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Abstract. The e-Markov process is a general model of stochastic processes which
includes nonlinear time series models, diffusion processes with jumps, and many point
processes. With a view to applications to the higher-order statistical inference, we
will consider a functional of the e-Markov process admitting a stochastic expansion.
Arbitrary order asymptotic expansion of the distribution will be presented under
a strong mixing condition. Applying these results, the third order asymptotic ex-
pansion of the M-estimator for a general stochastic process will be derived. The
Malliavin calculus plays an essential role in this article. We illustrate how to make
the Malliavin operator in several concrete examples. We will also show that the third-
order expansion formula (Sakamoto and Yoshida (1998, ISM Cooperative Research
Report, No. 107, 53-60; 1999, unpublished)) of the maximum likelihood estimator
for a diffusion process can be obtained as an example of our result.
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1. Introduction

The aim of this article is to provide a rigorous mathematical foundation to the
theory of higher-order statistical inference for stochastic processes. In order to handle in
a unified way stochastic processes appearing in applied statistics, and in the same time,
to develop a theory on a rigid probabilistic basis, we will adopt an e-Markov process as
the underlying process based on which other statistics are constructed. Because of the
choice of the continuous time, our results can apply to a Markovian semimartingale such
as a solution of a stochastic differential equation with jumps. Moreover, logically, they
also apply to a discrete time model by embedding it into a continuous time model in a
natural way. However, there is a wider difference between discrete time and continuous
time than the difference of mere formats, as we will later mention it.

There is an extensive literature on the asymptotic expansion of statistics: Akahira
and Takeuchi (1981), Pfanzagl (1982, 1985), Bhattacharya and Rao (1986), Taniguchi
(1991), Barndorff-Nielsen and Cox (1994), Ghosh (1994), etc. Bhattacharya and Ghosh
(1978) founded a rigorous proof of the asymptotic expansion for a certain form of statistic
under i.i.d. setting. Gotze and Hipp (1983) presented an asymptotic expansion of the
distribution of an additive functional of an approximately Markovian process with a
discrete time parameter.
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The accuracy of the approximation to the distribution depends on the regularity.
The Cramér condition or the conditional type Cramér condition was assumed in those
works to ensure the regularity of the distribution. In the independent case, the Cramér
condition has a simple form and, for example, if one knows that the underlying random
variable has the absolutely continuous distribution part, the condition follows from differ-
entiable approximation to it and integration-by-parts, i.e., from the Riemann-Lebesgue
theorem. For dependent observations, the Cramér condition may become more compli-
cated and Gotze and Hipp (1983) put a conditional type condition. It is not always a
simple matter to verify such a conditional type condition, but Gétze and Hipp (1994) did
it for Markovian examples by using integration-by-parts formula over Euclidean space.

Here, we will adopt the continuous time, and it causes another difficulty in verifying
the regularity. To solve this problem, it is necessary to handle conditional expectations
and it involves an infinite-dimensional calculus because random variables are functions
over the continuous-time path space. For this purpose, we use the Malliavin calculus,
which features the integration-by-parts formula over infinite-dimensional spaces, and
replace the conditional type Cramér condition by the nondegeneracy of the Malliavin
covariance.

As for continuous-time processes, asymptotic expansions of statistics for the small
diffusion model and a general small o-model were obtained by Yoshida (1992a, 19925,
1993, 1996b) and Uchida and Yoshida (2004), with the notion of the generalized Wiener
functionals. See also Sakamoto and Yoshida (1996) and Dermoune and Kutoyants (1995).
For continuous-time martingales, a second order expansion formula of the distribution
was proved in Yoshida (1997) with the Malliavin calculus after Mykland’s work (1992) on
the expansion of smooth functionals without regularity condition inevitably; see Mykland
(1993, 1995) for other developments for smooth functionals, and Yoshida (1996a, 1999)
for a distribution expansion for martingale with jumps. As applications, the expansion
of the distribution of the maximum likelihood estimator for an ergodic diffusion process
was first presented in Yoshida (1997), and consecutively, that of the M-estimator in
Sakamoto and Yoshida (1998a).

Recently, it was found in Kusuoka and Yoshida (2000) that another approach (“local
approach”) provides us with an effective solution for geometric-mixing-e-Markov pro-
cesses, while the martingale approach still has advantages for long memory time se-
ries models breaking the geometric mixing condition (Yoshida (1999)). They obtained
asymptotic expansions of additive functionals of a geometric mixing, e-Markov processes
including time series and diffusion processes with jumps, and also provided an easily ver-
ifiable condition on the mixing property of the diffusion process. In order to obtain full
generality as we mentioned, they adopted the Malliavin calculus formulated by Bichteler
et al. (1987). Among other possible formulations of the Malliavin calculus for jump
processes, it is a convenience due to a chain rule for the I'-bilinear form.

When deriving asymptotic expansion of the distribution of a statistic, we often
use its stochastic expansion. The simplest example would be an asymptotic expansion
of H(Yr), where H is a smooth function and Y7 is the sample mean of observations
(Yi)tepo,1), -, Yr = (1/T) fOT Y:dt. From Taylor’s expansion, one has the second order
stochastic expansion

(L) VI(H(Yr) - H(w) = B (WVT(¥r - u)
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where Y7 — p as T — oo in probability, and under some conditions on the convergence
rate of the remainder term, the second order asymptotic expansion of the distribution
of VT(H(Yr) — H(y)) follows from this stochastic expansion. The other popular exam-
ple is the maximum likelihood estimator f7 for a parameter @ of a probability density
pr(y;0) of observations Y = (Y;) (o, It is well-known that 67 admits the second order
stochastic expansion

+ H'()(VT(Yr — p))? + remainder,

(12) VT (by —0) = g Yr(6) + (8) + a2y (8)(¢1(6) + g)) + remainder,

1 .
Tf(alf?r
where g is the Fisher information, a; and as are some constants, £7 is the log-likelihood,
ie., £7(8) = logpr(Y,6), and ér and 1 are first and second derivatives with respect
to #. 'This stochastic expansion can be used for deriving the second order asymptotic
expansion of the distribution of éT. In general and as in familiar cases, many of the
statistics appearing in inference for stochastic processes have a stochastic expansion
taking the form of

statistic = St + remainder,

where
koo
(0 Z(0) 3(1
(1.3) ST:Z(T)+ZWQi(z§,,),z(T)),
=1

and T > 0 is the terminal time of observations, Zy = (2(79 ) , 29 )) is a vector of functionals,
and {Q;} are some polynomials with coefficients being bounded as T' — oo. Therefore,
once we have a formula for the asymptotic expansion of Sy, we can easily derive valid
higher order asymptotic expansions of the distribution in various statistical models.

Concerning Sr-type of random variables, Bhattacharya and Ghosh (1978) discussed
the asymptotic expansion of the maximum likelihood estimator based on i.i.d. observa-
tions by using a map which is often referred to as the Bhattacharya-Ghosh map. The
functional Sy itself was dealt with by Gétze and Hipp (1994) and by Kusuoka and
Yoshida (2000), and a program for the derivation of its valid asymptotic expansion was
prepared there by using the Bhattacharya-Ghosh map. Since most of statistics have such
a stochastic expansion, the program is applicable to many statistical models. However,
when higher-order asymptotic properties of a statistic of interest are discussed, it is nec-
essary to perform rather a lot of calculation in order to obtain the asymptotic expansion
for each statistic explicitly. The readers will in later sections find that this problem
unexpectedly requires a lot of technicalities to settle than computational difficulties.

In this article, we will carry out the program to obtain an ezplicit formula for the
k-th order asymptotic expansion of the distribution of Sz and prove the validity in the
case where the underlying process of Zt is an e-Markov process with a geometric-mixing
property. For this purpose, in Section 5, we will first give a complete description of the
approximating density to Sy. Orthogonality between the principal part Zg?) and the

ancillary part 253 ) makes calculations easier. Thus in the second step, we will present a
formula under orthogonality. Those results require the non-degeneracy of the covariance
of Zr. However, in application, we meet examples which have a linear relation among the
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ancillary variables. Later, we will precisely discuss the M-estimator (“Z-estimator”) but
the maximum likelihood estimator, a special case, has this degeneracy in its ancillary
variables because of the symmetry. It will be shown that our explicit formula is still
valid even under such degeneracy if the density formula is interpreted as a Schwartz
distribution.

As its typical and useful application, we will discuss the third order asymptotic
expansion of an M-estimator in Section 6. After a full investigation into the existence
of the M-estimator and the convergence rate of the remainder term of its stochastic
expansion, we will present the third order asymptotic expansion of the M-estimator for
a general model, by using the results for S7. We also show that if the expectations of the
derivatives of the contrast function satisfy certain relations, which are called the Bartlett
identities, coefficients of an asymptotic expansion of a minimum contrast estimator can
be represented in terms of the information geometry.

The results in this article have many applications including the model selection
problem and the asymptotic expansions of diffusion functionals. In fact, Uchida and
Yoshida (1999, 2001) used Theorem 2.1 given in the original manuscript, Sakamoto and
Yoshida (1999), of this paper, which is the same one as Theorem 5.1 in this paper, to unify
traditional information criteria such as AIC, TIC, GIC, and to present new criteria in the
light of the asymptotic expansion for stochastic processes. The manuscript, Sakamoto
and Yoshida (1999), is unpublished but already circulated among experts of this field.
Third order asymptotic expansions of M-estimators for diffusion processes were also, in
Sakamoto and Yoshida (1999), obtained from Theorem 3.4 in Sakamoto and Yoshida
(1999) (Theorem 6.4 in this paper). At the end of Section 6, we will show its specific
version, the third order asymptotic expansion of the maximum likelihood estimator for
the diffusion process, without the proof. Note that before Sakamoto and Yoshida (1999),
the third order expansion of MLE for the diffusion process was in Sakamoto and Yoshida
(1998b) obtained from Kusuoka and Yoshida (2000) under the Bartlett identities and
some relations of the derivatives of the likelihood (the assumptions [BI1] ~ [BI4] and
[DV1] ~ [DV3] in Section 6 of this paper), while the expansion in Section 6 was derived
without such assumptions. The details about the proofs for the results of this paper,
which are given in Sections 7 and 8, are also found in Sakamoto and Yoshida (1999) or
Sakamoto (1998).

For the readers who are not familiar to the Malliavin calculus, we will in Section 3
explain the integration-by-parts formulas over the Wiener space as well as those over the
finite-dimensional space, after the introduction of the e-Markov process which is assumed
to be the underlying process of Zr. They will in Section 4 be summarized in terms of the
Malliavin operator defined by Bichteler et al. (1987), and in Section 5 the assumptions
for the asymptotic expansion of St will be described by the terminology of the Malliavin
calculus. See Kutoyants (2004) for inference for ergodic diffusion processes.

2. e-Markov process

In this article, we will consider a class of stochastic processes as a basis on which
expansion formulas are validated. We shall begin with examples.

2.1 Diffusion process
We denote by C7° the set of smooth functions whose derivatives are of at most
polynomial growth, and by C{° the set of smooth mappings whose derivatives of order
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> 1 are bounded. Suppose that X = (X;).cg, is a stationary diffusion process satisfying
the stochastic differential equation

(2.1) dX; = Vo(Xo)dt + > V(Xi)a 0 duwf,
a=1

Xo = xo,

where Vp € C°(R%GRY), V = (V,) € CP(R%GRI®RT), w = (w®) is an r-dimensional
Wiener process, and zo is an initial random variable the distribution £{z¢} of which
coincides with the stationary distribution of X. The circle o means the Stratonovich
integral, which is useful to describe Lie algebras.

We consider another stochastic process Z = (Z;)ter . defined by

t Tt
(2.2) Zy = Zy +/ Vo (Xs)ds + Z/ Vi (Xs) o dwy,
0 ‘oi/o

where Zg is a o[xo] measurable random variable, V5 € C°(R%;R") and V* = (V) €
oy (R%R™ @ R™). Equations (2.1) and (2.2) form a state-space model. Hidden Markov
model and stochastic volatility model are examples. The noises in these two equations
may be taken differently if we use an expression with degenerate V' and V*. Furthermore,
if (2.1) has unknown parameters in its drift, then the log-likelihood function and its
derivatives take the form of (2.2) for the true parameter value.

We assume that E[Z;] = 0 for all t € R,. It is the case if E[Zy] = 0 and if
E[V§(Xo)] = 0 for

T (@) = Vi (@) + 5 3 VaVi(a),
a=1

Here we identified the vector V,, with the vector field Zle Vi(z)8;. Even if ¢ =
E|Vy(Xo)] is not null, we can deform Z, by subtracting ¢ from the original drift.

2.2 Non-linear moving-average series
Let y = (y¢)1cz, be a non-linear moving-average defined by

(23) Yt = h(&t—m—{—l, v 7€t)7

where (&;)jez be an R™-valued i.i.d. sequence and h : R™ — R¢ is a measurable function.
In time series models, the asymptotic expansions of many statistics can be derived from
the expansion of T='/2Z;, where

t

(2.4) Z, = (y; — Ely;]).

j=1

Note that Gotze and Hipp (1994) considered a slightly different case and gave the
asymptotic expansion of T~1/2Zy with applications to stationary ARMA processes and
non-linear AR processes.
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2.3 Cluster process
For Ly, Ly > 0, let

(2.5) E=Nx{(t;)jen:0<t; <Ly,j €N} x SN

where S is a set of real-valued functions on R with supports in [0, L2], and let p be a
Poisson random measure on R x E with compensator v satisfying v(I x E) < oo for every

bounded interval I C R. Denote by (Tj(c) ) the increasing sequence of the occurrence times
of the counting process u([—Li — Lo, t] x E) and by 8; = (M;, (Tj(,i))keN, (X5 (-))ken) a
element of E associated with Tj(c) for every j € N.

For this marked point process (Tj(c), B;), we consider a process y = (y:)tcr, defined
by

0o M;
(2.6) = 3 Y Xp(t-TY - 1),
e

It is a kind of the cluster process, which is often used for a rainfall model.
When the distribution of y involves an unknown parameter, the asymptotic expan-
sion of the Yule-Walker estimator can be obtained from one of T~1/2Z7, where

(27) z~ [ (.~ Blubds

2.4 Diffusion process with jumps
Assume that a stochastic process (Y;):cr, is defined as a strong solution of the
stochastic integral equation with jumps:

(28)  Yr=Yo+ /0 Ayt + /O " BV Y + /0 ' /E O )idt, dz)

where A € C®(R%;RY), B € C*(R%GRI®R™), C € C°(R? x E;R?). The process w is
an m-dimensional Wiener process, and i is a compensated Poisson random measure on
R, x E with intensity dt® A\(dx) for an open set E in R?. ) is the Lebesgue measure on E
compensating p. A set of regularity conditions ensures the existence and the uniqueness
of Y.

For this underlying process Y, we consider another process Z = (Zy)icr,- Z is a
process which satisfies the equation:

T T T
Zr = Zo + / AV )dt+ / B'(Y;_)dw, + / / O/ (Yo Vii(dt, da),
0 0 0 FE

where Z is o[Y;]-measurable, 4’ € C®(R%;R?), B’ € C®(R%RIQR™), C' ¢ C®(R? x
E;R%). Then (Y, Z) forms a state-space model.

2.5 Definition of the e-Markov process

In the previous subsections, we viewed examples in our scope. In order to handle
those models (and other many models we do not mention in this article) at a time, we
will consider a general class of stochastic processes called the e-Markov process.
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Let (9, %, P) be a probability space, ¥ = (Y;)icr, an Ré-valued cadlag process
(or a separable process) defined on €2, and X = (X{)iecr, an R"-valued cadlag process
defined on . Suppose that for any t € Ry, 973[)32]/ is independent of %ftx oo]» Where

%fé’zll =0[X,,Yu:u €0t VN,
%?X—_—J[Xt—XSZS,tEIﬂR+]VN for I CR,
and N is the o-field generated by null sets. For I C R, define sub o-fields %}, and %B; by
BRY =olY;:tc INRVN
and
RBr=o0[Xi— X, Y1 :s,t € INRL]VN,

respectively. Assume that there exists a positive constant € such that for any s > 0 and
t > 0 satisfying e < 5 <7, «
Y d
Y € F(Bis—es) V Blsy)s

where for any sub o-field o of &, Fs denotes the set of all df-measurable functions. If
a process Y satisfies the above condition, it is called an e-Markov process driven by X.

For processes X and Y, we consider the third process Z = (Z;) for which asymptotic
expansion will be derived. Let Z = (Z;)tcr, be an R™-valued process satisfying Zo €
FRBjo) and

(2.9) Zy =2y - Zs € FRsy, forevery s,teRy, 0<s<t.
A process Z having the property (2.9) is often called an additive functional of X and Y.

Ezample. (1) (diffusion process) The diffusion process X defined by (2.1) is a
Markov (0-Markov) process driven by the Wiener space w and the process Z defined by
(2.2) is an additive functional of X and w in the above sense.

(2) (non-linear moving-average series) Let Y = (Y3)iez, and X = (Xi)iez, be
processes defined by Y; = (&, ;) and X; = Z;:O &; for an iid. sequence (£;)icz, and
the non-linear time series (y;):cz, defined by (2.3), then Y is an e-Markov process driven
by X with e = m — 2 and (Y});cz, and (X¢)icz, can be embedded into continuous-time
processes (Y;)ier, and (Xy)ier, as X¢ = Xy and Y, = Y}y for allt € Ry. A continuous-
time process (Z;)iecr, defined by (Z;)icz, in (2.4) as X and Y is also an additive
functional of X and Y.

(3) (cluster process) Let (yi)ter, be the cluster process defined by (2.6), and
(E;)%, a family of subsets of a configuration space E given by (2.5) such that it deter-
mines a measure on E, then X; = (u([—L1 — Lo, t] x E;))$2, is an oo-dimensional rep-
resentation of the Poisson process p. Putting Y; = (X¢, ), it is seen that Y = (Y3)¢er,
is an e-Markov process driven by X with € = L; + Ly. The process (Z;)cr, defined by
(2.7) is an additive functional of X and Y.

(4) (diffusion process with jumps) For the stochastic differential equation with
jumps (2.8), the driving process X; can be taken as X; = (wy, pe(g:);¢ € N), where
(i) is a countable measure-determining family over E. Thus, Y becomes a Markov
process (i.e., 0-Markov process) driven by X with independent increments according to
our definition. Another process Z is also additive functional of X and Y.
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3. IBP-formula and conditional type Cramér condition

It is known that the validity of the asymptotic expansion depends on the regularity
of the distribution approximated by the expansion. The most successful condition in
independent setting was the Cramér condition. The so-called conditional type Cramér
condition played a similar role for discrete-time stochastic processes, as it is seen in Gotze
and Hipp (1983, 1994).

By the e-Markovian property, it is possible to factorize the characteristic function of
Z1/v/T into the product of conditional characteristic functions over small time-intervals.
In this way, the estimate of the global characteristic function is reduced to that of the
local conditional characteristic functions. The conditioning is usually done by the value
of the process Y at the right and left end points of the short time interval. Thus,
roughly speaking, when € = 0, it becomes the problem of how to estimate the conditional

characteristic function _
Elev(Z—20/VT |y, Y,

of the normalized increment (Z, — Z,)/V/T over the interval [u, v).

For continuous-times processes, such a condition is in general hard to check, and it
is replaced by a more practical condition, that is, the non-degeneracy of the Malliavin co-
variance of a certain functional. We will explain how the non-degeneracy of the Malliavin
covariance and the induced integration-by-parts formula (IBP-formula) work in exam-
ples. For details, we refer the readers to Kusuoka and Yoshida (2000), and Yoshida
(2001) in which the readers finds precise description of the derivation and much weaker
sufficient conditions for non-degeneracy by support theorems.

Here again, we begin with examples.

3.1 Diffusion process

We will again consider the diffusion process in (2.1). Corresponding to the stochastic
process (X3, Z;), let us consider the stochastic flow (X;(0,Z),Z € R4™™) defined by the
enlarged stochastic differential equation

4X,(0,7) = Vo(Ke(0, 2))dt + 3 Vo (Xe(0,3)) o st
a=1

XO(Oa Zi’) =1I,

orfi] m o-fr]

where

We will assume the geometrical strong mixing condition for X and the necessary integra-
bility conditions. In order to prove the validity of the Edgeworth expansion of Zy/v/T,
it is necessary to estimate its characteristic function. Then, we take a sequence of in-
tervals of length one (‘reduction intervals’) and divide the estimate into that over each
subinterval. Thus we may only consider the interval [0,1] due to the stationarity, and
hence it suffices to show that the conditional type Cramér condition (Yoshida (2001),
Kusuoka and Yoshida (2000)):

[CD] There exist some point z. € R? and some positive constants n,71,72 (m1 +
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n2 < 1) and A such that

sup  sup EHE[eiqug)(O,(z,O)) IXl(l)(O, (z, 0]l < m
lul>A z€B(z.;n)

and
P[Xy € B(z.;m)] > 1 —1n2.

Here we denoted X by (XM X)) and {z € R? : [z — z.] < n} by B(z.;7).

Similarly to independent cases under the assumption of the existence of absolutely
continuous part, in order to prove the sufficiency of [CD], an integration-by-parts formula
is applied.

We shall start with integration-by-parts formulas over a finite-dimensional space.
Let ¢(w) = ¢(w; 0, Iy) be the k-dimensional standard normal density. Denote by cr (R¥)

the set of smooth functions on R* all derivatives of which are at most polynomial growth.
Let
DF =VF

for FF € C?°(RF), and let

k
D*G(w) = —divG(w) + ¥ _ G*(w)w*

=1

for G = (GY)f., € C°(R¥;R*). The second order differential operator L is defined by
L = —~D*D/2. Then easy computation yields

(3.1) /R (DF(w), Gw))ged(w)du = /R F(w)D* Glw)g(w)dw.

It is equivalent to so-called Stein’s identity.

Now, we let
I'(A,B) = (DA, DB)g«

for A,B € CTOO(R’“). Then from (3.1), we obtain
k

(32) > [ ONE@)TE W), Bw) Aw)(w)du
=1

= [, FF@)D" (Aw) DB(w))$(w)du
for FF e CF° (R¥;RY) and f € Cf"(Rd). Moreover, let
(3.3) op = () ner, oT=T(F,F™).
We call op the Malliavin covariance matrix of F. Denote by 7i™ the (I,m)-element

of 05!, and put Ap = detop. In addition, for Z = (F,G), F € C"’o(]R’c RY), G €
C22(RF; R™), let
n
= ol 3 T GO T )

m’
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and 74" the (I, m)- element of the inverse matrix of (54"). Then, under suitable integra-
bility condition for AZ', it follows from (3.2) that for J € C°(R¥) and g € Cy(R™),

(3.4 | @D (F ) Iw)g(Gw)ptw)du
= [ FE@) () wa(Glw)dtw)du,

where

U z(J Z Vm,z (V5" J
U z(J) = —r(J, FY —2JLF!

n
+ Y A{TOE™ T(F, G, G™ ) + 295 ™ T(F, GY)JLG™ }.
Um’ '
Note that L is the second order differential operator defined by L = —D*D/2. Formulas
(3.2) and (3.4) may be called integration-by-parts formulas.

For diffusion processes, the sample space is a Wiener space, an infinite-dimensional
space W7 of continuous functions w : Ry — R" with wg = 0, so that we cannot apply
formula (3.4) itself. However, it is possible to construct an infinite-dimensional analog
of it over the Wiener space. Namely, it is possible to define the gradient operator D,
the divergence operator D*, the second order differential operator L, the bilinear form
I', and the Malliavin covariance matrix op of F, and an integration-by-parts formulas
exists:

(35) | (@) (P @) I w)g(Glw) Pldu)
= [ HE@) ¥ 2()w)o(Gw) Pldu),

where P is a Wiener measure on W”. See Ikeda and Watanabe (1989) for the definitions
and properties of the operators D, D*, L. A slightly simple version of IBP formula is
given there.

In our present case of diffusion, we use (3.5) for

_ (2 _
Z = (X{7(0,(2,0)), X1 (0, (,0)).
For a while, we assume that for some v > 0,

(36) sup E[(det 9%,(0, z)) p] <00 (p € (1v OO)),
ZEB(Zayy)
where Z, = (z.,0). Under a usual regularity condition for existence of the solution, it
holds that )
sup [ D°X(0, 2)llp < o0
ZEB(;b)
for every b,p € (1,00) and s € Z4. Denote by ¢ : Ry — [0,1] a smooth function such
that ¢(r) = 1 for r € [0,1/2] and that ¢(r) = 0 for r > 1. We will use a truncation
functional 1); given by

o(1X2i-1 — z.|*/7?).
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If the point z. is in the support of the stationary distribution of the process Y, then we
may assume that

Elp(1X1 — z.[*/7*)] > 0.

Then we obviously see that

251

Elpje™%s | Xoj_1 = yo, Xoj = y1]
N L 5(2) _

= El(yo)e™ X" @ | X110, (30,0)) = w1,
where 9 (30) = ¢(jyo — z.[?/7?) and X,(0,7) = (X{V(0,2), X{?(0,7)). By the equiv-
alence of the distributions, we will execute computations over the Wiener space where

the flow is constructed. B
Let P(1):%0 denote the distribution of X 1( 1)(0, (¥0,0)). The IBP-formula (3.5) applied

to f(F) = e™F and g(G) = ¢ with J = ¢ and Z = (F,G) = (X{2(0, (0,0)),
X'l(l)(O, (y0,0))) implies that

~ L5 (2) _ v
| Bt 50000 | X0, (50,0) = ple s PO (dy)
= (i)™ [ Bl S O000w; L ((30) | XD, (50,0)) = ke PO (),

Therefore, the uniqueness of the Fourier transform leads us to
; w X P(0,(y0,0)) | (1)
Elj(uo)e™ 517 w00 | 300, (3o, 0))
= (iup) " B[ X O@ w4 (d(yo)) | XIV(0, (30,0)] P~ as.
In this way, we have obtained:

E | sup |E[(yo)e™ X ©wo0) | £ (0, (yo,0))]l| <
|ul>B

E(¥] z(4(y0))]]

Wl Q

for some constant C > Q.

Generally, it is not easy to prove (3.6) for diffusion processes but a Hérmander
type condition is a convenience. For vector fields Vp,Vi,...,V,, let g = {V3,...,V;}
and X, = {[Vo,V};V € ,_1,a = 0,1,...,r} for n € N, where [,] is the Poisson
bracket. Moreover, let Lie[Vp; Vi,...,V;] be the linear manifold spanned by U2 ,3,,.
The following condition is a sufficient condition for [CD] (Kusuoka and Yoshida (2000),
Yoshida (2001)):

[DH] There exists a point z, € R? for which the following conditions are satisfied:
(i) For any n > 0, P[X, € B(z.;n)] > 0. (ii) For Z, = (z.,0),

Lie[Vo; V4, ..., V;](Z,) = RET™,

The condition [DH] (ii) is called the Hérmander condition. The advantage of [DH] is
that it can easily be verified only by differential computations. See Yoshida (2001) for
details of this condition and other mild sufficient conditions.
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3.2 Non-linear moving-average series

Let 7 be a positive integer greater than ¢ = m — 2, and I(j) = [u(j),v(j)]jen 2
sequence of intervals defined by u(j) = 275 and v(j) = 27j + 7. As in the case of the
diffusion process above, we may reduce the estimation of the characteristic function of
T~1/2Z, to that of the conditional characteristic function

. dX
Elexp(it - (yugie1 + - + ¥0()) | Bty -eni)) ¥ Blati) -]

where %‘}lx = 0(&;t € I). Therefore, due to the stationarity, we only have to check the
following conditional type Cramér condition: there exists a measurable set B € B2y, _2)r
such that P[(&1,...,82m—2) € B] > 0 and that

(3.7) sup sup [Elexp(iu - H(cy, ... ,com—2,61,---,¢én))]] <1
lul]>A (e1,... ,cam-2)EB

for some A > 0, where N =7 —-m+ 1 and

H(Ch"' yCoam—2,T1, . .- ,l‘N) :h(Cl,... acm~la$1)+h(c27"' ,Cm—1a$1,$2)+"'

+h(TN-1,ZN,Cm, - -« ,C2m=3) + RN, Cm, ... , Com—2)-

As before, to verify (3.7), we consider the integration-by-parts formula for functions
of (£;,)N ;. Denote by Pét the probability measure induced by &;, and suppose that the
decomposition of P¢ is given by

(1 — ANv(dz) + Ap(z)dz

for a constant A € (0, 1], a probability measure v and a density p € C°(R";R,). Note
that v has a part of the absolutely continuous part of the Lebesgue decomposition for
P&, Define I = {x € R" : p(z) > 0}. Under this assumption, the expectation of a
function g of &,... ,&xn can be rewritten as

/N g(mus + (1 — m)vr, ... ,7avuny + (1 — wn)on)dP(w),
x

where X = {0,1} x R" x R", w = (m,u,v), 7 = (71,...,7n), ¥ = (U1,... ,UN), U =
(v1,...,UN), Plw) = Hfil B(1; A)(m;) % p(u;)du; x v(dv;) and B(n; M) is the binomial
probability measure with the trial number n and the occurrence probability A, and hence
the integration-by-parts formula we need is reduced to that for functions of u (the partial
Malliavin calculus):

(39 | o) @) wpa

k
- / F(w)D" (J(u) ) vml(ume(u)) p(u)du

m=1

for smooth functions f : R* — R, F : R"™N — Rk, J: RV — R. Here p(u) =
[T}~ p(u;), D and D* are differential operators defined by

DF(u)=V,F(u), D*'G(u)=- (Vu + p_(lujvup(u)) -G(u)
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for any F: R™ — R and G : R™Y — R™Y and +{" is the (I, m)-element of the inverse
of the Malliavin covariance o defined by

0" (u) = (DF'(u), DF™ (u) e

Here we assumed a regularity condition for p near the boundary of I. Note that we
only need the integration-by-parts formula over the interval I for the estimation of the
characteristic function because the integration over the outside of I can be estimated by
a constant less than one:

IE[eit-F(gl,...,&v)” < '/ eit'F(u)p(u)du +1— /\N'
N

As in the previous subsection, in order to apply the integration-by-parts formula, we
need the degeneracy of the Malliavin covariance:

Ejy(detop)™P] < o0

for some truncation functional 1. Note that we can choose 7 or IV so that this condition
is satisfied.

3.3 Other processes

For the cluster process, we can construct IBP formulas and verify the conditional
type Cramér condition in an analogous way. See Sakamoto and Yoshida (2000) for the
detail. The IBP formula for the diffusion process with jump is given in Bichteler et al.
(1987) and Kusuoka and Yoshida (2000).

4. Malliavin operator

In the previous section, we observed that the integration-by-parts formula played
an essential role to deduce the conditional type Cramér conditions. Moreover, we also
saw the role of the infinite-dimensional differential operators D and D* in the diffusion
case as well as a finite-dimensional case. In order to treat jump type processes, several
possible formulations are nowadays available. Some of them are only for Y defined by a
stochastic differential equation. From the point of the applicability for other situations,
we will adopt the Malliavin calculus formulated by Bichteler et al. (1987). Though it
is not the most efficient solution to the stochastic differential equation with the purely
atomic jump distribution, it still has advantages that it provides IBP-formulas and is
relatively easy to handle.

DEFINITION 4.1. (Malliavin operator) Given a probability space (2, %,1I), a lin-
ear operator L on @(L) C Nps1 LP(II) into My,5q LP(II) is called a Malliavin operator if
the following conditions hold true:

(1) B is generated by all functions in D(L);

(2) If f € C}(R?) and F = (FY){L,, F' € B(L), then f o F € B(L);

(3) L is self-adjoint in L2(Il), i.e., E[FLG)] = E[GLF) for all F, G € @(L);

(4) L(F?) > 2FLF for any F € @(L), i.e., the bilinear operator I';, defined by

I'.(F,G) = L(FG) — FLG — GLF

is non-negative definite;
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(5) If f € C}(R%) and F = (FHL,, F' € (L),

d
L(foF) = Za,foF LF' 4+ ZalﬁmfoF-FL(Fl,Fm).
l,m

=1

Let D, p > 2, be the completion of @(L) with respect to || - “D'ﬁp’ where
1/2
1Fllpg, = IFllp + ILFIl, + [T (F, )],

and let DJ = ﬂp22Dip. Then L is extended uniquely to an operator L on Dy .
For F € DQ’OO_(]Rd) = (D% ,_)%, the Malliavin covariance o of F is defined by

o =T (FL,F™), Ilm=1,...,d

and vp = (y4") denotes the inverse matrix of . Moreover, the following IBP formulas
hold true:

PROPOSITION 4.1. (Theorem 8-18 of Bichteler et al. (1987))

(1) Let f € C}(RY), F € Dk ,_(R%), and G, € Dk _. If LG =0, o € Dk
and (detop) 'y € D ., then

(4.1) E[d.f (F)$G) = E[f(F)${ ()]
where
9 (v) = 2(27 PYLE™ + T (v, F™)).
(2) Let F € D} ,_(R%), G € D§ ,_(R™), and H, ¥ € Dy oo—. For Z = (F,G), put
G = ol Z TL(FL G & T (G™  F™)
U, m’
and 'ylzm denotes the (I,m)-element of the inverse matriz of (G4). Suppose that
LH = 0, a.s. Moreover, suppose that %" € Dg oo, I,m = ..,n and that

(det ag)_l(det 0c)~ @V € Dy oo_. Thenit holds that for f € C?(Rd) andg € C?(R"),
(42) E[(0f)(F)bg(G)H] = E[f(F)¥ z(4)9(G)H]
where

Uiz () = Z‘I’mz (35"¥),

Y,z(¥) = *FL(¢, ") —2¢LF!

+ S ATL(E™ TL(FL G ), G™ ) + 295 ™ TL(F, GV ypLG™ }.

Um’
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Ezample. (1) (diffusion process) As in Subsection 3.1, for the gradient operator
D and the divergence operator defined over the Wiener space, let

1 *
L= 2D D.
It is easy to show that L is a Malliavin operator over the Wiener space. In this case, the
operator L is a kind of second-order differential operator, and it is called the Ornstein-
Uhlenbeck operator. It is a symmetric operator compatible with the closed extension,
and it is possible to construct the Malliavin calculus starting with L. As we saw in the
previous section, the IBP formula (4.2) or (3.5) was applied to verify the conditional
type Cramér condition [CD].

(2) (non-linear moving-average series) Let p € C®°(R";R,) be a positive density
and p(u) = H?:Ip(uj), where u = (u1,...,u,), u; € R", j =1,...,n. Then L =
—D*D/2 is a Malliavin operator, where D and D* are the gradient and the divergence
operator defined in Subsection 3.2. The equation (3.8) is the IBP-formula (4.1) with
I'L(A,B) = (DA, DB)g-~, and it was also applied to prove the conditional type Cramér
condition (3.7).

5. Stochastic expansion type of functional

In this section, we will present some formulas for the k-th order asymptotic expan-
sion of St defined by (1.3) with a functional Z; = (2%9 ), 253 )), and will obtain the third
order asymptotic expansion in terms of some coeflicients in a representation of @; by
Hermite polynomials. It will be applied to M-estimators for a general statistical model
in the next section.

Let (€, %, P) be a probability space, Y = (Y;)ter, an R?-valued e-Markov process
driven by an R"-valued process X, and Z an R"-valued additive functional of X and Y
as in Subsection 2.5. Moreover, let C = (C;);cr, be an R™ ® R™-valued deterministic
process such that each element is bounded as t — oo and that it converges to non-singular
matrix as t — oo. For these processes, assume that the components ng) ) and Z(T‘ ) of St
is defined by Z7 = (259),2211)) = T-'/2CyZy, where ding})) = p, and ding) =q.
Note that in the stochastic expansions (1.1) and (1.2), C is H'(u) and g~!, respectively.

Before going into the asymptotic expansion of St, we prepare assumptions about
the validity of that of T7-1/2Zp. As usual in the asymptotic expansion literature, we
adopt a mixing condition:

[A1] There exists a positive constant a such that

IELSf | Bl = Elflllrey < a7'e™ ) floo

for any s,t € Ry, s < ¢, and for any bounded %[}t”oo)—measurable function f.

It should be noted that the exponential order of the strong mixing is not necessary:
in fact, it is possible to reduce it to a polynomial order (see Lahiri (1993), and Yoshida
(2001)). However, the above condition will be assumed for simplicity. The moment
condition is also assumed:

[A2] For any A > 0, sup;eg, o<h<a 12y 4llLr(p) < 0o for any p > 1, and E[Z}, 5] =
0. Moreover, Zy € Np>1LP(P) and E[Zy] = 0.
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In order to estimate the characteristic function of Z7, we need an IBP formula over
sub-intervals of [0,7] as in Subsections 3.1 and 3.2. Let 7 be a fixed constant such
that 7 > ¢, where € comes from e-Markov process Y. For each T > 0, let [u(z),v(5)],
7 =1,...,n(T) be sub-intervals of the interval [0,7] such that

O0<e<u(l)<v(l)<u2)<v?2) < - <unl) <v(n(T)<T

and that inf; 7{v(j) —u(j)} > 7, sup; p{v(j) —u(j)} < co. Assume that for each interval
J; = [v(j) — €,v(j)], there exists a finite number of functionals YV; = {V;x}r=1,..,Mm;
such that o[);] C %, and that for any bounded %B(,(j),c0)-measurable function F,
E[F | Bio,u(jy] = E[F | 0[¥;]], a.s. Then from the Markovian property of Y, the estimate

)
of the characteristic function of Zr is reduced to that of Efe™ %) | B 1, VB |, where

Z;‘((;)) = Zy() — Zugg), Iy = [u(d) — €, u(y)], %f]j = o[Y;], and By is the sub-o-field defined
in Subsection 2.5. 1/; denotes a truncation functional. Let C; = ((Ys, X — Xy(j)-e;t €
Ij)a y])

Assume that for each j = 1,...,n(T), there exist a probability space (Q;,F;, P;)
Zu()

et C']) satisfying

and a random vector (v,

£{(s, 205, Ci) | P3} = L{(¥5, Zu), C) | P}.

The random vector (¢, Z:éj)), C;) is called a distributional equivalent of (1;, Zg((j)), Cj).
(The present formulation by the distributional equivalents, which is originally given in
Yoshida (2001), is essentially the same as the one in Kusuoka and Yoshida (2000)).
In the sequel, we will identify the distributional equivalents with their originals, and
express them with the same notation (without “hats”), however, we should realize that
the operations in the Malliavin calculus are done for distributional equivalents over
(Qj’f J» p J )

We also assume that a Malliavin operator L; is given over the probability space
(R, F;, P;j). Denote by D2L;) the Banach space induced by L;, and put Dy =
Np>2D2 . In addition, suppose that for any f € C,?O(R(’+d)m) and any o, U1, ... ,Unm
satisfying u(j) — € < up < up < --+ < um < u(j), the functional F = f(Xq, —
Xup_ 1 Yu, 11 <k <m) € Diﬁo_ and L;F = 0. This assumption ensures that
L; does not act on any % I -measurable functionals. The Malliavin covariance op of
F e DQLj)O_(Rd/) = (Df’f)o_)d, is defined by op = (o2F) = (T, (F*,F*)), and the de-
terminant of o is denoted by Ap. Let Z; = (Z;‘((j)),yj), Stl;; Z5] = {aiz’f,i,k =
1,... , N+ Mj; (Azj)~1(ij)—(n—1),¢)j}’ and

S1.; = {(Az,) 7 (Ay,) "Dy, Ogj »LiZik,TL, (U,I%lj s Zjm)s
PLj ((Azj )_1 (ij)—(n_l)wja Zj,l)}'

Assume that sup;  M; < co. By using the terminology and notation above, we consider
the following conditions of non-degeneracy:
[A3] (1) iIlfj’T E[’(/)J] > 0;
(it) liminfyr o n(T)/T > 0;
(iii) For each j =1,...,n(T), Z; € (Di’(;o_)"+Mj, St 25] C Dé"fx,_, and
for any p’ > 1, Uj=1,..,,n(T),T>0 S1,; is bounded in L® (P).
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Condition [A3] may seem complicated for some readers. However, it is rather stan-
dard and easy to verify. For example, the non-degeneracy of the Lie algebra spanned
by the coefficient vector fields, i.e., Hérmander type condition, is sufficient for diffusion
processes; see Kusuoka and Yoshida (2000) and Condition [L] in Section 6 of this article.
The boundedness of S; ; easily follows from usual regularity conditions for coefficients
appearing in the stochastic differential equations: a questioning reader will find that it
is a routine procedure if he/she consults a textbook by Bichteler et al. (1987). More-
over, with the help of support theorems, it is possible to verify [A3] under much weaker
conditions (Yoshida (2001)). It is also the case for jump processes.

In this article, we prefer [A3] in the present form because more precise description
would increase the volume of this article too large. However, we emphasizes that Con-
dition [A3] is already very concrete, and indeed, several authors checked this condition
for various models to derive expansions

The conditions Z; € ( o) M and Stly;; Z5] C D in (iii) of [A3] ensure
that the IBP formula (4 2) hold true for the Malliavin operator L; and the truncation
functional ;. The condition that U;—; . n(r) 750 S1,; is bounded in L' (P) ensures
that ¥} ;(¢) is bounded in LP(P). This assumption [A3] is suitable to the case where
the underlying processes X and Y have the Markovian properties. However, there are
some cases where the simpler IBP formula (4.1) can be applied as the moving-average
process in Subsection 3.2. For such cases, we can obtain the same results in this section
under the condition in Theorem 1 of Kusuoka and Yoshida (2000). Our main application
in this article is the diffusion process, therefore we here adopt this setting.

In order to obtain the asymptotic expansion of St, let us prepare some notations.
Denote the covariance matrix COV(ZT) Cov(z(o)) and Cov(z(1 )by § = (3%)a,p=1,.. ,m>
g = (9"®)ap=t,.p» and § = (§"*)upu=pi1,. p+q, Trespectively. Assume that Cov
(T~2Zp) converges to a p051t1ve definite matrix; hence for sufficiently large T', the
matrix ¢ is a positive definite matrix because Cp converges to a non-singular matrix.
Note that g, g, and § may depend on 7. Define the j-th cumulant A**% of Z by

. s o
AMT% =TI 9% log E[e™ 4T |ymo, 0% = ——.
dug
Under the assumption [A2], A* =0, a =1,... ,n. For any positive definite matrix o =

(0%8), the Hermite polynomials ha,...«; and their contravariant representation h*1 s
are defined by

hal---aj (Z; 0) = aal o '6aj¢(z;a)7 Ou = 7=

and
ROV % (z: g) = g P ... g%Bs hg,...s,(z0),

respectively, where ¢(z; o) is the density function of the normal distribution with mean 0
and covariance matrix o. For M > 0 and v > 0, the set £(M, 7) of measurable functions
from RP — R is defined by

E(M,~) = {f : R? — R, measurable, | f(z)| < M(1 + |z|)7},
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and for any f € £(M,~v), r > 0 and any positive definite matrix o, let
wlf.no) = [ swllfe+3) = @)yl < r}(ai o)

It is easy to show that the formal asymptotic expansion of the density of Z is given
by

k
(5.1) pra(z) =Y T77/?27;(2)$(2 9),

j=0
where Ay, = aq - ayp, A = T(M=2)/2)\Am Ero(z) =1, and for j > 1,

AAki+2 . 3 Akm 2

J
— 1
h4'117.7(’2 § :m E . (k1+2) (k' +2)'h‘Ak1+2 Akm+2(z g)

m=1 byt km=j
k121, km>1

See Bhattacharya and Rao (1986) and Sakamoto (1998). In particular,

- 15q _

Er1(2) = gA hapy (2 9),

_— 13 - 1< 3y deo =
:'T,Q(z) = —/\aﬁ‘yﬁhzxﬁ'w(z'g) + _/\aﬂ'y/\ﬁ haﬁ'\/&ea(z;g)a

T3( ) - ’\aﬂ’wehaﬁﬁ’&(z g) + 4/\alaﬂ!aAﬁlﬁzgsmh’alazaa[ﬁﬁzﬁaﬂ;(z;g)

1296 —— _arazas\PiB2B3 12 ha1a2a3ﬁlﬁ2ﬁ3’71’)‘273 (z; g)

In the above expansion, we adopt the Einstein summation convention, and «, 3,... ,0
are indices running from 1 to n = p+ q. In the sequel, we will often use the convention,
under which the Greek characters a, 3, ... are indices running from 1 to n, the Roman
a,b,... running from 1 to p, and the lower ordered Greek «, A, ... running from p + 1
ton.

Under Conditions [A1], [A2], [A3], the k-th order asymptotic expansion of Zr/vT
was derived by Kusuoka and Yoshida (2000), and they showed in Theorem 5 that the
asymptotic expansion of S can be derived from prj and that it is a expansion of the
Edgeworth-type. We here present an ezplicit formula for the k-th order asymptotic

expansion of St by using the Taylor expansion of f(St) around St = Zg) ).
THEOREM 5.1. Let M, v, K be positive numbers and let § be a positive definite

matriz satisfying § > limy_, g. Suppose that Conditions [Al], [A2], [A3] hold true.
Then for any k € N, there exist constants 6 > 0 and ¢ > 0 such that for any f € E(M, ),

(5.2) |E[f(ST)]— /R ) dy® f(y)ar ey @)| < cw(f, T7¥, §) + er,
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where y = (y@,yM), dim(y®) = p, dim(y™") = ¢, Q¢ denote the a-th element of Q;,

ar (") —/ (y; 9)dy) + ZT m/2 (/ Erm (y)6(y; 9)dy ™V

p> Z J' 2 h “</ @ Z-j(y)ET,s(y)¢(y;§)dy“))>

S+l m] 1 l1++l]'—l
s20,1>1

and e = o(T~((k+8)/27K)y,

Remark 1. In some cases, each of (();) may possibly be a polynomial only in 259 )
(independent of 253 )). In this case, the expansion g7 becomes a simple one which is

determined by the Edgeworth expansion of 259 ) and (Q:), ie.,

k
iy @) = ¢y )+ S T2 (E(T",ln@m%(y@);g)

m=1

1J a A
+ Y Z( ) Y O (Qz;(y@)~--Ql;<y“”>~‘°> W ©)g(y®; g>>>
s;—él;nlJ 1 i+ +l=t

where (Eg? )m) are polynomials appearing in the Edgeworth expansion of 2;9 ), and they
are defined by the same formula as that for S1 ,,,. It is easy to show that the same result
as Theorem 5.1 holds true with this expansion under Conditions [Al], [A2] and [A3] for
Z(O) , while Theorem 5.1 suppose the conditions for Z = (Z(O), Zg} )).

When we need a more explicit representation of an asymptotic expansion for a statis-
tic of interest, we only have to make the calculations, differentiations and integrations, in
this expansion for the polynomials @; corresponding to the statistic. Those calculations
are absolutely elementary but rather complicated at least for higher order terms, hence
we prepare another representation of g7, which may require slightly less calculations,
in an ordinary way.

Let Z(O) = 2(0) and 2(1) Z(” IIIPIE IZ( ), where L9, = Cov(z(l) Z(O)) and
Su Cov(Z(O))( g). Then the covariance matrix & of Zg = (Zg? ), 7{! )) is given by

En 0

0 Zooql’
where £251 = Zg2 — £91Z' 15 and Tgp = Cov(z(Tl))(z 3). In terms of Zr, the
functional St is rewritten as

MR

70 70) 5(1)
(5.3) Sr=1Zy +ZT/2 Y, 27),

where Q is a polynomial satisfying Q(2(,2()) = Q(2(9,2() 4 £4,5712®). For any
index set A = {a1,...,a4,}, denote the cumulant of Z3*,... ,Z3™ by A, Let éT,j be
a function taking the same form as Zr ; with ¥ and A4 in place of g and M.
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COROLLARY 5.1. Let M, v, K > 0 and § be a positive definite matriz satisfying
g > lim7_, g. Suppose that Conditions [Al], [A2], [A3] hold true. Then for any k € N,
there exist constants 6 > 0 and ¢ > 0 such that for any f € E(M,~),

(54) S C(U(f, T—Kag) + €T,

E[f(Sr)] - /R g £y

where y = (y©,yV), dim(y@) = p, dim(y(V) = ¢, Q¢ denote the a-th element of Q;,

k
ark(y?) = / $(y; D)dy™ + > T/ ( /R Er.m (y)o(y; T)dyV
q m=1 q

Ly Z l)J S Oy a]( / QM (y) - ij(y)éns(y)ﬂy;i)@‘”))

s+l=m j=1 L4 tl=l
s2>0,1>1

and ep = o(T—((k+5)/2/\K))'

In Theorem 5.1 and Corollary 5.1, we assumed the non-degeneracy of the covariance
matrix of T~1/2Zp; however, it is necessary to generalize the results to the case where
Cov(T-1/22{) is regular but there is a linear relation between the elements of Z 12
and where Cov(T 1/277) is degenerate. The maximum likelihood estimator as an M-
estimator is the case as we will discuss it later. More precisely, in the case of the
MLE or the minimum contrast estimator, er,ﬂl) consists of the second and the higher

order derivatives of the log-likelihood function, and therefore the elements of Zi(} ) have a
linear relation due to the exchangeability of the differential operator. If  is degenerate,
the Hermit polynomials hq,...a, (2; §) does not make sense as it is. However, it is still
possible to interpret each prx(z) as a Schwartz distribution, and to prove the validity
of the formula for gr 2 given in Theorem 5.1.

For z = (29,20) € RP*9, put z:= 2 (5,%) := 2z, and 2* = (2, 2), where
z € R%, 2 € R?” and g; + g2 = ¢q. Since if go = 0, then the following arguments result in
the preceding case, we will suppose g2 > 0. By using these notations, we will consider
the case where the following conditions hold:

[HO] Cr is a block-diagonal matrix given by

o _ | o
7o <P

where Cg? ) is a P X p matrix converging to a non-singular matrix and Cgpl ) is a gX%xq
matrix which may be singular;

[H1] Cov(T~Y/2Z%) converges to a positive definite matrix; .

[H2] for some matrix L = (L§)p+q+1<a<ptqpti<p<pta 417 = LZ7 as.

As we will see in the next section, the coefficient matrix C7 for the minimum contrast
estimator has the structure given by [HO] and [H2].

For any (p + q1) X (p+ ¢1) positive matrix ¢* and any ¢ x ¢; matrix M, let

* x gt

5= o1 O01aM
- T T ar|?

M0'21 MO'QQM
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where 0, 09, 05, and 039 are p X p, p X q1, 1 X p, and ¢; X ¢, matrices, respectively,
giving the decomposition of o*:
* *
o}, 0
* 11 Y12
o= - .
021 022

For any index set A = a1+ am (a1,... 0, € {1,...,p+ q}) and any z(® € RP, we
define a Schwartz distribution “h4(z;3)¢(z;5)” so that for any f € F(R?),

(5.5) / Az ) (s )=
d‘g/R (B4 £)(ML2) (~ )18 410, (27; %) d3,

where A(®) and AM) be parts of a decomposition of A into two index sets such that A©
and AM) consist of indices running from 1 to p and from p 4+ 1 to p + g, respectively.
We can easily extend this definition to the case where f € CY° (RY), i.e., we also define
“ha(z;0)¢(2;G)” by (5.5) for any f € CP°(R9). If [A] = 0,

(5.6) £z 7)) & / FVT2)$(z; 0%)ds.
Re R91

Under Conditions [HO], [H1] and [H2], we see that g and ¥ have the same structure
as that of & above, regarding the covariance matrices of (Zg@,T_l/ 27Zr) and (259),
TY2Zp — Cov(T~12Zp, ZO)EZ©) as o*, respectively. Therefore, we can inter-
pret g7, of Theorem 5.1 and Corollary 5.1 as (5.5) and (5.6), and can extend Theorem
5.1 and Corollary 5.1 as follows.

THEOREM 5.2. Assume that (i) Conditions [Al], [A2] and [A3] for Z3} hold and
(i) (Ho, (H1] and [H2)] are satisfied. Then the inequalities in Theorem 5.1 and Corollary
5.1 hold with the same qr i interpreted as (5.5) and (5.6).

In Corollary 5.1, the orthogonality between 25,9 ) and i}l ) reduces the expansion gr i
to a simpler form. For any index set K whose elements run from p+1 to p+q, any positive
definite matrix o3, and any q x ¢ matrix M, let hg(2(V; Mo3, M) ¢(2(); Mo3,M') be
a Schwartz distribution defined by

(5.7) [ 0 e (0; W3, ) B N ot
R4
= | Oxf)(M2)$(505)d:,  Vf €S R).
R91
Then, if o, = 03] = 0, the Schwartz distribution ha(z;5)¢(z;5) defined above is
reduced as
ha(26)$(2;5) = hao (205 01))8(2 5 07;)
x hA(l)(z(l);MU§2MI)¢(Z(1); Ma§21\;[').
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For any g x ¢ positive definite matrix o and any index sets K, L consisting indices
running from p+ 1 to p + ¢,

(K) i (K) = (L)
0 otherwise,

/hx(y(”;J)hL(y(”;a)¢(y“’;U)dy(” = {

where (K) € Z% is the multi index corresponding to K, and
g
K)=[]rs! for (K)=(k1,... k)
=1

For polynomials Qf(y) in (5.3), define functions LT (¥©) and 7rla’K(y(0) ) by

(5.8) WﬁK(y(O)) = (K)'/ Qz ()b (yV); Do 1)y W; ; Sa, 1)dy,
(5.9) i (y©@) = T35t ()

where K € {¢,k1,K1K2,...}, m,@,... € {p+1, o ,p—l—q_}, L e {_(;S,p,l,p,lug,...},
piy o, ... €{p+1,...,p+g¢}, and 222 1= E;;‘i‘ - Bot™, Toan = (X54,). Note that
L x (@) and ﬂf’K(y(O)) are polynomial in 3(® which is easily shown from (5.7) and

(5.8). Moreover, we will use the contravariant and covariant representation of 7 and
a,K

7rl N

(5.10) ) =D alwha@i9) =D alah* (459)
A A

and

(5.11) iR y@) =3 g hay s g) = Zq FhA Y5 g)

A

where A € {¢,a1,a1a9,...}, a1,a9,... € {1,...,p}, h*(y®;g) is the contravariant
representation of hA(y(O);g), ie., ha(y®;g) = gubr...gambm by 4 (y(0;9), A =
ai---am, and q“’K " and q,‘;’f are supposed to be symmetric in indices A. The multipli-
cation of the polynomial becomes an action on the algebra of the polynomials, and we
express this action by

hahp =Y _CS ghe.
C

Obviously, C§ , = C§ 4 = 65 (=651 --- 62).

By using these constants qf”}?, Arar @ S q; /{{ , and Cf’ p» We can reduce gr
to a simpler form. In the following sections, we will consider the third order asymptotic
expansions of statistics, therefore we here present a reduced form of grj up to third
order, say, qr,2-
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THEOREM 5.3.  Suppose that [H1] and [H2| hold true. Then gr o defined in Corol-
lary 5.1 has the following representation:

ar2(y®) = o(y*; 9) (1 + -\/1?{/11 () + A2y @)}
FpRa(%) + Raly®) + Rsy®) + Relu ) ),

where

_ 1- _ .
M) = 2 2%hane(¥@59), R ) =D a1 haay®;9),
A

= 1 - 1 ~, ~
Ag(y(o)) — _)\abcdhabcd(y(ﬂ);g) + _)\abc)\defhabcdef(y(o)' )

Ay(y©@) = ZA“ 40 Oy e abacy Z/\“b" 1 COy ahac (¥ ®; 9)
*3 Z(“)‘)!S\a'm\qf:,\cc ahac (@5 9)
A,C

1 Y a
+ 2 Z(ﬂ/\u YNGR haa(y s g),
(0))_2(12 haa(y®: g),

and

Ae(y(o)

l\DI»—l

> )R CS phac s 9).
K,A,B,C

Note that the coefficients multiplying the Hermite polynomials in A1, Az and A4
depend on the cumulants of Z7, and that those in As, Ay, As and Ag depend on Qy, Qo.
The polynomial nj'; defined by (5.8) can be obtained as follows. Let v be a

g X ¢ symmetric matrix satisfying that S0, + v is a positive definite matrix. Then

Y22,1+v,a

RE (y™) $9g 1 +v) is well-defined, and there exists a polynomial T & in 4(® uniquely

such that it is symmetric in indices K and

Qi) = S M2 (yOVRK (YD) Sa9 1 +v).
K

Since

lim f( Nhi (2P So21 + 0)g(2Y; a1 + v)dzV

|v|—0
FE g (2D 200 1) (2D $g9,1)dzV,
R
for any f € C?°(R?), we can obtain the polynomial T g as

(5.12) (Y @) = Jim Ty e (y (@),
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In the next section, we will use (5.12) to obtain an asymptotic expansion of an M-
estimator.

6. Asymptotic expansion of the M-estimators

The purpose of this section is to present the third order asymptotic expansion of
the distribution of M-estimators for a general statistical model. Before the theorem for
the asymptotic expansion, we will precisely discuss the existence of M-estimators and
the convergence rate of the remainder of their stochastic expansions. After that, we
will present asymptotic expansions of M-estimators. In the case where the moments of
derivatives of the estimating function have some relations, so-called the Bartlett identi-
ties, it will be seen that the coeflicients of the expansion becomes the well-known ones
for the maximum likelihood estimator in i.i.d. or time series models. At the end of
this section, we will show the application to the maximum likelihood estimator for the
diffusion process, which is one of the results in Sakamoto and Yoshida (1999).

Let © be an open bounded convex set included in R? and Ty a positive constant. For
each T > Ty and each 6 € ©, let (X7,7) be a measurable space and X% an Xr-valued
random variable on some probability space. For an estimating function 7 : X7 x © —
RP, an M-estimator 67 is defined as a solution of estimating equation ¥r(4, Xg?) =0.
In what follows, 8y denotes the true value in the parameter space ©, and wT(O,X;’P)
is abbreviated to (), if there is no confusion. We also omit 6y in functions of
when they are evaluated at . For example, X1+ = X%O and ¥ = ¥(6p). Moreover
q,(0) denotes the a-th element of ¥(8), and (Ya.a,--ax (8))ay,... ,ax=1,... p denote the k-th
derivatives of v, (0) with respect to 8,,,... ,04,, i-€., Yasa1-ar(0) = oy - - barVa;(0),
where 8, = 0/00°.

Let rr be a positive bounded sequence tending to 0 as T — o0, and for K € N
and a,a1,...,ax = 1,...,p, let Dg.a;...ax (f) be a tensor defined on © such that it
is symmetric in aq,...,ax. Each of them may depend on T, but is supposed to be
bounded as T' — oo. In order to show the existence of M-estimators and their stochastic
expansion, we will assume the following conditions for K € N, ¢ > 1 and v > 0:

[COJK ¢ € CK(O) as.;

[Cl]q supps, [IT7%,; (90)“11 <oofora=1,...,p;

[02]q v SUPTsT, gco lIrp” (TT"/"a sar--ax (0) = Vasay-ag (0))llg < 005

[C3] There exists an open set © including 6y such that

" ( /0 Den(f1 + 5(6 91))ds)

[C4]X supr, [ supgee |13 Yasar-ax (O)|lg < 00 for a,a;=1,...,p,j=1,... , K.

Note that the tensors 7g.q,..ax Will be supposed to be the expectations of
T2%4:0,-ax When the asymptotic expansion will be considered. As for the case where
6 € R}, the existence and the second order stochastic expansion of M-estimator were dis-
cussed by Sakamoto and Yoshida (1998a) under similar conditions to those given above.

inf
T>To,01,02€0,|x|=1

THEOREM 6.1. Let m > 0 and v € (0,1). Suppose that [CO}?, [Cl],,, [C2]k, .,
k = 1,2, and [C3] hold true for some p; > m, ps > max(p,m) and p3 > 1 with
m/py <y <1—m/pi. Moreover, assume that 6:7,.4(0) = Ugpc(0). Then

(6.1) P[(3167 € © such that ¥(6r) = 0) and (|67 — 6| < )] = 1 — o(r}R).
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From this theorem, we see that for any m > 0, there exists a subspace Xr such
that P(%T) =1- o(rT) and that for each observation Xt € %T, the M-estimator O
for 6y can be defined as a solution of the estimating equation #(f7) = 0. In the sequel,
any extension of 7 defined on the whole of the sample space X1 will be referred to as
the M-estimator of 6y, and will be also denoted by bp. If we replace non-degeneracy
condition [C3] with

inf |2'v,.4(6)] > 0,
|z]=1

we obtain a similar result: under the same assumptions as in Theorem 6.1 except for
(C3], (6.1) holds true for some open subset © C ©.

This result is concerning a Cramér type consistency. In order to obtain a stronger
consistency result, we need additional conditions; Condition [C3] ensures only local iden-
tifiability. Because constructing a consistent estimator is one of the subjects for O-th-
order asymptotics and it is also rather routine (and it is not our main problem here), we
only consider this weak consistency here.

Let {74,(f)}a=1,... p be tensors defined on © such that they may be depend on T but
supr g Ag;(0) < 00, where Ay, (8) = r7°74,(0). Put Zy, = rpt (r2g,(80) —74,(00)), Zap =
T (P20 (00) — Tap(00)), and Z,pe = r;l(r%d;a;bc(%) Ua:be(00)). Moreover, under
Condition [C3], set Z% = —p%% Z,,., Z%, = —0%% Zyuy, zZ%, = — 0% Z ey Py a =
—D“?G'Daf;al...ak, and A% = —17"”“'Aaf;. We then obtain the stochastic expansion of a
bias-corrected M-estimator 83 defined by

07 = 07 — v3.8(67)
for some bounded function 3, and estimate the convergence rate of its remainder term.

THEOREM 6.2. Let m > 0 and v € (0,1). Suppose that [CO]*, [C1],,, [C2]E, .,
k =1,2,3, [C3], and [C4];, hold true for some p; > 4m, p; > max(p,4m), ps > m
with 3/4 + max{m/ps,m/(4p3)} < v < 1 —m/p:. In addition, suppose that for the
tensors Dy and Ugpe in [C2)), . and [C2]2, | 6.7q(0) = Da;bc(e). Then there exists

an M-estimator for 6y. Moreover, for any extension Or of the M-estimator and any
B € CL(O), let RS be defined by
6.2)  rp'(0r—00)" =Z% +rr (Z‘“be; + %v‘“bczb;zc; + A% — 5a)
1, .. . e rd
+T%‘<—(’7a’bcd+3l7a’b 2825 2% + 5%, 7%7%,7%
1 e d . L a i b e
+ 572262 + 5 2%, 25 2% + 1%,2%, 2
— Z%8,8% + AY(Z%, + % Z“)) + r3.R2.
Then there exist C > 0 and ¢ > 0 such that

(6.3) Plrr|RY| < Cria=1,...,p =1 —o(rR).
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Note that this stochastic expansion is a generalization of that of the MLE given by
Barndorff-Nielsen and Cox (1994).

Combining this stochastic expansion with the formula of Theorem 5.1, we can de-
rive an asymptotic expansion of M-estimator é}, but it is easier to derive it from
that of Corollary 5.1. Therefore we consider another stochastic expansion consisting
of orthogonal random variables. Suppose that (i) (¢g%®) := (Cov[Z%, Z%]) is a non-
singular matrix and (ii) tensors 7, g.4;.-ar, K = 1,2,3, given above are the expec-
tations of the estimating functions g, and ¥a.a;...ap, i-€., ¥g;(8) = E[ra,;(8)] and
Vasarax (0) = E[r344.0,...a, (8)] for k = 1,2,3. For index sets By,... , By, let

= 2
Vay;B1,a9;Ba,... ,.a5;Bx = TTE[¢G1;B1¢G2;32 co ¢ak;3k]
and

o az; ak; (_1)’“9‘119“; . Dak;a;ﬂ? , , ,
By, Bg, r B, — al;Bl7az§B2»~-~ yak§Bk *

Define Z% and Z%,...q, by Z% = Z% and
7a; — 7% ; b;
z* ek T Zaal -ve v 2

ai crlk a1 Ak,

where V% = Cov[Z%,..ar, Z%]gps and (gap) = (¢°°)!, then Z% and Zb;bl-nbk

1ak,b T
are mutually orthogonal, i.e., Cov[Za3,Zb;b1mbk] = 0. For these random variables, we

rewrite the stochastic expansion of r;l(é} — o).

THEOREM 6.3. Let m > 0 and v € (0,1). Suppose that the same condition as in
Theorem 6.2 hold. For a bias-corrected M -estimator 6%, let RS be defined by

rot (05 — 00)° = Z% 4 rp (2%, 25 + (%, 2% 2% — 3%
+ T%(Ua;deZb;Zc; 7% 4+ ﬁa;b’czb;ch;Zd; + ﬂb; CdZa;ch;Zd;
oo sbse . 5a ob e Sb
+ iza’bczbyzc’ +Z2%,2% 2% — Z% 5,
+ A% (Z%, + ﬁa;b,cZC;)) + 13RS,
where Ba; - ﬂa - Aa;’ ﬂa;bc = (Va;b,c + Va;c,b + Da;bc)/zv ﬁa;b,c = Va;b,c + l—/a;bcv and

(3] 3]

a; 1 ~a; a; 1 ~d'; ~a;
USyed = g VY bea T Z Vieal + 3 bell @ 4
(bC,d) (bC,d)
Then there ezist C > 0 and € > 0 such that
(6.4) Plrr|RE| < Cria=1,... ,p| =1 — o(r).

In the sequel, we set rp = T—1/2. Let

Z0 =17, ... Z,)
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and

Z(Tl) = T1/2(@1,-~- ppaZI 11y .- 7Zp;pg)-

p? p3

Suppose that for some integer ¢; < p? + p3, there exists a q;-dimensional random vari-
able Zp consisting of the elements of Z (1) such that Cov(Z3) converges to a positive
matrix and Zp = LZT for some q; X ¢y matrix L, where Z} = (Z(l) ZT) ZT is a
g2-dimensional random variable consisting of the other elements of Z() than those
of Zp, and q; + g2 = p? + p>. Assume that X is an e-Markov process with some
driving process and that Z* = (Z})recr, is an additive functional of them. For the
definition of e-Markov process, its driving process, and their additive functional, see
Subsection 2.5. Put M b“bg = E[Zes, 7%, ), Naibiav - — TV2E(ZaiZb Zas ],
Abe = T1/2Cum|Z%, Z%, 7], Hobed = TCum[Z“ 7t 7e zd} We then obtain a third
order asymptotic expansion of the distributions of M-estimators.

THEOREM 6.4. Let § > limp_,o g, M and ' be positive constants, v a constant
(O 1) and m a positive constant satisfying m > v + 2. Suppose that [COJ*, [Cl],,,
[CQ]M 4k =1,2,3, [C3], and [C4]3, hold true for some p; > 4m, py > max(p,4m),
p3 > m with 3/4 + max{m/ps,m/(4ps)} < v < 1 — m/p1, and that for the tensors
Ugp and Ugpe in [CZ]WA, and [C2],2,2ﬁ, 0cVa:b(0) = Uape(0). Moreover, suppose that
Conditions [Al], [A2], [A3] for Z% hold true. Then there exist constants ¢ > 0, C > 0,
€ > 0 and such that for any function f € E(M,~'),

(6.5) ‘E[f(ﬁ(é} 0= [ a1 era)
< ew(f,CT=E2/2 5y 4 o(T™Y),
where
1
() — (0)y ab 1+ cabchac (0). ,ab
4r2W®) = d(y®; g )( e hanely s
1 A a a a
+TT(“ 0%t = BMha (Y9 %) + TA has(y'?; g%)

1
+ mcadehabcd (y(O) )

1
+ m_}cabccdefhab def(y(o) ab))

cabe — Xabe 4 GG . gaaghb,
A% = g(Need 4 %, g¢'cgd @) b L+ 26 Na &b, 4 gee N1, @
+ 2((A%TY 4 — 86 B%) + G M®, PV, +3U% g d)gb,b
+ (ﬁa;cdng - Ba)(ﬂb.Y efgef - Bb),
cabed _ prabed +4cabc(~d g — G4 + 24(X%e + 2ﬁa;b’e,gb’bge’e)ﬁc; d’egd'd
+ 12(gbb gdd Mcyd',a;b’ + Na;,b;,c;d’gdd/) + 24Ua;b’c d'gb bgc cgdl
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If the estimating function i satisfies ¥(0) = Vgp(6) for some function p, then
M-estimator éT becomes a minimum contrast estimator corresponding to the contrast
function p. In this case, Z,.4,...q, is symmetric in all indices a, a1, ... ,a; and Cov(Z,}l))
is singular, but the conditions given above Theorem 6.4 are fulfilled. Therefore the
result of Theorem 6.4 comprehends the asymptotic expansion of the minimum contrast
estimator.

In the following, we will show that the coefficients of asymptotic expansion of the M-
estimator can be represented in terms of the information geometry when the estimating
function g.4,...q, is symmetric in all indices a, ay, ... ,ax as in the case of the minimum
contrast estimator and tensors ggp, Ug: 4, and g, . Ar,... ariAr have some relations given
below. In what follows, we assume that ¢ is symmetric in all indices, and omit semicolon
; in the sequence of indices, e.g., Uaqa,..ar = Paa;--ax- FOr the tensors ¥’s, we suppose
that the following identities hold true:

[BI1] A, =0;

[BI2] Uap+ Vap = 0,

[BI3] Dape+ ZEL](,’C) Vab,c + Vabe = 0(_\/1_?)5

[BI4] Vg bye,d T Zg?z]b,c,d) Vab,c,d + Zgb,cd) Vab,cd + Zt]bc,d) Vabe,d + Vabed = 0(#)
These are often called Bartlett identities and hold for many of the maximum likelihood
estimators. Furthermore, suppose that the following relations hold true:

[DVI] 8agbe = Uab,c + Vacb + Va,b,c;

[sz] 6a17bc,d = Vabe,d + Vbe,ad 1 Va,be,ds

[DV3] 6al7b,c,d = Dab,c,d + Ubac,d + Db,c,ad + Vg be,d-

In the i.i.d. or time series models, these relations are usually assumed, and as a sufficient
condition the exchangeability between the differentiation w.r.t § and the integration
w.r.t. the density v is habitually used. In general, it is not so clear whether these
identities hold true or not, but just assuming these identities, we will examine whether
our expansion given in Theorem 6.4 can be represented in terms of the information
geometry.

Let

l—a_

1 — ’
F((;ZE = Vgp,e + 5 Vab,c and pue = __F( 1) aa be.

2 bea’ 9

In the case where % is the log-likelihood function, F((labz is a coefficient of so-called a-
connection. Moreover, put Mg cq = E[ZapZed], Naped = VTE[ZuZ:Z4), Lopca =
E[ZabCZd]) Habcd = TCum[Za, Zb, ZC) Zd] a'nd

{4] (6]
Labcd = Z Labc,d; Nabcd = Z Nab,c,d-
(abc,d) (ab,c,d)

We then have the following asymptotic expansion.

THEOREM 6.5. Let § > limr_.o0 g, M and ' be positive constants, v a constant
€ (0,1) and m a positive constant satisfyingm > v'+2. Suppose that the same conditions
as in Theorem 6.4 hold true. Moreover, suppose that Conditions [BI1], [BI2], [BI3], [BI4]
and Conditions [DV1], [DV2], [DV3] hold true. Then there exist constants ¢ > 0, C > 0,
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€ > 0 such that for any function f € E(M,~'),

(6.6) ‘E[f(ﬁ(é} -0 [ a5 ar /)
< aw(f,CT~ /2 5y 4 o(T ™),
where

1 1
ar2 (') = ¢(y?; ¢*) (1 + hebe — ——ga (B — pP)h® + ﬁAabhab

1
———7=Cabc
6vVT VT

1 1
+ —cabcdhade + 7_2‘Tcabccdefhab‘:def> )

24T
cave = =305,
= —%g“”gcdl’ﬁ(;bl)y
Agp = %nggefF Soa )Ffi;bl) + 9N (Mac,bd — Fc(zlc)egefrl()}i} )

+ Gacgba(B° — 1) (B = %) — 2g5c64(6° — 1),
Cabed = _(3Habcd + -Z/abcd + 2Nabcd) + 121—‘((1;;/3)9(16 (ﬂe - /1'6)
+12(050 + TN g

abe aeb

Needless to say, this result includes asymptotic expansions of the minimum contrast
estimators and the maximum likelihood estimators. In the case where f7 is the MLE, the
representations of the coefficients of the asymptotic expansion in Theorem 6.5 coincides
with those given by Taniguchi and Watanabe (1994). They derived them from formal
asymptotic expansion and explained certain meanings of the coefficients for the MLE
from the viewpoint of information geometry. We here only clarified some sufficient
conditions under which the representations for the M-estimator are obtained validly and
do not discuss meanings of their coefficients.

In the rest of this section, we will show the application to the maximum likelihood
estimator for the diffusion model. The results are due to Sakamoto and Yoshida (19985,
1999), where the third order asymptotic expansion of M-estimators is obtained for the
(misspecified or specified) diffusion model.

For any 6 € ©, let X = (X;);cr, be a d-dimensional stationary diffusion process
satisfying

(6.7) dX; = Vo(Xe,0)dt + V(X,)dw,,

with a stationary distribution vg. Here Vo = (Vi)iz1,.qa : R¥x © — R4, V =
(Vi)i=1,... dj=1,...r : R? 5> R*®R", and w is an r-dimensional standard Wiener process
defined on some probability space (2, §, P). Assume that (i) (6.7) has a strong solution
X, (ii) B|X¢|* < oo for any t € Ry and k > 1, (iii) vy is absolutely continuous with
respect to the Lebesgue measure, (iv) for any T > 0, the log-likelihood function based
on X7 = (X¢)sepo,r) (W.r.t. some reference measure) is given by

d T T
6X,0) = log 2 (X0) + | ViV (X)X, — 5 [ V) V(X Ot
0 0
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Let

Az, 6) = log%—;ox) B(z,0) = V{(VV')"V(z,6),

C(z,0) = B(z,0) - (B(a:,&o) - %B(x,O))

and denote the derivatives of A, B, C, and £ w.r.t § by
Agyar(x,0) = 0a, - - 04, A(2,0), Bay.a.(x,0) =8, - - 64, B(z,0),
Cayoap(€,0) = 0g, -+ 00, C(2,0),  Loy...q,(0) = 8ay -+~ 84, £(6).

For any measurable function f : R* — R, let f be a function such that Af = f — v(f),
and [f] = =V'V{, where v(f) = Jre f(g:)y (dz) and

Zvou 02+ 1S e

%,j k=1

Assume that
[DM1] (i) for each x € R%, A(z,-), B(z,"),C(z,-) € C®(©);
(ii) there exist positive constants C;, m;, i = 1,2, 3 such that for any x € R¢,
k=1,...,6,a,=1,...,p,

sup Ay, ..a, (z,0)] < C1(1 4+ |z|)™, Sup B, -a, (2,0)] < Co(1 + |2])™2,
€0 6coO

sup |Cq, . way (2, 0)] < C3(1 + |z])™2,

[ISS)

[DM2] for anyv9 € 0, k =1,...,5, there exist functions éa1-~-ak7 ay,...,a =
1,...,psuch that Cy,...q, € C?(R?) and that

-Aca1 0 (%) = Cayay (2,0) = v(Co,y..a, (-, 6)),

[DM3] (i) foreach a =1,...,p, ¥(Co(-,60)) = 0;
(ii) there exist positive constants C;, m;, i = 4,5 such that for each k =
2,3,4,and ay,...,a, =1,...,p,

sup [Coy...a, (2,0)] < Ca(1+ [2)™,  sup|[Cla,-a, (z,0)] < C5(1 + |z|)™.
0co 6co

We then have

THEOREM 6.6. (Sakamoto and Yoshida (1998b, 1999)) Let 6§, € ©. Suppose
that there exists a open subset © C © such that 6y € © and that the p X p matric
(v(Cap(-,0))) is non-singular uniformly in 6 € ©. Moreover, assume that for any 0 € ©,
a,b,c = 1,...,p, 8cvgy(Aap(+,0)) = vo,(Aavc(-,0)), e, (Cab(+0)) = voo(Cane(:,6))-
Then, under Conditions [DM1], [DM2], and [DM3], for any m > 0, v € (0, 1),

P[(3107 € © such that y(f7) = 0) and (|fr — 6| < T~ 7/?)) =1 — o(T™™).
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Furthermore, for any extension of Or, say 67, and for any B € CZ(©), (6.2) and (6.3)
hold true with rp = 1/vVT and pp = (3.€)5_, .

For the maximum likelihood estimator given in Theorem 6.6, we can derive asymp-
totic expansion of its distribution from Theorem 6.4. Suppose that X has the geometric-
mixing property, which ensure Condition [Al] in Section 5 with the diffusion process
X and the Wiener process w in place of an e-Markov process Y and a driving process
X. The geometric-mixing property of diffusion processes, which are not necessarily sym-
metric, was shown by Kusuoka and Yoshida (2000). See Stroock (1994), Roberts and
Tweedie (1996). Let

ZC(FO) = Tl/g(Zl, ..., Zp) and Z(Tl) = Tl/Q(?Ila e 7Zp]17\lelj e :prg)a

—— =

p? p?

where

g = %JGZ(QQ), Zap = %((Sabf(eO) - Ego [6abg(90)})
Zape = %(5(1&:6(00) — Eyy[0a6c£(60)))-

Denote by Z.'p the a-th element of Z§, and by Z.;) and Z{}) 1 the (a,b)-th and the

(a,b, c)-th elements of Zq(wl), respectively. Then they satisfy the following Stratonovich
stochastic differential equations:

dZ%) = Ba(Xy,00) o dw, + C(X,, 00)dt,
ch(dl;,)t = By (X4, 00) 0 dwy + Cop( Xy, 0g)dl,

dZ3) = Bupe(Xt,00) 0 dwy + Clue(Xe, 60)dt,

abe,t —
where
r d
X 1 x _
Ci(2,0) = Ca(@,0) = 5 > > Vi (2)0xB}(z,0)
j=1k=1

for A = {a1,a1a0,a100a3}, a; =1,... ,p. Put

Vo1 = Vi, ,Vod’Ci*,... ,Cy)
and

Vii= (Vi V4 BL,..,B), i=1,..,n

7

where B! is the i-th element of B, and

r

d

i i1 k i ‘

1/0:1/0_52 E ViopVy, i=1,...,d
j=1k=1

Assume that
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[L] for some integer q; < p? + p3, there exists a g;-dimensional random variable Zr

consisting of the elements of Z(1) such that
(i) Cov(Z%) converges to a positive definite matrix, where Z} = (2, Z7),

(ii) Zr = LZyp for some go X ¢ matrix L, where Zr is a go-dimensional random
variable consisting of the other elements of Z(1) than those of Zz, and ¢ + ¢2 = p® + p°,

(iii) for some z € RY, (U2 Zn(2,0) = RHPH where C";f is the drift of the
Stratonovich stochastic differential equation for the j-th element of Z, BJ’ is the i-
th element of its diffusion coefficient, Vy = (Vo1,Cf, . .. ,C‘;l), Vi=(Wi1,Bi,... ,Bél),
i=1,...,n % ={V,..., 1, ., ={[V;,V] |V € £4-1,j =0,1,...,7}, and [V}, V]
is the Lie bracket.

Let us prepare some notations. Let

FA1,A2 = Vy, (BAx 'BAz)v FA1,[A2,A3] = VGD(BA1 : [BAz : BABDa
F‘[Al,A2]y[A37A4] - VGO([BAI : BAz] . [BAs ) BA4])a
Flia,,45),45),40 = Voo ([[Ba, - Ba,] - Ba,] - Ba,),

where B4’s are evaluated at 6 = 8y. Put pup = Fop, (0%°) = (pab) ™!, A% = P2 vg, (Aar),
Tab = Cov[Aq(Xo), Ap(Xo)], A% = p2@ pPY" (A, ). Moreover we need the followings:

(3]
(@) _ ¢ . 11—« =
Fab c = fabe — F[a,b],c + 2 Z F[a,b},c,
{ab,c}
-a 1 aa’ (-1 H*a a 1 !
b= —ip pbcr‘l()c,a% n be — a (Fz(z l b I(Jc a))

Here Z (ab,c) 18 @ summation over the indicated number of terms obtained by rearranging

the subscrlpts
By using these notations, we can obtain the third order asymptotic expansion of
MLE 67 for the diffusion process:

THEOREM 6.7. (Sakamoto and Yoshida (19986, 1999)) Let M, v > 0, and p >
(p??). Assume that [L] and the conditions in Theorem 6.6 hold true. For any B € CZ(©)
and the O defined in Theorem 6.6, let é} = bp — 5({%) JT. Moreover assume that the
diffusion process X given (6.7) has the geometrically strong mizing property. Then there
exist positive constants ¢,C, € such that for any f € E(M,~)

(6.8) ‘E[f(\/T (05— 6))] - / dy© f(y)ar2(y®)
< aw(f,CT™ D)2 5o8) 4 o(T7),
where

ar2(y?) = ¢(y¥; p* bch? (¥ p2)

(14 i

——1 e 30\ pa a 1 * 14 a
+ ,—Tpaa'(u = Bh 5 p%) + Akt (' ; o)
1 ¢ a 1 * cde
+ g Caneah™ W50 ¥ o Caneieh (y(o);p“"))’
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chpe = —30GY, B =g - Al
Ay = Tap + 2Cab — P°(Focd,a + Fabed — Facpd — Flaelpa) + 2F (ab,c],d
+ 2Facp),a + 4F ) ac + Fleapla + 2F (b c,ald + 2Fp.e),d).a)

Lo(—na-1) =) =0 = (1) (1 = (-1
+ppt (’érr(:e,b)rc(if,a) — TR, + TG T + T D)

FECDED, + ff,;,?))

+ Paa’ Pob’ (ﬂal - Bal)(ﬂb, - Bbl) + 2paar ( cﬁ*acf,b - 5bﬁal)v
Copea = —12(Fap1.0,d + Flap)cd + Flavse,d) + 3Flab)fc.q) — 4Fabe,d
~(_1/3 ~ Wy ef ra(— ~(1 ~(_
+ 1280 pagr (B — ) + 1207 (D) + T NI Y.

ab,c

Remark 2. Theorems 6.6 and 6.7 are specific versions of Theorems 4.1 and 4.2 for
M-estimators in Sakamoto and Yoshida (1999), respectively.

Remark 3. In Theorem 6.7, the representation of the coefficients in the expansion
are obtained without the identities [BI1] ~ [BI4], [DV1] ~ [DV3]. If one assumes those
identities, the representation will become slightly simpler.

Remark 4. In Theorem 6.7, it is implicitly assumed that V', Vi, B4(+,8), C4(-,0) €
C>®(R%), |A| < 3 for the condition (iii) in {L], while Condition [DM2] in Theorem 6.6
requires that Cy, ..o, € C2(R) forany § € ©, k=1,...,5,a1,...,ax=1,...,p.

Remark 5. When one considers the third order asymptotic expansion of the max-
imum likelihood estimators for the Ornstein-Uhlenbeck process, it is found that the
condition (i) of [L] is not fulfilled. It is because of the complete linearity of this ex-
ceptional model. However, Sakamoto and Yoshida showed in 2000 that even in such
a case, the third-order expansion formula of Theorem 6.7 is still valid (Sakamoto and
Yoshida (2003)), as mentioned in Uchida and Yoshida (2001). This fact easily follows
from a straightforward application of the perturbation method used in Yoshida (1997).
For details, see Sakamoto and Yoshida (2003). In Uchida and Yoshida (1999, 2001), it
has already been used for the model selection problems.

Remark 6. Here we adopted a Hormander type condition for non-degeneracy of
the distribution. It is a practical convenience because it involves only differentiation of
coefficient vector fields. It is also possible to replace this condition by a condition that
ensures local degeneracy of the Malliavin covariance, which is sufficient for our use. If
the Malliavin covariance is non-degenerate at a skeleton in the support of the process,
then the local degeneracy in the vicinity follows. See Yoshida (2001) for details.

7. Proofs of theorems in Section 5

In this and the next sections, some of the proofs are shortened for saving space. The
details were given in Sakamoto and Yoshida (1999) or Sakamoto (1998).



578 YUJI SAKAMOTO AND NAKAHIRO YOSHIDA

7.1 Proofs of Theorem 5.1 and Corollary 5.1

In the case where Cp is the identity matrix for any T > 0, the asymptotic expansion
of Zr was given by Theorem 2 in Kusuoka and Yoshida (2000), but it is easy to extend
it to the case treated here. In fact, we have the following proposition.

PROPOSITION 7.1. Let M, v, K > 0, and g° be a positive definite matriz such that
g% > limr_, §. Suppose that [Al], [A2] and [A3] are satisfied. Then there exist § > 0
and ¢ > 0 such that for f € E(M,~),

< aw(f, T7X,5%) + P,

Bl - [ sl

where e = o(T—(k+8)/2).

ProoF. Let & = Cov(Zr/VT), K' > K and £° = C1(g° + limy_ o §)(C)"1/2,
where C = hmT_,oo Cr. Suppose that T' is so large that Cr is non-singular. Since
¥ = C3'g(Ch) L 20 > limp_,00 8. Therefore it follows from Theorem 2 in Kusuoka
and Yoshida (2000) that there exist § > 0 and ¢’ > 0 such that for f € £(M,~),

Elf(Z7)] - / 42 F(Cr2)irp(z)| < culf o Cp =K, 50) 4 &),

where e( ) = =o(T~ (k+8)/ 2) and pr x is the function taking the same form as pr with g
and A%1%m replaced by & and £%%, where

garam — Tm=D/2Cum(Z8 VT, ..., 28 [VT], m=2,3,4,....

Owing to the multilinearity of the cumulant, it follows that for f € £(M,~),
| detCantimas) = | azf(@orco).
Moreover, take T so large that |Cp|T K "< T7K and CrE9Ch < g°, then
w(f o Cp, T7K' 2% < "w(f, T7K,3°),
for some positive constant ¢’. Thus we complete the proof. [
From this proposition, we can prove Theorem 5.1.

PROOF OF THEOREM 5.1. Put £ = limz—,o § (= limyp_.o Cov(Z7)) and partition

it into four blocks, say,
5= X1 Y2
o1 Yoo

where X7 = limr_, g (= limp_ o Cov(zg)))), Y19 = lim7 oo cov(ZS_,?),ZSE)), Yo =
Yo, and s = limr_ o0 Cov(zg})). For any § > £1; and 59 > oo, let £y = (11 +
§)/2, Yag = (B22 + X92)/2,

5 211 5}12 oS- g z312 -
Yo1 Yoo Y1 oo
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Then it holds that ¥ < ¥ < 3. For this ¥ and any K’ > K, we see from Proposition
7.1 that there exist ¢/ > 0 and § > 0 such that for f € £(M,~),

[E[f(STn — [ 11 @pra)ie] < ulg o 50,77 5) 4 4P

where 65@) = o(T~*+8)/2) and

k
Se(z) = 20 1+ 3 TG0 L), 5= (50, 500)
=1

Note that 8, ¢’ and egc ) depend not only on k, M, v and K, but also on positive constants
M’ and ' satisfying supp |Sr(z)| < M'(1+|z]7"). In order to obtain g7k, we will rewrite
Jevsa F(ST(2))pr.k(2)d2, and will estimate w(f o Sp, T~ 5) later.

First, let us consider the Bhattacharya-Ghosh map y(z), which is defined by

o= [iuid] <35

Put Q(z) = Zle T-9/2Q;(z), and take a > 0 so that there exists C; > 0 such that for

any T'> 1 and |2| < T* +1,

0Q (2)
oz

|Q(z)[Vmax{‘ ‘izl,...,n, jzl,...,p}SClT""‘.

From Taylor’s theorem, we see that for any 21, 20 € RPT9, y(21) — y(22) = J(21,22)(21 —
z9), where J(21,22) is a (p+ ¢q) x (p + ¢) matrix defined by

1 ayz
J(z1,22) = (/0 @(22 +u(z1 — zz))du) .
IfT >1and |2| <T*+1,
>1-CT™®

1 a@
I (21, 2)| = 1,,+/ sz + ulz1 — 22)du
0

for some constant Cy > 0. Therefore for sufficiently large T > 0, the map y(z) is one-to-
one on My, where My = {z € RP*Y | |z| < T*}. In the following, we suppose T to be
sufficiently large so that y(z) is one-to-one on My and denote the inverse map by z(y).

Let p be a real-valued function on R such that (i) p € C*°, (ii) 0 < p(z) < 1, and
(iii) p(z) =1 if 2 <0 and p(z) = 0 if z > 1. Put pr(z) = p(|2|? = T?* + 1), then

sup |0;, - - - 0;,. pr(2)| < a polynomial of |z|.
T
By using the Bhattacharya-Ghosh map y(z), we see that
£SrENprate)dz = [ F(S2(@)pr(@pree)ds + o)
Rr+aq

- / FOO) g (6 @)dy® + o(T5),
Re

Rp+aq
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where
dy(D.

k0% = [ or()praw) |3

z
Ay
The signed measure g7 ; (y@)dy(® is rewritten as follows. From Taylor’s theorem and
the integration-by-parts formula, we obtain that for any h € Cg§°(RP),

/ hy©) g, () dy©
RP
= /Rp h(ST(2))pr(2)pr K (2)d2

:/ h(z(o))/ pT(z)pT,k(z)dz(l)dz(O)
RP Ra

k .
—-1) _ _
RP j=1 J: Ra
where

1
Rf = % /0 (1 - u)kA + (8a1 T aak+1h)(z(0) + UQ(Z))
X Q% (2) - - - Q¥+ (2) pr(2)pr i (2)dzdu.

For each u € {0, 1], let

(0) (0) =
Yu 29 + uQ(z)
we =[] = [ 107

Since this map y,, is one-to-one on My, we have that

Rf = % /0 (1 o u)k /Rﬁq (am e 6ak+1h)(y(0))Qal (Zu(y)) e Qak+1 (zu(y))

Ozy

3y dydu,

x pr(zu(y))pr ke (2u(y))

where z,, is the inverse map of y,. It is easy to show that if y € y,(Mr), then

< a polynomial in |z, (y)| < a polynomial in |y|

ok
ayjl “a ay]k

and that if y € y,(Mr), then

o7k (2u(y))] < C39(y; %)

for some positive matrix g* > g and a positive constant C3 independent of T'. Therefore
it follows from Fubini’s theorem and the integration-by-parts formula that

Ry = /]R h(y D) Ry (y@)dy®,
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where

_1)k+1 1 ~ _
R A R o)

0z
Zou (1)
X l » (y)dudy ) .

Thus we obtain that

0 ) = /R pr ()P, (y)dyV

k .
+ 00, ([ @ Qe an ) + R ®).
iz J: Re

Note that sup, ) |R1 (yO)| < C4T~*+D/24(y(®); g**) for some positive matrix g** > g
and Cy > 0. Since [gorq f(y@)(or(y) — Dpri(y)dy = o(T~¥) and
~ (1) g
f(y(O)) Z . Oay +* Oa, (/ Q% - Q% (pp — 1)PT,k)(y)dy(1)) dy(O)
R =1 J: R4
= o(T™¥)
for any f € £(M,~), we obtain that for any f € £(M,~),

/RP+q f(ST(Z))pT,k(Z)dz
= /R e FyO)pri(y)dy

(-1 4
+ . f(y”))Z—j,—aal---aaj ( /R (Qal"'QajpT,k)(y)dy(l)) dy®
P j:l . q

+ O(T~®+D/2) 4 (T~ K).

Substituting (5.1) and the definition of Q into the first and the second terms of the right
hand side, one can easily show that

/ F(S7(2))pr(z)dz = / FG)ar ey @)dy® + O(T=*+1/2) 4 o(T—K).
Rpta RP

Finally, we will rewrite w(f o Sp, T~ ' ¥). From the definition of w,
w(f oSy, T7H', %)
= /Rm sup{|f o Sr(z +y) — f o Sr(2)| : |yl < T N irempy9(z; E)dz
+ o(T~%).

Since |6Qj//8zi| < CiT > for any T > 1 and 2 € RP*Y with |2| < T*+1, if z € M7 and
|yl < T~ then
|S7(2 +y) = Sr(2)} < Csly| < CsT™F



582 YUJI SAKAMOTO AND NAKAHIRO YOSHIDA

K

for some constant Cs > 0. Therefore, taking so large T' that CsT -K' <1~ , we obtain

that L
w(f o Sr, TK %) <w(f,T7%,§) + o(T™K),

which completes the proof. (]

Proor oF COROLLARY 5.1. Let

I 0
My = e
SRt T

Then Z7 = MyCr(T~Y2Z7). Applying Proposition 7.1 to Zr, we obtain the same
inequality for Z7 as in Proposition 7.1. Therefore, in exactly the same way as in Theorem
5.1, we can show the assertion. U

7.2 Proof of Theorem 5.2
Let Zr = (259), Zp/VT) and Lbea (p+ q) x (p+ 1) matrix defined by

I, 0
o LM

where I,,, is the m-dimensional identity matrix and

I}
LV — cW|fa |
Cr I

v

L=

Then .
Sr =29 + 3" 17 Zr)
i=1
where Z;O) = Zg? ) and {Q;} are polynomials in z* € RP*9 defined by Q;(z*) = Qi(Lz*).
Applying Theorem 5.1 to this functional St with ZT, we see that (5.2) holds true
with

k (4
drx(y®) = /qu é(y™; g)dy + mZ=1T_m/2 (/qu Erm(y)o(y"; §)dy
Y YEL Y

s+l=m j=1 Li4-+l=l
$20,1>1

0, ([ Q) 0L 0 Enar)ot )i ) )

where § = Cov(Zr),

j v A <A

~, " 1 Ak1+2 .o \ kw42 ..

""T’j(y ) - Z El_ Z ] (k'l +2)!...(km+2)!hA;1+2'“Aim+2(y ’g)’
m

=1 kytotkn=]
k121, km>1

and

)

)\ai...a; — T(j—2)/2i—jaoq .. aa; log E[eiu*.ZT] |u=0 .
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Note that indices with the symbol x, e.g., o}, run from 1 to p + 1, and that index sets
with the star x, e.g., A,’;j, consist of such indices. For any polynomial p in z, let

p(y'¥) = A1 XAk /R PW)hay, —Aw,, ¥ 9)b(y; 5)dy .
If we can show that
(7.1) np (@) = XBir ... 3B /R p(Ly)hmy -y (W' 9" §)dg,
q1

we will see that the inequality of Theorem 5.1 holds true with the same g7 x interpreted
as (5.5) and (5.6).
First, we see from the definition of h,,...q, (y; §)#(y; g) that for any f € C§°(RP),

/R F© (@) dy©

A FEO) Ak Ak /R PW)hay, . an, (U3 9)0(; §)dyVdy®

=5t dte [5G0 [ (@000 (L)
P q1
) (0
X (=) B9 0 0,0 By ) dgdy .
Put f(y) = f(y(o)). For index sets Ay, = a;---ay, and B,:]_ = 37 --ﬂ;]_, let Iig? =
3

7
lv'f"l B 8 . Since
k

*

oy f/gll . ..Eg;,”\ﬂ’fwﬁj
and

aﬂf N 8ﬂ; (p(f,y*)) = Z;g% e Eg]i (8011 Tt aajp)(z’y*)v
it follows that

| 56 )y

= NA*1 .. 2\ Akm /]Rp s (O, "'(9Akmf'p)(fzy*)¢(y*;§)dydy(0)

m

P 7 SRR L I B CYWRRE PR S5 (o ORE L
Rp JR21
= A APk /R A os;, -9y ((F-p)(Ly")o(y"; §)dydy'®
P q1

[ S OAT A /R p(Ly hp; - p; (y"5 9)e(y"; §)dydy®,
P 91

which implies (7.1).
Applying Corollary 5.1 to the representation of St by the orthogonalized random
variable of Zp, we can derive another version of 9r ;- In the same way as above we can

show, that the inequality of Corollary 5.1 holds true with the same gtk interpreted as
(5.5) and (5.6). O
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7.3 Proof of Theorem 5.3
By using the definitions (5.8) and (5.10), we obtain from Corollary 5.1 and Theorem

5.2 that
1 _ _
Oy = 3@ N1+ —— (A, (4©) + Ao(yy®
a2 @®) = by g>( TRO) + Ay}
1 - _ _
+ 7 Ba®) + Aaly®) + (0 )
1 ~ - -
20,0, / G2 (1) Q% (w)ply; 5)dy ™.
2T -
Therefore, it suffices to show that

As(y )y s 9) = %8‘1&; /R q Q¢ () Q4 (v)(y; T)dy ™.

For any ¢ x g symmetric matrix v satisfying that 399 ; + v is non-singular, there exist

) 3 ) $22.140,0,K
polynomials 7, 2 "% and 7,227 such that

a B22,1+4v,
Qr(y) = Zﬂ—l,? o a(y(o))hK(y(l); Yoo + v)

K
E My
— Zﬂl 22.1+v,a K(y(o))hK(y(l); 22271 + ’U).
K
For these polynomials, we see that

/]R QWA WDy Taa + v}y = (K)tay 2 K (O Frea b ()0,
N K
Thus we have that
/ AWA Wy Dy = D (K)lgP R CS phe (' 9)6(@; 9),
R4 K,A,B,C
which completes the proof. [J

8. Proofs of theorems in Section 6

As in the previous section, some of the proofs in this section are shortened for saving
space. See the details in Sakamoto and Yoshida (1999) or Sakamoto (1998).

8.1 Proof of Theorem 6.1
First, we prepare a lemma for the proof of Theorem 6.1.

LEMMA 8.1. Letm > 0, v > 0, and p» > p with yps > m. Assume that [CO]2,
[C2]k k = 1,2 hold true, and that 6.0,(0) = Uapc(0). Then for any Cy > 0, a,
b =

p2,Y?
1,...,p,

_ 1
P |sup I o (6) = 7ap(6)] > Co| = =™,
(L=S] 0
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where egvm) = o(r) and it is independent of Cy. Furthermore, assume that [C3] holds
true. Then there exists a constant C1 > 0 independent of T' such that

’

1
P | inf |-rZ </ Yap(6h + (62 — 6’1))ds) z| > C1| =1-o(ry).
91,0269 0

|zj=1

PROOF. Since ps > p, 6c74.5(0) = Va;pc(6) and [CO]? hold, it is seen from Sobolev’s
inequality that there exists a positive constant Cg independent of T such that for any
Xre€Xranda, b=1,...,p,

sup Ir%¢a;b(9) — Ugp(6)] < sup | T%wa;b(e) — Vap(0)]
0c® 6co

< C@ (/e |T%¢a;b(6) - ﬂa;b(a)‘pzdg

p2 1/p2
N )"
Q

Combining this inequality with the conditions vyps > m, [02]},2’7 and [C2]f,2,,y, we can
show that for any Cp >0 and a,b=1,... ,p

Z(T%‘d}a;bc(e) — Ua;pc(0))

_ L m
ng T >

P {suP ’T%‘¢a;b(0) ~ Uap(0)] = Co
fcO

where e(Tm) = o(r*) and it is independent of Cj.

Furthermore, from [C3], there exists a constant C; independent of T' such that

z' ( /O 1 Pasp (01 + 5(03 — 91)).13)

inf > 2C.
61,02€0
|z|=1

Therefore we see that

1 1
P | inf —r% (/ Ya;p (61 + s(62 — 01))ds> | < Cq
81,020 0
]w]:l
P
<Y P |sup{[rfvas(0) — Zup(6)} > C1/p?| = o(rF),
a,b 0co

which completes the proof. (J
From this lemma, we can show Theorem 6.1.

PrOOF OF THEOREM 6.1. Let C be a positive constant satisfying

z ( /0 1 Va(0y + s(02 ~ 6 ))ds>

inf _ > 2C.
91] ,92 cO

zl{=1
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By virtue of [CO]?, there exists To(C) > 0 such that for any T > Ty(C) and § € RP
satisfying 6] < 1, {6 : |0 — 0o < 71} C © and {Fa(bo + 677) — Paip(0)| < C/(2p?). For
such C > 0, let X7 be the subset of X defined by

!

1
—r2 (/0 Yap(b1 + s(62 — 01))ds) x| > C,

inf

=)
lz]=1

xT,O =L Xy € Xr

ra " (6)| < C,sup [r3tpas () — Zap(0)] < Q fora,b=1,. ,
T 0cd
€

and forany a,b=1,... ,p, Xr € Xrgand T > To, let I,; be a function on {u:|ul <1}
defined by
1
Iop(u) = —7% / Yap(6o + rju)dE.
0
Then, for z € R? satisfying |z| =1
A p
|(Zab(w) + Za;p(60)) 2| < Z (Su}_) lr%wa;b(g) — Pap(0)| + C/QPQ) <C.
a,b \0€©
Therefore

A |(ap(w))'2| 2 Anf (= Pa;p(60))' 2t — | (Lab (u) + Zai6(60))'z]) > C,

which implies that matrix (fab(u)) is non-singular. Let H,(u) = (H$(u))a=1,... p be a
function on {u : |u| < 1} defined by

Hy(w) = v T () (B0),
where (1%?(u)) = (I5(u))~. We then have that for any Xr € X1 and any T > T,
C
: A <1
inf)z=1 [(Zas(u)) x|

Therefore it follows from Brouwer’s fixed point theorem that if Xt € X7 and T > To,
then there exists a & € {u : [u| < 1} such that H,(&4) = @. Setting 67 = 6o + riii, we
have from Taylor’s theorem that for eacha=1,... ,p,

|H,y (u)] < C‘|Sl|1<pl (1% (w))z| =

Y (9T) Ya; 00)+/ wab(00+rTuf)d£rTu =} 2Iab(u)(Hb( ) — ab):o.

Since ( fo Yas(01 + s(82 — 6;))ds) is non-singular uniformly in 6;,6, € © for any Xr €
Xr,0, we see that if X7 € Xrpand T > TO, then there exists a unique éT €06 satisfying

¥(07) = 0 and such b7 lies in the rJ-neighborhood of 6. Furthermore, we see from
[Cl]p, and ¥ < 1 — m/p; that

(1-v)p1

P{Irz"(80)] 2 C) € Lo—lirrtp(8o) 51 = olr?).
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From this and Lemma 8.1, P[(X7,0)¢] = o(r}*). Thus we see that

P[(316r € 6,4(br) = 0) and (|7 — 6o < 77)] = 1 — o(r2). O

Note that if the tensors #’s are independent of T', the additional assumption in
Theorem 6.1, i.e., 6:76;6(8) = Ugpc(6), can be proved. In fact, we have

LeMMaA 8.2.  Assume that [COJ4, [C2]k, |, k =1,2,3, [C4]3, hold for some v > 0,
p2 > 1 and p3 > 1. Moreover, assume that v,.4(8), Pabe(0) and Daped(6) are independent
of T. Then Ugy € C?(O), Ugpe € CH(O), and Ugpeq satisfies Lipschitz’s condition.
Moreover 6.vq = Vaspe and 8qa.bc = Vg bed-

PROOF. In the same way as in the proof of Lemma 1 in Sakamoto and Yoshida
(1998a), we can prove this lemma. See Sakamoto and Yoshida (1999) or Sakamoto
(1998). O

8.2 Proof of Theorem 6.2
We have two lemmas for the proof of Theorem 6.2.

LeMMmAa 83. LetT > 0 and K be a positive integer greater than or equal to 3. For
anyk=1,... ,K,j=1,... ,k and a,a; = 1,...,p, let ¥,, and Uq.q,...q, be constants
depending on T such that a matriz (¥es) is non-singular for each T and that Vgq,...q,
is symmetric in ay,. .. ,a. Suppose that [COJX holds and that for any 6y € ©, there
ezists Or € © such that z/;(éT) = 0. For any 6y € ©, define Z,., Z,.q,...q, and gor- ok
k=1,...,K, by

Za; = 17" (r7%a;(60) — 7o)

Zasayar = Tq—“l(r%"/)a;ar--ak (60) = Pajay--ar)
and
éal"'ak _ T';k(éT . 00)01 . (éT — 90)Gk7

respectively. Then forany k=2,... ,K — 1,

k-2
~ o leabe (1 oy —a ~A.
0% = — I/a’be; — T‘Tll/a’be; — E TJT (ﬁﬁ"”’Zb;AjOAJ + I/a’bl7(,;Aj+10“4"'*1
j=1 '

(+ 1)
+ Tg“_lRl%-—lr

where Aj = a1 ---a; and Bj = by ---b; are arbitrary index sets of length j, (7%®) is the
inverse matriz of (Va;p), and R} is defined by

RS
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PROOF. One can easily obtain the result from the Taylor expansion. See Sakamoto
and Yoshida (1999) or Sakamoto (1998). [J

LEMMA 8.4. Suppose that [CO)* holds true and that for any 6 € ©, there ex-
ists Op € © such that Y(0r) = 0. For v,., Za,, Vaay-ar 004 Zgigyars k = 1,...,4,
a,ai,...,ax = 1,...,p, in Lemma 8.3, put A, = r;217a;, A% = —p¥PA,, Z% =

’

—a;b a; _ __sa;a ~a; _ __=a;a’ 5
~V 2y, Z 0y ar = =V Zogrigyoar, A D Vg g, = —U%% Ugrig.q,. Then

. , R D :
0* = Z% +rp (za’bzb’ + 57" 202 + A“’)

=b; a; r7c; zd;
SV AN ALY A

N =

+ 77 (%(Da;bcd SRV VAV AV AR S AN AY ANV ARS
+ %Z‘“bczb?zc; +2%,2%.Z% + AbZ%, + Da;bcAb;Z°;>
+ 733,
where

(8.1) R$=QZ)+rrQ*YZ)+ Qp*(Z)RE + rrQP (Z)RE + rrQl (Z)RERS
+ QPN (2)RE + QRN(Z)RY RS + r2Q°(Z) + 3 QE°(Z)R?
+13Q0 (Z)RYRS + r3Quo(Z)RERSRY + RS,

{R¢} are defined in Lemma 8.3, and the functions Qu, ™., (Z) are polynomials with degree

m in Zg;, Zab, Zape Whose coefficients are constants of order O(1) as T — oo.

Proor. Using Lemma 8.3, the similar discussion to one in the proof of Theorem 1
in Sakamoto and Yoshida (1998a) gives the result. See Sakamoto and Yoshida (1999) or
Sakamoto (1998). [

By using the results obtained above, we prove Theorem 6.2.
PrRoor oF THEOREM 6.2. Expanding ﬂa(éT) around 07 = 6,, we have
(8.2) R§ = R — Ry,

where .
Rigy = BP*R{ + /O (1 — w)8s8.8%(80 + u(fr — bo))dud®f°.

For v € (3/4,7v — m/ps) and a € (m/p3, 4y — 3), let X1, be a subset of X7 defined by

2 _ ’ _ ’
xT,l = {Xn e X, ITT¢a;b - Va;b[ < T% ; |T%¢a;bc - Va;bc' < ,r% y

1
Ir%‘wa;bcd - Da;bcd| < T”}“ 72115 IT%¢a;bcde(9)| < Tj:a7a7b7 c, d7 €= 17 e 7p}
€
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Moreover, let X7 g be a subset of X defined in the proof of Theorem 6.1. As we discussed
in the proof of Theorem 6.1, we see that for any Xr € X1 and any index set Ay of

length k&, 64 < rg("_—l). From the definitions of X7 and X 1, we see that there exists
a positive constant C such that for any X7 € XroNXr1,k=1,2,3,a=1,...,p, and
al,...,ax=1,...,p,

2% < Cry7t, (2%, .0 <Ol

Therefore, putting ¢ = min(4y’ — 3,4y — 3 — a), we see from the definition of R$ in
Lemma 8.3 that B
‘T’TRg‘ S C37'§1

for some positive constant C5. Moreover, from this inequality and the recurrence formula
of R, we inductively obtain the inequalities

lrrRE| < C’gr%”l'2 and |R%| < Clr%VI”Q

for some Ca,Cy > 0. Therefore it follows from (8.1) and (8.2) that there exists a constant
C > 0 such that for any X1 € X7 N X711,

lrrR§| < Cr5.
From Markov’s inequality, we have that
P[(X7,1)] = o(r7).
Thus it is shown that

PlrrR3 < Cr,a=1,...,p| > PXroNXr1] =1—o(ry). O

8.3 Proof of Theorem 6.4
In Theorem 6.3, we showed that the coefficients of the stochastic expansions are

given in terms of the moments of Z’s. In the following, we will first give a representation
of gr,2 in Theorem 5.3 in the case where the coefficients ‘11:’113 and qz’A’K of the covariant

and contravariant representation of nf . and WZ’K satisfy some conditions; next we will

represent gr s in the case where the polynomials Q1 have the same form as those of the
stochastic expansion of the M-estimator. Finally, we will prove the theorem with the
aid of the Delta method.

PrROPOSITION 8.1. Let p and q be positive integers. For a = 1,...,p, A €
{¢,a1,a1a2,...}, ay,az,... € {1,...,p}, K € {¢,R1,I€1f£2,...}, K1,K2,... € {p+
1,...,p+q}, andl =1,2, {qf;?} are constants satisfying

(1) ¢4 =0, if |A|=1 or |4 >3,

(2) g2 =0, if |4 =0 or |4] > 2,

(3) ik =0, if |[K| > 2,

(4) a5 =0, i |A| =0, or |A| =2, or |A| > 4.
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Let (g?°) be a p x p-positive matriz, {;\aﬁw}aﬁﬁ:l,_”,pﬂ and {:\“bc‘i}a,b,c,d=1,_._,p be
sequences of constants, and q” KA = gK L q?’l‘?. For these constants and T > 0, define a
function qro on RP in Theorem 5.3. Then

1 1 1
0)y _ 0). ,ab b a,é L ab
a7 @) = (@ g2) (1+ G have b Sha + 5 AR

1 1
+ mcabc‘ihabcd + ﬁcabccdefhabcdef) y

where

be S\abc + Gq;’;b,

kY ,d Y 4 Ky 3 b
Aab = 2(/\ace + qf ;e)Qi) ¢fgcdgef + (2/\ac + qf c)ql w9cd 2(]2 b +q iql i’

abcd Aabcd + 4cabc d ¢ + 24(/\0,1)6 + 2qa be)qc dfgef + 12((}(1 ,K,b /\abn)q + 24qa bcd‘

ProOF. From the definition of A;, i = 1,...,6, and the recurrence formulas for
the Hermit polynomials, the elementary algebra leads to the result. See Sakamoto and
Yoshida (1999) or Sakamoto (1998). [J

PROPOSITION 8.2. Let p be a positive integer and ¢ = p®> + p°. For variables
{ya;}azl,... P> {yayb}a,b=1,“.,p, and {yayg,c}a,b,c:l,... P let y(o) = (yl;, .. 7yp;) and

1) _ 1; 2; 2; ; 1 1 1 ;
() (y - Y p’y 1a*"7y p7"‘aypp7y 11)"‘ay 1p7y 217“'ayppp)a

and y = (y(o)yy(l))o Define Q7 (y) and Q3 (y) by
QT (y) = y®y™ + B, Py — 5°
and
; ; 10, Ciods =05 5o di b N £
Qs(y) =U° bcdyb’y"‘yd’ + 7%, W7 oy + B gty

+ 2y Yo yTY% + yPb oy — yB B + AB (T, + %, ¥,
for some constants i%,,, B%, e Upeas B¢, and A%. Suppose that g = (g®) is a
p x p-positive matriz and Ygg 1 = (X35 1) is a g x g-symmetric matriz defined by $og1 =
MU§2M’ for some g, x q1-positive matriz o3, and ¢ X g1-matric M, where q; < q. For
these polynomials Q%, Q3 and ¥ = diag(g, X22,1), define polynomials Tg k and constants
ar K by (5.8) and (5.10), respectively. Then q,‘z,’;; satisfies (1)—(4) in Proposition 8.1.
Moreover, let {/\O‘ﬂV}a,gﬂ:l,m‘pJ,pz and {X} . a-1.. » be sequences of constants,

and q;" KA 222 lq;’ LA. For these constants and T > 0, define a function qr2 on RP in

Theorem 5.3. Then

ar2(y?) = o(y'?; g) (

abc h

1 1 o -
abc & ¢ — aha
/e hab \/T(“ bed C — B%)

1 1 1
+ ﬁAabhab 4 =R g + oo c®Pocde] habcdef) ,

24T 72T
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where N"? b; “1; - )

/\“b“ for k € {p+1,...,p + p*} corresponding to (a1,az) €
{0, (5,0}, B, P, =S58, for e and p € {p+1,.
to (al,aQ) and (by,b2) € {(1, ) (o, D)}, respectively,

abe _ :\abc 4+ 6ﬂc7 ga agb b

., P+ p?} corresponding

A% — 2(/\acd + ﬂ ‘c’d’gc cgd d)/“b; od + 2Na; c b; + gcha; b;
+2((A%T = 6y B%) + S5l M%,, ”1’ 4+ 3U% g cd)gb’b
+ (A% 09" - ﬂ“)(f/’? 19 = B°),

abcd /\abcd + 4cabc(u of g

- Bd) + 24(;\abe + Qﬁa;b’e'gb bge e)ﬂC; d’egd d

+ 12(gbb dd’ MC,d’ v +Na b; 7C, ,gdd ) + 24U e /d/gb bgc cgd'

PROOF. From the definition of Q7’, we have that
QT (y) = 62,9° gy Y™, + %00 0° 09 G gecry® 'y — B,
which implies that

. 82 g% (k= ajaz)
; b b g 102
W?,n(y(O)) = q(ll,nhb(y(O);g)? qil"i - { Oal (K, = a1a2a3)
; b )
mi W) = a7 hee (¥ V5 9) + a2,
b ~a; ® 3
q‘f; = 1% 9"0%C,  apd = i%,.g" - B°,
where k € {11,12,...,1p,21 ,2p, ... ,pp, 111,112, ... ,11p, 121, ... , ppp}, and that
q, x satisfies the conditions (1), (2), (3) in Proposition 8.1. From (5.9) and (5.11), we
have that

(K =a102)
0

§a gb2b b au;
a,,N(y(O)) — qtlz,n,bhb(y(o)), qlll,&b — 59 b2,
(k = araza3),

a;7¢( (O)) _ qa,¢,bchb (y(O)) + qa»¢7¢
be - -
g = 1%y g"00 e, gP?? = 1%, - Bo.
In the same fashion, we see that {¢2#} satisfies (4) in Proposition 8.1, and that

a 7b
7T2,nu (y(O)) = qg,nuhb(y(O))
75, (¥*) = a3nhoe(y ) + ¢3¢

\b ’
75 sy ©) = 457 hoea(y ) + g3 5 he(y™)

for some constants g3’ w’ Gy’ zc, gy’ n, a3 ng and qg:g, where k,p € {11,12,..
112,... ,ppp}. In partlcular

. ,pp, 111,

9 99

a,bed __ rra; b'b _c'c dd

q2¢ —U refd!

a _ ¢; =a; a1 yra; b1
oN) _((A cb’_ﬁb’)+6b1M ai,

;b’ + 3Ua;6dblgcd)gb b'
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By using
qiz K, bq(l: : _ gbb'gdd’ Ma;b’,c;d’ and :\almqf:z - Na;’ b;’ c;dlgdd ,

we can derive the representation of the coefficients c?¢, A®®, and ¢%*¢ from Proposi-
tion 8.1. O

LEMMA 85. Letm >0, M >0,y >0, and rp be a positive sequence tending to 0
as T — oco. For any T > 0, let St and Ry be some RP-valued random variables, and gr
a positive matriz. Suppose that for any K > 0, there ezist a constant ¢ >0 and ap X p
positive definite matriz § such that for any f € E(M, %),

'E[f(ST)] [fa gTy“—‘T]I < w(fﬂnT? ) + €T,

where e s a sequence of constants independent of f with ep = o(r (mAK)) and

VIf, g7, Er] = /R )=o)

for some polynomial E1 with coefficients being bounded as T — oo. Moreover, suppose
that there exist C' > 0 and K' > 0 such that

P[Rr| < C'rf']=1-¢r,

where ey = o(ri®). If P(supy [rr(St + Rr)| < M) = 1 for some constant M > 0 and
E|S7|? < 00 for some q > 1 (or if f is bounded), then there exist constants ¢ > 0, C > 0,
and a positive matriz § such that

|E[f(ST + Rr)] ~ Urlf, 97, Er]| < aw(f,C(rE + 1K), §) + ér,

(r;m—ﬁ)/\(m(q—’v)/q)/\f{) m/\K))

where ér = o (or ofr.

Proor. First, we see that
|E[f(St + Rr)] ~ r(f, 97, B7)| < cw(f, 78 ,8) + er + D1 + A,

where

= lE[(f(ST + RT) - f(ST))l{]RTISC’r;f'}]Ia
Az = |E[(f(St + Br) — f(ST) 1R 50yl

and 14 is the indicator function of a set A. From the assumption concerned with St, it
follows that
Ay < |¥[h, g7, E1]| + cow(h, 77, §) + €T,

where h(y) = sup{|f(y + 2z) — f(y)| : |2| < C'rK’}, and ¢, is a positive constant. Note
that for any 6 > 0 and a positive matrix X1 converging to a positive matrix ¥, there
exist a constant C > 0 and a positive matrix 3 satisfying ¥ > ¥ such that for any
y € RP, .

sup [y’ $(y; 1) < Co(y; B).
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Therefore we have that

Wl gr 2l < [ am)ErG)eon) <o | dhs)oman)
= clw(fv C,r’]I’(,m@l)a

for some constant ¢; > 0 and some positive definite matrix §; satisfying §1 > limr_.oc g97.
Since

sup{|h(y + z1) = h(y)| : [a1] < r} < 3sup{|f(y + 2) — FW)|: ol <7 +CrK},
we obtain that
w(h, ¥, §) < 3w(f,r¥ + C'rE' ).

Thus we see that
A1 < C](U(f, TCZI"{I"@I) + 360&)(f, 'r’ZI"{ + C,’rfl}‘(lhé) +er.

If P(supy |rr(Sy+ Rr)| < M) = 1 for some constant M > 0 and supy E|Sr|7 < oo,
then it follows that

Ay < M(1+ 13t M|)P[|Rr| > C'ri’)
+ M+ |ST]) llgf (PIRr| > C'rf a3 = o= Cma=0/0)).

If f is bounded, then we have Ay = o(r7*). Thus the assertions are proved. O

From Lemma 8.5 and Proposition 8.2, we can show Theorem 6.4.

8.4  Proof of Theorem 6.5

Let © be an open set in R?. For k index sets A; = a11- - Gimy,--- , Ak =
Gx1 " Gkm, Whose elements a;; run from 1 to p, let D4, a4, ¢ © — R be a tensor
satisfying that the matrix () is negative definite for each 8 € 8, that

’7A17~-~1Ai7'“ij7~--7Ak (0) = l_/Al,...,AJ‘,...,Ai,.,.,Ak(e) for Z,J = 1,-.. ,k,

and that
DAy, Asy An(0) = D4y, B, 4, (0) if (A;) = (By).

Suppose that the matrix (7q5(8)), 6 € ©, is non-singular, and denote by % the (a, b)-
element of the inverse of the matrix (¥,). For these tensors, we will assume the following
conditions later.

[BI1] ,(6) = 0;

[BI2] Da,b(e) + Dab(g) =0

[BI3] 7a,5,0(0) + (ot o) abe () + Zave(8) = o(z);

[BI4] ﬂa,b,c,d(e) + Eg,]b,c,d) ﬂab,c,d(e) + Eg]b,cd) Dab,cd(e) + Zﬁ,]bc,d) Dabc,d(e) +
ﬁabcd(e) = O(ﬁ);

[DV1] 5a’7b,c(0) = Dab,c(o) + Dac,b(e) + Da,b,c(e)Q

(DV2] 840bc,a(8) = Pabe,a(0) + Dbe,ad(B) + Va,pe,a(6);

[DV3] 5a17b,c,d(0) = Dab,c,d(e) + Db,ac,d(g) + Db,c,ad(e) + Da,b,c,d(a)-
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LEMMA 8.6. Deﬁne functions g°°, gab, Labe,dy Mab,cd Nabie,ds Habeds {I“(,?,Z}aek,

and :u'a by gab = p° Vbe a’ b’ (gab) = (gab)—l, Labc,d = ﬁabc,da Mab,cd = pab,cd -

-2
T Gabfcd, Nab,c,d = Ugb,c,d + TT GabGcd>

3]
_ - —2 (@) - l-a_
Hypeq = Vab,e,d — T E GabPGcd; Fabc Ugb,c + 5 Va,b,cy
(ab,cd)

and p* = ll“gcal ) g% g%, respectively. Suppose that [BI2], [DV1], [DV2] and [DV3] hold
true. Then

1 1 1 c - ~1
gbb'5aub = §gc‘igef(r(l) F( ))Fifd) + 29 dgef(r((;lc)e + Ft(zecl))Fc(ifb)

abce ach

1
- -2-g°d(Lacd,b + Mab,cd + Nedyap + Nac,dp + Nadyp,e + Nabe,d + Habed)-

PROOF. From the assumptions [DV2], [DV3], and the definitions of Hoped, Labe,d
Mep,ca and Ngp e 4, We have

6aF(():(11) = Labe,d + Magpe + Noc,a,d + Nab,e,d + Nacp,d + Nadp,e + Hobed-
Since gap = —VUqp under Condition [BI2], it follows from [BI2] and [DV1] that
6a(gbcgcd) = (6agbc)gcd + gbc(pac,d + Vod,e + ﬁa,c,d) =0,
which implies that
6agbc = ‘gbeQCCI(ﬂab’,c' + Dac’,b’ + Da,b’,c’)-
Combining these results, we obtain the desired result. O

LEMMA 8.7. Let g®° be the function given in Lemma 8.6. Define functions i* e
bc’ Uca by
—a 1 ' a _ N
A 0e(0) = 5.9°¢ (0) (Parb c(6) + Parc p(8) + Pue(6)),

7%,0(8) = 9°* (0) (Puarb,c(6) + Parbe(8)),

[3] (3]

o 1 o ) _

U ’bcd(e): 69 (0) | Parbeald) + E Va’bc,d(‘9 E ,U cd(gn b'b(a)
(be,d) (cd b)

respectively. Under Conditions |[BI3| and [BI4], it holds that

- 1 1

.u’a be — 2 aa 1—‘(bcal) (\/_T> ’

~Q aa’ -1 1 1

n be =—-g (Fl()ca’) + F‘(llzb) 4+ o0 (ﬁ) s

[6] 3]
a 1 aa’
U bed — _ag Ha’bcd + Z Na’b,c,d + Z Ma'b,cd + Lbcd,a’
(a’b,c,d) (a’b,cd)

(3]

1yt 1
P23 PTG (0G4 T, ) + o ( ﬁ) ,

(cd b)
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where {F(a)}aeR, abed> Labe,dy Mab,cd, Nab,c,d are the functions defined in Lemma 8.6.

PROOF. 1t is easy to show this lemma. See Sakamoto and Yoshida (1999) or
Sakamoto (1998). O

LEMMA 8.8. Let g°°, gab, Habeds Labe,ds Mabeds Nabe,d, {Fg‘g}aen&, and p* be
functions defined in Lemma 8.6. For this g%, let i® ., 7* b and U%y , be functions

defined in Lemma 8.7. Define A%, Xebd jabed | ppoti By - gpg N 025 b by A% =
r ’ !
rTQQaa /\abc _ gaa gbb gcc Da’,b’,c’;
yabcd bb’ dd’
hobed — gao’ gb¥' gec’ gdd 1,

“rai; b, _aia) . bib) ~ ef =
M by = 919" (Mo 0y b6y — Payan,e9 Do, g)

az,
and
vai; a2; by _ aiaf ,a2a), bib] — ef -
N ., b 8 1 gTtagn I(Na'la'g,b'l,bz ~ Vajah,ed be’l,bz,f)'
Moreover, for these functions, let c®®¢, ¢**d and A®® be functions defined in Proposi-

tion 8.3 with \*b¢ = X%¢ gnd Xobed — Xabed . Then under Conditions [BI1}-[BI4] and
Conditions [DV1]-[DV3], it holds that

abe (—1/3) ; abe 1
C ha = —3F c h + o y— b
bcd) ab ¢ <\/T)
(6} 14]
cabcdhabcd¢ = | =3Hpeqa — 2 Z Nab,c,d — Z Labc,d
(ab,c,d) (abc,d)

- _ 1
+ deapeae (1€ — B°) + 12g° (0,0 + T D | habedg + o (ﬁ) :

Aabhab¢ = (Q Mac be t+ Ga’ agb'b( - ﬁa )( - /Bb’)

1 ca (=1) b 1
- 2gbc5aﬂc + Egc gefl-‘s:eal)rdfb + 2gbc6aﬂ > h® ¢+ o :/—T .

Proor. From [BI3] and the definitions of A%, 3%, and I‘flabi, it follows that

_ 1
Cabcha — —3F( 1/3)hab0 40 (—) .
bc¢ abc ¢ \/T
In the same fashion, the definitions of the functions and the result of Lemma 8.7, which
was proved under Conditions [BI3] and [BI4], yield the second result for c®*°?hgpoq¢h.

Furthermore, from Lemma 8.6 and Lemma 8.7, the last result for A%®h,p¢ can be shown.
See Sakamoto and Yoshida (1999) or Sakamoto (1998). O

From this lemma, we can show Theorem 6.5.
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