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A b s t r a c t .  The e-Markov process is a general model of stochastic processes which 
includes nonlinear time series models, diffusion processes with jumps, and many point 
processes. With a view to applications to the higher-order statistical inference, we 
will consider a functional of the e-Markov process admitting a stochastic expansion. 
Arbitrary order asymptotic expansion of the distribution will be presented under 
a strong mixing condition. Applying these results, the third order asymptotic ex- 
pansion of the M-estimator for a general stochastic process will be derived. The 
Malliavin calculus plays an essential role in this article. We illustrate how to make 
the Malliavin operator in several concrete examples. We will also show that  the third- 
order expansion formula (Sakamoto and Yoshida (1998, ISM Cooperative Research 
Report, No. 107, 53-60; 1999, unpublished)) of the maximum likelihood estimator 
for a diffusion process can be obtained as an example of our result. 

Key words and phrases: Asymptotic expansion, e-Markov process, geometric mix- 
ing, M-estimator. 

1. Introduct ion 

The  a im of this art icle is to provide  a rigorous m a t h e m a t i c a l  founda t ion  to the  
theory  of higher-order  s ta t is t ical  inference for s tochast ic  processes. In order  to handle  in 
a unified way s tochast ic  processes appear ing  in appl ied stat is t ics,  and  in the same t ime,  
to develop a theory  on a rigid probabi l is t ic  basis, we will adop t  an  c-Markov process as 
the  under lying process based on which other  s tat is t ics  are const ructed.  Because of the  
choice of the  cont inuous t ime,  our  resul ts  can apply  to a Markovian  semimar t inga le  such 
as a solution of a s tochast ic  differential equat ion  wi th  jumps .  Moreover,  logically, they  
also app ly  to a discrete t ime  model  by  embedding  it into a cont inuous t ime  mode l  in a 
na tu ra l  way. However,  there  is a wider  difference between discrete t ime  and  cont inuous 
t ime  than  the difference of mere  formats ,  as we will later  ment ion  it. 

There  is an extensive l i tera ture  on the  a sympto t i c  expans ion  of stat is t ics:  Akahi ra  
and  Takeuchi  (1981), P fanzag l  (1982, 1985), B h a t t a c h a r y a  and  Rao (1986), Taniguchi  
(1991), Barndorff-Nielsen and  Cox (1994), Ghosh  (1994), etc. B h a t t a c h a r y a  and  Ghosh  
(1978) founded a rigorous p roof  of the  a sympto t i c  expansion for a cer ta in  form of s ta t is t ic  
under  i.i.d, set t ing.  G6tze  and  Hipp  (1983) presented an a sympto t i c  expans ion  of the  
d is t r ibut ion  of an addi t ive funct ional  of an approx ima te ly  Markovian  process wi th  a 
discrete t ime  pa ramete r .  
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The accuracy of the approximation to the distribution depends on the regularity. 
The CramSr condition or the conditional type CramSr condition was assumed in those 
works to ensure the regularity of the distribution. In the independent case, the Cram~r 
condition has a simple form and, for example, if one knows that the underlying random 
variable has the absolutely continuous distribution part, the condition follows from differ- 
entiable approximation to it and integration-by-parts, i.e., from the Riemann-Lebesgue 
theorem. For dependent observations, the Cram@r condition may become more compli- 
cated and GStze and Hipp (1983) put a conditional type condition. It is not always a 
simple matter  to verify such a conditional type condition, but GStze and Hipp (1994) did 
it for Markovian examples by using integration-by-parts formula over Euclidean space. 

Here, we will adopt the continuous time, and it causes another difficulty in verifying 
the regularity. To solve this problem, it is necessary to handle conditional expectations 
and it involves an infinite-dimensional calculus because random variables are functions 
over the continuous-time path space. For this purpose, we use the Malliavin calculus, 
which features the integration-by-parts formula over infinite-dimensional spaces, and 
replace the conditional type Cram@r condition by the nondegeneracy of the Malliavin 
covariance. 

As for continuous-time processes, asymptotic expansions of statistics for the small 
diffusion model and a general small a-model were obtained by Yoshida (1992a, 1992b, 
1993, 1996b) and Uchida and Yoshida (2004), with the notion of the generalized Wiener 
functionals. See also Sakamoto and Yoshida (1996) and Dermoune and Kutoyants (1995). 
For continuous-time martingales, a second order expansion formula of the distribution 
was proved in Yoshida (1997) with the Malliavin calculus after Mykland's work (1992) on 
the expansion of smooth functionals without regularity condition inevitably; see Mykland 
(1993, 1995) for other developments for smooth functionals, and Yoshida (1996a, 1999) 
for a distribution expansion for martingale with jumps. As applications, the expansion 
of the distribution of the maximum likelihood estimator for an ergodic diffusion process 
was first presented in Yoshida (1997), and consecutively, that of the M-estimator in 
Sakamoto and Yoshida (1998a). 

Recently, it was found in Kusuoka and Yoshida (2000) that another approach ("local 
approach") provides us with an effective solution for geometric-mixing-e-Markov pro- 
cesses, while the martingale approach still has advantages for long memory time se- 
ries models breaking the geometric mixing condition (Yoshida (1999)). They obtained 
asymptotic expansions of additive functionals of a geometric mixing, e-Markov processes 
including time series and diffusion processes with jumps, and also provided an easily vet- 
ifiable condition on the mixing property of the diffusion process. In order to obtain full 
generality as we mentioned, they adopted the Malliavin calculus formulated by Bichteler 
et al. (1987). Among other possible formulations of the Malliavin calculus for jump 
processes, it is a convenience due to a chain rule for the F-bilinear form. 

When deriving asymptotic expansion of the distribution of a statistic, we often 
use its stochastic expansion. The simplest example would be an asymptotic expansion 
of H(IFT), where H is a smooth function and I)T is the sample mean of observations 

( Y t ) t e [ 0 , T ]  , i.e., YT = ( l /T)  f J  Ytdt. Prom Taylor's expansion, one has the second order 
stochastic expansion 

(1.1) v@(H(SZT) - H(#)) = H'(p)v~(SzT - #) 
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1 
+ - ~ H " ( # ) ( v ~ ( Y T  -- #))2 + remainder, 

where YT ~ # as T ~ c~ in probability, and under some conditions on the convergence 
rate of the remainder term, the second order asymptotic expansion of the distribution 
of v~(H(YT) - H(#)) follows from this stochastic expansion. The other popular exam- 
ple is the maximum likelihood estimator 0r  for a parameter 0 of a probability density 
PT(Y; O) of observations Y = (Yt)te[0,T]. It is well-known t h a t  0T admits the second order 
stochastic expansion 

(1.2) 1 "2 
v/T(0T -- 0) ~--- g-l~T(0 ) Jr- ~ ( a l @ ( 0 )  + a2~T(0)(~'T(0) + g)) + remainder, 

where g is the Fisher information, al and a2 are some constants, iT is the log-likelihood, 
i.e., gT(0) = logpT(Y, 0), and ~T and IT are first and second derivatives with respect 
to 0. This stochastic expansion can be used for deriving the second order asymptotic 
expansion of the distribution of 0T- In general and as in familiar cases, many of the 
statistics appearing in inference for stochastic processes have a stochastic expansion 
taking the form of 

statistic = ST + remainder, 

where 

k 
_.~1 f}.{~(0) ~_(1)h 

i=1 

and T > 0 is the terminal time of observations, Z-T = (Z(T ~ , Y-(~)) is a vector of functionals, 
and {Qi} are some polynomials with coefficients being bounded as T ~ oc. Therefore, 
once we have a formula for the asymptotic expansion of ST, we can easily derive valid 
higher order asymptotic expansions of the distribution in various statistical models. 

Concerning ST-type of random variables, Bhattacharya and Ghosh (1978) discussed 
the asymptotic expansion of the maximum likelihood estimator based on i.i.d, observa- 
tions by using a map which is often referred to as the Bhattacharya-Ghosh map. The 
functional ST itself was dealt with by Ghtze and Hipp (1994) and by Kusuoka and 
Yoshida (2000), and a program for the derivation of its valid asymptotic expansion was 
prepared there by using the Bhattacharya-Ghosh map. Since most of statistics have such 
a stochastic expansion, the program is applicable to many statistical models. However, 
when higher-order asymptotic properties of a statistic of interest are discussed, it is nec- 
essary to perform rather a lot of calculation in order to obtain the asymptotic expansion 
for each statistic explicitly. The readers will in later sections find that this problem 
unexpectedly requires a lot of technicalities to settle than computational difficulties. 

In this article, we will carry out the program to obtain an explicit formula for the 
k-th order asymptotic expansion of the distribution of ST and prove the validity in the 
case where the underlying process of 7-T is an e-Markov process with a geometric-mixing 
property. For this purpose, in Section 5, we will first give a complete description of the 

approximating density to ST. Orthogonality between the principal part Z(T ~ and the 

ancillary part Y_~) makes calculations easier. Thus in the second step, we will present a 
formula under orthogonality. Those results require the non-degeneracy of the covariance 
of ZT. However, in application, we meet examples which have a linear relation among the 
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ancillary variables. Later, we will precisely discuss the M-estimator ("Z-estimator") but 
the maximum likelihood estimator, a special case, has this degeneracy in its ancillary 
variables because of the symmetry. It will be shown that  our explicit formula is still 
valid even under such degeneracy if the density formula is interpreted as a Schwartz 
distribution. 

As its typical and useful application, we will discuss the third order asymptotic 
expansion of an M-estimator in Section 6. After a full investigation into the existence 
of the M-estimator and the convergence rate of the remainder term of its stochastic 
expansion, we will present the third order asymptotic expansion of the M-estimator for 
a general model, by using the results for ST. We also show that  if the expectations of the 
derivatives of the contrast function satisfy certain relations, which are called the Bartlett 
identities, coefficients of an asymptotic expansion of a minimum contrast estimator can 
be represented in terms of the information geometry. 

The results in this article have many applications including the model selection 
problem and the asymptotic expansions of diffusion functionals. In fact, Uchida and 
Yoshida (1999, 2001) used Theorem 2.1 given in the original manuscript, Sakamoto and 
Yoshida (1999), of this paper, which is the same one as Theorem 5.1 in this paper, to unify 
traditional information criteria such as AIC, TIC, GIC, and to present new criteria in the 
light of the asymptotic expansion for stochastic processes. The manuscript, Sakamoto 
and Yoshida (1999), is unpublished but already circulated among experts of this field. 
Third order asymptotic expansions of M-estimators for diffusion processes were also, in 
Sakamoto and Yoshida (1999), obtained from Theorem 3.4 in Sakamoto and Yoshida 
(1999) (Theorem 6.4 in this paper). At the end of Section 6, we will show its specific 
version, the third order asymptotic expansion of the maximum likelihood estimator for 
the diffusion process, without the proof. Note that before Sakamoto and Yoshida (1999), 
the third order expansion of MLE for the diffusion process was in Sakamoto and Yoshida 
(1998b) obtained from Kusuoka and Yoshida (2000) under the Bartlett identities and 
some relations of the derivatives of the likelihood (the assumptions [BIll ~ [BI4] and 
[DV1] ,-~ [DV3] in Section 6 of this paper), while the expansion in Section 6 was derived 
without such assumptions. The details about the proofs for the results of this paper, 
which are given in Sections 7 and 8, are also found in Sakamoto and Yoshida (1999) or 
Sakamoto (1998). 

For the readers who are not familiar to the Malliavin calculus, we will in Section 3 
explain the integration-by-parts formulas over the Wiener space as well as those over the 
finite-dimensional space, after the introduction of the c-Markov process which is assumed 
to be the underlying process of ZT. They will in Section 4 be summarized in terms of the 
Malliavin operator defined by Bichteler et al. (1987), and in Section 5 the assumptions 
for the asymptotic expansion of ST will be described by the terminology of the Malliavin 
calculus. See Kutoyants (2004) for inference for ergodic diffusion processes. 

2. c-Markov process 

In this article, we will consider a class of stochastic processes as a basis on which 
expansion formulas are validated. We shall begin with examples. 

2.1 Diffusion process 
We denote by C ~  the set of smooth functions whose derivatives are of at most 

polynomial growth, and by C ~  the set of smooth mappings whose derivatives of order 
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_> 1 are bounded. Suppose tha t  X = (Xt)tER+ 
the stochastic differential equation 

is a s ta t ionary diffusion process satisfying 

(2.1) dXt = Vo(Xt)dt + )_s V(Xt)a o dw~, 

Z 0 ~ - X o ,  

where Vo E C~(Rd;Rd), Y = (V~) e C~(Rd;Rd|  IRr), w = (w ~) is an r-dimensional  
Wiener process, and Xo is an initial random variable the distr ibution /:{Xo} of which 
coincides with the s ta t ionary  distr ibution of X.  The circle o means the Stratonovich 
integral, which is useful to describe Lie algebras. 

We consider another  stochastic process Z = (Zt)t~R+ defined by 

/0 • (2.2) z ,  = Zo + V~(X~)ds + Vg(Xs)  o dw~;, 
ol=1 

where Z0 is a a[x0] measurable random variable, Vo* C C~ ( I ~ d ; R  ") and V* = (V~) C 

C~(l~d;Rn| ]~T). Equations (2.1) and (2.2) form a state-space model. Hidden Markov 
model and stochastic volatility model are examples. The noises in these two equations 
may be taken differently if we use an expression with degenerate V and V*. Furthermore,  
if (2.1) has unknown parameters  in its drift, then the log-likelihood function and its 
derivatives take the form of (2.2) for the true parameter  value. 

We assume tha t  E[Zt] = 0 for all t E JR+. It is the case if E[Z0] = 0 and if 
E[V0*(X0)] = 0 for 

9o*(~) = V~(x) + ~ v~vg(x) .  
c~= l 

d Here we identified the vector V~ with the vector field ~-]~=~ V~(x)O~. Even if c :-- 

Ell}'0* (X0)] is not null, we can deform Zt by subtract ing c from the original drift. 

2.2 Non-linear moving-average series 
Let y = (Yt)tEZ+ be a non-linear moving-average defined by 

(2.3) y, = h ( ~ t - m + l , . . . ,  ~,), 

where (~j)jcz be an ]~r-valued i.i.d, sequence and h : R rm - ~  ][~d is a measurable function. 
In t ime series models, the asymptot ic  expansions of many  statistics can be derived from 
the expansion of T-1/2ZT, where 

(2.4) z~ = ~ ( y j -  E[yj]). 
j=l 

Note tha t  Ghtze and Hipp (1994) considered a slightly different case and gave the 
asymptot ic  expansion of T-1/2ZT with applications to s ta t ionary  ARMA processes and 
non-linear AR processes. 
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2.3 Cluster process 
For L1,L2 > 0, let 

(2.5) E = N x {(t3)jeN : 0 < tj <_ LI , j  �9 N} x S N, 

where S is a set of real-valued functions on R with supports in [0, L2], and let it be a 
Poisson random measure on N x E with compensator  u satisfying u(I x E) < o0 for every 

bounded interval I C N. Denote by (T (c)) the increasing sequence of the occurrence times 

of the counting process i t ( I -L1 - L2, t] x E)  and by flj = (My, (T(2))keN, (f(jk('))keN) a 

element of E associated with T (c) for every j C N. 

For this marked point process (T (c), flj), we consider a process y = (Yt)t~+ defined 
by 

(2.6) yt = 

Mj 

j:--c~ k=l 

It is a kind of the cluster process, which is often used for a rainfall model. 
When  the distr ibution of y involves an unknown parameter ,  the asymptot ic  expan- 

sion of the Yule-Walker est imator can be obtained from one of T-1/2ZT, where 

~0 t (2.7) Zt = (Ys - E[ys])ds. 

2.4 Diffusion process with jumps 
Assume tha t  a stochastic process (Yt)te~+ is defined as a strong solution of the 

stochastic integral equation with jumps: 

(2.8) YT ---- Yo + A(Yt_)dt + B(Yt-)dwt + C(Yt_)[t(dt, dx) 

where A r C~(~d; Rd), B E C~(Nd; Rd| Rm), C E C ~ ( R  d • E; Rd). The process w is 
an m-dimensional  Wiener process, and fi is a compensated Poisson random measure on 
R+ • E with intensity dt| for an open set E in Rb. A is the Lebesgue measure on E 
compensat ing it. A set of regularity conditions ensures the existence and the uniqueness 
of Y. 

For this underlying process Y, we consider another  process Z = (Zt)teR+. Z is a 
process which satisfies the equation: 

/0 T /0 /0Ts ZT = Zo + A'(Yt_)dt + B'(Yt_)dwt + C'(Yt_)fl_t(dt, dx), 

where Z0 is a[Y0]-measurable, A' E C~176 ~d), Bt E C~176 ~d@]~rn), C' �9 C~176 d x 
E; Nd). Then (Y, Z) forms a state-space model. 

2.5 Definition of the c-Markov process 
In the previous subsections, we viewed examples in our scope. In order to handle 

those models (and other many  models we do not mention in this article) at  a time, we 
will consider a general class of stochastic processes called the e-Markov process. 
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Let (ft, ~ ,  P)  be a probabili ty space, Y = (Yt)teR+ an Nd-valued cs process 
(or a separable process) defined on t2, and X = (Xt)teR+ an lR~-valued cSxtl~g process 

X , Y  d X  
defined on ft. Suppose tha t  for any t C R+,  ~[0,tl is independent of ~[t,oo], where 

~x,Y = a[X~ Y~ : u �9 [0, t]] V N, [0,t] 

~ d X = c ~ [ X t _ X ~ : s , t ~ I N R + ] V N  for I C R ,  

and N is the a-field generated by null sets. For I C ~,  define sub a-fields ~/Y and ~ I  by 

and 

~ff~ I = 6r [ X t - X s , Y t  : s , t �9 I f-] ]l~+] V.N', 

respectively. Assume tha t  there exists a positive constant  e such tha t  for any s > 0 and 
t > 0 satisfying e < s < t, 

Yt �9 7(~_~,81 v ~dx [8,t] J, 

where for any sub a-field ~ of ~ ,  5 r~  denotes the set of all ~-measurable  functions. If 
a process Y satisfies the above condition, it is called an e-Markov process driven by X.  

For processes X and Y, we consider the third process Z = (Zt) for which asymptot ic  
expansion will be derived. Let Z = (Zt)tea+ be an R"-valued process satisfying Z0 E 
9r~  [0l and 

(2.9) Z~ := Zt - Zs �9 .T'~[s,tl, for every s, t �9 R+, 0 < s < t. 

A process Z having the property (2.9) is often called an additive functional of X and Y. 

Example. (1) (diffusion process) The diffusion process X defined by (2.1) is a 
Markov (0-Markov) process driven by the Wiener space w and the process Z defined by 
(2.2) is an additive functional of X and w in the above sense. 

(2) (non-linear moving-average series) Let Y = (Yt)t~z+ and X = (Xt)tez+ be 
t 

processes defined by Yt = (~t, Yt) and Xt = • j=0  ~J for an i.i.d, sequence (~t)tez+ and 
the non-linear t ime series ( Y t ) t c z +  defined by (2.3), then Y is an e-Markov process driven 
by X with e = m - 2 and (Yt)tez+ and (Xt)tez+ can be embedded into continuous-time 
processes (Yt)te~+ and ( X t ) t E R +  a s  X t : X [ t  ] and  Yt : Y[t] for all t C ~ + .  A continuous- 
t ime process (Zt)tc~+ defined by (Zt)te~+ in (2.4) as X and Y is also an additive 
functional of X and Y. 

(3) (cluster process) Let (Yt)teR+ be the cluster process defined by (2.6), and 
�9 OO (Er 1 a family of subsets of a configuration space E given by (2.5) such tha t  it deter- 

mines a measure on E,  then  Xt = (p( [ -L1 - L2, t] • Ei))i~=l is an c~-dimensional rep- 
resentation of the Poisson process p. Pu t t ing  Yt = (Xt, Yt), it is seen tha t  Y = (Yt)teR+ 
is an e-Marker process driven by X with e = L1 + L2. The process (Zt)teR+ defined by 
(2.7) is an additive functional of X and Y. 

(4) (diffusion process with jumps) For the stochastic differential equation with 
jumps (2.8), the driving process Xt can be taken as Xt = (wt,#t(gi);i E N), where 
(gi) is a countable measure-determining family over E.  Thus, Y becomes a Markov 
process (i.e., 0-Markov process) driven by X with independent increments according to 
our definition. Another  process Z is also additive functional of X and Y. 
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3. IBP-formula and conditional type Cram~r condition 

It is known that the validity of the asymptotic expansion depends on the regularity 
of the distribution approximated by the expansion. The most successful condition in 
independent setting was the Cram~r condition. The so-called conditional type Cram@r 
condition played a similar role for discrete-time stochastic processes, as it is seen in Ghtze 
and Hipp (1983, 1994). 

By the ~-Markovian property, it is possible to factorize the characteristic function of 
ZT/v/-T into the product of conditional characteristic functions over small time-intervals. 
In this way, the estimate of the global characteristic function is reduced to that  of the 
local conditional characteristic functions. The conditioning is usually done by the value 
of the process Y at the right and left end points of the short time interval. Thus, 
roughly speaking, when c = 0, it becomes the problem of how to estimate the conditional 
characteristic function 

E[ei"(z'-z")/'/-f [ Y,~, Yv] 

of the normalized increment (Zv - Zu)/X/T over the interval [u, v]. 
For continuous-times processes, such a condition is in general hard to check, and it 

is replaced by a more practical condition, that  is, the non-degeneracy of the Malliavin co- 
variance of a certain functional. We will explain how the non-degeneracy of the Malliavin 
covariance and the induced integration-by-parts formula (IBP-formula) work in exam- 
ples. For details, we refer the readers to Kusuoka and Yoshida (2000), and Yoshida 
(2001) in which the readers finds precise description of the derivation and much weaker 
sufficient conditions for non-degeneracy by support theorems. 

Here again, we begin with examples. 

3.1 Diffusion process 
We will again consider the diffusion process in (2.1). Corresponding to the stochastic 

process (Xt, Zt), let us consider the stochastic flow ()(t(0, 2), 2 E ~d+n) defined by the 
enlarged stochastic differential equation 

where 

df~t(O, 2) = Vo(Xt (0, 2))dt + ~ V~(Xt(O, 2)) o dw~, 
o:~1 

20(0,  2) = 2, 

and v0 = y0, 

We will assume the geometrical strong mixing condition for X and the necessary integra- 
bility conditions. In order to prove the validity of the Edgeworth expansion of Z T / V ~ ,  
it is necessary to estimate its characteristic function. Then, we take a sequence of in- 
tervals of length one ('reduction intervals') and divide the estimate into that over each 
subinterval. Thus we may only consider the interval [0, 1] due to the stationarity, and 
hence it suffices to show that the conditional type Cram~r condition (Yoshida (2001), 
Kusuoka and Yoshida (2000)): 

[CD] There exist some point x.  C ~d and some positive constants 7/,~h,~/2 (~h + 
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rl2 < 1) and A such that 

sup sup E[IE[ e~~=)(~176 I 2~)( o, (x, O))lll _< ~ 
lul>_A xEB(x.;rl) 

and 

P[Xo �9 B(x.;v)]  > 1 - ~ 2 .  

Here we denoted J( by ()~0),)~(2)) and {x �9 Rd:  Ix -- x.I < r/} by B(x,;rl) .  
Similarly to independent cases under the assumption of the existence of absolutely 

continuous part, in order to prove the sufficiency of [CD], an integration-by-parts formula 
is applied. 

We shall start with integration-by-parts formulas over a finite-dimensionM space. 
Let r = r 0, Ik) be the k-dimensional standard normal density. Denote by C ~  (iRk) 

the set of smooth functions on IRk all derivatives of which are at most polynomial growth. 
Let 

DF = VF 
for F �9 C~c(IRk), and let 

k 

D*G(w) -- - div G(w) + E Gi(w)wi 
i=1 

for G = (Gi)~_l E C~~ IRk). The second order differential operator L is defined by 
L = -D'D~2. Then easy computation yields 

(3.1) ~k(DF(w),C(w)}R~dp(w)dw= fRkF(w)D*C(w)r 

It is equivalent to so-called Stein's identity. 
Now, we let 

F(A, B) = (DA, DB}Rk 
for A, B �9 C~(iRk). Then from (3.1), we obtain 

(3.2) 
k 

~ (Olf)(F(w))r(Fl(w)'B(w))A(w)r 

= f~k f(F(w))D*(A(w)DB(w))r 

for F r C~(IRk; IRa) and f E C~(IRd). Moreover, let 

~o-lm~d C~IF rn ['(F l Fro). (3.3) aF = t F Jl,m=l, = , 

We call ~rg the Malliavin covariance matrix of F. Denote by ~m the (/, m)-element 
of al71, and put AF = de taF .  In addition for Z = (F,G), F E C~~ G E 
C~(Rk;  Rn), let 

n 

azzm = @m _ ~ r(Fl,Cl')~,gm'r(cm',Fm) 
l I ~ m  ! 
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and ~z m the (l, m)-element of the inverse matr ix  of (5~m). Then,  under suitable integra- 
bility condition for A -1 z , it follows from (3.2) tha t  for J E C~(]~  k) and g �9 C~~ 

(3.4) .~,~ (Or f)(F(w))J(w)g(G(w))r 

= j~fk f(F(w))q2~, z (J)(w)g(G(w))r 

where 

d 
~lrrt q2~, z(J)  = E ~m,Z(Tz J) ,  

m 

ffAl,z( J) = -F(  J, F l) - 2JLF l 
, , g ' , , , 

+ {F(7~ ''~ F(F t, G )J, Gm') + 27~ 'm F ( F  l, G l )JLG m }. 
/,,~t 

Note tha t  L is the second order differential operator  defined by L = -D'D~2.  Formulas 
(3.2) and (3.4) may be called integration-by-parts formulas. 

For diffusion processes, the sample space is a Wiener space, an infinite-dimensional 
space W r of continuous functions w : ]~+ ~ I~ ~ with w0 = 0, so tha t  we cannot apply 
formula (3.4) itself. However, it is possible to construct  an infinite-dimensional analog 
of it over the Wiener space. Namely, it is possible to  define the gradient operator  D, 
the divergence operator  D*, the second order differential operator  L, the bilinear form 
F, and the Malliavin covariance matr ix  a g  of F ,  and an integration-by-parts  formulas 
exists: 

(3.5) / w  r (cOt f)(F(w))J(w)g(G(w))P(dw) 

= / w  ~ f (F (w) )~ ,  z(J)(w)g(G(w))P(dw)' 

where P is a Wiener measure on W r. See Ikeda and Watanabe  (1989) for the definitions 
and properties of the operators D, D*, L. A slightly simple version of IBP formula is 
given there. 

In our present case of diffusion, we use (3.5) for 

Z = ( .~2)(0 ,  (X, 0)),)(~1)(0, (X, 0))). 

For a while, we assume tha t  for some 7 > 0, 

(3.6) sup E[(deta21(o,e)) -p] < oo (p e (1, co)), 
~eB(~.;~) 

where 2.  = (x. ,  0). Under a usual regularity condition for existence of the solution, it 
holds tha t  

sup [[DSf(l(O,2)][p < oo 
2EB(2. ;b) 

for every b,p C (1, oc) and s E Z+. Denote by ~o :]~+ --. [0, 1] a smooth  function such 
tha t  ~(r)  = 1 for r E [0, 1/2] and tha t  ~o(r) = 0 for r > 1. We wilt use a t runcat ion 
functional Cj given by 

Cj = qo(lX2j_l - x,12/72). 



EXPANSION FORMULA FOR MIXING PROCESSES 555 

If the point x. is in the support of the stationary distribution of the process Y, then we 
may assume that 

E[~(IX1 -- x.12/')'2)] > 0. 

Then we obviously see that 

�9 . 2 j - 1  

E[r e~u z25 ] X2j-1  = Yo, X2j = Yl] 

~-- E[~(YO) eiu'fC~2)(O'(y~ I 2}1) (  0 , ( y 0 , 0 ) )  ~-- Yl], 

where r ---- ~([Y0 -- X*[2/'f 2) and )( t(0,2)  = ( . ~ l ) ( 0 ,  x ) ,2 (2){0 t  , , 2)). By the equiv- 
alence of the distributions, we will execute computations over the Wiener space where 
the flow is constructed. 

Let pO),yo denote the distribution of 2(~)(0, (Y0, 0)). The IBP-formula (3.5) applied 
to f (F)  = e iu'F and g(G) = e iv'G with J = ~ and Z = (F,G) = (.~}2)(0,(y0,0)) , 

2}  1) (0, (Yo, 0))) implies that 

/ E[~)(Yo) eiu'~2)(O'(y~ ] -~1)( 0, (Y0, 0)) = yl]eiv'mp(1),YO(dyl) 

= (iul) -1 / g[e~"x~)(~176176 I _~1)(0,  (Yo, 0)) = yx]e i~'yx pO),yo (dyl). 

Therefore, the uniqueness of the Fourier transform leads us to 

E[~(Yo) Ciu'~2)(O'(y~ [ 2~1)(  O, (Yo, 0))] 

= * ~ : ~ ' )  (0, ( iu~)-'  E [ e ~  ~2) (~176176162  I (yo,0))] P - a.s. 

In this way, we have obtained: 

E[supNf_>B [E[r176176176176 [ 2~l)(O'(y~ <- C E[[~'z(~(y~ 

for some constant C > 0. 
Generally, it is not easy to prove (3.6) for diffusion processes but  a HSrmander 

type condition is a convenience. For vector fields V0, V1,... , Vr, let E0 = {V1,... , V~} 
and En = {[Vc~,V];V E ~-,n_l,O~ : 0 ,1 , . . .  , r} for n C N, where [,] is the Poisson 
bracket. Moreover, let Lie[Vo; V1, . . .  ,V~] be the linear manifold spanned by Un~__0E~. 
The following condition is a sufficient condition for [CD] (Kusuoka and Yoshida (2000), 
Yoshida (2001)): 

[DH] There exists a point x,  C ]~d for which the following conditions are satisfied: 
(i) For any ~ > 0, P[Xo ff B(x.;~;)] > 0. (ii) For ~. = (x. ,0) ,  

Lie[Vo; V1, . . .  , l?r](2.) -- ]~d+n. 

The condition [DH] (ii) is called the HSrmander condition. The advantage of [DH] is 
that  it can easily be verified only by differential computations. See Yoshida (2001) for 
details of this condition and other mild sufficient conditions. 
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3.2 Non-linear moving-average series 
Let ~- be a posit ive integer g rea te r  t han  c = m - 2, and  I(j)  = [u( j ) ,v ( j ) ] j eN a 

sequence of intervals defined by  u(j) = 2~-j and v(j) = 2~-j + T. As in the case of the 
diffusion process above, we m a y  reduce the  es t imat ion  of the character is t ic  funct ion of 
T-1/2ZT to t ha t  of the condi t ional  character is t ic  funct ion 

dX dX 
E[exp(iu. (Yu(j)+l + " "  + Yv(j)) ) ] ~[u(j)--e,u(j)] V ~[v(j)--e,v(j)]], 

where ~ x  = a(~t; t E I). Therefore,  due to the s ta t ionar i ty ,  we only have to check the 
following condi t ional  type  Cram~r  condition: there  exists a measurab le  set B C ~(2m--2)r 
such tha t  P [ ( ~ 1 , . . . , ~ 2 , ~ - 2 )  E B] > 0 and  tha t  

(3.7) sup sup I E [ e x p ( i u ' H ( C l , . . .  ,C2m-2,~1,--- ,~N))]]  < 1 
]ut> A (cl ..... c2~- ~)eB 

for s o m e A > 0 ,  w h e r e N = ~ - - m + l  and  

H(cl , . . .  , C2m--2, Xl , . . .  , XN) = h(Cl, .  �9 �9 , Crn-1, Xl) + h(c2,... , era--l, Xl, X2) + ' ' "  

+ h ( x N - 1 ,  XN, Cm,... , C2m-3) + h(XN, era, �9 �9 �9 , e2m-2)- 

As before, to verify (3.7), we consider the in tegra t ion-by-par t s  formula  for functions 
of N p~l  (~i)i=1" Denote  by the p robabi l i ty  measure  induced by ~1, and  suppose  t ha t  the 
decompos i t ion  of p51 is given by  

(1 - A)v(dx) + Ap(x)dx 

for a cons tan t  X E (0, 1], a p robabi l i ty  measure  v and  a densi ty  p E C~ Note  
t ha t  v has a pa r t  of the absolutely  cont inuous pa r t  of the Lebesgue decomposi t ion  for 
p~l .  Define I = {x C R r : p(x) > 0}. Under  this assumpt ion ,  the  expec ta t ion  of a 
funct ion g of ~ t , - .  �9 , ~N can  be  rewr i t t en  as 

~ N  + (1 -- , 7CNUN + (1 -- g(7rlUl T ' l ) V l , . . .  7rN)VN)dP(w), 

where :~ = {0,1} • R r • ]R ~, w = ( % u , v ) ,  7r = (7r l , . . .  , lrN), U = ( U l , . . .  ,UN), v = 
(Vl, ,VN), P ( w )  N . . . .  I ] i = l  B(1;  A)(Tri) • p(ui)dui x v(dvi) and B(n; A) is the  b inomial  
p robabi l i ty  measure  wi th  the  tr ial  n u m b e r  n and the  occurrence probabi l i ty  A, and  hence 
the in tegra t ion-by-par t s  formula  we need is reduced to t ha t  for functions of u ( the par t ia l  
Mall iavin calculus): 

(3.8) .~N (Ozf)(F(u) )J(u)p(u)du 

= f1 F(u)D* J(u) E 7'm(u)DFr~(u) p(u)du 
N ~ t = l  

for s m o o t h  functions f : IRk ~ IR, F : IRrN __+ irk, j : IRoN __~ N. Here  p (u )  = 
n 

]-[j=l p (u j ) ,  D and D* are differential opera to r s  defined by 

DF(u) = V~,F(u),  
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for any F : R rN  ---+ ]~ and G : ]~rN _.__+ ]~rN, and 7~ m is the (/,m)-element of the inverse 
of the Malliavin covariance aF defined by 

atF~(U) : (DFI(u), DFm(u)>~N. 

Here we assumed a regularity condition for p near the boundary of I. Note that we 
only need the integration-by-parts formula over the interval I for the estimation of the 
characteristic function because the integration over the outside of I can be estimated by 
a constant less than one: 

tE[eitF(~l,... ,~N)]] <_ ~IN eit'F(U)p(u)du § 1 -- A N. 

As in the previous subsection, in order to apply the integration-by-parts formula, we 
need the degeneracy of the Malliavin covariance: 

E[ r  aF) -p] < c~ 

for some truncation functional ~. Note that we can choose T or N so that this condition 
is satisfied. 

3.3 Other processes 
For the cluster process, we can construct IBP formulas and verify the conditional 

type Cram6r condition in an analogous way. See Sakamoto and Yoshida (2000) for the 
detail. The IBP formula for the diffusion process with jump is given in Bichteler et al. 
(1987) and Kusuoka and Yoshida (2000). 

4. Malliavin operator 

In the previous section, we observed that the integration-by-parts formula played 
an essentiM role to deduce the conditional type Cram6r conditions. Moreover, we also 
saw the role of the infinite-dimensional differential operators D and D* in the diffusion 
case as well as a finite-dimensional case. In order to treat jump type processes, several 
possible formulations are nowadays available. Some of them are only for YT defined by a 
stochastic differential equation. From the point of the applicability for other situations, 
we will adopt the Malliavin calculus formulated by Bichteler et al. (1987). Though it 
is not the most efficient solution to the stochastic differential equation with the purely 
atomic jump distribution, it still has advantages that it provides IBP-formulas and is 
relatively easy to handle. 

DEFINITION 4.1. (Malliavin operator) Given a probability space (gt, ~ ,  rI), a lin- 
ear operator L on ~(L)  C Ap>ILP(II) into •p>ILB(H) is called a Malliavin operator if 
the following conditions hold true: 

(1) ~ is generated by all functions in ~(L);  
(2) If f e C~(]~ d) and F = ~.[FI~d//=I, FZ E ~(L) ,  then f o F �9 ~(L) ;  
(3) n is self-adjoint in L2(II), i.e., E[FLG] = E[GLF] for all F,  G �9 ~(L) ;  
(4) L ( F  2) > 2 F L F  for any F �9 ~(L) ,  i.e., the bilinear operator FL defined by 

r L ( r ,  a) = L(FG) - FLG - GLF 

is non-negative definite; 
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(5) If f �9 C~(]R d) and F = (Ft)d=l , F l �9 ~b(L), 

d 

d 1 E O l O m f  o F .  F L(F I ,F  m) n ( f  o F) = E Olf o F .  nFt  + -~ 
/=1  l , m  

Let D L 2,p, P >- 2, be the completion of ~(L)  with respect to N " IID~,,, where 

NFHD~,p  = [[FI[p + ] [ L F H p  + H F 1 / 2 ( F ,  F)[Ip, 

and let D c 2,00- = Av>>_2D~v. Then L is extended uniquely to an operator L on D2,00-. 
For F E D c (Ra) _ tDL ~n the Malliavin covariance aF of F is defined by 2,00-- \ 2 ,00-- /  , 

a~'~ = F L ( U ,  Fro) ,  l, m = 1 , . . .  , d 

and ~/F = (7~ m) denotes the inverse matrix of aF. Moreover, the following IBP formulas 
hold true: 

PROPOSITION 4.1. (Theorem 8-18 of Bichteler et al. (1987)) 
(1) Let f �9 C~(Rd), F �9 DL2,00- (Rd), and G, r �9 D L2,00_. I f  LG = 0, ale m �9 DL2,oo- 

and (det a g ) - l r  �9 D L then 2 , 0 0 - - ,  

( 4 . 1 )  

where 

E[0d(F)r = e[f(F)~f(r 

d 

~ ( r  = - E (27zFmCLF'~ + FL(TZFmr Fm))" 
m = l  

(2) Let F �9 D L (]~d), G �9 D L 2,00- 2,00- (~n), and H, r �9 D2,00-. For Z = (F, G), put 

n 

Z rL( m = - G)~G rL(G ,F ) 
l~,m ~ 

and ~ l m  7z denotes the (l,m)-element of the inverse matrix of (~lzm). Suppose that 
L H  = 0, a.s. Moreover, suppose that azz m E D2,00-, 1, m = 1, . . .  ,n  and that 
(det az )  -1 (det a c ) - ( d - 1 ) r  �9 D2,00-. Then it holds that for f �9 C~(R d) and g e C~(Rn), 

(4.2) E[(OtI)(F)r = E[ f (F )k~ , z ( r  ] 

where 

d 
* ~ l m  ~,~(r = ~ ~ , ~ ( ~  r 

m 

~t,Z(r  = --FL(r F t) - 2 e L F  l 
n 

IILk'YG ~Lkr  , ~  ) r  m') l',m' l l' m' +27 G FL(F,G ) r  }. 
~t ~ m  t 
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Example. (1) (diffusion process) As in Subsection 3.1, for the gradient operator 
D and the divergence operator defined over the Wiener space, let 

L = -1D*D.  

It is easy to show that L is a Malliavin operator over the Wiener space. In this case, the 
operator L is a kind of second-order differential operator, and it is called the Ornstein- 
Uhlenbeck operator. It is a symmetric operator compatible with the closed extension, 
and it is possible to construct the Malliavin calculus starting with L. As we saw in the 
previous section, the IBP formula (4.2) or (3.5) was applied to verify the conditional 
type Cram~r condition [CD]. 

(2) (non-linear moving-average series) Let p C C ~ ( R r ;  R+) be a positive density 
n U . . and p(u) = 1-Ij=lP( J), w h e r e u  -- (u l , . .  ,u~), uj e R r, j = 1,.. ,n. Then L = 

-D 'D~2  is a Malliavin operator, where D and D* are the gradient and the divergence 
operator defined in Subsection 3.2." The equation (3.8) is the IBP-formula (4.1) with 
FL(A, B) = (DA, DB}R~N, and it was also applied to prove the conditional type Cram6r 
condition (3.7). 

5. Stochastic expansion type of functional 

In this section, we will present some formulas for the k-th order asymptotic expan- 
sion of ST defined by (1.3) with a functional ZT = (Z(T ~ , 2(~)), and will obtain the third 
order asymptotic expansion in terms of some coefficients in a representation of Qi by 
Hermite polynomials. It will be applied to M-estimators for a general statistical model 
in the next section. 

Let (ft, ~,  P)  be a probability space, Y = (Yt)teR+ an Rd-valued e-Markov process 
driven by an Rr-valued process X, and Z an ]Rn-valued additive functional of X and Y 
as in Subsection 2.5. Moreover, let C = ( C t ) t c N +  be an II~ ~ | Rn-valued deterministic 
process such that each element is bounded as t --* cc and that it converges to non-singular 
matrix as t ---, ec. For these processes, assume that the components Z(T ~ and 2(~ ) of ST 
is defined by ZT = ~,~T(~(0)' "-T~(1)~] • T _ I / 2 C T Z T ,  where dimT_(T ~ = p, and dim 7_~) = q. 
Note that in the stochastic expansions (1.1) and (1.2), C is H'(#) and g - l ,  respectively. 

Before going into the asymptotic expansion of ST, we prepare assumptions about 
the validity of that of T-1/2Z T. As usual in the asymptotic expansion literature, we 
adopt a mixing condition: 

[A1] There exists a positive constant a such that 

IIE[f I Y ~3[~_,,~]1 - E[fl[IL~(p ) < a-~e-'~(t-~)llfll~ 

for any s, t C R+, s < t, and for any bounded ~ t ,~) -measurab le  function f .  
It should be noted that the exponential order of the strong mixing is not necessary: 

in fact, it is possible to reduce it to a polynomial order (see Lahiri (1993), and Yoshida 
(2001)). However, the above condition will be assumed for simplicity. The moment 
condition is also assumed: 

[A2] For any A > 0, suPtER+,0<h< A IIZtt+hllL,(p> < O0 for anyp  > 1, and E[Ztt+zx] = 
0. Moreover, Zo E f~p>ILP(P) and E[Zo] = 0. 
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In order to est imate the characteristic function of ZT, we need an IBP formula over 
sub-intervals of [0, T] as in Subsections 3.1 and 3.2. Let r be a fixed constant  such 
tha t  r > e, where e comes from e-Markov process Y. For each T > 0, let [u(i),v(j)],  
j = 1 , . . . ,  n(T) be sub-intervals of the interval [0, T] such tha t  

0 < c < u(1) < v(1) _< u(2) < v(2) < . . .  _< u(n(T)) < v(n(T)) < T 

and tha t  inf j ,T{v(j)--u(j)}  > r, supj,T{V(j ) - -u( j )}  < OC. Assume tha t  for each interval 
J j  = [v(j) - c, v(j)], there exists a finite number  of functionals Yj = {Yj,k}k=l ..... Ms 
such tha t  o.[yj] C ~ j j  and tha t  for any bounded ~[v(j),oo)-measurable function F ,  
E[F I ~[0,~(j)]] = E[F I o.[Yj]], a.s. Then from the Markovian property of Y, the est imate 

iu Z "0)  
of the characteristic function of ZT is reduced to tha t  of E[e " v(j) I ~t~ V ~ ] ,  where 

zu(J) ~,(j) = Z~(j)-Zu(j) Iy = [u(j)-e ,u( j)] ,  ~ '  , jj  := o.[yj], and ~ I  is the sub-o--field defined 

in Subsection 2.5. r  denotes a t runcat ion  functional. Let Cj = ((Yt ,Xt  - Xu(j)-~; t C 
Ij) ,yj) .  

Assume tha t  for each j = 1 , . . . ,  n(T), there exist a probability space (~2j, j r j ,  p j )  

and a random vector (~)y, 2 u(j) Ci)  satisfying v( j )  ' 

z c lP}. v(j), , ,  [ P J } =  s  v(j), 3, 

The random vector (@, 2 u(j) C.~ is called a distributional equivalent of (r Z "(j) Cj). v(j) , 3J v(j) , 
(The present formulation by the distr ibutional  equivalents, which is originally given in 
Yoshida (2001), is essentially the same as the one in Kusuoka and Yoshida (2000)). 
In the sequel, we will identify the distr ibutional  equivalents with their originals, and 
express them with  the same notat ion (without  "hats") ,  however, we should realize tha t  
the operations in the Malliavin calculus are done for distributional equivalents over 
(f~j, .Tj, Pj ) .  

We also assume tha t  a Malliavin operator  Lj is given over the probabili ty space 
Lj  (f~j, .Fj,Pj).  Denote by D2, p the Banach space induced by Lj, and put  D2,oo- = 

Np>2D2,p. In addition, suppose tha t  for any f E C~(]R ('+d)m) and any u o , u l , . . .  ,urn 
satisfying u ( j ) -  e < uo <_ ul <_ "" < u m  < u(j),  the functional F = f (Xu~ - 

L~ Xuk_~, Yu~ : 1 <_ k <_ m) E D2, ~ _  and L j F  = 0. This assumption ensures tha t  
Lj does not act on any ~ b - m e a s u r a b l e  functionals. The Malliavin covariance o-F of 

F e D2,o~_LJ (]~d') = ~[Dn~2,oo-]'~d' is defined by o-F = (o-) k) = (FLj(Fi, Fk)), and the de- 

rZ ~(j) y j ) ,  S;[r = {o.~k,i,k = terminant  of O.F is denoted by AF.  Let Zj = ~ ~(j), 

1,..  n + Mj; ( A z j ) - I  --(n--l) . , (Ayj)  Cj }, and 

kt S,,j  = { ( A z j ) - '  (Ay j ) - (n-1)~j ,  akZl, LjZj.k,  F i  t (o.zj, Zj,m), 

}. 

Assume tha t  supj,T Mj < o0. By using the terminology and notat ion above, we consider 
the following conditions of non-degeneracy: 

[A3] (i)infj ,TE[ffzj] > 0; 
(ii) l iminfT~oo n ( T ) / T  > 0; 

L$ 
. .  (DL~ ~n+M~ S { [ r  C D 2 , o o _  , and (iii) For e a c h j  = 1, . , n ( T ) ,  Z 5 e ~ ~,oo-~ , 

for any p' > 1, [.Jj=~ ..... n(T),T>O SI,j is bounded in LP'(P) .  
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Condition [A3] may seem complicated for some readers. However, it is rather stan- 
dard and easy to verify. For example, the non-degeneracy of the Lie algebra spanned 
by the coefficient vector fields, i.e., HSrmander type condition, is sufficient for diffusion 
processes; see Kusuoka and Yoshida (2000) and Condition [L] in Section 6 of this article. 
The boundedness of SI,j easily follows from usual regularity conditions for coefficients 
appearing in the stochastic differential equations: a questioning reader will find that it 
is a routine procedure if he/she consults a textbook by Bichteler et al. (1987). More- 
over, with the help of support theorems, it is possible to verify [A3] under much weaker 
conditions (Yoshida (2001)). It is also the case for jump processes. 

In this article, we prefer [A3] in the present form because more precise description 
would increase the volume of this article too large. However, we emphasizes that Con- 
dition [A3] is already very concrete, and indeed, several authors checked this condition 
for various models to derive expansions. 

Lj )n+Mj * Lj The conditions Zj  e (D2,oc_ and S 1 [r Zj] C D2,oo_ in (iii) of [An] ensure 
that the IBP formula (4.2) hold true for the MMliavin operator Lj  and the truncation 
functional r The condition that Uj=l ..... n(T),T>0 SI,j is bounded in LP'(P)  ensures 
that ~ ' , z ( r  is bounded in LP(P). This assumption [A3] is suitable to the case where 
the underlying processes X and Y have the Markovian properties. However, there are 
some cases where the simpler IBP formula (4.1) can be applied as the moving-average 
process in Subsection 3.2. For such cases, we can obtain the same results in this section 
under the condition in Theorem 1 of Kusuoka and Yoshida (2000). Our main application 
in this article is the diffusion process, therefore we here adopt this setting. 

In order to obtain the asymptotic expansion of ST, let us prepare some notations. 
Denote the covariance matr ix  Cov(ZT), Cov(Z(T~ and Cov(Z(T 1)) by ~ = (g~fl)a,Z=l ..... n, 
g = (gab)a,b=l ..... p, and ~ = (g~")~,,=p+l ..... p+q, respectively. Assume that Coy 
( T - 1 / 2 Z T )  converges to a positive definite matrix; hence for sufficiently large T, the 
matrix ~ is a positive definite matrix because CT converges to a non-singular matrix. 
Note that ~, g, and ~ may depend on T. Define the j - th  cumulant A~l"~J of 7-T by 

,~o~ 1 ---o~j 0 
= i -JO cq "-" 0 ~ 10g E[e iuzr]  lu=0, 0~ -- 

t 0 U O  z " 

Under the assumption [A2], )~a = 0, a = 1 , . . .  , n. For any positive definite matrix a = 
(a~Z), the Hermite polynomials ha~...~j and their contravariant representation h a~ ' ' ~  
are defined by 

( - 1 P O  0 
G -  Oz ' 

and 

(z; o) = h,1...zj (z; 

respectively, where r a) is the density function of the normal distribution with mean 0 
and covariance matrix or. For M > 0 and ~/> 0, the set C(M, ~,) of measurable functions 
from R p ---, ]R is defined by 

$ ( M ,  3') = { f :  ]R p -* R, measurable, If(x)l _< M(1 + Ix[)~}, 
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and for any f ~ $(M, q~), r > 0 and any positive definite matrix a, let 

w(f , r ,a )  = f sup{If(x + y) - f(x)] : lYl -< r}r 
JR P 

It is easy to show that the formal asymptotic expansion of the density of ZT is given 
by 

(5.1) = 0), 
j=0  

where A,~ = c~1 "''Cir,, ~ A m  =_ T(rn-2)/2)~A.~, ~T,O(X) ---- 1, and for j _> 1, 

J 1 ~Akl+2 ...,~Akm+2 
~T,j(Z) (kl + (kin + 2)! hA l§ 

m = l  k l - t - ' "+km=j  
kl >_l,... ,k,~>_l 

See Bhattacharya and Rao (1986) and Sakamoto (1998). In particular, 

1-~0- 1 ~ 

In the above expansion, we adopt the Einstein summation convention, and a , /3 , . . .  , a 
are indices running from 1 to n = p + q. In the sequel, we will often use the convention, 
under which the Greek characters ce,/3,.., are indices running from 1 to n, the Roman 
a, b , . . .  running from 1 to p, and the lower ordered Greek a, A,. . .  running from p + 1 
to n .  

Under Conditions [A1], [A2], [A3], the k-th order asymptotic expansion of Z T / V ~  
was derived by Kusuoka and Yoshida (2000), and they showed in Theorem 5 that the 
asymptotic expansion of ST can be derived from PT, k and that it is a expansion of the 
Edgeworth-type. We here present an explicit formula for the k-th order asymptotic 

expansion of ST by using the Taylor expansion of f (ST)  around ST = Z(T ~ 

THEOREM 5.1. Let M, % K be positive numbers and let 1) be a positive definite 
matrix satisfying t) > limT--.o~ g. Suppose that Conditions [All, [A2], [A3] hold true. 
Then for any k E N, there exist constants 5 > 0 and c > 0 such that for any f C $(M, ~), 

( 5 . 2 )  Elf(ST)] - ~ , ,  dy(O) f(y(O))qT, k(y(O)) <_ cw(f, T -K,  ~) + eT, 
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where y = (y(0)y(1)), dim(y(O)) = p, dim(y(~)) = q, Qa denote the a-th element of Qi, 

qT,~(Y(O)) = ~ r g)dyO) + E T - ~ / ~  ~T,m(Y)r g)dy O) 
m=l q 

s+l=m j = l  l l+.. .+lj=l q 
s>O,/>l 

and CT = o(T-((k+5)/2AK)). 

Remark 1. In some cases, each of (Qi) may possibly be a polynomial only in Z(T ~ 
(independent of Z~)). In this case, the expansion qT, k becomes a simple one which is 

determined by the Edgeworth expansion of Z~) and (Qi), i.e., 

k f~(o ) f~ (~ 
GT'k(y(O)) : r g) -[- m=lE T-m~2 ~--T,,~u , ~  , ~ ,  

( -  1)J ( Q~ (o) -(o) (o) (0) 
+ Z Z ao, .ao  ) r  ;g )  , 

s+l=m j= l  l l+. . .+lj=l 
s>_0,/_>l 

where (=(o) ~ ~,~T,m/ are polynomials appearing in the Edgeworth expansion of Z(T ~ and they 
are defined by the same formula as that for ~T , m .  It is easy to show that the same result 
as Theorem 5.1 holds true with this expansion under Conditions [A1], [A2] and [A3] for 
Z(T ~ while Theorem 5.1 suppose the conditions for ZT = (7-(T0), Z(T1)). 

When we need a more explicit representation of an asymptotic expansion for a statis- 
tic of interest, we only have to make the calculations, differentiations and integrations, in 
this expansion for the polynomials Qi corresponding to the statistic. Those calculations 
are absolutely elementary but rather complicated at least for higher order terms, hence 
we prepare another representation of qT,k, which may require slightly less calculations, 
in an ordinary way. 

Let Z(T ~ = Z~) and Z(~) = 7_(T 1 ) -  E21E~-1Z~ ), where ~]21 = Cov(Z~),Z(T 0)) and 

E l l =  Cov(Z(T~ = g). Then the covariance matrix E of ZT = (Z(T0), Z(~ )) is given by 

~]22,1 ' 

where E22,1 = E22 - E21E]-1E12 and E22 = Cov(Z(~))( = g). In terms of ZT, the 
functional ST is rewritten as 

k 
(5 .3)  = + 

T i / 2  ~ \ ~ T  , 
i=1 

where Q is a polynomial satisfying ~)(z (~ z (1)) = Q(z (~ z (1) + E21E11z(~ For any 
index set A = {a l , . .  �9 , am}, denote the cumulant of Z ~ ' , . . .  ,--~mZT by ~A. Let ~T,j- be 
a function taking the same form as ~ T , j  with E and ~A in place of ~ and ~A. 
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COROLLARY 5.1. Let M, 7, K > 0 and ~ be a positive definite matrix satisfying 
~) > l i m T ~  g. Suppose that Conditions [A1], [A2], [A3] hold true. Then for any k �9 N, 
there exist constants 5 > 0 and c > 0 such that for any f �9 E(M,7) ,  

(5.4) E[f (ST)] -  ~pdy(O)f(y(O))qT, k(y(O))[ <_ cw(f,T-g,[7) + s  

where y = (y(0), y(1)), dim(y(O)) = p, dim(y(1)) = q, Q~ denote the a-th element ofQ, i, 

qT,k(Y(O)) = f r F")dy(1) + E T-m~2 ~T,m(Y)r F")dY (D 
J R  q ra=l  q 

s + / = r a  j = l  l z + . . . + l j = l  q 
s>O,/>_l 

and eT = o(T-((k+~)/2AK)). 

In Theorem 5.1 and Corollary 5.1, we assumed the non-degeneracy of the covariance 
matr ix  of T-1/2ZT; however, it is necessary to generalize the results to the case where 

Cov(T-1/2Z (~ is regular but  there is a linear relation between the elements of Z (1), 
and where Cov(T-1/2ZT) is degenerate. The maximum likelihood est imator  as an M- 
est imator  is the case as we will discuss it later. More precisely, in the case of the 

MLE or the minimum contrast  estimator,  Z (1) consists of the second and the higher 

order derivatives of the log-likelihood function, and therefore the elements of Z (1) have a 
linear relation due to the exchangeability of the differential operator.  If ~0 is degenerate, 
the Hermit polynomials h~l...ak (z; ~) does not make sense as it is. However, it is still 
possible to interpret each PT,k(Z) a s  a Schwartz distribution, and to prove the validity 
of the formula for qT,2 given in Theorem 5.1. 

For z ---- (Z(0),Z (1)) �9 ]~P+q, put  ~:= Z (~ (~,5) := Z (1), and z* := (~,~), where 
�9 R ql , 5 �9 ~q2 and ql + q2 = q. Since if q2 = 0, then the following arguments  result in 

the preceding case, we will suppose q2 > 0. By using these notations,  we will consider 
the case where the following conditions hold: 

[H0] CT is a block-diagonal matr ix  given by 

C T :  C(~) , 

where C(T ~ is a p x p matr ix  converging to a non-singular matr ix  and C(~ ) is a q • q 
matr ix  which may be singular; 

[H1] Cov(T-1/2Z~r ) converges to a positive definite matrix; 
[H2] for some matr ix  L --- ( L ~ ) p + q l + l < c ~ < p + q , p + l < / 3 < p + q l  , Z T  ~- LZT a.s. 
As we will see in the next section, the coefficient matr ix  CT for the min imum contrast  

est imator has the s tructure given by [H0] and [H2]. 
For any (p + ql) • (P + ql) positive matr ix  a* and any q • ql matrix/1~/, let 

= l~o-~i Ma~2M'J'  
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where cry1 , a~2 , a~l and a~2 are p x p, p x ql, ql x p, and ql x ql matrices, respectively, 
giving the decomposit ion of a*: 

[o-~1 0~2 j 

For any index set A = oQ ' ' 'O/r  a (OLI,... ,OLrn �9 {1 , . . .  , p +  q}) and any z (~ �9 R p, we 
define a Schwartz distr ibution "hA(z; ~)r ~)" so tha t  for any f �9 9~(ll(V), 

(5.5) ~ q f(z(1))hA(z; (~)r o')dz (1) 

_ _ = f ~  I * * �9 d~f (OA(~)f)(Mk)(-1) 'A(~ OA(O)r ;a )dz, 
q l  

where A (~ and A (1) be parts of a decomposit ion of A into two index sets such tha t  A (~ 
and A (1) consist of indices running from 1 to p and from p + i to p + q, respectively. 
We can easily extend this definition to the case where f �9 C~(Rq) ,  i.e., we also define 
"hA(z;~)r by (5.5) for any f �9 C~(Rq) .  If [A I = 0, 

(5.6) 9f Rq f(z(1))r ~.)dz(1) def 9~ ~ql f(]~2)r ; ~*)dk. 

Under Conditions [H0], [H1] and [H2], we see tha t  ~ and E have the same structure  

as tha t  of ~ above, regarding the covariance matrices of (Z(T~ and (7_(T ~ 
T-1/22T -- Cov(T-1/2Z, T,7-(~176 ) as a*, respectively. Therefore, we can inter- 
pret qT,k of Theorem 5.1 and Corollary 5.1 as (5.5) and (5.6), and can extend Theorem 
5.1 and Corollary 5.1 as follows. 

THEOREM 5.2. Assume that (i) Conditions [A1], [A2] and [A3] for Z~r hold and 
(ii) [H0], [H1] and [H2] are satisfied. Then the inequalities in Theorem 5.1 and Corollary 
5.1 hold with the same qT, k interpreted as (5.5) and (5.6). 

In Corollary 5.1, the orthogonali ty between Z(T ~ and Z(T 1) reduces the expansion qT,k 
to a simpler form. For any index set K whose elements run from p +  1 to p+q, any positive 
definite matr ix  a~2 and any q x ql mat r ix  57/, let hK(z(1);/~/a~23~/')r ]~/~2/~/ ')  be 
a Schwartz distr ibution defined by 

(5.7) ./~q f ( z  (1))hK(z(1); j~/Io-~22~/I')r IVIa~22~I')dz (1) 

~ . . .  * . 

= (Ogf ) (Mz)r  a22)dz , VI �9 9~(Rq). 
q l  

*' = 0, the Schwartz distr ibution hA(z;~)r  defined above is Then, if a ~  = a21 
reduced as 

hA(z; O) ---- hA(o)(z(~ 

• hA(1 )(z(1) ~ * - ,  (1) ~ * - ,  ; Ma22 M )r ; Ma22M ). 
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For any q x q positive definite matrix cr and any index sets K, L consisting indices 
running from p + 1 to p + q, 

/ { ( K ) ,  if ( K ) = ( L )  
hK(yO); a)hL(yO); a)r a)dY(1) = 0 otherwise, 

where (K) E Z~_ is the multi index corresponding to K, and 

q 

(K)! = H ~J! for ( K ) =  ( ~ 1 , '  ' '  ,t~q). 
j = l  

For polynomials ~)7(Y) in (5.3), define functions ~r~g(y (~ and 7r~'g(y (~ by 

1 ~ ~,~(y)hK(y(1). ~22,1)(~(y(1); ~22,1)dy(1), (5 .8)  ( K ) !  q ' 

(5.9) . , .a,K(, , , (O)'~ ~ . ,K ,L  a [,,(O)'l 
" l ~,V ] = z '~22,1" l ,L  klt ] 

w h e r e  K E {~, /%1, /%1/~2, . . .} ,  g l , / % 2 , . . .  E { p - ] - 1 , . . .  , p - I - q } ~  L E { ( ~ , ~ 1 , ~ 1 ~ 2 , - . . } ,  
#1,#2, .. E { p + l ,  ,p+q} ,  and ~-~K,L ~i~51~1 ~rn~trn - -  - - N ~  . . . . .  22,1 = ~22,1 " ' ' ~ 2 2 , 1  , E22,1 = (E22,1). Note that  
7C~,K(y (~ and 7r~'K(y (~ are polynomial in y(0), which is easily shown from (5.7) and 
(5.8). Moreover, we will use the contravariant and covariant representation of r~,K and 
7ra, K .  

1 , 

(5.10) 7r~, K(y(~ = E q~.'KAhA(y(O)', ' g) = E "aul,K,AhAI~'(~ , ~, 
A A 

and 

(5.11) 7r,~,K (u(O)) = X "  a K,A~ r ~ . ( 0 )  ,,a,KhAt~,(0). ,~ 

A A 

where A E {r  a l , a2 , . . .  E {1,. . .  ,p}, hA(y(~ the contravariant 
representation of hA(y(~ i.e., hA(y(~ = galbl ...gamb,,, hbl...bm(y(O);g), A = 
al " am, and qa,K,A and qa,K " . k k,A are supposed to be symmetric in indices A. The multipli- 
cation of the polynomial becomes an action on the algebra of the polynomials, and we 
express this action by 

hAhB = E cC, BhC" 
c 

Ck Obviously, cC,r = C~, A = 6A C (= 5ac~, . . .  5~k). 
q a , A  a q a , K , A  a , K  By using these constants l,K, ql,K,A, l , ql,A , and cc ,  B, we can reduce qT,k 

to a simpler form. In the following sections, we will consider the third order asymptotic 
expansions of statistics, therefore we here present a reduced form of qT,k up to third 
order, say, qT,2. 
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THEOREM 5.3. Suppose that [H1] and [H2] hold true. Then qT,2 defined in Corol- 
law 5.1 has the following representation: 

( 1 _  
qr,2(y (~ = r ) 1 + - ~ { A l ( y  (~ + A2(y(~ 

q- ~{/~3(y (0)) § /~4(y (0)) § /~5(y (0)) § /~6(y(0))}), 

where 

= ~ a,A h [~.(0) /~I(y(0)) = ~abChabc(y(O);g), A2(Y (0)) .2,q1,r aA(:q ;g), 
A 

/~3(y(0)) = ~4 ~abCdhabcd(y(O); g) § 1 ~abc~def habcdef(y(O); g), 

1 -a'b'c' a,A C 1 ~a'b'~ a,A C - A4(y(~ --- g E / ~  ql,r Ca'b'c',AhaC(y(O);g) § -~ E / ~  ql,a Ca'b',AhaC(y(O);g) 
A,C A,C 

1 ~"~(t~z~l~a,tc)~na,A c C  h ~[~,(o). + 
A,C 

1 
§ 6 E (~A#)]~)~uql:A)~. haA (y(O); g), 

A 
A5 (y(O)) --__ ~ , a,A ha A (~,(0). o) 

A 

and 

1 /T.-~, a,K,A b,Br, c . ~ (0) 
A6(y(~ 2 E ~lx)!ql ql,K~A, BaabC[y ;g)" 

K,A,B,C 

Note that the coefficients multiplying the Hermite polynomials in /~1, .~3 and /~4 
depend on the cumulants of ZT, and that those in A2, A4, A5 and/~6 depend on Q1, Q2. 

The polynomial 7r a defined by (5.8) can be obtained as follows. Let v be a l,K 
q x q symmetric matrix satisfying that E22,1 + v is a positive definite matrix. Then 

~22,1 -t-v,a hK(y (1) , Eu2,1+v) is well-defined, and there exists a polynomial 7rt, K in y(O) uniquely 
such that it is symmetric in indices K and 

(~ (Y )  ~-- E 9T~ ~2,1+v'a(y(O))hK (y(1)' ~-]22'l "~- V). 
K 

Since 

lim .~  f(z(D)hK(z(1); ~22,1 § V)r (1)" ~22 1 § v)dz (1) 
Ivl~O q ' ' 

=- ~q f(z(1))hK(z(1); ~22,1)r E22,1)dz (1), 

for any f C C ~  (Rq), we can obtain the polynomial 7r a l,K as 

E22 l+v,at. (0)~ (5.12) 7r~,K(y(O) ) = lim 7rl, K' (y j. 
Ivl--*o 
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In the next section, we will use (5.12) to obtain an asymptot ic  expansion of an M- 
estimator.  

6. Asymptotic expansion of the M-estimators 

The purpose of this section is to present the third order asymptot ic  expansion of 
the distribution of M-est imators  for a general statist ical  model. Before the theorem for 
the asymptot ic  expansion, we will precisely discuss the existence of M-est imators  and 
the convergence rate of the remainder of their stochastic expansions. After that ,  we 
will present asymptot ic  expansions of M-est imators .  In the case where the moments  of 
derivatives of the est imating function have some relations, so-called the Bart le t t  identi- 
ties, it will be seen tha t  the coefficients of the expansion becomes the well-known ones 
for the maximum likelihood est imator  in i.i.d, or t ime series models. At the end of 
this section, we will show the application to the maximum likelihood est imator  for the 
diffusion process, which is one of the results in Sakamoto and Yoshida (1999). 

Let @ be an open bounded convex set included in N p and To a positive constant.  For 
each T > To and each 0 C O, let (XT, 92T) be a measurable space and X ~ an XT-valued 
random variable on some probabili ty space. For an est imating function Cr  : ~ r  X O -+ 
R p, an M-est imator  0T is defined as a solution of est imating equation CT(O, XOT ~ = 0. 

In what  follows, 00 denotes the t rue value in the parameter  space O, and CT(O, XOT ~ 
is abbreviated to ~(0), if there is no confusion. We also omit  00 in functions of 0 
when they are evaluated at 00. For example, X T  = XOT ~ and r = r Moreover 
~Pa;(0) denotes the a-th element of r  and (r (0))~1 ..... ak=l ..... p denote the k-th 
derivatives of Ca;(0) with respect to Oal, . . .  , Oak, i.e., r (0) = 5a~ ' 5a~r 
where 5a = 0 /00  a. 

Let rT be a positive bounded sequence tending to 0 as T --* c~, and for K C N 
and a, a l , . . .  ,aK = 1, . . .  ,p, let Pa;al...a~(0) be a tensor defined on O such tha t  it 
is symmetric  in a l , . . .  ,aK. Each of them may depend on T, bu t  is supposed to be 
bounded as T ~ ec. In order to show the existence of M-est imators  and their stochastic 
expansion, we will assume the following conditions for K C N, q > 1 and V > 0: 

[C0] ~ r �9 C ~ ( e )  a.s.; 
[C1]q suPT>T o ]lrTCa;(Oo)llq < co for a = 1 , . . .  ,p; 

[c2]K~ SUPT>To,0C o IlrT~(r~r (0) - ~ ' a ; a l . . . a K  (o))11~ < oo; 

[c3] There exists an open set (~ including 0o such tha t  

+(/0 ) inf ~a;b(O1 + s(02 - 01))ds > 0; 
T> To,OI ,02C@,IxI= I 

2 [C4] y suPT>To [[ sup0eo IrzCa;al...aK(O)lllq < for a, aj = 1 , . . .  ,p, j = 1 , . . .  , K .  
Note tha t  the tensors ~a;al--.aK will be supposed to be the expectations of 

r~r when the asymptot ic  expansion will be considered. As for the case where 
0 �9 R 1, the existence and the second order stochastic expansion of M-es t imator  were dis- 
cussed by Sakamoto and Yoshida (1998a) under similar conditions to those given above. 

THEOREM 6.1. Let m > 0 and V C (0, 1). Suppose that [C0] 2, [C1]pl, k [C2lp2,w, 
k = 1,2, and [C3] hold true for  some Pl > m, P2 > max(p ,m)  andp3  > 1 with 
re~p2 < 7 < 1 - re~p1. Moreover, assume that 5cPa;b(O) = Pa;bc(O). Then 

(6.1) P[(310T e @ such that r = 0) and (10T -- 001 < r~)] = 1 -- o(r~) .  
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From this theorem, we see tha t  for any m > 0, there exists a subspace XT such 
tha t  P ( ~ T )  = 1 -- o (r~)  and tha t  for each observation XT C ~T,  the M-est imator  0W 

for 00 can be defined as a solution of the est imating equation r = 0. In the sequel, 
any extension of 0T defined on the whole of the sample space 3CT will be referred to as 
the M-es t imator  of 00, and will be also denoted by 0T. If we replace non-degeneracy 
condition [C3] with 

inf ]X'Pa;b(O0) ] > O, 
Ixl=l 

we obtain a similar result: under the same assumptions as in Theorem 6.1 except for 
[C3], (6.1) holds true for some open subset ~ C O. 

This result is concerning a Cramdr type consistency. In order to obtain a stronger 
consistency result, we need addit ional  conditions; Condit ion [C3] ensures only local iden- 
tifiability. Because constructing a consistent est imator is one of the subjects for 0-th- 
order asymptotics and it is also rather  routine (and it is not our main problem here), we 
only consider this weak consistency here. 

Let {P~; (0)}~=1 ..... p be tensors defined on O such tha t  they may be depend on T but  
SUPT,0 /ka;(0 ) < CXD, where A~;(0) = rT2F, a;(O). Put  Z~; = rTl(r~r Za; b = 
rTl(r?rr -- 9a;b(00)), and Z~;br = rTt(r2~;b~(O0) -- O~;b~(00)). Moreover, under  
Condit ion [C3], set Z ~; = -#~;~ Z~,;, Za'b --- --O ~;~ Za';b, Z bc -- --u ~'~ Z~,;b~, O a;al...ak ---- 

t _  i 

-O a;a Ua';~...~k, and A a; = -O a;~ Aa, ;. We then obtain the stochastic expansion of a 

bias-corrected M-es t imator  0~ defined by 

for some bounded function/3,  and est imate  the convergence rate of its remainder term. 

THEOREM 6.2. Let m > 0 and y E (0, 1). Suppose that [C0] a, [C1]pl, 2 k [C 
k = 1, 2,3, [C3], and [C4143 hold true for some Pl > 4m, P2 > max(p ,4m) ,  P3 > m 
with 3/4 + max{m/p2 ,  m/(4p3)}  < ~/ < 1 - m / p l .  In addition, suppose that for  the 

- 2 2 tensors P~;b and Ua;bc in [C2112, 7 and [C ]p2,7, 6cOa;b(O) = Oa;b~(0). Then there exists 

an M-es t imator  for 0o. Moreover, for  any extension OT of the M-es t imator  and any 
/3 C Cb 2 (O), let R~ be defined by 

(6.2) rTF 1 (0~ - 0o) a : za;-[-rT (Za;bZb;+ ~Oa;bcZb;zc;3rAa; - -~a ) 

( 1  _ _ , ~ a ; _ e ; , , 7 b ; , T c ; z d ; : a . , T b . r . l C ; r r d .  "Jr- r 2 (Oa;bc d Jr 0 bel] cd)Z5 z5 ~- 12 'bc ~ '[J dZJ ' 

]'~b; za; ~c;~d; 1 a b c, -~ Z 'bcZ ; Z Za;b Zb;czc; ~- 2 cd b~ ~ ~- -~- 

-a; c; ) r3 R~. - zb;hb/3 ~ +Ab;(Za;b + u bc Z ) + 

Then there exist C > 0 and c > 0 such that 

(6.3) P[rTIR I < Cr ,a = 1 , . . .  ,p] = 1 
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Note that  this stochastic expansion is a generalization of tha t  of the MLE given by 
Barndorff-Nielsen and Cox (1994). 

Combining this stochastic expansion with the formula of Theorem 5.1, we can de- 
rive an asymptot ic  expansion of M-es t ima to r  ^* ST, but  it is easier to derive it from 
that  of Corollary 5.1. Therefore we consider another  stochastic expansion consisting 
of orthogonal random variables. Suppose that  (i) (gab) :=  (Cov[Za; ,  zb;]) is a non- 
singular matr ix  and (ii) tensors Pa;, Y'a;a~...ak, k = 1,2,3,  given above are the expec- 
tat ions of the est imating functions Ca; and Ca;a~...~k, i.e., Pa;(0) = E[r2r and 
Y/a;al...ak (8)  = E[r2~Za;al . . .ak  (8)] for ]r = 1, 2, 3. For  index sets B 1 , . . .  , Bk,  let 

~al;Bl ,a2;B2 ..... ak;Bk = r 2  E [ r  r  "'" ~ba~;B~] 

and 

�9 a 2 ;  a k ;  ~ ~ ' s ~ ,  B~, B~ -- (--1) k~al;a~ -~ -a~ -  . . . . . . .  12 ' l/a~ ;Bl,a'2;B~,... ,a~ ;Bk " 

~ a ;  2a;  z a ;  Define ~a; and Z a,..-ak by = and 

~ a ;  = z a ;  _ va; zb; 
a l ' " a k  a l ' " a k  al . . .ae ,b ' 

a; _ a; b'; ( g a b ) - I  z a ;  2b;  where V a l . "ak ,b  - -  Cov[Z al...ak, Z ]gb'b and (gab) = , then and b~...bk 

are mutual ly  orthogonal,  i.e., Cov[Z ~;, Zb;bx...bk] = 0. For these random variables, we 

rewrite the stochastic expansion of rTl(t~} -- 80). 

THEOREM 6.3. Let m > 0 and 7 C (0, 1). Suppose that the same condit ion as in 
Theorem 6.2 hold. For a bias-corrected M - e s t i m a t o r  ^* ST, let R~ be defined by 

rT1 (~:~ _ 80)a = 2a;  ~_ rr(2~;b2b; + pa;b~2b;2c; _ /~a )  

2 a; - b ; - c ; - d ;  . -a; ~,b; ~,c;~,~; ~b; 2 a ;  2~;2d; q - r T ( U  bcd Z Z Z Jr?] b,c ~ d z, z ,  q- cd b 

+ 22a;bc2b;2  ~; + 2 % 2 % 2  ~; - 2b;~bZ o 

~ 3 ~ a "  + Ab;(2a;b + #a;b,~Z~;) ) + rTR3' ,  

where ~a; = /3  a _ Aa;, ira;be = (va~,c + V~;c,b + y,a;bc)/2, (la;b,c = Wa;b,~ + ~a;b~ ' and 

a 1 ( 3 )  
~--- - " V bc,d 

(bc,d) 

Then there exist C > 0 and g > 0 such that 

1 [3] Z ~d'; -a; 
~- -~ ~t bc?~ d',d" 

(bc,d) 

(6.4) P[rTIR]I < Or~,a = 1 , . . .  ,p] = 1 - o ( r~ ) .  

In the sequel, we set rT = T -1/2. Let 

Z(T ~  T1/2(  Z1;, . . . , Zp;) 
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and 

: T1/2(Z1;1,...,, ,Zp.p,, Zl;ll , . . .  ,Zp;pp). 

Suppose that  for some integer ql _< p2 + p3  there exists a ql-dimensional random vari- 
able ZT consisting of the elements of Z (1) such that  Cov(Z~) converges to a p..ositive 
matrix and ZT = LZT  for some q2 x ql matrix L, where Z~ = (Z (1),ZT), ZT is a 
q2-dimensional random variable consisting of the other elements of Z0)  than those 
of ZT, and ql + q2 = p2 + p3. Assume that  X is an e-Markov process with some 
driving process and that  Z* = (Z~r)T~R + is an additive functional of them. For the 
definition of e-Markov process, its driving process, and their additive functional, see 
Subsection 2 5 Put  M a~; b l ;  ~-- E[~a~;  ~ b l ;  ], ga;  b; al ;  = T1/2E[~a;2b;~a~; ] 

�9 " a 2 ~  0 2  r  0 2 J  ~ ~ a 2  t u 2  

~abc = T1/2Cum[2a;, 2b;, 2c;], Habcd = TCum[2a; ,  2b;, 2c;, 2d;). We then obtain a third 
order asymptotic expansion of the distributions of M-estimators.  

THEOREM 6.4�9 Let t) > limT--.oo g, M and 7' be positive constants, 3' a constant 
E (0, 1) and m a positive constant satisfying m > 3' '+ 2. Suppose that [C0] 4, [C1]p~, 

2 k [C ]p2,-r, k = 1,2,3, [C3], and [Cd]pd~ hold true for  some Pl > 4m, P2 > max(p, dm), 
P3 > m with 3/4 + m a x { m / p 2 , m / ( d p 3 ) }  < y < 1 - re~p1, and that for  the tensors 
#a;b and Pa;b~ in [C2112,~ and 2 5~#a.b(O) [C2]p2,-y, , = F'a;bc(O). Moreover, suppose that 
Conditions [A1], [A2], [A3] for  Z~r hold true. Then there exist constants c > O, C > O, 

> 0 and such that for  any function f E $(M, 3''), 

(6.5) E[f(v/- f (O~ - 0))] - . / d y  (~ f(y(~ 

_< az(f ,  C T  -(~+2)/2, ~) + o(T-1),  

w h e r e  

q T , 2 ( y  (0)) ~-- r  + 6 @ c a b C h a b c ( y ( O ) ; g  ab) 

1 . a. cd 1Aabhab(y(O);gab ) + 'cdg -  a)ho(y(~ + 

1 .abcd l .  i (0) ab \  
+ - ~ c  'eabcd(Y ; g  ) 

- t - 7 - - ~ c a b c c d e f h a b c d e f ( y ( O ) ; g a b ) )  , 

,~-c; a 'a  b'b cabc = ~abc Ar - Op a ' b ' g  g , 

a "  t t i - a _cc ~ Arb; ; , c c d d~-b;  O,qc'l~]'a; c; b; Ay y 1vl c, c' A a b  ---- 2 (  ~acd  -[- t t c ' d ' g  g ) #  cd -[- ~Vc "" , , c' 

~ a; _cd~ _b'b 
~- 2 ( ( A c ; ~ a ; c ,  b, - -  (~b'~ a)  q- 5~:  M a ; a l  bl;b , -k 3 U  cdb 'Y  )Y  

"]- ~, cd 

__ - ; b b  e e  ~ ; , g d ' d  4cabc  t ~ d" e f  a ' ' c cabcd ~- H a b c d  -~- kit 'efg ~d) + 24(~ab~ + 2# b'e'g g )i t d e 

' ' ~ c  a /~/-a;b;c;  _dd'~ , ~ r  ; b b  c c  d d  bb dd ; ; a ' ' ' 
+ 12(g g M d', b' -'~ , , d ' g  ) q- zz t tJ  b ' c ' d ' g  g g �9 
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If the estimating function ~b satisfies ~(0) = Vop(O) for some function p, then 

M-estimator 0r becomes a minimum contrast estimator corresponding to the contrast 

function p. In this case, Za;al...~k is symmetric in all indices a, a l , . . .  , ak and Cov(Z(T 1)) 
is singular, but the conditions given above Theorem 6.4 are fulfilled. Therefore the 
result of Theorem 6.4 comprehends the asymptotic expansion of the minimum contrast 
estimator. 

In the following, we will show that  the coefficients of asymptotic expansion of the M- 
estimator can be represented in terms of the information geometry when the estimating 
function ~;al...ak is symmetric in all indices a, a l , . .  �9 , ak as in the case of the minimum 
contrast estimator and tensors gab, ~a;A, and ~at;A1,... ,ak;Ak have some relations given 
below. In what follows, we assume that  r is symmetric in all indices, and omit semicolon 
; in the sequence of indices, e.g., ~aa~...ak = Pa;al...~k- For the tensors P's, we suppose 
that  the following identities hold true: 

[BIll Aa = 0; 
[BI2] Pa,b + Pab = 0; 

- A-  X -~[3] O 1 [BI3] Ua,6,c - z--(~b,c) f'~b,c + #~bc = ( ~ ) ;  

[BI4] F'~,b,~,~ + E162b,c,d) ~ab,c,d -Jr- E132b,cd) Dab,cd -Jr- E142bc,d) ~abc,d -[- ~abcd : 0 ( # ) .  
These are often called Bartlett identities and hold for many of the maximum likelihood 
estimators. Furthermore, suppose that  the following relations hold true: 

[DV1] 5agbc = ~'~b,c + F'ac,b + ~'a,b,~; 
[DV2] 5~F'b~,d = F'abc,d + F'b~,~d + ~'~,bc,d; 
[DV3] 5a~b,c, a ~-- ~ab,c,d Jr- ~b,ac,d At- ~b,c,aa -~- !~a,b,c,d. 

In the i.i.d, or time series models, these relations are usually assumed, and as a sufficient 
condition the exchangeability between the differentiation w.r.t 0 and the integration 
w.r.t, the density u is habitually used. In general, it is not so clear whether these 
identities hold true or not, but just assuming these identities, we will examine whether 
our expansion given in Theorem 6.4 can be represented in terms of the information 
geometry. 

Let 
F(~) _ 1 - a _  #~ = 1 F(_I) ~a, ~b~ abc= I/ab, c ~- T l ] a , b ,  c and - ~  bca' g g " 

In the case where r is the log-likelihood function, r(a) is a coefficient of so-called C~- "- abc 
connection. Moreover, put M~b,cd = E[ZabZ~d], Nab,c,d = v 'TE[ZabZcZd] ,  Labc,d = 
E[ZabcZd], Habcd = TCum[Z~, Zb, Zc, Zd] and 

[4] [61 

Labcd : E Labc,d, Nabcd =- E Nab'c'd" 
(abc,d) (ab,c,d) 

We then have the following asymptotic expansion. 

THEOREM 6.5. Let  ~ > limT--.~ g, M and "7' be posi t ive constants ,  ~/ a cons tant  
E (0, 1) and m a posit ive cons tan t  sat is fy ing m > 3/+2. Suppose  that  the same  condi t ions  
as in Theorem 6.4 hold true. Moreover ,  suppose that  Condi t ions  [BI1], [BI2], [BI3], [BI4] 
and Condi t ions  [DV1], [DV2], [DV3] hold true. Then  there exist  constants  c > 0, C > 0, 
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> 0 such that for any function f E $ (M,  y'),  

(6.6) E [ f ( v ~ ( 0 ~  - 0))] - ./dy(~176176 

<_ cw( f  , C T  -(~+2)/2, [7) + o(T-1) ,  

where 

1 ~ ~abc qT ,2 (y (0 ) )  z ~)(y(O);~ab) 1 § 6---~abc,~ -- - -  1 1 Aab h ab 
v~gab(Zb -- ~b)h~ + 

1 ~.abcd 1 ~ ~ l, abcde f~  + + ) ,  

, ~ p ( - 1 / 3 )  
Cabc ~ " ~ a b c  ' 

# ~ =  1 ab cdF(-1) 
- - 2 g  g c d b '  

1 .cd~efF(_l)F(_l)  4. _cdl M F(1) ,~efF(1) 
A a b  ~" ~ ~ cea dfb 9 k ac,bd - - ~ a c e Y  --bdf /  

4. g a c g b d ( Z  c --  ~ t c ) ( z  d --  ~t d) -- 2gbc6a(/~ c -- ~tc), 

Cabcd ~-- - - ( 3 H a b c d  4. Labcd 4. 2J~abcd ) 4- 12r(~1/3)g~(Z ~ - S )  

__ ~(1) hF(-1) ,~ef  + 12(r(~b - 1 )  ~ - ~ b J  ~sd ~ �9 

Needless to say, this result includes asymptotic expansions of the minimum contrast 
estimators and the maximum likelihood estimators. In the case where t~T is the MLE, the 
representations of the coefficients of the asymptotic expansion in Theorem 6.5 coincides 
with those given by Taniguchi and Watanabe (1994). They derived them from formal 
asymptotic expansion and explained certain meanings of the coefficients for the MLE 
from the viewpoint of information geometry. We here only clarified some sufficient 
conditions under which the representations for the M-estimator are obtained validly and 
do not discuss meanings of their coefficients. 

In the rest of this section, we will show the application to the maximum likelihood 
estimator for the diffusion model. The results are due to Sakamoto and Yoshida (1998b, 
1999), where the third order asymptotic expansion of M-estimators is obtained for the 
(misspecified or specified) diffusion model. 

For any 8 E O, let X = (Xt)tc•+ be a d-dimensional stationary diffusion process 
satisfying 

(6.7) dXt  = Vo(Xt,  O)dt + V(X t )dwt ,  

with a stationary distribution v0. Here V 0 = ( Y ~ ) i = l  ..... d : ]~d • O ~ ]1~ d, Y = 

(VjZ)i=l ..... d , j = l  . . . . .  r : ~ d  ~ ~ d  ~ ~ r ,  a n d  w is a n  r - d i m e n s i o n a l  s t a n d a r d  W i e n e r  p r o c e s s  

defined on some probability space (~, 5, P). Assume that (i) (6.7) has a strong solution 
X, (ii) E[Xt] k < cc for any t E 1~+ and k > 1, (iii) ve is absolutely continuous with 
respect to the Lebesgue measure, (iv) for any T > 0, the log-likelihood function based 
on X T = (Xt)t~[O,T] (w.r.t. some reference measure) is given by 

e ( X ,  0) ~- log  ( X 0 )  4. V o ( V V ' )  - 1  ( X t ,  O)dXt - -~ V~(VV')-IVo(Xt, O)d t .  



574 

Let 
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dvo A(x, O) = log ~ (x), B(x,  O) ---- W ~ ) ( W W t ) - l V ( x ,  0), 

C(x,O) = B(x,O) . ( B ( x ,  Oo) - ~B(x ,O))  

and denote the  derivatives of A, B, C, and ~ w.r.t 0 by 

Aal...ak(X,O ) ~-- 5a1"" "5,~A(x,O), Bal...a~(x,O) = 5a~'" "5a~B(x,O), 

Cal...gk(X,O ) = {Sgl.-" {SRkC(X, 0), eal...ak (0) = {~gl-." {~gke(0 ). 

For any measurable function f :  1R a --+ IR, let f be a function such tha t  A f  = f - u( f) ,  
and If] = - V ' V f ,  where ~(f)  = fRe f (x)v(dx)  and 

d d r . (O 2 

i=1 i,j k = l  

Assume tha t  
[DM1] (i) for each x C R d, A(x,  .), B(x ,  .), C(x, .) C C6(O); 

(ii) there exist positive constants Ci, mi, i = 1, 2, 3 such tha t  for any x C N d, 
k = l , . . . , 6 ,  a k = l , . . . , p ,  

suplA~I...ak(X,O)I<_CI(I+Ixl) ml, suplBa, . . .a~(x ,O)l<C2(l+lxl )  m=, 
OEO OEO 

sup ICal...ak(x,O)[ < C3(1 + Ixl) m~, 
0EO 

[DM2] for any 0 E O, k = 1 , . . .  ,5, there exist functions Oa~...~k, a l , . . .  ,ak = 
1, . . .  ,p such tha t  O~,...a~ E C2(IR a) and that  

AOo,. . .~ (x) = Ca, . . .~ (x, 0) - ~(Co,...o~ (., O)), 

[DM3] (i) for each a = 1 , . . .  ,p, "(Ca(bOo)) = 0; 
(ii) there exist positive constants Ci, mi, i = 4,5 such tha t  for each k = 

1,2,3,4,  and a l , . . .  ,ak -- 1 , . . .  ,p, 

suPlOa,...~k(x,O)l <_C4(l +lxl)  m', supl[Cla,...~(x,O)l <_Cs(l + lxl) m~. 
0E~ 0EO 

We then have 

THEOREM 6.6. (Sakamoto and Yoshida (1998b, 1999)) Let Oo E O. Suppose 
that there exists a open subset (~ C 0 such that Oo C 0 and that the p x p matrix 
(L'(Cab(', 0))) is non-singular uniformly in 0 C ~.  Moreover, assume that for any 0 E O, 
a,b,c = 1 , . . .  ,p, 5c~'Oo(Aab(.,O)) = voo(Aabc(.,O)), 5cUOo(Cab(.,O)) = ~,oo(Cabc(.,O)). 
Then, under Conditions [DM1], [DM2], and [DM3], for any m > O, (0, 1), 

P [ ( ~ 1 0 T  E (~ such that ~b(OT) = O) and (10T - 0o1 < T-'~/2)] = 1 - o(T-m).  
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Furthermore, for any extension of OT, say OT, and for any t3 C C~(O), (6.2) and (6.3) 
hold true with rT = l / v @  and CT = (Saf)Pa=l �9 

For the maximum likelihood estimator given in Theorem 6.6, we can derive asymp- 
totic expansion of its distribution from Theorem 6.4. Suppose that X has the geometric- 
mixing property, which ensure Condition [All in Section 5 with the diffusion process 
X and the Wiener process w in place of an ~-Markov process Y and a driving process 
X. The geometric-mixing property of diffusion processes, which are not necessarily sym- 
metric, was shown by Kusuoka and Yoshida (2000). See Stroock (1994), Roberts and 
Tweedie (1996). Let 

Z(T ~ = T1/2(Z1, . . .  , Zp) and Z (1) : T ' / 2 ( Z H , . . .  Zpp,... , , Z l l l '  . . , Zppp), 

where 

Za = --~(~ae(Oo), Z~b = (Sabg(O0) -- Eoo iS~bt(00)]) 

1 
gab c ~- - - ~  ((~abce(O0) -- EOo [(~abct(O0)]) . 

2(1) and Z (1) the (a,b)-th and the Denote by Ua, T~(~ the a-th element of Z(T ~ and by "ab,T ~bc,T 

(a, b, c)-th elements of Z(T 1), respectively. Then they satisfy the following Stratonovich 
stochastic differential equations: 

dZ(~~ = Bo(X,,Oo) o dw~ + C;(X, ,Oo)dt ,  

dZ 1) = J~ab(Xt ,  00) o dwt -~- C~b(Xt, Oo)dt, ab,t 

d~(1) , ~abc,t : B a b c ( X t ,  0o) o d w  t -~ C a b c ( Z t ,  Oo)dt, 

where 
1~ ~ 

c;~(x ,o)  = c A ( x , O )  - -~ Z V j ~ ( x ) O k B s  
j = l  k= l  

for A = {al,ala2,ala2a3}, ai = 1 , . . .  ,p. Put 

g0,1 = ( g 3 , . . .  ,?0d,  C ; , . . .  , C ; )  

and 

vi,1 (<1 V d i - = , . . . ,  , , ~ , , . . . , B ; ) ,  

where B~ is the i-th element of B~ and 

i =  1, . . .  ,r, 

- 1 s  d 
Vo.: Vo - Z v?o v;, 

j=] k=l 
i =  1 , . . . , d .  

Assume that 
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[L] for some integer ql _< p2 + p3, there exists a ql-dimensional random variable ZT 
consisting of the elements of Z (1) such that  

(i) .C.ov(Z~).converges to a positive definite matrix, where Z~ = (Z (~ ZT), 
(ii) ZT = LZT for some q2 x ql matrix L, where ZT is a q2-dimensional random 

variable consisting of the other elements of Z (1) than those of ZT, and ql + q2 -- p2 q_ p3, 
(iii) for some x C N d, ~n~=oEn(X,0) = N d+p+a~, where C] is the drift of the 

Stratonovich stochastic differential equation for the j - th  element of Zt, /~  is the i- 
�9 . ~ . , th  element of its diffusion coefficient, V0 = (V0,1,C~',... ,Ca,), ~ = ( ~ , 1 , / ~ , . .  Bq~), 

i z 1 , . . .  , r ,  ~0 = {V1, - . .  ,Yr},  ~n  = {[Vj,V] [ Y e ~ n - l , j  = 0 , 1 , . . .  , r } ,  and [~ ,Y]  
is the Lie bracket. 

Let us prepare some notations. Let 

~ , ~  = ~Oo(B~ . B ~ ) ,  F ~ , I ~ , ~ I  = , o o ( B ~  . [ S ~  . BA,I), 

[?[A1,A2],[A3,A4] = I/Oo([BAI " BA2] " [BAs " BA4]), 

F[[A1,A2],Aa],A 4 = ~]O0([[Bnl ~ B A 2  ] �9 B A 3  ] " B A 4 ) ,  

where BA'S are evaluated at 0 = 00. Pu t  Pub = /~a,b, (pub) = (pub)-1, ha = paa'L%(Aa,), 
Tab = Cov[Aa(Xo), AD(XO)], ~a;b = paa'pbb',(Aa,b,)" Moreover we need the followings: 

[a] 

(ab,c) 

ha = 1 ^aa'^b@(-1) -*a paa'r~(1) ~(-1)~ - -2  IJ P bc,a" 7] b,c : -- ~a'c,b -[- ~bc,a']" 

Here }-~[3] is a summation over the indicated number of terms obtained by rearranging (ab,c) 
the subscripts. 

By using these notations, we can obtain the third order asymptotic expansion of 
MLE 0T for the diffusion process: 

THEOREM 6.7. (Sakamoto and Yoshida (1998b, 1999)) Let M,  ",1' > O, and ~ > 
(pub). Assume that [L] and the conditions in Theorem 6.6 hold true. For any 13 E C{(O) 
and the OT defined in Theorem 6,6, let O~ = OT -- f3(OT)/T. Moreover assume that the 
diffusion process X given (6.7) has the geometrically strong mixing property. Then there 
exist positive constants c, C, ~ such that for any f E s  3') 

(6.8) E [ f ( v ~ ( 0 ~  - 0))] - . / d y  (~ f(y(~176 
I 

<_ c ~ ( f  , O T  -(~+2)/2, ~ab) + o (T-1 ) ,  

where 

qT,2(y (0)) ~--~ ~(y(O); pab) (1  -}- 6~TC*abchabC(y(O); p ab) 

1 , - , 1 A* hab[y (~ pub) + ~ P o a ' ( P ~  -- Za )h a(r pub) + ~ ab ~ ; 

+ 2-~Cabcdhab~d(y(O); f b )  + 7--~C:b~C*d~]h~b~d~f (y(O); p~b)) , 
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* __2~(-1/3) /~a ~a 
Cabc z ~ ab,c ~ z --  A a,  

AaD = Tab + 2~ab --  f lcd([2bcd,a -~- ~'ab,cd - -  [?ac,bd --  F[a,c],[b,d] + 2F[ab,c],d 

-~- 2F[ac,b],d -t- 4~'[b,d],ac -t- ff[cd,b],a -~- 2F[[b,c],a],d -t- 2F[[b,c],d],a ) 

+pcdpef{ l~( -1)~( -1)  ~(1) ~(1) ~(-1)r~(1) •  
~k2 ce,b df,a - -  ac,e bd , f  -~- ~cd , e  ~, ab , f  ~ ~ f b , a  ] 

+ 

_]_ Paa,  Pbb,(~ta '  _ ~ a ' ) ( ~ t , '  _ ~ b ' )  jr_ 2 p a a , ( A c o * a l , b  _ ~b~3a'),  

+ rEo, l,   + 3PEo,oI,I , I- 

+ -- ) + + 
ae,b] c f , d  " 

Remark 2. Theorems 6.6 and 6.7 are specific versions of Theorems 4.1 and 4.2 for 
M-estimators in Sakamoto and Yoshida (1999), respectively. 

Remark 3. In Theorem 6.7, the representation of the coefficients in the expansion 
are obtained without the identities [BIll ~ [BI4], [DV1] ,-~ [DV3]. If one assumes those 
identities, the representation will become slightly simpler. 

Remark 4. In Theorem 6.7, it is implicitly assumed that V, V0, BA(., 0), CA(', O) E 
C~(Rd) ,  IAI < 3 for the condition (iii) in [L], while Condition [DM2] in Theorem 6.6 
requires that Cal-.-ak E C2(R d) for any 0 C O, k = 1 , . . .  ,5, a l , . . .  ,ak = 1, . . .  ,p. 

Remark 5. When one considers the third order asymptotic expansion of the max- 
imum likelihood estimators for the Ornstein-Uhlenbeck process, it is found that the 
condition (i) of [L] is not fulfilled. It is because of the complete linearity of this ex- 
ceptional model. However, Sakamoto and Yoshida showed in 2000 that even in such 
a case, the third-order expansion formula of Theorem 6.7 is still valid (Sakamoto and 
Yoshida (2003)), as mentioned in Uchida and Yoshida (2001). This fact easily follows 
from a straightforward application of the perturbation method used in Yoshida (1997). 
For details, see Sakamoto and Yoshida (2003). In Uchida and Yoshida (1999, 2001), it 
has already been used for the model selection problems. 

Remark 6. Here we adopted a Hhrmander type condition for non-degeneracy of 
the distribution. It is a practical convenience because it involves only differentiation of 
coefficient vector fields. It is also possible to replace this condition by a condition that 
ensures local degeneracy of the Malliavin covariance, which is sufficient for our use. If 
the Malliavin covariance is non-degenerate at a skeleton in the support of the process, 
then the local degeneracy in the vicinity follows. See Yoshida (2001) for details. 

7. Proofs of theorems in Section 5 

In this and the next sections, some of the proofs are shortened for saving space. The 
details were given in Sakamoto and Yoshida (1999) or Sakamoto (1998). 
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7.1 Proofs of Theorem 5.1 and Corollary 5.1 
In the case where CT is the identity matrix for any T > 0, the asymptotic expansion 

of 7-T was given by Theorem 2 in Kusuoka and Yoshida (2000), but  it is easy to extend 
it to the case treated here. In fact, we have the following proposition. 

PROPOSITION 7.1. Let M, % K > O, and ~o be a positive definite matrix such that 
~o > limT--.o~ ~. Suppose that [A1], [A2] and [A3] are satisfied. Then there exist 6 > 0 
and c > 0 such that for f E 8(M, ~), 

E[f(7-T)] -- ~ f(z)pT,k(z)dz < cw(f, T -K, ~o) + e(Tk), 

where e(T k) = o(T-(k+~)/2). 

PROOF. Let E = Cov(ZT/v~) ,  K'  > K and E ~ = C-I(~ ~ + l imT__.~) (C ' ) - l /2 ,  
where C = limT-~oo CT. Suppose that T is so large that CT is non-singular. Since 

= CTI~(C~) -1, E ~ > l imT_~  E. Therefore it follows from Theorem 2 in Kusuoka 
and Yoshida (2000) that there exist 5 > 0 and c' > 0 such that for f E $(M, "y), 

E[f(7-T)] f dzf(CTZ)~T,k(z) K' - _< c' (f o T -  , r 0) + 
JR n 

where r = o(T-(k+5)/2), and lST, k is the function taking the same form as PT,k with 
and ~al-..a~ replaced by 9~ and ~a~...a,~, where 

~"'~ : T(m-2)/2Cum[Z~'Iv/-T,... , Z~mlx/TI, m = 2 , 3 , 4 , . . . .  

Owing to the multilinearity of the cumulant, it follows that for f E s  y), 

~ dz f (CTZ)PT,k(Z)=~ dzf(z)PT, k(Z) �9 

Moreover, take T so large that ICTIT -K' < T -K and CTE~ < ~o, then 

w(f  o CT, T -K' , E ~ <_ c"w(f, T -K,  ~o), 

for some positive constant c". Thus we complete the proof. [] 

From this proposition, we can prove Theorem 5.1. 

PROOF OF THEOREM 5 .1 .  P u t  E = l i m T - ~  ~ (= l imT-.~ Cov(ZT)) and partition 
it into four blocks, say, 

[ElI E12] 
r, : L 

w h e r e  ~-]11 : limT-,o~g (= limT--,oo Cov(Z(T~ S 1 2  = limT--~ Cov(Z(T~ S 2 1  : 

E~2 , and Eu2 = l imT_~  Cov(7_(~)). For any ~ > El l  and E22 > E22, let ~ 1 1  = (~-]11 -~ 
= + 
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Then it holds tha t  E < E < E. For this E and any K' > K,  we see from Proposit ion 
7.1 tha t  there exist c ~ > 0 and 5 > 0 such tha t  for f C s 

E[f(ST)] - JRp+~ f(ST(Z))pT, k(z)dz K' C(T k) < c '~ ( f  o sT,  T -  , ~) + 

where e~ ) = o(T -(k+~)/2) and 

k 
ST(z)  = z (~ + ~ T-~/2Qi(z(~ z(1)), z = (z (~ z(1)) 

i=1 

Note tha t  5, c ~ and ~(T k) depend not only on k, M,  7 and K ,  but  also on positive constants 

M '  and 7' satisfying SUPT ]ST(z)I < M ' ( I +  ]z[~'). In order to obtain qT,k, we will rewrite 

f~p+q f(ST(z))pT,k(z)dz, and will est imate w(f  o ST, T -K', ~) later. 
First ,  let us consider the Bhat tacharya-Ghosh map y(z),  which is defined by 

[y(~ 1 1 
y(z) = Ly(1)(z) j = L z(1) J" 

Pu t  Q(z) = ~-~-1T-J/2QJ(z), and take a > 0 so tha t  there exists C1 > 0 such tha t  for 
a n y T > l a n d [ z ] < T  ~ + 1 ,  

IQ(z) [Vmax Oz i i = l , . . . , n ,  j = l , . . . , p  < C 1 T  -a. 

From Taylor's theorem, we see tha t  for any Zl, z2 E ~P+q, y(zl)  - y(z2) = J(zl,  z2)(Zl - 
z2), where J(zl,  z2) is a (p + q) • (p + q) matr ix  defined by 

( ~ 1 0 y i l  -[- U(Zl z2))du)  J(zl,z2) = -~zj [Z2 - �9 

I f T > l a n d [ z [ < T  ~ + 1 ,  

I~ fo ~ oO IJ(Zl, z2)[ = + 0 - -~ (z2  + U(Zl - z2))du > 1 - C2T -~ 

for some constant  C2 > 0. Therefore for sufficiently large T > 0, the map y(z) is one-to- 
one on MT, where MT ---- {z C I~P+q [ [z[ < T~}. In the following, we suppose T to be 
sufficiently large so tha t  y(z) is one-to-one o n  MT and denote the inverse map  by z(y). 

Let p be a real-valued function on IR such tha t  (i) p C C ~ ,  (ii) 0 < p(x) < 1, and 
(iii) p(x) = 1 if x < 0 and p(z) = 0 if x > 1. Pu t  pT(z) ---- p([Z[ 2 -- T 2c~ + 1), then 

sup [0/~...  Oi~PT(Z)[ < a polynomial  of [z[. 
T 

By using the Bhat tacharya-Ghosh map y(z), we see tha t  

~ ,+~ f(ST(z))pT,k(z)dz = ~,+~ f(ST(z))pT(Z)pT, k(z)dz + o(T -g )  

= f f(Y(~176176 + o(T-K),  
JR P 
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where 

q. ro,(o)~ 9f  ~ ~YY T,kVY ]= pT(z(y))PT,k(Z(y)) OZ dy(1). 
q 

The signed measure q~,,k(y(~ (~ is rewri t ten as follows. Prom Taylor 's theorem and 
the integrat ion-by-parts  formula, we obtain  that  for any h E C ~ ( R P ) ,  

jfp h(Y (~ (Y(~ (~ 

= fiR,, h(ST(z))pT(z)pT,k(z)dz 

k - 
+ jfRv h(z(O))j~__l ~ O a l  ""Oaj (~q(~)al ""Oa~PTPT,k)(z)dz(1)) dz(O) -'b Rf, 

where 

1/01 R f  = ~. (1 - -  , ~ ) k  ((:~al.. " Oak+lh)(z(O ) ..}_ UO(Z)) 
pq-q  

x Qa~ (z)... ~)~k+~ (Z)pT(z)pT, k(z)dzdu. 

For each u E [0, 1], let 

[~($)1 [z(0)+ u0(z)l yu(z) = Ly(1)j - -  z(1) j 
Since this map  y~ is one-to-one on MT, we have tha t  

1/0' L Rs = ~ ( 1 -  ~)k (Oal""Oak+lh)(y(~176 'Oak+'(zu(~)) 
P l - q  

• pr(z~(yl)p~,k(z~(y))] ~ -Nd ] eyeu, 

where z~ is the inverse map of y~. It is easy to show tha t  if y C yu(MT), then 

0% 
] < a polynomial  in ]zu(y)[ < a polynomial  in lYl OyJl �9 . �9 OyJk - 

and that  if y E yu(MT), then 

IPT,k(zu(Y))I <-- C3qS(y; 9") 

for some positive matr ix  g* > ~ and a posit ive constant  C3 independent  of T. Therefore 
it follows from Fubini 's  theorem and the integrat ion-by-parts  formula that  

n~ = JRf~ h(Y(~ (~(~176 
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where 

/~1 (y(0) )  __ ]~-'~--- 0 a l " " "  C~ak+l q (1 --  %t)k((~ a l " ' -  (~ak*lpTPT, k)(zu(y)) 

x lOZ~ (y)dudy (1)) 

- _  

for any f E $(M, ~/), we obtain that for any f E $(M, ?), 

L p+~ f (ST (z) )pT, k (z)dz 

= JfRp+q f(Y(O))PT'k(y)dy 

k 
~_gfRp f(y(O)) ~ ( ~ l ) 2 ( ~ a l . . . C ~ a y  (gfRq((~al ...Qa~pT, k)(y)dy(1)) dy(O) 

-[- O( T-(k + l ) /2) -[- o(T-K ). 

Substituting (5.1) and the definition of (~ into the first and the second terms of the right 
hand side, one can easily show that  

JfR.+q f(ST(z))pT, k(z)dz = L ;  f(Y(~ O(T-(k+l)/2) ~ + + 

Finally, we will rewrite w(f  o ST, T -K' , E). From the definition of w ,  

W(I o ST, T -K',  E) 

= sup{If o ST(Z + y) -- f o ST(Z)I: [Yl < T - K  }l{zcMT}r 
p~-q 

+ o(T-I~). 

Since [O(~!,/Oz{l < C1T -~ for any T > 1 and z C l~p+q with [z I < T ~ + I ,  i f z  E MT and 
lYl < T - K  , then 

IST( z + Y) -- ST(Z)t <_ Chlyl <_ ChT -K' 

Thus we obtain that 

�9 (0) 9f ~ qT,k(Y ) = q PT(Y)PT,k(y)dy O) 

k 
j = l  . .  q ( ( ~ a l . . .  ~ajpTPT,k)(y)dy(1) + Rl(y(O)). 

Note that SUpy(o)IR1 (y(~ _< C4T-(k+l)/2r176 **) for some positive matrix g** > g 

and 6'4 > 0. Since fap+q f(y(~ -- 1)pr, k(y)dy = o(T -g )  and 

k 

P j = l  q 
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for some constant C5 > 0. Therefore, taking so large T that C5T • < T -K,  we obtain 
that 

w( f  o ST, T -K' ,  E) <_ w(f,  T -K,  [~) + o(T-K) ,  

which completes the proof. [] 

PROOF OF COROLLARY 5.1. Let 

0/] 
MT = _E21Ellt . 

Then 7-T = MrCr(T-~/2ZT). Applying Proposition 7.1 to 7-T, we obtain the same 
inequality for ZT as in Proposition 7.1. Therefore, in exactly the same way as in Theorem 
5.1, we can show the assertion. [] 

7.2 Proof of Theorem 5.2 
Let ZT = (Z(~), ZT/v/-T) a n d / ,  be a (p + q) • (p + ql) matrix defined by 

0] 
~' = L0) 

where Im is the m-dimensional identity matrix and 

Then 
k 

= ~ + 

i=1 

where 2 (0) = Z(T ~ and {Qi} are polynomials in z* C R p+ql defined by Qi(z*) = Qi(Lz*). 
Applying Theorem 5.1 to this functional ST with ZT, we see that (5.2) holds true 

with 

(tT'k(Y(O)) = JR~ r § 

+ 
l ( -1)J  

E E  E 
s+l=m j = l  ll+...+lj=l 
s~_O,l~_l 

where ~ = Cov(ZT), 

)= 
rrt=l 

k 

E T-m~2 =T,m(Y )r ;.0)de 
rn=l  ql 

Oil " " "  O i J  q l  Qilll 'yr" *,j... QI~ (Y )=T,~(Y )r ,'~)dy , 

,~A~I+2. . . ,~A~m+~ 

~,, hA~ . 2...A*k 12 (Y*; g), 
E (k 1 + 2 ) ! ' " "  (k?T t + ~)! 1~- m~ 

kl +...+k~=j 
k1_>1 .... ,k,~>l 

and 

~a~...a~ =_ T(J-2)/2i-j  oa~ . . .  0 ~  log E[e iu*'2T] ]u=o �9 
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Note that  indices with the symbol  *, e.g., a~, run from 1 to p + ql, and that  index sets 
with the star *, e.g., A~j, consist of such indices. For any polynomial  p in z, let 

~Tp(y(O)) : ~Ak I . . .  ~At:m ~ q  P(y)hAk, ...Akin (Y; g)r ~0)dY (l)- 

If we can show that  

(7.1) ~]p(y(O)) : 7~B;1... ~B;r ~ ,~ P(Ly *)hB~I...B~. (Y *; g)r * ; g)d~], 

we will see that  the inequali ty of Theorem 5.1 holds true with the same qT,a interpreted 
as (5.5) and (5.6). 

First,  we see from the definition of h~l...~ , (y; .q)r .q) tha t  for any f ~ C~'(RP),  

Pu t  f ( y )  = f(y(O)). 

O~1 . ~ a k ,  Since LZ; .. L~;j . 

and 

it follows that 

f (y(O))%(y(O))dy(O) 

= 9fRp f(y(O))~Akl . . .  ~A1r Lqp(y)hAq.. .At: m (y;~)(~(y;~)dy(i)dy(O) 

~ ~Ak  1 . , .  ~Akm ~ f ~ p f ( y ( O ) ) j ~ q i  ( ( ~ A ( k l l ) . . . C ~ A ( 1 ) m P ) ( L y *  ) 

( o )  . ( o )  

x (-1)I'% I+.- +lak~ 10s 0.a~2 r ~)dfldY (~ 

For index sets Akj = oQ '''O~kj and B~j = f l~.. . f l~j,  let LB;~vAkJ = 

~Ot 1 ""Otj = L~[~ Oil " "" L~;~ ~j ~Z; f~ ;  

�9 . LZ; . - L z ; ( 0 ~  1 -v0a, p ) ( ~ y * ) ,  

f(y(0))Vp(y(0))dy(O) 

= s f q(0a   (~ 

v . .  s  o - t "  * = ~B;I~Akl ...LB~m~Akm~ kl ""~B~'n p ql(OAk 1 "'" Akmf 'P) (  Y )~)(Y ;g)d~]dY (0) 

08; 1 " " " ~ S ~ r  ( ( ]  " p )  ( Z y $ ) ) ~ ( y @  ; g)d~]dy(O) 

= f(y(O)).~ k~ . . .  )~Bk~ p(Ly*)hB~...B;: m (y ;~)(p(y*;~)d[ldy (~ 
P ql 

which implies (7.1). 
Applying Corollary 5.1 to the representat ion of ST by the orthogonalized random 

variable of ZT, we can derive another  version of q~,k- In the  same way as above we can 
show, tha t  the inequali ty of Corollary 5.1 holds true with the same qT,k interpreted as 
(5.5) and (5.6). [] 
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7.3 Proof of Theorem 5.3 
By using the definitions (5.8) and (5.10), we obtain from Corollary 5.1 and Theorem 

5.2 that 

1 {~l(y(O)) q- ~k2(y(O)) } q~,~.(y(o)) = r g) 1 + 

1 ) 
+ ~{A3(y (~ +/~4(y (~ + A5(y(~ 

+ 1 0 -~-fOa b ~ q  ~)~(Y)~)bl (y)r ~)dY (1). 

Therefore, it suffices to show that 

A6(y(~162176 g) = -~OaOb (~(y)Obl (y)r ~)dy (1). 
q 

For any q • q symmetric matrix v satisfying that E22,1 + v is non-singular, there exist 
polynomials z22,1+.,a and 71" y22'l+v'a'K such that 'ff l,K 

7rl, K' (y )rt (y(1); E22,1 + V) 
K 

z E 7r~22"l+v'a'K(y(O))hK(y(i);~22,i + V). 
K 

For these polynomials, we see that 

~ q  O~(Y)O1 b(y)r E22,1 

Thus we have that 

Rq Q?(Y)Ob (Y)r ~")dy(1) = 

which completes the proof. [] 

8. Proofs of theorems in Section 6 

~"~/rz\ I E22 l+v,a,Kr (O)x E22 l+v,b/ (0)\ + v)dy (1) = 2_ . ,~ ) . zq  " (Y )Trl,K' (Y ). 
K 

E I a KA bB C (0) (0) ( K ) . q l ' '  ql:KCA,BhC(y ;g)r ;g), 
K,A,B,C 

As in the previous section, some of the proofs in this section are shortened for saving 
space. See the details in Sakamoto and Yoshida (1999) or Sakamoto (1998). 

8.1 Proof of Theorem 6.1 
First, we prepare a lemma for the proof of Theorem 6.1. 

LEMMA 8.1. Let m > 0, ~, > 0, and p2 > p with ~/p2 > m. Assume that [C0] 2, 
k [C2]p2,~, k -- 1,2 hold true, and that 5cg'a;b(O) = ~a~bc(O). Then for any Co > O, a, 

b = 1, . . .  ,p, 

p sup fr~r - a~b(O)l > Co = c 3 :  ~T , 
LO~e 
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where e ('~) = o(r~) and it is independent of Co. Furthermore, assume that [C3] holds 
true. Then there exists a constant C1 > 0 independent of T such that 

P[L l~176 - - r2( /o lr  > C 1 ) =  1 - o(r~) .  

PROOF. Since P2 > P, 5~ ;b(0)  = ~;b~(0) and [CO] 2 hold, it is seen from Sobolev's 
inequality tha t  there exists a positive constant Co independent of T such that  for any 
XT C :~T and a, b = 1 , . . .  ,p, 

sup Ir~.r - ~;b(O)l _< sup I r~r -- #~;b(O)l 
0 ~  OCO 

<_ Co (JO 'r2 ~)a;b(O) -- ~'a;b(O)lP2 dO 

f,~ (r~r - dO + 

2 2 Combining this inequality with the conditions 7P2 > m, [C2]1p2,~ and [C ]p2,~, we can 
show that  for any Co > 0 and a, b = 1 , . . .  ,p 

P sup fr~r - ~a;b(0)l _> Co = Cg2 ~ , 
Lo~ 

where ~(m) = o(r~) and it is independent of Co. 
Furthermore, from [C3], there exists a constant C1 independent of T such that 

x'(i I )l 
inf Pa;b(01 + s(02 - 01))ds > 2Cl. 

01,02 EO 
Ix$=l 

Therefore we see that  

P[Ll~176 E~ <<Cll 

<_ E P sup{Ir2r -- ~a;b(0)l} _> C1//p 2 = o(r~) ,  
a,b L eEo 

which completes the proof. [] 

From this lemma, we can show Theorem 6.1. 

PROOF OF THEOREM 6.1. Let C be a positive constant satisfying 

x,(/o 1 ) inf  Pa;b(O1 + 8(02 -- O1))ds > 2C. 
oa ,02 EO 1~t=1 
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By virtue of [C0] 2, there exists 2~o(C) > 0 such tha t  for any T > To(C) and 6 E N p 
satisfying 161 <_ 1, {0 :10  - 0ot < @} C O and t#a;b(0O + 6r~) -- Pa;b(00)l < C/(2p2).  For 
such C > 0, let ~T,O be the subset  of 3CT defined by 

{ --r2(/o I ) /x  XTO := X T  C XT inf ~)a;b(O1 + s(02 - 01))ds > C, 
' OE(9 

Ixl=l 

Ir~-~r < C, sup Ir~r - ~o;b(0)l < ~p2 for a,b = 1 , . . .  ,p  , 

and for any a, b = 1 , . . .  ,p, X T  E ~r ,0  and T > 2to, let ]~b be a function on {u : lul _ 1} 
defined by 

lob(u) = - ~  r + ~ru~)d~. 

Then, for x E R p satisfying Ixl ; 1 

](/~b(U) + ~;b(OO))'x I <_ ~_, SUp I@~a;b(O) -- ~;b(0)] + C/2p  2 < C. 
a,b \OEO 

Therefore 

inf I(s  I >_ linfl (l(-f,a;b(Oo))'xl - I(I~b(U) + f,~;b(Oo))'xl) > C, 
Ixl=l 

which implies tha t  matr ix  (]~b(u)) is non-singular. Let H.y(u) = (H.~(u))a=l ..... p be a 
function on {u :lul _< 1} defined by 

H.~(u) := r~-~]ab(u)r 

where (]~b(u)) = (s  -1.  We then have that  for any X T  e XT,O and any T > To, 

IY~(u)l < C sup I(i~b(u))xl---- C 
- -  Ixl_<l inflxl=, I(/~b(u))'xl -< 1. 

Therefore it follows from Brouwer 's  fixed point theorem that  if X T  E XT,O and T > To, 

then there exists a ~ E { u :  lul _< 1} such that  H~(~%) = g. Sett ing 0T = 00 + r~%, we 
have from Taylor 's  theorem that  for each a = 1 , . . .  ,p, 

/o 1 Ca;(0T) = Ca;(00) + Ca;b(O0 4- r~r~z~)d~r~ft b = r~r-2]ab(g)(Hb(f~) -- fib) = O. 

Since (f~ Ca;b(Ot 4- s(02 -- 01))ds) is non-singular uniformly in 01,02 e O for any X T  e 
~T,0, we see that  if X T  E XT,O and T > 2to, then there exists a unique 0T E 1~ satisfying 
r  = 0 and such 0T lies in the r~-ne ighborhood of 0o. Furthermore,  we see from 
[C1]m and "y < 1 - m/pz  tha t  

(1-~)m 
P[[r~-~r > C] < rT I[rTr = o(r~) .  

- - Cm 
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From this and Lemma 8.1, P[(3~T,0) ~] = o(r~) .  Thus we see that  

P[(310T E (~, g'(OT) --= O) and (lOT - Ool < = 1 - o(r~) .  
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[] 

Note  that  if the tensors O's are independent  of T, the addit ional  assumption in 
Theorem 6.1, i.e., 6~Oa;b(O) = G;br can be proved. In fact, we have 

LEMMA 8.2. Assume  that [C0] 4, [C2]p2k ,~, k = 1, 2, 3, [C4]~ 3 hold for  some "y > O, 
p2 > 1 and p3 > 1. Moreover, assume that P~;b(0), FJ~;bc(O) and F~a;bcd(O) are independent 
of T .  Then P~;b E C2((9), Ua;bc E CI(E)), and P~;bcd satisfies Lipschitz 's  condition. 
Moreover (~c~a;b ~ ~a;bc and ~dF/a;bc ---- Oa;bc d. 

PROOF. In the same way as in the proof of Lemma 1 in Sakamoto and Yoshida 
(1998a), we can prove this lemma. See Sakamoto and Yoshida (1999) or Sakamoto 
(1998). [] 

8.2 Proof  of Theorem 6.2 
We have two lemmas for the proof of Theorem 6.2. 

LEMMA 8.3. Let T > 0 and K be a positive integer greater than or equal to 3. For 
any k = 1 , . . .  , K ,  j = 1 , . . .  ,k and a, aj = 1 , . . .  ,p, let Oa; and Oa;al...ak be constants 
depending on T such that a matrix  (#a;b) is non-singular for  each T and that Pa;al...ak 
is symmetr ic  in a l , . . .  ,ak. Suppose that [CO]/( holds and that for  any Oo E O, there 
exists OT E 0 such that  ~)(OT) ~-- O. For any Oo E O, define Z~;, Za;a~...~k and O~...ak, 
k = l , . . .  , K ,  by 

Za; = r T l ( r 2 ~ 2 a ; ( O o )  -- #a;) 

Za;aa ...a~ - 1  2 
---- r T ( rT•a ;a l . . . ak (O0)  -- 12a;al...ak ) 

and 

Oal'. .ak = r T k ( O T  _ o0)a l , . ,  (OT -- O0) ak , 

respectively. Then for  any k = 2 , . . .  , K - 1, 

k-2 f 1 -~b ~a -a 'b ~- - - V  ' Z b ; -  r T l ~ a ; b O b ; -  Z r j  ~ . l ]  ' Z b ; A j O  A j  - ~ -  

j = l  
~_ k - l ~ a  

rT ~k-1, 

1 . ,  ;oa;b~,b.Aj+ 1 ~Aj+I 
(j + 1): ' / 

where A j  = al . . .  aj and By = bl . . .  bj are arbitrary index sets of length j ,  (P a;b) /s the 
inverse matr ix  of (Ua;b), and R~ is defined by 

R~-I- - (k -1 1)!~a;bZb;Ak_l~A k 1 

-- ) rTYdb;A~ q'- -- . (k 1)! ( l _ u , k - l p a ; b  2-- (0o u(OT Oo))duO Ak 
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PROOF. One can easily obtain the result from the Taylor expansion. See Sakamoto 
and Yoshida (1999) or Sakamoto (1998). [] 

LEMMA 8.4. Suppose that [C0] 4 holds true and that for  any Oo E O, there ex- 

ists OT E 0 such that r = O. For E'a;, Za;, E'a;a~...ak and Za;a~...a~, k = 1 , . . . , 4 ,  
a, a l , . . .  ,ak = 1 , . . .  ,p, in L e m m a  8.3, put A~; = rT2O~i, A a; = --#a;bAb; , Z a; = 
_~a;bZb.  a; = _pa;a '  " __ _oa;a  - Then ,~ Z al...ak Za,;al...ak , and Oa'al...ak -- lZa,;al...ak. 

1 -a" b; c; ) O a = Z a; + r T  Za;b Zb; -~- -~l] 'bc Z Z -~- A a; 

2 / 1  a" . ~ a ;  -e;  x ~.b; ~.c; ~d; -a; ~b. ~c" ~d" 1 
+ r T ~ - ~ ( F ,  'bcd-]-6 be t] c d ) L  L L ~-P  b c L ' L ' d  L '-[- ~b;cdZa;bZC;Zd; 

-t- ~ Za;bcZb; Zc; + Za;b Zb;cZC; -t-- A b; Za;b -l- ~a;bcA b; zc;  ) 

3 ~a + r T R  3 , 

where 

(8.1) a,2 -b  a,1 -b  a,1 - b  - c  R~ = Qa'2(Z) + rTQ~ ' I (Z )  + Qb (Z)R1 + rTQb (Z)R1  + rTQb~ ( Z ) R I R 1  

~'~ Z [ ?  'q~'~ ~ A- Qb ( ) 2 + ~bc , , 1 1 + r ~ Q ~ ' ~  + r~Q~'~  ~tb 
2 a,O -b -c  r 2 [ - ) a , O ( ~ D b D c D d  + ~ .  

+ rTQbc (Z )R1R1  + T ~ b c d \ ~ ] ~ l a ~ l ~ L 1  

{ /~}  are defined in L e m m a  8.3, and the funct ions a,m Qa~...ak ( Z )  are polynomials with degree 
m in Z~;, Z~;b, Za;b~ whose coefficients are constants of order O(1) as T --* c~. 

PROOF. Using Lemma 8.3, the similar discussion to one in the proof of Theorem 1 
in Sakamoto and Yoshida (1998a) gives the result. See Sakamoto and Yoshida (1999) or 
Sakamoto (1998). [] 

By using the results obtained above, we prove Theorem 6.2. 

PROOF OF THEOREM 6.2. 

(8.2) 

where 

Expanding 3~(0T) a r o u n d  0T = 00, we have 

a 

9•01 t:~/3) ~- (~b~aR~ -~ (1 --  ~t)(~b(~c/~a(o0 -~- ~t(O T -- Oo) )duObO c. 

For 3 '̀ E (3/4, 3  ̀- m/p2)  and a C (m/p3 ,  43' - 3), let ~T,1 be a subset of ~T defined by 

~T ,  1 = { X n  E )On ] [r2~)a;b--~a;b[ < r~ , [r2~a;bc- -FJa;bc  I < r ~ ,  

Ir r - Va;bcel < 0  sup [r r < a, b, c, d, e = 1, . . .  , p } .  
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Moreover, let XT,0 be a subset of ~ T  defined in the proof  of Theorem 6.1. As we discussed 
in the proof  of Theorem 6.1, we see tha t  for any X T  C XT,0 and any index set Ak of 

length k, O Ak < r k('/-1). From the definitions of XT,0 and ~T,1, we see tha t  there  exists 
a positive constant  C such tha t  for any X T  C XT,0 N ~T,1, k = 1, 2, 3, a = 1 , . . .  ,p, and 

a l , . . .  , a k  = 1 , . . .  ,p, 

- ~ / - - 1  Z a .  ~ r ~ ' - I  I za;I  < C r T  , ] 'al...ak I < �9 

Therefore, put t ing  e = min(4"y' - 3,43, - 3 - a ) ,  we see from the definition of R~ in 
Lemma 8.3 tha t  

for some positive constant  C3. Moreover,  from this inequali ty and the recurrence formula 
of - a  Rk, we inductively obtain the inequalities 

i-, 23" - 2  IrTR~] --< ~2"Tr~ 3"/'--2 and [/~1 <- ( l l r T  

for some C2, Ca > 0. Therefore  it follows from (8.1) and (8.2) tha t  there  exists a constant  
C > 0 such tha t  for any X T  E XT,0 N XT,1, 

Ir n l _< Cry. 

From Markov's  inequality, we have tha t  

P[(~T,1)  c] = o ( r ~ ) .  

Thus it is shown tha t  

P[rTR~ ~_ Cry., a = 1 , . . .  ,p] _> P[XT, O N ~T,I] = 1 - o(r~) .  [] 

8.3 Proof of Theorem 6.4 
In Theorem 6.3, we showed tha t  the coefficients of the stochast ic  expansions are 

given in terms of the moments  of Z's.  In the following, we will first give a representa t ion 
�9 �9 �9 a A a , A  K �9 of qT,2 m Theorem 5.3 m the case where the coefficmnts qklg and qk ' of the covanant  

and contravariant  representa t ion of r~, K and ~c~ ' g  satisfy some conditions; next  we will 

represent qT,2 in the case where the polynomials  Ok have the same form as those of the 
stochastic expansion of the M-es t imator .  Finally, we will prove the theorem with the 
aid of the Delta method.  

PROPOSITION 8.1. Let p and q be positive integers. For a = 1 , . . .  ,p, A E 
{ r  a l , a 2 , . . .  E { 1 , . . .  ,p}, K E { r  a l , n 2 , . . .  E { p +  

. .  f qa,n l. 
1, . , p + q}, and I = 1, 2, t l,K J are constants satisfying 

a,A 
(1) q1,r = 0, if  IAI = 1 or ]A I > 3, 

(2) q~:A = 0, if  [A[ = 0 or [A[ >_ 2, 
a,A 

(3) ql ,K  ~-- O, i f  IKI ~ 2, 

(4) q2,r = 0, i f  IAI = 0, or IAI --- 2, or Idl _> 4. 
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Let (g~b) be a p x p-positive matrix, {,~a~3Y}c~#3,,7= 1 . . . . .  pWq and {~b~d}a,b,~,d=l ..... p be 
sequences of constants, and qa,K, _~ gK,Lqa,AI,K. For these constants and T > O, define a 
function qT,2 on ~P in Theorem 5.3. Then 

( 6 T ~  1 a,r l a b  qT,2(y(O))=r ab) 1 +  c a b C h a b c + - ~ q l , r  hab 

l c bCdh ) + ~ abcd -[- cabccde]habcdef , 

where 

c,ab cabc : ~abc .~_ Oql,r  ' 

a,ce~ b,df_ - (2~ac~ a,~z,c~ b,d a,b ~ a,r  b,r Aab ---- 2( ~ace + r162 )qLr YcdYef + + q~ )ql,~gcd + 2q2,r -- ~1,r162 
abc d,r a,be c,df ~ab~z\ c,d 24qa,bcd cabcd = ~abcd .~_ %C ql,r + 24( ~abe + 2q1,r )q1,r gey + 12(q~ '~'b + )ql,~ + 2,r " 

PROOF. From the definit ion of ,~i, i = 1 , . . .  , 6, and the recurrence formulas for 
the Hermit  polynomials ,  the e lementary  algebra leads to the  result.  See Sakamoto  and  
Yoshida (1999) or Sakamoto  (1998). [] 

PROPOSITION 8.2. Let p be a positive integer and q = p2 + p 3  For variables 
a; 

a; {Y b}a,b=l ..... p, and a; { y  . . . . .  , - - -  {Y b~}~,b,~=l ..... p, let y(0) = (yl; ,yP;) and 

1; 1; y ( 1 ) = ( y 1 ; 1 , . .  . , y l ; p , y 2 ; 1 , . .  . ,y2;p, . . .  , yp ;p ,y l ; l l , . . .  ,y  lp, Y 2 1 , " - , Y P ; ~ ) ,  

and y = (y(0),y(1)). Define Q~;(y) and Q~;(y) by 

Q ~ ; ( y )  : ya;byb; ~ ~a;~t bcyb;- __ ]~a 

and 

ua;  b" c" d" ~a" b" c" d" ~b; ya; c" d" 
Q~;(Y) = bodY 'Y 'Y ' + ~ 'b,cY 'dY 'Y ' + cd bY 'Y ' 

1 a" b" c" " �9 c" -a; c" 
+ ~Y 'b~Y 'Y ' + Ya'byb'cY ' -- yb;fl~ + Ab;(ya; b + ~ b,cY '), 

~a; a; 
for  some constants # be, ~a, -a; AS;. ~l b,c, U bcd, /38, and Suppose that g = (gab) is a 

- _ t ~ i t  p • p-positive matrix and E22,1 = (E22,1) is a q • q-symmetric matrix defined by ~22,1 : 

1 ~ 2 M '  for  some qt • ql-positive matrix (r~2 and q • ql-matrix  1~I, where ql <_ q. For 
these polynomials Q~ , Q~ and E = diag(g, E2~,1), define polynomials r ak,g and constants 

qa,A satisfies (1)-(4) in Proposition 8.1. qa,Ak,g by (5.8) and (5.10), respectively. Then k,g 
f ~abcd 1 Moreover, let {~aZ~}~,Z,~=I ..... p+p2 and l $a,b,c,d=l ..... p be sequences of constants, 

and q~,K,A c-~K,L a,A ---- 2~22,1 ql,L " For these constants and T > O, define a function qT,2 on R p in 
Theorem 5.3. Then 

qT,2(y(O)) = ~9(y(O); gab) ( l  + 6--~cabChabc + ~ T  (fZa;bcgbC-- ~a)ha 

1 ab 1 cabcdh 7--~ ) + ~-~A h~b + ~ abcd q- cabccde fhabcde f  , 
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w h e r e  ]va;  b; al; .~ ~abm f o r  I~ C { p  Jr- 1, , p  + p2} c o r r e s p o n d i n g  t o  (a l ,a2)  C a2 " " " 
- b l  ; - ~ {(1, 1 ) , . . .  , (p ,p)},  Ma~;a2 ' b~ = E22,1 for  n and # e {p + 1 , . . .  , p + p 2 }  corresponding 

to ( e l , a2 )  and (bl,b2) e {(1, 1 ) , . . .  , (p, p ) } , respectively, 

- - . ~ -  ; a a  b b  cabc ~abc c ~ 
= -~- ~)p atb, g g , 

�9 ' ~ " c d  ~ - ~ a "  b ;  Aab = 2(~acd + ~ta,c,d,g c ~gd d)fib, cd + 2]~;,~;,b; ~ + g ~ '~, d 
a ; cd b b + 2((Ac;~a;c, b, -- (~b,/3 a) + 5~lMa;ab~" b, + 3U cdb'g )9 

+ \ cd -- 

--_ 4cabc ~ ~ d" ef a . . . .  27, , , , _b  b_e  e~~c;  d d cabcd ~abcd ~_ ~.~ ' e f g  _ ~ d )  ~_ 2 4 ( ~ a b e  + t ~ b e Y Y } ~  d ' e g  

' ' - c c; , g d d  ' )  a ' ' ' 1 9 ( _ b b  ~dd ~z- ; a; ~ a ; b ;  , .~r~ ; b b  c c  d d  
-~- ~ .~ ,y  y .~w d', b' ~- , , d -~- Z a U  b ' c ' d ' g  9 g �9 

PROOF. From the definition of Q1;, we have tha t  

~ ) ~ ; ( y )  a a2b b'; a l ;  __ ~a; b'b c . . . . . . .  
= (~a19 9bb 'Y  Y a2 -t- p b ' c ' 9  9 C g b b " 9 c c " y b  ,yC , _ ~ ,  

which implies that  

a l  71-11~(y(O)) = r~a,bh. (~,(0). , ~  a,b (~a ga2b ( n  a l a 2 )  
~1,~ ow ,v],  ql,~ = 0 (n = ala2a3),  

71_1:r a , b c .  ," (0).  a ,r  = ql,r nbc~Y ,g) + ql,r 
a,bc -a;  b'b ctc na , r  -a;  bc 

q l , r  = / t  b 'c 'g  g ' ~1,r = / Z  bcg _ ~ a ,  

where n E {11 ,12 , . . .  , lp ,  21 , . . .  , 2 p , . . .  ,pp, l l l , l l 2 , . . .  , l i p ,  121 , . . .  ,ppp},  and that  
a , d  ql,K satisfies the conditions (1), (2), (3) in Proposi t ion  8.1. From (5.9) and (5.11), we 

have that  

{(~ a gb2b]~/lbl; a l ;  ( ~  : a l a 2 )  7r~;,~(y(0)) a ,~ ,b , ,  (o)- a ,~,b= b, b2, a2 
= ql nb[y ), qa 0 (n = ala2a3),  

= + 

ql,r -a; b'b ctc q1,r162 ' _ /~a.  = t t b'c'9 9 , = ~ta'bc9 bc 

a ,A  In the same fashion, we see that  {q2,g} satisfies (4) in Proposi t ion  8.1, and that  

a ~a,bcl.  i (0)~ a , r  
7r2,~(Y (~ = ~2,~ ,~b~Y ) + q2,~ 

~a,bcdl.  / (0)~ a , b ~  z (O)x 
7r~,r (~ = t/2,r ,bcd[Y ) + q2,r ) 

a,b a,bc a , r  a,bcd a,b for some constants  q2,~u, q2,~ , q2,~, q2,r and q2,r where n , #  E {11,12, . .. ,pp, l l l ,  
112 , . . .  ,ppp}.  In particular,  

a,bcd rra; ~b'b ^c 'c  ~d' d 
q2,r  ~ ty b, c, d, y y y 

a,b . ~ a ;  cd~ b'b _ + 
= at ,  b' + 6 U  cdb 'g  ) 9  �9 
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By using 

bb dd  ~ ,, ; ; 7 a b ~  c ,d  : N a ;  b; ; , g d d  , qa ,~ ,bqC ,d  ' ' - a c - c ' 
1 1,~ = g g IVI b',  d' and A ql, ,~ , , a 

where 

A1 = [E[(f(ST + RT) -- f(ST))I{IRrI<C,,.~T'}] [, 

A2 = IE[(f(ST + RT) -- f(ST))I{IR~I>C,,.~,}] I, 

and 1A is the indicator function of a set A. From the assumption concerned with ST, it 
follows that 

Aa < JkP[h, gT,ZT][ + eow(h, rK,~)  + aT, 

where h(y) = sup{l / (y  + z) - f(y)J : JzJ < C'rKT'}, and co is a positive constant. Note 
that  for any 6 > 0 and a positive matrix ET converging to a positive matrix ~, there 
exist a constant C > 0 and a positive matrix ~ satisfying ~ > Z such that for any 
y E I~ p, 

sup lyJar ET) < CO(y; ~). 
T 

we can derive the representation of the coefficients c abc, A ab, and C abcd from Proposi- 
tion 8.1. [] 

LEMMA 8.5. Let m > 0, M > 0, ~/> 0, and rT be a positive sequence tending to 0 
as T -~ c<). For any T > 0, let ST and RT be some ]~P-valued random variables, and gT 
a positive matrix. Suppose that for any K > O, there exist a constant c > 0 and a p x p 
positive definite matrix [~ such that for any f E ~(M,7) ,  

IE[f(s )] - -< + 

where CT is a sequence of constants independent o f f  with eT = o(r(TmAK)), and 

k~[f, gr, ZT] = f dy f ( y )~T(y ) r  g) 
J R  p 

for some polynomial .~.T with coefficients being bounded as T ~ oo. Moreover, suppose 
that there exist C' > 0 and K t > 0 such that 

I i ! 

P[JRTJ <_ C r K ] = 1 - ~ T ,  

where c~ = o(r~) .  / f  P(SUpT IrT(ST + RT)J < M )  = 1 for some constant 1~I > 0 and 
EJSTI q < oe for some q > 1 (or if f is bounded), then there exist constants 5 > O, C > O, 
and a positive matrix ~ such that 

JE[f(ST + RT)] - -  ~kbT[f ,  g T ,  E T ] ]  ~ cw(f,  C(rKT + rK'),[7) + ~ T ,  

where = o(r(  (or ) ). 

PROOF. First, we see that  

[EIf(ST + RT)] -- ~2T[y, gT,ET]J <_ c~(f ,  rTK,~) + eT + m l  -Jr- m2, 
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Therefore  we have tha t  

P P 

I i ^ 

= clw(f,  C rKT, gl),  

dyh(y)r gl ) 

for some constant  cl > 0 and some positive definite ma t r ix  gl sa t isfying gl > l imT~oo gT. 
Since 

I I 

s u p { [ h ( y §  z ~ ) -  h (y ) f :  Iz~t < r} < 3 s u p { l f ( y  + z ) - f ( Y ) l :  Izl < r §  g }, 

we obtain that 

Thus we see that 

I P 

w(h, r K, ~) < 3cv(f, r K + C rT K , ~). 

t I ' 

ml ~ Cl~ rK ,g l )  q- 3CoW(f,r~ + C rKT ,g) + ~T- 

If P(SUPT I rT(ST + RT)[ < M) = i for some constant M > 0 and supT E ISTI q < ~ ,  
then  it follows tha t  

_ _  ! t 

A 2 < M(1  + rTIIMI)'tP[tRT] > C r~ ] 

+ NM(1 + ]STI)~]Iq/~(P[IRT[ > c'rK'])(q-~)/q = o(r(Tm-~)^('~(q--~)/q)). 

If f is bounded,  then  we have A2 = o(r~). Thus  the assertions are proved. [] 

From L e m m a  8.5 and Proposi t ion  8.2, we can show T h e o r e m  6.4. 

8.4 Proof of Theorem 6.5 
Let (~ be an open set in I~ p. For k index sets A1 -- a l l - . . a l m ~ , . . .  ,At: = 

a k l ' - ' a k , ~  whose elements aij r un  from 1 to  p, let ~A1 ..... A~ : (~ ---~ R be  a tensor  

satisfying tha t  the mat r ix  (Pab) is negative definite for each 0 E (~, tha t  

~A~ ..... A~ ..... Aj ..... Ak (0) ---- ~A~,... ,dj ..... A~ ..... Ak (0) for i, j = 1 , . . .  , k, 

and tha t  

PAl ..... A~ ..... Ak (0) ---- ~A1 ..... B~ ..... Ak(0) if (A~) = (Bi). 

Suppose tha t  the mat r ix  (P~b(0)), 0 E (~, is non-singular,  and denote  by F ,ab the  (a, b)- 
element of the inverse of the mat r ix  (Y'ab). For these tensors,  we will assume the following 
conditions later. 

[Bill ~a(0) = 0; 
[BI2] ~,b(O) + ~ab(O) = 0; 

v,[3] 
[BI3] P~,b,c(O) + z-~(~b,c) P~b,~(O) + ~abc(O) = O(~TT); 

[Bin] Oa,b,c,d(O ) -[- El6]ab,c,d) Oab,c,d(O) -[- E132b,cd) ~ab,cd(O) --~ Eln]abc,d) ~abc,d(O) -[- 
= 

[DV1] 5jzb,c(O) = >~b,~(O) + ~,b(O) + Pa,b,~(O); 
[DV2] 5~Pbc,d(O) = ~abc,d(O) + 12bc,ad(O ) + ~a,bc,d(O); 
[DV3] 5~b,c,d(e) = ~b,c,~(0) + ab,a~,d(e) + ~b,~,o~(0) + ~o,b,~,~(e). 
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LEMMA 8.6. Define functions gab gab, Labc,d, Mab,cd, Nab,c,d, Habcd, (a) 

and #a by g~b __ ~aa'E, bb'pa,,b, ' (gab) = (gab)-1, L~bc,d = ~abc,d, Mab,cd = ~ab,cd- 
rT2 gabgcd, Nab,c,d ~- ~ab,c,d -~- rT2 gabgcd, 

[3] 1 - a 
- r(~) Habcd ~ b'a,b,c,d -- r T  2 E gabgcd, ~ abc ---- ~'ab,c -~- T ~ a , b , c ,  

( ab,cd) 

and ~a 1F(-1) aa' obc = ---~ br g ~ , respectively. Suppose that [BI2], [DV1], [DV2] a n d  [DV3] hold 
true. Then 

, 1 ,~cd,~ef[F(1 ) p(-1)~p(-1) l a c d o e f ( F ( 1  ) F(-1) ~F(-1) 
gbb'Sa# b = - ~ V  y k abc ~-~acb ] ~ e f d  ~ - 2 a  a ~. ace ~- aec / dfb 

1 cd 
2 g (L~r + Mab,r + Nr + Na~,d,b + N~d,b,c + Nab,~,d + Habcd). 

PROOF. From the assumptions [DV2], [DV3], and the definitions of Habcd , Labc,d, 
Mab,c d and gab,c,d , w e  have 

F(-1) a bcd : Labc,d + Mad,bc "4:- Nbc,a,d + Nab,c,d -Jr Nac,b,d + Nad,b,c -t- Habcd. 

Since gab = --F'ab under Condition [BI2], it follows from [BI2] and [DV1] that 

5a(gbC gcd) • (SagbC)gcd ~- gbC(Pac,d + F/ad,c -~ ~a,c,d) : O, 

which implies that 

Sag bc = --gbb'gcd (~ab',c' + ~ac',b' + ~,b',c'). 

Combining these results, we obtain the desired result. [] 

LEMMA 8.7. Let gab be the function given in Lemma 8.6. Define functions fff;bc, 
~a;b,c, Ua;bcd by 

]~a;bc(O) : ~gaa' (o)(F/a'b,c(O) -'~ b'a'c,b(O) -}- ~a'bc(O)), 

?]a;b,c(O) : gaa'(o)(Pa'b,c(O) -}- ~a'bc(O)), 

(bc,d) (cd,b) 

respectively. Under Conditions [BI3] and [BI4], it holds that 

bc --  ---2Y bca' ~- 0 , 

b,c ~- k bca ~- Xa'cb] -~- 0 , 

- -  Ha'bcd ~- Na'b'c'd + E Ma'b,cd + Lbcd,a' 
(a'b,c,d) (a'b,cd) 

1 
-~- 6 E - b % " r ~ ( - 1 ) - a a ' { r ( - 1 )  p(1) ~ 1 

Y ~'cdb"Y ~. b'ba' -F ~a'bb'] d" 0 
(cd,b) 
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where {F (~) }~eR, Habcd, Labc,d, M~b,cd, N~b,~,d are the functions defined in Lemma 8.6. 

PROOF. It is easy to show this lemma. See Sakamoto and Yoshida (1999) or 
Sakamoto (1998). [] 

r ~ ( ~ )  1 #~ LEMMA 8.8. Let gab, gab, Habcd, Labc,d, Mab,cd, gab ,c ,d ,  ttabclaER, and be 
functions defined in Lemma 8.6. For this gab, let [ta (?~ and Uabcd be functions bc~ b , c ,  

- b~; and ~[al;, a2; bl;b2 by A a; defined in Lemma 8.7. Define A a;, ~abd, ~abcd Mal;a2 ' 52' 

--2 ' -  ~abc aa' bb' c c ' ~  , , , 
r T  gaa l]a, ' ~ g g g a ,b ,c , 

~abcd ' b"  ' "~' = gaa g o gCC gaa n a ' b ' c ' d ' ,  

~/za l ; bl ; 
a2, b2 = ga l  a'~ gbl  b'l ( Ma'~ a2,b'~ b2 --  F'a 'l a2,ege f b'b'l b2, f  ) 

and 

N a l ;  a 2 ;  b l ;  a r a a I 
, , b2 ~ g ~a~g 2 2 g b ~ b ~ ( N a l a , , b , l , b ~ _  P a l a ~ , e g e l f ,  b l ,b~ , f ) .  

Moreover, for these functions, let c ~bc, C abcd, and A ab be functions defined in Proposi- 
tion 8.3 with ~abc = ~bc and ~abcd = ~bcd. Then, under Conditions [BI1]-[BI4] and 
Conditions [DV1]-[DV3], it holds that 

c a b C h d " - - 2 P ( - 1 / 3 ) h a b c r  ( ~ T )  abc~P : O~- ab c -~- 0 , 

[8] [4] 

eabCdhabcdr = --3Habcd--2 E N~b,c,a-- E L~bc,d 
( ab,c,d) ( abc,d) 

Aabhabr ( cd ~ ' ' = g Mac ,be  _~_ ga,agb,  b(~ta _ ~ a ' ) ( # b  _ ~ b ' )  
% 

- 2gb~Sa/3c + - ~  ~ cea dyb + 2gbcSa# c habr 1 

PROOF. From [BI3] and the definitions of ~abc, ~a; r,(~) be and it follows that ~ G b C '  

c~162 = -ar bl/3)hO% + o . 

In the same fashion, the definitions of the functions and the result of Lemma 8.7, which 
was proved under Conditions [BI3] and [BI4], yield the second result for cab~ahabcar 
Furthermore, from Lemma 8.6 and Lemma 8.7, the last result for A~bhabr can be shown. 
See Sakamoto and Yoshida (1999) or Sakamoto (1998). [] 

From this lemma, we can show Theorem 6.5. 
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