (0. (w), ) P(dib)
w

= / 810 (w)) (fo1Bc(w)) — K) 1y 6.y X
w
X (fo(0e (w), b)) P (dib)
= / ~ po(x, O (w))dx
A (B (w))

P-as., where po(x,0) = g_1(0)(f-1(0) — K)py(x,0) and py(x,0) = ¢(x;
0, 2(0)).
Next, we obtain the second-order term p;(x, 6). It is easy to obtain that

1(g-1Be(w)) foBe(w), W), 5, () (fo@: (w), ), 1) (w)

=fA go(x, 0, (w)) dx
Ag (e (w))
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P-as., where go(x,0) = g_1(0)xpy,(x,0). Forany J(w) € L,(W, P),
f I(f{ O (w), )d;1 4 5. ) (foBc (W), 1)), DJ (w) P(dw)
w
= poo{fl B (), B); 1, .1y, (SoBe(w), D)), J () poe
= Doo<f1i(éa(w), w)0; 14, gy X

Fo1Be(w)) — f—1(90))
£

x (fo(és(w), W) + : J(w)>

DOO
= poo (fL@:(w), )3; 1 4,6 (g(w, W), J (W)) po,

where

g(w, ) = fo@.(w), &) + f—l(es(w>i — f160)

Moreover, we have

D*w(ff (és(w)a w)0; 14,9y (g(w, w)), J(w))peo
= f 14,0y (g(w, W) G’ (w, ©)J (w) P(dw, dib)
w

= / La. ooy o @ w), )G (w, ©)J (w) P (dw, dib)
w

f{/ AE(@E(w))(fo(éa(w),@))G’i(w,ﬁ))P(d@)}J(w)P(dw)

w

1

w
f {/ La(fo(B:(w), ©)) G (w, @)P(dﬁ))}
w w

J(w)P(dw),
A=Ag (G ()

where
k

j=1

Gi(w, #) = D* [ (01t ) @), D) DE G, w)}

It follows that for a Borel set A € B,

f /WlA(fo(ég(w),ID))G’i(w,ﬁJ)P(dID)J(w)P(dw)
w

= poo(La(foB:(w), ), G} (w, W) J (w)) peo
= poe (3 1 a(foBe(w), ©)), fi(Bc(w), ©)J (w)) pe

= / q(z)dz.
A
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Thus, by the very routine work,
4 = =0 (ELA @), )T )] fo@.(w), ) = 21p s, (2. b))
= —al-( / EPLA Be(w), ) foB.(w), B) = z1p (2, B (w)) x
w
X J(w)P(dw)>

= / =0 (EPLF @), )1 fo@ew), ) = 21p (2. B (w)))
w
x J(w)P(dw).

We then have

D {1 O (W), B)d; 1 4, (6) (8 (w, 1)), J (w)) p

:f {/ ) ‘]1(Z,éa(w))dz}J(w)P(dw),
W U A (6: (w))

where g1z 8. w) =~ (EPLf{@.(w). )1 folGow), @) = 21p s, (2, 6. (w) ).
Therefore, we obtain

T O (w), )01 45, 1) (foBe (W), ©)), D (w) = / @@ 0.(w)) dz

Ag (0 (w))

P-a.s. Similarly, we have

1(00: (), W) 1 45,y (foBe(w), 1)), D(w) = / gz, Be(w)) dz
Ae (0s(w))

P-as., where g5(z, 6,(w)) = E”[go(0: (w). )| foBe(w), ) = 2 p, (2. e (w)).
From (18)—(20) and Lemmas 5.7, 5.8 in [31], we have

EP | f2@Bo(w). )

T
f a, (0 (w)) dib, = x]
To

= A% (G (w)) — A7% B (w))o " (B (w)) + A% (B (w))x"x?,

T
f a; (6 (w)) dib, = x]
Ty

= g 1B (w)) B (B (w)) 0 (B (w))x”.

E” | go(B.(w). )



210 MASAYUKI UCHIDA AND NAKAHIRO YOSHIDA

Since it follows that

g1 (x, 0. (w)) = =0, EPL£EBe(w), ) fob:(w), ©) =x]p(x; 0, T (w))))
= - [Aif;(és(w)) + A2 (e (w)) — A% (B ()0 (B () +

+ A;’,‘zx(ég(w))a"’(ég(w))aap(és(w))] x

x xPp(x:0, Z(0:(w)) + AZ% (0 (w))ow (Be(w)) x

x xPxx'p(x; 0, =6, (w))),
we obtain

pi(x, 0:(w) = g_1(0:(w)xp(x; 0, (6. (w))) +
+ 821G (W) (f1 (0. (w)) — K)gi (x, 6. (w)) +
+ 810 (W) (f-1(0:(w)) — K) B*(0.(w)) 0y X
x B (w)x"¢ (x; 0, T (w))).

In the same fashion, we obtain p;(x, w) for i > 2. This completes the proof.

Proof of Lemma 5. From Assumption 3, we see

Ve G, w) — 6 = ¢O(w) + %séi(l)(w) P %gm—l y

x g w) + "¢ (w),

where C;T)(w) = O(1) in N, . L,(W). Moreover, in case that |R,| < 1/9, it
follows from ¥, (w) = ¥ (3R, (w)) = 1 that

1-e7 (@ (w) — 60) = Ye(w)e ' B:(w) — )’

1 1 .
= fi(o)(w) + Eeéi(l)(w) 4.4 ﬁgm_lfz‘( D(w) +
+ "5 (W), 08)
First, expanding 6, (w) in a Taylor series around 6, and substituting (28) in the

resulting expansion, we obtain the second-order stochastic expansion as follows:
T

Ve(w) [ fo(XEBe(w), W), 6, (w)) d
To

T

= 1/_15(10)[ fo(Xf(e(), lZ)), 6o) dr +

To

T
+/ 8i fo(X{ (B0, ), 0) dt (B (w) — 60)" +
T

0

T
+3 /T 8:8; fo(XE (8o, ), 6p) dr (B (w) — 6p)' (B (w) — 6)” +

0
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(1 —u)?du x
0=00-+u B (w)—6p)

1 1 T
+ —/ / 8;8 6k fo(X[ (0, ), 0) dt
2Jo Jn

X (0 (w) — 6) (B (w) — 6p)7 (B (w) — eoﬂ

T T

Sfo(X; 6y, w), Op) dt + 8/ 8i fo(X; (6p, w), Bp) x

Ty

= xh(w)[

To

T
x dtd“(w)ﬂz{% / 8: fo(XE (8o, W), 6p) Az (w) +
To

1 T
+5 f 818, fo(X; (8o, ). o) dt{i(o)(w)g“;o)(w)} +
Tt

0
+ &3P (w, w)},
where
& (w, i)

T
= f 8 fo(X£ (G0, W), 6p) dr g (w) +
T

0

1
2
T

1
X c ) e [ 80, A o). o) drel el ) +

Ty

T
/ 8:8; fo(X£ (6o, W), 6o) dt) &P ) w) + ¢ (w) x
' |

0

X
9=60+u (B (w)—fp)

x (1 —u)? duf(q)(w)ng?(w)fs(,ok)(w)'

&,i

1 1 T
+ —f / 888k fo(X; (0, w), ) dt
2 0 To

Since it follows from
Ve(w) =1—0(X) in Nyoy L,(W) forany K > 0 (29)
that

1 oT
‘/_/s(w)/ / 8i68 fo(X7 (0, w), 0)dt X
o Jn

0=60+u (B (w)—60)

x (1 —u)?du = Oy (1),

we obtain 7, (w) > (w, ) = Oy (1) and
T
Ve(w) | fo(XEBe(w), W), 6, (w)) dr
To
T
= xh(w)[ fo(XE(Bo, W), 6p) dt +

Ty
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T
+ 8{ / i, fo(X; (6o, W), 60)8; X7 (69, W) dr +
T

0

T
+ / 82 fo(X£ (6o, W), 6o) dt};;‘”(w) n
T

0
1
2 —_—
+¢ {2(

T
+ / 5 Fo(XE (60, ), 6o) dt)gl.(”(w) N
T

0
1
2

T
+ / 820;, fo(XE (6o, W), 00)8,; X" (6o, W) dt +
T

0

T
f 3, fo(X{ (6o, ), 60)8; X[ (6o, w) dr +
T

0

T
/ 3, 35y fo(X; (B0, W), 00)8: X[ (Bo, W)8; X7 (B0, W) dt +
Ti

0

T
+ / 3, fo(X; (6o, W), 00)8;8,; X, (B, W) dt +
T

0

T
+ / 3,82 Fo(XE (B, ), 60)8, X5 (B, ) di +
To

T
+ / 578 fo(X; (6, w>,eo>dr);,-<°>(w>;}°>(w>H+oM(e3>.
Tt

0
Moreover, expanding X¢ in a Taylor series around X, we have

T
Vo) | fo(XEBe(w), i), B (w)) dt

To

T T
=¢g<w>[ fo(X?(90>,eo>dt+s{ /T 3, fo(X?(60), 60) x

Ty 0

. T .
x Dy (6p, W) dt + (/ 0iy fo(X] (B), 00)8: X" (Bp) dt +
Ti

0

T
+ / 82 fo(X°(60), 6) dr);fm(w)} +
T

0
1
2 —_—
+¢ {2(

T .
+ / 3i, fo(X2(00), 60) E;' (Bo, w)dr)+
T

0

T
f 3, 3, fo (X[ (60), 00) Dy (6o, ) D;? (6o, W) dr +
Ti

0

T
+ <f 01y, fo(X (60), 60) Dy' (B0, )8; X (6p) dt +
Ti

0

T
+ / 3, fo(X7(60), 60)8; Dy (6o, W) dr +
T

0
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T
" / 3,8, fo(X} (60), 60) D' (B, ) df> ¢V (w) +
To

1/ (" ,-
+ 5( f 3, fo(X°(60), 60)8: X" (6o) dr +
Ty

T
+ / 5% fo(X°(60), 60) dt)gl.(l)(w) +
To

! ! i i
+ 5( fT 0,05 fo (X0 (60), 00)8; X, (608, X, (60) di +

0

" / 3, fo (X[ (60). 60)8:; X°”(90>dt+/ 5787 fo x
To

T
x (X%(6y), 6p) dt + 2 / 3;,82 fo(X°(60), 60)8,; X" (6p) dt)

Ty

« {l.(o)(w){;o)(w)} + & P (w, 11))] +Ou(e?),
where
(2)

(w, w)

f /T — fo(X7 (6o, W), Op) dt

+ / / O o Fo(XE (B0 ), 60)8, X B, )
0 Ty ae

(1-— u)zdu +

X

E<UE

x (1 —u) dug” (w) +

+ 1 Ta—Qs(Z)f(Xf(e W), 6p) dt (1 — u) dut® (w) +
o T 882 i 0 t 0> » U0 u u{i
0

E<uUe

1 1 T a )
+ —f / — 3, fo(X{ (B, W), 60)8; X;"" (6p, W) dt duz" (w) +
2 0 To de

E<UE

1 rt T 9 )
"3 f / 581.(270()([8(90’ w), Bp) dt duz (w) +
0 To

E<ue

1 T
d . .
+ —/ / i, 3, fo(X (B0, W), 60)8; X[ (60, )8, X, x
2 0 T, de

x (6p, w)dt

dug” (w)¢ P (w) +

E<UE

1t a .
—/ / —0;, fo(X] (6o, W), 00)8;8; X;"" (6, W) dr
2 0 T, de

X

E<ue

x dug” (w)¢” (w) +
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1 1 T 9 _
+3 / / 8785 fo X5 (B0, ). B0 dr| - dug® ) (w) +
0 Ty

E<UE

X

E<ue

1 T
g 71 i ~
+ / f %ailsz‘(Z)fO(Xf(eo, w), QO)SjX,&' 16y, W) dt
0 To

x dug” w)g " (w).

It follows from (29) that ¥, (w) fo> (w, W) = Oy (1). Similarly, we have

T

Ve (w) (e FXE B (w), W), B (w)) duvt)

To

T T
=¢ | [(X7(6),00) di, +82[f 3iy f (X} (B0). 00) D}’ (6o, ) dib; +
Ti

To 0

T
+ <f Bi, £ (X?(B0). 00)8; X" (o) dib; +
Ti

0

T
+ / 5fz)f(X?(90),Go)dﬁ),>§,»(0)(w)}+OM(83).
T

0

‘We then have

Ve (w) Fy (B (w), )

T
= Fp, + fo(X2(60), 60) dt +

To
T T
+ s{ / 3, fo(X°(80), B0) D} (60, W) dt + [ F(X°(B0). 6p) di, +
To To

T
+ (/ Bi, fo(X] (8). 00)8: X" (Bp) dt +
Ti

0

T
+ / 82 fo(X°(60), 6) dr);fm(w)} +
T

0

1 T i ~\ i ~
+ 82{5([ 3:,0i, fo(X? (60). 60) D" By, W) Dy (8o, W) dt +
T

0

T
+ / 3, fo(X2(80), 60) E;" (B, w)dt)+
T

0

T .
+ / 3, f (X2(60), 60) D} (6o, W) dib, +
T

0

T
+ <f 01y, fo(X (60), 60) Dy' (B0, )8; X (6p) dt +
Ti

0

T
+ / 3, fo(X7(60), 60)8; Dy (6o, W) di+
T

0



ASYMPTOTIC EXPANSION AND OPTION PRICING 215
T ) .
+ / 3,8 fo(X2(60), 60) D} (B, ) dt +
To

T .
+ / 31, £ (X%(B0), 60)8; X% (6y) dib, +
T

0

T
+ / 8% £ (X?(80). 60) dw,)cf‘”(w) +
Tt

0
Ll
2

T
+ / 82 fo(XP(00), 6) dr)s“fl)(w) +
Tt

0

T
f Bi, fo(X)(80). 00)8: X, (Bp) dt +
Ti

0

1 T i i
+ 5( /T 3, 05, fo(X2(60), 60)8: X1 (60)8; X} (8p) dr +

0

T
+ / B, fo(X)(80). 00)8:8, X, (B0) dt +
T

0

T
+ / 5781 fo(X2(60). 6) dr +
T

0

T
+2 f 3i,8% fo(X?(60), 608, X;" (B0) dt) ;i((’)(w);}‘”(w)} +O0u(e).
To

From the second-order asymptotic expansion of Fy. (ég(w), w) as above, fo and fl
are determined.

In the same way as the second-order asymptotic expansion, we can see that for
any m € N,

Ve (w) Fi (6 (w), )
= Y. (w)(f-1(60) + & fow, ©) + &> f1 (w, W) + - +
+ & f 1w, W) 4 &M £ (w, b)),

where fs(”’)(w, w) = Oy (1). Moreover, it follows from (29) that we obtain

Ve (W) F (B (w), ) ~ f-1(00) + & fo(w, ) + &> fi(w, ) + - --
in D®(W; R¥) as ¢ | 0. This completes the proof.

Proof of Lemma 6. Following the same way as the proof of Lemma 5, we have
the result.

Proof of Lemma 7. From the definition of &, & (w, )| > 1ifdet oz g, <

(1/2)detafb(w,.) or detaﬁ;g(ég(w),.) > (3/2)det6f0(w’_). In case that (3/2)

deto, ) > detOfu G ) > (1/2) deto ., . we obtain (2/3)(det Uﬁ,(w,.))_l <
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(det O fre (w)’_))_1 < 2(deto fﬁo(w"))‘l. Therefore, it follows from Assumption 2 that
for any p € (1, 00),

sup E[l{lé (w, w)‘<1}(detGFs(9 w). ))_ ] < o0.
£e(0,1]

From Lemma 5, 15;8 (ég(w), W) € D®(W; R¥) has the asymptotic expansion
Fyf Be(w), ®) ~ fo(w, ) + & fi(w, ) + - -

in D*(W;R¥) as & | 0 with fo(w, ), fi(w, ®),... € D®(W;R¥). Hence,
F2@.(w), 0) = fo(w, ®) + efV(w, 1), where fo(w W) € D®(W;RK) and
f;”(w ) = Oy (1). Since

1/2 1/2
|(det0'1j-;fs(é£(w)’_)) (detaf (w )) 2
1/2 1/2
< (det Uﬁ;g(ég(w),‘)—f})(w,‘)) = (detﬂsf;a)(w")) 1?2 = S(detﬂﬁ(l)(w,.)) / s
we have
|detaﬁ;g(é€(w),) detaf (w. )|
_ o A 12 o 1/2
= |(det6F;s(9£(w)_")) — (detog,, ) 2l(det o g, .. 24

1/2
+ (deta, )"
1/2 1/2 1/2
< g(detdf§'>(w,~)) / {(detaﬁ;g(ég(w),.)) 24 (detaf})(w,-)) / } .
Hence, it follows that there exists C > 0 such that for any p > 1,

[I detaﬁ;fg(@s(w)’) detaf (0. )||p < Ce. (30)

From definition, ég(w,ib) = O(1) in D®(W) as ¢ J 0. It follows from
Chebyshev’s inequality that for any @ > 0, K > 0,
a}

It follows from (30), Holder’s inequality and Assumption 2 that for any K > 0,

2(det O e g, (.., — detog gy, )

PlE.(w, W) > a] < P[

detaf w.)
_ 1 | 2(detojue g,y — detog ., ))
S gk deto ;
f(w ) K

2(det0'1j-*e(é ). detafo(w ))

= 0(s5).
deto; )

f(w) K

We then see that for any a > 0, K > 0,
PlE.(w, ) > a] = O(eX). (31)
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From (31), we see that for any p > 1,

1= (w, D)l = 11— Y E(w, D)), < III{ I, = O(®).

16w, )] > 4}
In view of the chain rule for H-derivatives,

D( — i (w, b)) = =Dy (w, D) = =/ E.(w, 1)) DE, (w, ).
Since ||z//(§s(w, w)ll, = 0(eX), we see that for any p > 1,

1D = P (w, D), = O").
Similarly, it follows that for any p > 1 and j > 0,

1D/ (1 = (w, D)), = O(").
Therefore, we see that

U (w, W) =1 —0(X)  in D®(W) for any K > 0. (32)
By using Theorem 4.1 in [31],

U (w, )T (Ff (G (w), ) ~ Do(w, ) + Py (w, i) + -

in D=°(W) as ¢ | 0 with ®o(w, W), & (w, ®), ... in D~°(W). This completes
the proof.

Proof of Lemma 8. In the same way as the proof of Lemma 7, it follows from
Theorem 4.1 of [31] that we obtain the result.

Proof of Theorem 2. We use the same notation as the proof of Theorem 1. Let
Ge(w, w) = Hy Oc(w), 0) — (Eo(w, ©) + &) (w, @) +--- +

+ B (w, ).

We then have
k—1
limsup e ™ |1 (H7* B (w), ©), J) = Y " 1(E, (w, i), J)| < oc.
el0 _
y=0

p

Since I(H;(6.(w), W), )(w) = EP[H@:(w), )] P-as., it follows that
I(Ey(w, w), D(w) = ng(Go) po(x, w)dx P-as., where po(x,w) = g_1(6p)
(f-1(00) — K)¢ (x; Xo(w), Z(6h)).

Next, we obtain the second-order term p(x, 6). In the same way as the proof
of Theorem 1,

1(g_1(60) fow, ©)1 4,00 (fo(w, ), D(w) = / go(x, w) dx

A (60)
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P-a.s., where go(x, w) = g_1(6p)x¢ (x; Xo(w), X(6p)). Forany J(w) € L,(W, P),

f I(fiw, ©)8; 14, @) (fow, 0)), 1)J (w) P(dw)
w
= pooo (f] (w, W) 14,6y (fo(w, W), J (w)) pes
= / 14,60 (fow, 0) G’ (w, ©)J (w) P(dw, dib)
w

= f Lz (0(0)) G (w, ) J (w) P(dw, dib)
w

:/;V{/W1A;f(w)(go(111))G’i(w,w)P(dw)}J(w)P(dw)

=/W {/WlA(go(ﬁJ))G’i(w,ID)P(dID)} J(w) P(dw),

A=A%(w)

where

k ..
Gi(w,w) = D* {Z <a&)éw))1f{(w,zb)Dgé(zb):|,

j=1

go(®) = fo(w, W) — Zo(w) = fo(bo, W),
K — f_1(6o) }

Al(w) = {x;x} — Xo(w) +
&

For a Borel set A € B,

fw/w1A(go(@))G’i(w,ITJ)P(dﬁ))J(w)P(dw)

= p(14(go(0)), G} (w, 1) J (w)) pes
= poe (9 14(go(W)), fi(w, b)J (w))peo

= f q(z)dz.
A

Since it is easy to show that
@) = =0 (EP LA w, 97 )o() = 21y, (2))
= —0; (/ EP[fi(w. )go(@) = Z]pgo(Z)J(w)P(dw)>
w

= /W —0; (E" 171w, )1go() = 21p,(2)) J (w) P (dw),
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where p,,(2) = ¢(z; 0, Z(6))), it follows that
oo (fi(w, )3 14,5 (fo(w, ©)), J (w)) peo

_ / [ / o (EP LA . ) 10() = 215, 2)) dz}J(w)P(dw)
w | Jazaw)

= / {/ q1(z — Xo(w), w) dz} J(w)P(dw),
w Ae(60)

where g,(z, w) = —&, (Ef’[ Fiw, )lgo() = z] pgo(z)>. Therefore, we obtain

T(ff (w, )01 4,00 (fow, 1)), D(w) = f q1(z — Xo(w), w) dz

Ae (00)

= f pi(x, w) dx
Ae (00)

P-a.s. Similarly, we have

I (Zo(w, D) 14,5 (fo(w, ), D(w) = / o q2(z — Xo(w), w) dz
A (0o

P-a.s., where ¢»(z, w) = E? [§o(w, ) ‘fTZ a;(6p) dw; = Z] Pgo(2)-
From (21)-(23) and Lemmas 5.7, 5.8 in [31], we have

E” [ff‘ (w, )

T
/ a; (6o) dib, =x] = A% (60) — A3% (60)a " (Bo) +
To

+ 2% (w) + C(60)01,00)x7 £V (w)
+ A3 (Bo)xP x4,

E” [§o(w, S

T
| e ain, - x] = 8100 (B 0)0wy G0)x” + Fo(w)) .
To
Since it follows that
PiCew) = =8 (BT (w, Do) = x — Ro(w)1g (x: Fo(w), (60)))
= — @00 G0 @)

+ {Aif;‘, (o) + Af,'; (6o) —
_ ( A% (B0) — AL (B0)a " (Bp) + ﬁa(w>) Tap (9o>} X

X (x — Ro(w))” — CI*(0)01p (B0) Tag (60)¢ " (w) x
x (x — Fo(w))” (x — Ko (w))? — AZ%(B0)0ur X

x (Bp) (x — Zo(w))”(x — Zo(w))? (x — Fo(w))'] x
X ¢ (x; Xo(w), (b)),
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we obtain
pi1(x, w) = g-1(00)x(x; Xo(w), X(00)) + g-1(00) (f-1(60) — K) p) (x, w)
+ g-1(00) (f-1(60) — K)[Jo(w) +
+ B0 (00) (x — Xo(w))"1¢ (x; Xo(w), T (6h)).
In the same fashion, we obtain p;(x, w) for i >> 2. This completes the proof.
Proof of Theorem 3. Let §*(w) = Ex, 4 [H3* (0:(w), ©)]— E7, 6, [Hy (60, )]

It follows from Corollary 1 and Theorem 2 that S’;‘(w) €L ,,(R") has the asymp-
totic expansion

Si(w) ~ / , 8-10) (f=1(60) — K)[@ (x; Xo(w), Z(6p)) —
Ag (o)
—¢(x;0,X(0)]dx + Op(e)
inL,(RY ase | 0.Set S, (w) = E; 4 o [Hi @ (W), ©)] — Ex, [ Hi (o, )] Let

b(w, b)) = S:(w)—/ 8-1(60) (f=1(6p) — K) x

Ag (60)
x [¢(x; Zo(w), Z(6)) — ¢(x: 0, ()] dx.
It follows from (29) and (32) that

E[S:(w) — b1 @:(w))] ~ E[S}(w) — ¥ebi (- (w))]
~ E[S8f(w) — b1(60)] + O(e)
~ E[b(w, )] + O(e)
~ O(e)
as ¢ | 0. This completes the proof.

Proof of Theorem 4. In the same way as Theorem 3, 5’;‘ (w) € L ,,(R") has the
second-order asymptotic expansion

SF(w) ~ / ) g1(60)(f-1(60) — K) x
Ag( 0)
X [ (x; Fo(w), () — ¢ (x; 0, £(6p))]dx +
te / (51 (x, w) — pr(x, 60)} dx + O, (e2)
Ag(00)

in LP(R") ase | 0. Let

b(w, ) = S:(w)—/ 8-100) (f-1(60) — K) x

A:(00)
x [ (x; Xo(w), Z(0p)) — @ (x; 0, (6p))]dx —

- 8/ {P1(x, w) — pi(x, 6)} dx.
Ac(00)
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In the same way as Theorem 3,

E[S:(w) — by (B (w)) — ebs (0. (w))]
~ E[S}(w) — ¥:b1 (0. (w)) — e9r:ba (0. (w))]
~ E[S83(w) — b1 (60) — £b2(60)] + O(c?)
~ E[b(w, 6y)] + O(?)
~ 0(e?)
as ¢ | 0. This completes the proof.

Proof of Theorem 5. Let
b(w,0) = S;(w) — g_1(60)(f-1(60) — K) x
X / [ (x; Xo(w), Z(60)) — ¢ (x50, (6p))]dx —
Ae(60)

—&8-1(00) [x¢ (x5 Ko (w), Z(60)) —
Ag (60)

— x¢(x;0, X(6))] dx.
We have the expansion of b(w, 6) in e-power as follows.

(i) when K — f_1(6p) <0, b(w, 6y) € L p(Rk) has the asymptotic expansion
b(w, 8p) ~ e8-1(00) (f-1(60) — K)Fo(w) + O, (&%)
inL,(R"ase | 0.
(ii) when K’ — f_1(6p) > 0, b(w, fy) € L ,,(R") has the asymptotic expansion
b(w, ) ~ O,(e")
forn=2,3,...in L,(R") ase | 0.
(iii) when K/ — f_;(6y) = 0, b(w, 6y) € L ,,(R") has the asymptotic expansion
b(w, ) ~ O,(e?)
inL,(R"ase | 0.
In the same way as Theorem 4,

E[S:(w) — by (B:(w)) — ebs (0. (w))]
~ E[S}(w) — ¥:b1 (0. (w)) — er:ba (0 (w))]
~ E[S83(w) — b1 (60) — £b2(60)] + O(c?)
~ E[b(w, 6y)] + O(?)
~ 0(e?)
as ¢ | 0. This completes the proof.
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