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By means of the Malliavin calculus, we present an expansion formula for the dis-
tribution of a random variable F having a stochastic expansion F=F0+R, where
F0 is an easily tractable random variable and R is the remainder term. From
this result, we derive an expansion of the distribution of the scale mixture sZ of a
normal random variable Z by a scale random variable s. Applications to shrinkage
estimators of the Stein type are mentioned � 1996 Academic Press, Inc.

1. INTRODUCTION

In this article, we will treat a perturbed random variable F taking the
form of F=F0+R, where F0 is the principal part of F which is easily
tractable, and R is the remainder term which one expects to be small in a
certain sense. In some cases, it is small in some Banach space, e.g.,
Lp-space; in other cases, R involves parameters and it is small with respect
to a Banach norm uniformly in the parameter space.

We will present an expansion of the distribution of F, estimating the
error term. One typical example is the expansion of the t-distribution as the
degree of freedom is sufficiently large. Including this problem, Fujikoshi
[2], Fujikoshi and Shimizu [3, 4] obtained asymptotic expansions for
scale mixture sZ, where Z is a normal random variable and s is a positive
scale random variable. They treated the case where s and Z are mutually
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independent. If we consider a shrinkage type estimator such as
(1&b�( |Z| 2+a))Z, it is in the form of sZ again, while in this case Z and
s are no longer independent. Following Watanabe [14] essentially, we take
an approach to such problems by using the notion of the asymptotic
expansion of generalized Wiener functionals. The method adopted here is
well applicable to dependent cases, since we use neither an explicit repre-
sentation of density of F nor that of characteristic function. Watanabe's
theory was intensively applied to derive asymptotic expansions for heat
kernels in Watanabe [14], Uemura [13], Takanobu [11], Takanobu and
Watanabe [12]. In a different way, Kusuoka and Stroock [8] also presented
expansions for certain Wiener functionals in the light of the Malliavin
calculus. In statistics, the Malliavin calculus was used for statistical
estimators by [15�18], and recently by Dermoune and Kutoyants [1].

The expansions presented here are not asymptotic ones: in some statisti-
cal applications, such as the problem of inadmissibility, we inevitably
encounter error terms involving parameters, and it is then necessary to
express the error bounds explicitly as a function of the parameters.

The organization of this article is as follows: in Section 2, an expansion
formula will be presented in terms of the generalized Wiener functionals
(Theorem 1). Theorem 2 provides an expansion of the distribution of F,
while the proof is deferred until Section 4 with preliminary lemmas. In
Section 3, we mention several applications of Theorem 2. In the last part
of this paper, the integration-by-parts formulas under truncation are
presented. Some of them are more or less well-known; however, we restate
them explicitly not only for the convenience of reference, but also for the
reason that we want to clarify how the regularity conditions appearing in
theorems are rooted in those basic results. The elementary and detailed
proofs for the results in this paper are presented in Sakamoto and Yoshida
[9].

2. MAIN RESULTS

Let (W, H, P) be an r-dimensional Wiener space. For a separable Hilbert
space E, define a norm &F&p of E-valued Wiener functionals F by

&F& p=\|W
|F | p

E P(dw)+
1�p

,

where |F |E=(F, F) 1�2
E and ( , ) E is the inner product of E. As usual, we

denote the E-valued Lp-space by Lp(E ), eliminating E when E=R. For
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p>1 and s # R, the norm & }& p, s on the totality of E-valued polynomial
functionals F is defined by

&F& p, s=&(I&L)s�2 F& p ,

where L is the Ornstein�Uhlenbeck operator and I is the identity operator.
The Banach space Ds

p(E) is the completion of the totality of E-valued poly-
nomial functionals with respect to the norm & }& p, s . The set of Wiener test
functionals is denoted by

D�(E)= ,
s>0

,
1< p<�

Ds
p(E ).

The couple of F # Ds
p(E) and G # D&s

q , where 1�p+1�q=1, p>1 and s>0,
is denoted by D q

&s (G, F) D s
p
, which is often called the generalized expecta-

tion. If F=(F 1, ..., F d ) # D1
2(Rd ), we denote the Malliavin covariance of F

by _F . For these definitions, see Ikeda and Watanabe [6].
Let S(Rd ) be the Schwartz space on Rd and S$(Rd ) be the space

of Schwartz tempered distributions. For m # Z+ and T # S$(Rd ), if
tm&1e&t (T( y ), p(t, x, y)) is absolutely integrable in t for any x, an
integral operator A&mT(x) is defined by

A&mT(x)=|
�

0

tm&1e&t

1 (m)
(T( y ), p(t, x, y )) dt,

where

p(t, x, y )= `
d

i=1

exp {&
- 2

2
(coth - 2 t)[(xi )2&2xiyi sech - 2 t+( yi )2]=

- 2?(sinh - 2 t) 2&1�2
.

For n=(n1, .., nd) # Z+d, let |n|=n1+ } } } +nd and �n=(���x1)n1 } } } (���xd )nd.
Moreover, for any k # Z+ and any m # Z+, the subspaces C� k, &2m(Rd ) of
S$(Rd ) is defined by

C� k, &2m(Rd )={T # S$(Rd ); for any n such that |n|�k,

A&m�nT # C� (Rd ), there exist Tn # S(Rd ) such that

lim
n � �

:
|n|�k

&A&m(�nTn&�nT )&�=0= ,

where C� (Rd ) is the totality of continuous functions f (x) on Rd such that
f (x) � 0 as |x| � �. For simplicity, we denote C� 0, &2m by C� &2m.
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Using Proposition 3 in the Appendix, we define composite functionals
(� } T ) b F. If F # �p>1 D2m+1

p (Rd ) and � # �p>1 D2m
p satisfy (5.10) for

some m # N and q>1, then, for any T # C� &2m(Rd ) and any p with
q>p>1, the composite functional (� } T) b F is defined by

(� } T ) b F= lim
n � �

� } Tn(F ) in D&2m
p ,

where Tn # S(Rd ) is any sequence satisfying limn � � &A&mT&A&mTn&�

=0. From this definition, we see

Dp
&2m ( (� } T) b F, G) Dp$

2m= lim
n � � |

W
� } Tn(F ) GP(dw) (2.1)

for G # D2m
p$ and p$>1 such that 1�p+1�p$=1.

In the following, we will present expansion formulas for a perturbed
Wiener functional F=F0+R, and error bounds with the functional 9 F

2m

defined just before Proposition 2 of the Appendix. Their applications will
be given in the next section.

Theorem 1. Suppose the following conditions are satisfied :

(1) T # C� K, &2m(Rd );

(2) F=F0+R for some F0 , R # �p>1 D2m+1
p (Rd );

(3) � # �p>1 D2m
p ;

(4) there exists q>1 such that

i�2m, i+j�4m, i, j # Z+ O sup
0�u�1

&(det _F u )&j Di�&q<�, (2.2)

where Fu=F0+uR. Then, for any p with q>p>1, the composite functionals
(� } T ) b F and (�Rn } �nT ) b F0 ( |n|�K ) are well-defined in D&2m

p , and the
generalized expectation D p

&2m ( (� } T) b F, G) D p$
2m admits the following expan-

sion for any G # D2m
p$ , 1�p+1�p$=1:

Dp
&2m ( (� } T) b F, G) Dp$

2m= :
|n|�K&1

1
n! D p

&2m ( (Rn� } �nT) b F0 , G) Dp$
2m+rG

K (T ),

where n!=n1 ! } } } nd ! and

|rG
K (T )|� :

|n|=K

K
n!

&A&m�nT&� |
1

0
(1&u)K&1 &9F u

2m( } ; Rn�G)&1 du.

Proof. It is easy to see that (� } T ) b F and (�Rn } �nT) b F0 # D&2m
p are

well-defined in D&2m
p . Therefore choosing Tn # S(Rd ) such that

&A&m(�nTn&�nT)&� tends to zero as n � � for any n # Z+d with |n|�K
and expanding Tn(F ), we obtain
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Dp
&2m ( (� } T ) b F, G) Dp$

2m= lim
n � � |

W
Tn(F ) �GP(dw)

= :
|n|�K&1

1
n! Dp

&2m ( (�Rn } �nT ) b F0 , G) D p$
2m

+ lim
n � � |

W
\n, K �GP(dw),

where

\n, K= :
|n|=K

K
n! |

1

0
(1&u)K&1 (�nTn)(Fu) du Rn.

Due to (2.2), Proposition 2 can be applied to Fu and Rn�G, and hence we
obtain

} |W
\n, K �GP(dw) }� :

|n|=K

K
n! |

1

0
(1&u)K&1 du

_|
W

|(A&m�nTn)(Fu) 9 F u
2m(w; Rn�G )| P(dw)

� :
|n|=K

K
n!

&A&m�nTn&� |
1

0
(1&u)K&1

_&9 F u
2m( } ; Rn�G )&1 du.

Thus this theorem has been shown. K

For any Borel set B/Rd, let the indicator functions 1B be defined by

1B(x)={1
0

(x # B)
(x � B)

.

If T=1B in Theorem 1, we have the following results.

Theorem 2. Let K and d be positive integers, and let m be a positive
integer such that m>(d+K )�2. Assume that the functionals F and � satisfy
Conditions (2), (3), (4) in Theorem 1 and another condition that

j�4m, j # Z+ O (det _F 0
)&j # .

q>1

Lq .
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Then F0 has a density pF 0
(x), for every B # Bd, and

Pr[F # B]= :
|n| �K&1

1
n! |B

(&�x)n [E[Rn | F0=x] pF 0
(x)] dx+r~ K (1B),

(2.3)

where

|r~ K (1B)|�|r1
K (1B)|+E[ |�&1|]

+ :
|n|�K&1

1
n!

&A&m�n1B&� &9 F 0
2m( } ; (�&1) Rn)&1 . (2.4)

The expansion (2.3) implicitly means the differentiability of
E[Rn | F0=x] pF0

(x) and the integrability of the derivatives. The proof of
Theorem 2 will be presented in Section 4.

In the multivariate analysis based on normal populations, each statistic
F can be regarded as a smooth function of ([h1](w), ..., [hd ](w)), where
[hi] is any orthonormal system of H and [hi](w)=� d

:=1 ��
0 h4 :

i (t) dw:(t).
If there exists a suitable truncation functional � for F, then Theorem 2 can
be applied to the distribution of F. In the following theorem, it is shown
that there exists a truncation functional � for the scale mixture sZ of a nor-
mal random variable Z with a scale factor s. In the next section, similar
truncation functionals will appear in other situations.

Theorem 3. Let K, m, and d be positive integers satisfying m>
(d+K)�2. Assume that Wiener functionals Z and s satisfy the following
conditions: (a) Z(w)={1�2([h1 ](w), ..., [hd ](w))$+%, where [hi] is an
orthonormal system of H, { # Rd �Rd is a positive definite matrix, and
% # Rd ; (b) s # �p>1 D2m+1

p (Rd �Rd ). Then (1) there exists � # �q>1 D2m
q

such that

i�2m, i, j # Z+, q>1 O sup
0�u�1

&(det _F u )&j Di�&q<�,

where Fu=((1&u) Id+us)Z; (2) for every Borel set B/Rd, Pr[sZ # B]
has the expansion

Pr[sZ # B]= :
|n|�K&1

1
n! |B

(&�x)n [E[((s&Id )x)n | Z=x] pZ(x)] dx

+r~ K(1B), (2.5)

where pZ(x) is the density of the normal distribution Nd (%, {) and r~ K (1B) is
estimated by (2.4) with R=(s&Id )Z.
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Proof. We see that _i, j
Fu

={i, j+Si, j, where

Si, j=(DZ i, D(uR j )) H+(D(uRi ), DZ j ) H+(D(uRi ), D(uR j )) H .

Since |Si, j |�|{i, i | 1�2 |_ j, j
R | 1�2+|{ j, j | 1�2 |_i, i

R | 1�2+|_i, j
R |, there exists c>0

such that

c |_R | 2<1 O det _F u>
1
2 det {.

Let �='(c |_R | 2) for c>0, where ' is a C�-function: R � [0, 1] such that
'(x)=1 for |x|�1�2 and '(x)=0 for |x|�1. By the chain rule, we obtain

Di �={�i
k=0 '(k)(c |_R | 2) Pk

0
(c |_R | 2<1)
(c |_R | 2�1)

,

where Pk is a polynomial in H-derivatives of c |_R | 2. Thus, if q>1 and
0�u�1, then

&(det _F u )&j Di�&q=&1[c |_ R | 2<1](det _Fu )&j Di�&q

�\ 2
det {+

j

" :
i

k=0

'(k)(c |_R | 2) Pk"q
<�

for i�2m, j # Z+, because R # �p>1 D2m+1
p (Rd ); hence (1) has been

proved. Moreover we see Fu and � satisfy (2.2). By virtue of Theorem 2,
(2.5) follows. K

In the case that s is independent of Z, Fujikoshi [2] and Fujikoshi and
Shimizu [3, 4] obtained asymptotic expansions of the distribution of sZ
with some error bound. As the method used here relies neither on the
characteristic function nor on the density function, our result given above
does not need the condition that s is independent of Z.

3. APPLICATIONS

3.1. t-Distribution

Suppose that Z is distributed according to N1(0, 1) and that s is dis-
tributed as 1�- /2

n�n independently of Z. Then sZ is distributed as the
t-distribution with degree n. Since s does not have higher order moments,
s � D�. Therefore we modify s as follows. Fix any a satisfying 0<a<1. Let
g be a monotone increasing C�-function such that g(0)=a�2 and g(x)=x
for x�a. Let s~ =1�- g(s&2). Since s~ # D�, we get the asymptotic expan-
sion of Pr[s~ Z�x] from Theorem 3. By large-deviation argument, we have
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Pr[s{s~ ]=O($n) for some 0<$<1. Note that lim supn � � E |s&1|k<�
for any k # Z+. Hence, we have

|Pr[sZ�x]&Pr[s~ Z�x]|=O($n)

and

|E(s&1)k&E(s~ &1)k |=O($n�2)

for any k # Z+. We have to calculate E(s&1)k to get the asymptotic
expansion. Using Stirling's formula, we have

E(s&1)k= :
k

j=0
\k

j + (&1)k&j \1
n

T1( j )+
1
n2 T2( j )++O \ 1

n3+ ,

where T1(k)=k2�4+k�2 and T2(k)=k4�32+5k3�24+3k2�8+k�6. Conse-
quently, we get the well-known Gram�Charlier expansion

Pr[sZ�x]=8(x)&,(x) { 1
4n

x(x2+1)+
1

96n2 x(3x6&7x4&5x2&3)=
+O \ 1

n3+ ,

where 8(x) is the distribution function of the standard normal distribution
and ,(x) is its density.

3.2. Scale Mixture of Multidimensional Normal Distributions
Consider independent Wiener functionals Z # D�(Rd ), Q # D�(Rd �Rq),

and U # D�(Rq). Assume that Z, U have the normal distributions Nd (0, Id ),
Nq(0, Iq), respectively. Let s=(Id+QQ$)1�2, then the distribution of sZ
coincides with that of Z&QU.

If we put F0=Z, R=&QU in Theorem 2 and choose � as in Theorem
3, then we obtain the expansion of the distribution of F=Z&QU as
follows. Noting that E[X 2m]=vm(2m)!�2mm! and E[X2m&1]=0, if X is
distributed according to N(0, v), we have

:
|n|�2K&2

1
n!

E[(QU )n] �n
x= :

K&1

j=0

1
2 j j !

E[[{xQ({xQ)$] j ],

where {x=(���x1, ..., ���xd ). Thus we obtain the following asymptotic
expansion of sZ:

Pr[sZ # B]= :
K&1

j=0

1
2 j j! |B

EQ [({xQ({xQ)$) j ,(x)] dx+r~ 2K&1(1B);

here EQ stands for the expectation with respect to Q. This formula coin-
cides with that in Theorem 3.1 of Fujikoshi and Shimizu [4] except for the
estimation of the remainder terms.
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3.3. Shrinkage-Type Estimator

Let X be distributed according to Nd (%, _2 Id�n) and let !n be distributed
according to _2/2

cn
�cn independently of X, where cn=O(n) as n tends to �,

e.g., cn=d(n&1). For a constant a>0, let us consider a shrinkage-type
estimator JSa defined by

JSa=\1&
cn(d&2)
n(cn+2)

!n

|X | 2+a+ X.

Note that JSa is a better estimator than X with respect to mean square
error.

Set F0=- n (X&%) and

R=&
cn(d&2)

- n (cn+2)

!n

|X | 2+a
X

in Theorem 2. If we choose a truncation functional � in the same fashion
as in Theorem 3, we see easily that for any c>0, there exist some positive
constants C1 , C2 such that

Pr[ |_R |>c]�C1e&C 2 n

for any n. Thus we can obtain the following asymptotic expansion of
Pr[- n (JSa&%) # B]:

Pr[- n (JSa&%) # B]= :
|n|�K&1

1
n! \

cn(d&2)

- n (cn+2)+
|n |

E[! |n|
n ]

_
1
_d |

B
�n

x {( ga(x�- n+%))n , \x
_+= dx

+O(n&K�2);

here E[! |n|
n ]=cn(cn+2) } } } (cn+2(|n|&1))(_2�cn) |n | and

ga(x)=
1

|x| 2+a
x. (3.1)

As in Fig. 1, we give the results of the numerical studies for
Pr[- n ((JSa)1&%1)�x1] in the cases where d=6, n=5, 10, cn=d(n&1),
a=1, %=(0, 0, ..., 0), (1, 0, ..., 0), (1, 1, ..., 1), and _=1. Figure 1 compares
the true distribution functions obtained by Monte-Carlo simulation (100,000
repetitions) with the distribution functions obtained by our asymptotic
expansion formulas for K=0, 1, 2.
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Fig. 1. Numerical studies for shrinkage type estimator; d=6, cn=n(d&1), a=1, _=1.

3.4. Confidence Region and Prediction Region
Let X be distributed according to Nd (%, Id ). We consider the shrinkage-

type estimator

$a, b(X )=\1&
b

a+b+|X | 2+ X,
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where a, b are positive constants. Let Q(B)=Pr[$a, b(X ) # B] for every Borel
set B/Rd. Define the function �a, b(z) by �a, b(z)='1(2bd 2�(a+b+|z+%| 2)),
where '1 is a C�-function R � [0, 1] such that '1(x)=1 for |x|�1�2 and
'1(x)=0 for |x|�3�4. Applying Theorem 2 with truncation functional
�=�a, b(X&%), we obtain

Q(B)= :
|n| �K&1

b |n |

n! |
B

(�x)n [( ga+b(x))n ,(x&%)] dx

+r~ 0(a, b, B, d, K, %), (3.2)

where ,(z) is the d-dimensional standard normal density and ga(x) is
defined by (3.1).

If % is unknown, a usual confidence region C0(X) for % based on the
observed value of X is given by

C0(X)=[%; |%&X |<c],

where c is chosen so that Pr[% # C0(X )]=1&:. Joshi [7] considered the
confidence region

C(X )=[%; |%&$a, b(X )|<c],

and showed that if d�3, C(X) improves the coverage probability of C0(X )
for sufficiently large a and sufficiently small b. Hwang and Casella [5]
presented another practical confidence region. Let

I(w)=|
R d

1B w (z&bga+b(z+%)) ,(z) dz,

where Bw=[z; |z&w|<c]. Then, as a special case of (3.2), one has

I(w)=Q(Bw+%)

= :
|n| �K&1

b |n|

n! |
B w

(�z)
n [( ga+b(z+%))n ,(z)] dz

+r~ 0(a, b, Bw+%, d, K, %).

Moreover, the remainder term r~ 0(a, b, Bw+%, d, K, %) can be estimated as

|r~ 0(a, b, Bw+%, d, K, %)|�Pd, K (a&1�2, b){\ b

- a+b+|%| 2+
K

+�Pr { 2bd 2

a+b+|X | 2�
1
2== (3.3)
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for some polynomial Pd, K(x, y ) with positive coefficients depending only
on p and K; for details, see Sakamoto et al. [10]. Note that the bound of
r~ 0(a, b, Bw+%, d, K, %) on the right-hand side of (3.3) is independent of Bw .
Since I(0)=Pr[% # C(X)], by using a similar method as in Sakamoto et al.
[10], we obtain the expansion

Pr[% # C(X )]=1&:+
b(1&:&h(:))

a+b+|%| 2 \d&2&
b
2

+
(b+4)(a+b)
2(a+b+|%| 2)+

+r� (a, b, c, d, %),

where h(:)=(1�d) �B0
|z| 2 ,(z) dz. For any a0 , b0>0, there exists a positive

constant c1 such that

|r� (a, b, c, d, %)|�c1(a+b+|%| 2)&3�2,

for any a�a0 , b�b0 , % # Rd. By this expansion, one can prove the
inadmissibility of the usual confidence region C0(X ) again.

Theorem 2 can also be applied to a prediction problem as follows.
Suppose that Y is distributed according to Nd (%, Id ) independently of X.
A natural prediction region for the value of Y based on the observed value
of X is given by

S0(X)=[ y; | y&X |<c],

where c is chosen so that Pr[Y # S0(X)]=1&:. In the same fashion
as the confidence region, we consider the prediction region S(X ) defined
by

S(X )=[ y; | y&$a, b(X )|<c]

for a>0 and b>0. Since

Pr% [Y # S(X )]=|
Rd

I(w) ,(w) dw,

we can obtain an expansion of Pr% [Y # S(X)] with the remainder term
having the same bound as r~ 0(a, b, Bw+%, d, K, %). With this expansion,
we may show that S(X) improves the usual prediction region S0(X),
cf. Sakamoto et al. [10].
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4. PROOF OF THEOREM 2

4.1. Preliminary Lemmas
First we rewrite the kernel function p(t, x, y) as

p(t, x, y )=
g(x, t)
_d (t)

, \y&x sech - 2 t
_(t) +=

g( y, t)
_d (t)

, \x&y sech - 2 t
_(t) + , (4.1)

where

_(t)=\tanh - 2 t

- 2 +
1�2

, g(x, t)=
exp(&_2(t)|x| 2)

- cosh- 2 t d

and ,(x) is d-dimensional standard normal density. For n=(n1 , ..., nd ) # Z+d,
let |n|=n1+ } } } +nd and Hn(x) be defined by Hn(x)=[(&�)n ,(x)]�,(x).
Then we see

�n
xp(t, x, y )=

1
(&_(t)) |n| Hn \x&y sech - 2 t

_(t) + p(t, x, y) (4.2)

and

�n
x g(x, t)=(&- 2 _(t)) |n | Hn(- 2 _(t)x) g(x, t). (4.3)

Lemma 1. Suppose that T # S$(Rd ) can be expressed as

T(x)=(1+|x| 2)s �: f (x),

where :=(:1 , ..., :d ) # Z+d, s�0 and f (x) is a bounded measurable function.
Suppose that m>|:|�2+s. Then T # C� &2m(Rd ). Moreover there exists a
positive constant Cm, s, : independent of f such that

&A&mT&��Cm, s, : & f &� .

Proof. First we show the continuity of A&mT(x) in x. Let Q;( y )=
�;

y (1+| y | 2)s. By (4.1) and (4.2), it is obtained that

(T( y), p(t, x, y ))

=( f ( y ), (&�y): (1+| y | 2)s p(t, x, y ))

=(&1) |: | :
;�:

\:

;+ |
R d

f ( y ) �:&;
y (1+| y | 2)s �;

yp(t, x, y ) dy

= :
;�:

\:

;+
(&1) |:|+| ;| g(x, t)

_(t) | ;|+d |
R d

f ( y ) Q:&; ( y )

_H; \y&x sech - 2 t
_(t) + , \y&x sech - 2 t

_(t) + dy (4.4)
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where ;=(;1 , ..., ;d ) # Z+d such that ;k�:k , k=1, ..., d and

:
;�:

= :
:1

; 1=0

} } } :
: d

; d=0

, \:

;+=\:1

;1+ } } } \:d

;d+ .

Obviously if we fix t and y, then the integrand of (4.4) is continuous in x;
for any t>0 and x # Rd, it is integrable with respect to y uniformly on
any compact set of x, from which it follows that if t is fixed, then
(T( y ), p(t, x, y )) is continuous in x. Moreover setting c1=supy | f ( y )|, we
have

|(T( y ), p(t, x, y )) |�c1 :
;�:

\:

;+
g(x, t)

(_(t)) | ; |

_|
Rd

|Q: & ;(z_(t)+x sech - 2 t) H;(z) ,(z)| dz.

Since Q;( y)=O( | y | 2s) as y � � and |_(t)|�1, there exists a function
R(x)=O( |x| 2s) as x � � such that

|
Rd

|Q:& ;(z_(t)+x sech - 2 t) H;(z) ,(z)| dz�R( |x| ).

From this, we see

|(T( y ), p(t, x, y )) |�c1 :
;�:

\:

;+
g(x, t)

(_(t)) | ; | R( |x| ). (4.5)

Note that |g(x, t)|�1 and _(t)=O(t1�2) as t � 0. If m>|:|�2, then the
right-hand side of (4.5) multiplied by tm&1e&t is integrable with respect to
t uniformly on a compact set of x. Therefore, we can show the continuity
of A&mT(x).

Next we show that lim|x| � � A&mT(x)=0. If m>|:|�2+s, then we
can choose r such that 0<r�2<m&(|:|�2+s). For such r, we see
c2=supx, t | |_(t)x| 2s+r g(x, t)|<�. Combining this and (4.5), we have

|A&mT(x)|�c1 :
;�:

\:

;+
R( |x| )
1 (m) |

�

0

tm&1e&tg(x, t)
(_(t)) |; | dt

�c1c2 :
;�:

\:

;+
R( |x| )

1 (m)|x| 2s+r |
�

0

tm&1e&t

(_(t)) |; |+2s+r dt.

Since tm&1e&t�(_(t)) |; |+2s+r is integrable and R( |x| )=O( |x| 2s) as x � �,
it follows that lim|x| � � |A&mT(x)|=0. In this way, it is shown that
T # C� &2m(Rd ). K
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From Lemma 1, we see easily that if m>|n|�2, m # Z+, then for any
Borel set B/Rd,

�n
x1B(x) # C� &2m(Rd ),

and

sup
B # B d

&A&m�n
x1B(x)&�<�.

Note that

�n
x $a(x)=(&1)d �n+1

x 1Ba (x),

where 1=(1, ..., 1) and Ba=(&�, a1)_ } } } _(&�, ad ). Then it also
follows from Lemma 1 that for Dirac delta function $a(x) on Rd,

m>(|n|+d)�2, m # Z+ O �n
x$a(x) # C� &2m(Rd ). (4.6)

In this case, it holds that

sup
a # R d

&A&m�n
x$a(x)&�<�. (4.7)

Lemma 2. Let q>1. Let d and m # Z+ satisfy m>d�2. Assume that
F # �p>1 D2m+1

p (Rd ) and � # �p>1 D2m
p satisfy (5.10). If 1<p<q and

1�p+1�p$=1, then (� } $x) b F # D&2m
p , and it holds that for any T # S(Rd )

and any G # D2m
p$ ,

|
R d

T(x) Dp
&2m ( (� } $ x) b F, G) D p$

2m dx=|
R d

T(x) E[�G | F=x] +F (dx),

(4.8)

where +F is the induced measure of F; hence

Dp
&2m ( (� } $x) b F, G) Dp$

2m dx=E[�G | F=x] +F (dx)

as finite signed measures. In particular, if F # �p>1 D2m+1
p (Rd ) satisfies

j�4m, j # Z+ O (det _F )&j # Lq , (4.9)

then there exists a density pF (x) of F defined by pF (x)= D&� ($x b F, 1) D�

and

E[� | F=x] pF (x)= Dp
&2m ( (� } $x) b F, 1) Dp$

2m .
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Proof. For any T # S(Rd ) and any G # D2m
p$ , it follows from Proposi-

tion 4 in the Appendix that

|
Rd

T(x) D p
&2m ( (�$x) b F, G) Dp$

2m dx

=|
R d

T(x) |
W

(A&m$x)(F ) 9 F
2m(w; �G ) P(dw) dx.

By (4.7), supx, y |A&m$x( y )|<�. Therefore it follows from Fubini's
theorem and Proposition 2 in the Appendix that

|
R d

T(x) |
W

(A&m$x)(F ) 9 F
2m(w; �G ) P(dw) dx

=|
W

9 F
2m(w; �G ) |

�

0

tm&1e&t

1 (m) |
R d

T(x) p(t, F, x) dx dt P(dw)

=|
W

9 F
2m (w; �G )(A&mT)(F ) P(dw)

=|
Rd

T(x) E[�G | F=x] +F (dx).

It is not difficult to show from this equation that

Dp
&2m ( (� } $x) b F, G) Dp$

2m dx=E[�G | F=x] +F (dx)

as finite signed measures. Note that if we set �=1 in (5.10), then (5.10)
becomes equivalent to (4.9). Setting G=1, we have

|
R d

T(x) D&� ($x b F, 1) D � dx=|
Rd

T(x) +F (dx).

Therefore F has a density pF defined by pF (x)=D&� ($x b F, 1) D� .
Obviously,

E[� | F=x] pF (x)= Dp
&2m ( (� } $x) b F, 1) Dp$

2m .

The proof is complete. K

Lemma 3. Let q>1. Let d and m # Z+ satisfy m>d�2. Assume that
F # �p>1 D2m+1

p (Rd ) and � # �p>1 D2m
p satisfy (5.10). If 1< p<q and

1�p+1�p$=1, then it holds that for any bounded measurable function f and
any G # D2m

p$ ,

Dp
&2m ( (� } f ) b F, G) Dp$

2m=E[�f (F )G].
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Proof. Let fN=f } 1[ |x|�N] . Then for any =>0, there exists N # N,

n�N O |E[�f (F ) G]&E[� fn(F )G]|<=.

On the other hand, for some fixed N, there exist functions T\, N (x) # S(Rd ),
\>0, such that for any s>1,

lim
\ � 0 \|R d

| fN (x)&T\, N (x)| s dx+
1�s

=0

and supp T\, N/[ |x|�N+\]. Set s>max(d�2, 1) and s$>1 so that
1�s+1�s$=1. If fN is fixed, then there exists \=\(=, N )>0 satisfying that

\||x|�N+\
dx+

1�s$

\|Rd
| fN (x)&T\, N (x)| s dx+

1�s

<=.

Let r(x) be defined by

r(x)= Dp
&2m ( (� } $x) b F, G) Dp$

2m ,

then it follows from Lemma 2 that for any bounded measurable function g,

E[�g(F )G]=|
R d

g(x) r(x) dx.

Since supx, y |A&m$x( y )|<� by (4.7), it follows from Proposition 4 in the
Appendix that supx |r(x)|<�. Thus we have

|E[�f (F ) G]&E[�T\, N (F )G]|

�=+sup |r(x)| \|R d
| fN (x)&T\, N (x)| s dx+

1�s

\||x|�N+\
dx+

1�s$

�=(1+sup |r(x)| ). (4.10)

On the other hand, we have

|A&1( fN (x)&T\, N (x))|

�|
�

0

e&tg(x, t)
_(t)d |

Rd
| fN ( y )&T\, N ( y )| , \y&x sech - 2 t

_(t) + dy dt

�|
�

0

e&t

_(t)d�s dt \|R d
|,(z)| s$ dz+

1�s$

\|R d
| fN ( y )&T\, N ( y )| s dy+

1�s

.

Since s>d�2, we see that e&t�_(t)d�s is integrable. Thus we have for some
constant cs ,

&A&1( fN&T\, N )&��cs =. (4.11)
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Since limN � � &A&1( f&fN )&�=0, inequalities (4.10) and (4.11) imply
that there exist Tn # S(Rd ) satisfying that

lim
n � �

E[�Tn(F )G]=E[�f (F )G]

and

lim
n � �

&A&1( f&Tn)&�=0.

Consequently, we see

E[�f (F )G]= lim
n � �

E[�Tn(F )G]= D p
&2m ( (� } f ) b F, G) Dp$

2m .

In this way, the proof is complete. K

Lemma 4. For any Borel set B/Rd, there exists a sequence [Tn]/S(Rd )
such that if m # Z+, n # Z+d, and m>|n|�2, then

lim
n � �

&A&m�n(1B&Tn)&�=0.

Furthermore,

m>k�2, m, k # Z+ O 1B # C� k, &2m(Rd ) for any Borel set B/Rd. (4.12)

Proof. Let 0<$<1�2 and let p>d�$. Clearly, p>2d>1. Then there
exist Tn # S(Rd ) such that

lim
n � � |

R d
|(1+|x| 2)&$�2 (1B(x)&Tn(x))| p dx=0. (4.13)

Furthermore, we see that Tn satisfy &A&m�n(1B&Tn)&� � 0. Indeed,
taking q>1 such that 1�p+1�q=1, we have

|A&m�n
x(1B&Tn)(x)|

�|
�

0

tm&1e&t

1 (m)
|( (1B&Tn)( y ), (&�y)n p(t, x, y )) | dt

�|
�

0

tm&1e&tg(x, t)
1 (m)(_(t)) |n|+d�p

_\| |(1+|z_(t)+x sech - 2 t| 2)$�2 Hn(z) ,(z)| q dz+
1�q

dt

_\| |(1+| y | 2)&$�2 (1B( y )&Tn( y))| p dy+
1�p

.
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Since there exists a positive constant c0 such that

\| |(1+|z_(t)+x sech - 2 t| 2)$�2 Hn(z) ,(z)| q dz+
1�q

�c0(1+|x|$),

we have

c1 :=sup
x, t } g(x, t) _(t)$ \| |(1+|z_(t)+x sech- 2 t| 2)$�2 Hn(z) ,(z)|q dz+

1�q

}
�c0 sup

x, t
| g(x, t) _(t)$ (1+|x| $)|<�.

Since |n|+d�p+$<|n|+2$<|n|+1�2m, we see

sup
x } |

�

0

tm&1e&tg(x, t)
1 (m)(_(t)) |n|+d�p

_\| |(1+|z_(t)+x sech - 2 t| 2)$�2 Hn(z) ,(z)| q dz+
1�q

dt }
�c1 |

�

0

tm&1e&t

1 (m)(_(t)) |n|+d�p+$ dt<�.

Consequently we see limn � � &A&m�n(1B&Tn)&�=0.
On the other hand, from the notice just after Lemma 1, we see

A&m�n
x1B(x) # C� (Rd ) if |n|�k. Hence, by the definition of C� k, &2m(Rd ), it

is clear that 1B(x) # C� k, &2m(Rd ). K

4.2. Proof

We are now on the point of proving Theorem 2. From Lemma 2 we see
that F0 has the density pF 0

(x) defined by pF 0
(x)= D&� ($x b F0 , 1) D� . On the

other hand, as 1B # C� K, &2m(Rd ) from Lemma 4, Theorem 1 can be applied
to the case T=1B . Therefore setting G=1 and using Lemma 3, we have

E[�1B(F )]= :
|n| �K&1

1
n! D&� ( (�Rn } �n1B) b F0 , 1) D�+r1

K (1B). (4.14)

Since

|
R d

|1B( y )(&�y)n p(t, F0 , y )| dy�
1

_(t) |n| |
R d

|Hn (x) ,(x)| dx

and

|(&�y)n p(t, F0 , y )|�
1

_(t) |n|+d sup
x

|Hn(x) ,(x)|,
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it follows from Proposition 4 in the Appendix and Lemma 2 that if J=Rn

or Rn�, then for some p, p$>1 (1�p+1�p$=1),

Dp
&2m ( (J } �n1B) b F0 , 1) Dp$

2m

=|
W

(A&m�n1B)(F0) 9 F0
2m(w; J ) P(dw)

=|
W
|

�

0

tm&1e&t

1 (m) |
R d

1B( y )(&�y)n p(t, F0 , y ) dy dt 9 F0
2m(w; J) P(dw)

=|
R d

1B( y )(&�y)n {|W
9 F 0

2m(w; J ) |
�

0

tm&1e&t

1 (m)
p(t, F0 , y ) dt P(dw)= dy

=|
B

(&�y)n {|W
(A&m$y)(F0) 9 F 0

2m(w; J ) P(dw)= dy

=|
B

(&�y)n [D&�( (J } $y) b F0 , 1) D �] dy

=|
B

(&�y)n [E[J | F0=y] pF0
( y )] dy.

Therefore, we have

} D p
&2m ( (Rn� } �n1B) b F0 , 1) Dp$

2m&|
B

(&�x)n [E[Rn | F0=x] pF0
(x)] dx }

�&A&m�n1B&� &9 F 0
2m( } ; (�&1) Rn)&1 .

Thus it follows from (4.14) that r~ K (1B) can be estimated by (2.4). In this
way, the assertion follows. K

APPENDIX

In this Appendix, the integration-by-parts formulas under truncation will
be presented. Those are more-or-less well-known.

Lemma 5. Assume that for some p>1 and q>1 satisfying that
1�p+1�q=1, (F, G ) is in D1

p(E )_D1
q(H�E ). Then

|
W

(DF(w), G) H�E P(dw)=|
W

(F(w), D*G(w)) E P(dw), (5.1)

where D and D* are H-derivative and its dual operator.
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Proof. If F and G are polynomial functionals, (5.1) holds; see the equa-
tion (8.23) in Ikeda and Watanabe [6]. Choosing Fn # P(E ) and
Gn # P(H�E ) such that &Fn&F&p, 1 � 0, &Gn&G&q, 1 � 0, we can show
(5.1) under the assumption. K

Lemma 6. If F # �p>1 D2
p(R

d ) and � # �p>1 D1
p satisfy �(det _F)&1 #

�q>1 D1
q , then it holds that

|
W

(� iT )(F ) �P(dw)=|
W

T(F ) 8F
i (w; �) P(dw) (5.2)

for any T # S(Rd ), where 8F
i ( } ; �)=�d

j=1 D*[(#ij
F�) DF j ] and #ik

F is the
(i, k)-element of #F=_&1

F . Here �iT(x)=�T��x i, x=(xi).

Proof. Applying the chain rule to DT(F ), we obtain that

|
W

(DT(F ), :
d

j=1

(�#ij
F ) DF j ) H P(dw)=|

W
(�iT )(F ) } �P(dw). (5.3)

For some q>1 satisfying &�(det _F )&1&q, 1<�, there exist q$>1 and r>1
such that 1�q+1�q$=1�r. Since the cofactors _~ ij

F of _F are in �p>1 D1
p , we

have

&(�#ij
F ) DF j&r, 1�&�(det _F )&1&q, 1 &_~ ij

F DF j&q$, 1<�.

From this, we see that couple (T(F ), (�#ij
F ) DF j ) satisfy the assumption

of Lemma 5. If we apply Lemma 5 to the left-hand side of (5.3), we can
prove (5.2). K

Let 8F
i1 , ..., i k

( } ; �)=8F
ik

( } ; 8F
i1 , ..., i k&1

( } ; �)), then it can be shown by
induction that

8F
i1 , ..., ik

( } ; �)= :
k

j=0

:
2k&j

i=k

( (det _F )&i D j�, PF
(i, j ; i1 , ..., i k)) H} j , (5.4)

where PF
(i, j ; i1 , ..., i k ) is a polynomial in F, DF, D2F, ..., LF, ... . Moreover it is

seen that if F is in �p>1 D l+1
p (Rd ) for some l�k, then PF

(i, j ; i1 , ..., i k) #
�p>1 Ds

p(H} j
) for any s�l&k.

Proposition 1 (Integration-by-Parts Formula 1). For some k # N,
assume that F # �p>1 Dk+1

p (Rd ) and � # �p>1 Dk
p satisfy the following

condition:

i�k, i+j�2k, i, j # Z+ O (det _F )&j Di� # .
q>1

Lq(H } i
). (5.5)
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Then it holds that for any T # S(Rd ) and 0�i1 , ..., ik�d,

|
W

(� i1
} } } � i k T )(F ) �P(dw)=|

W
T(F ) 8F

i1 , ..., i k
(w; �) P(dw). (5.6)

Proof. By (5.5), there exists q>1 such that &(det _F )&j Di�&q<�. If
q>r>1, we can choose q$>1 such that 1�q+1�q$=1�r. Moreover, we
choose p>1 and r$>1 satisfying 1�r+1�r$=1�p. Then, for any positive
integer l�k&1, with (5.4), we obtain

&8F
i1 , ..., i l

( } ; �)(det _F )&1&p, 1

� :
l

i=0

:
2l&i

j=l

Cr, r$ &(det _F )&( j+1) Di�&r, 1 &PF
( j, i; i 1 , ..., i l )& r$, 1

� :
l

i=0

:
2l&i

j=l

C� r, r$ &PF
( j, i ; i1 , ..., i l )

&r$, 1 [&(det _F )&( j+1) Di �&r

+&(det _F )&( j+1) Di+1�&r

+( j+1) &(det _F )&( j+2) Di��D(det _F)&r]

� :
l

i=0

:
2l&i

j=l

C� r, r$ &PF
( j, i ; i1 , ..., i l )

&r$, 1 [&(det _F )&( j+1) Di�&r

+&(det _F )&( j+1) Di+1�&r

+( j+1) &(det _F )&( j+2) Di�&q &D(det _F )&q$].

Since i+1�l+1�k, i+j+2�2l+2�2k and r<q, it follows from (5.5)
that

&8F
i1 , ..., i l

( } ; �)(det _F )&1&p, 1<�.

[Note that approximating sequence argument and the same estimate as
above lead to 8F

i1 , ..., i l
( } ; �)(det _F )&1 # D1

p .]
Therefore Lemma 6 can be applied and so

|
W

(�i l+1
} } } �i k T )(F ) 8F

i1 , ..., i l
(w; �) P(dw)

=|
W

(� i l+2
} } } � i k T)(F ) 8F

i1 , ..., i l+1
(w; �) P(dw).

Consequently we have the result by induction. K

55EXPANSION OF PERTURBED RANDOM VARIABLES



File: 683J 162523 . By:BV . Date:26:09:96 . Time:10:24 LOP8M. V8.0. Page 01:01
Codes: 2748 Signs: 1372 . Length: 45 pic 0 pts, 190 mm

Next, we give the integration-by-parts formula for the differential operator
A defined by A=1+|x| 2&2�2 where 2=�d

i=1(���xi )2. Let 9 F
2 ( } ; �)=

(1+|F | 2) �&�d
i=1 8F

ii ( } ; �)�2 and 9 F
2(m+1)( } ; �)=9 F

2 ( } ; 9 F
2m( } ; �)),

m # N. Then we can show by induction that

9 F
2m( } ; �)= :

i�2m, i+j�4m

( (det _F )&j Di�, QF
(i, j ; 2m)) H } i , (5.7)

where QF
(i, j ; 2m) is a polynomial in F, DF, D2F, ..., LF, ... . It is also

shown that if F is in �p>1 D l+1
p (Rd ) for some l�2m, then

QF
(i, j ; 2m) # �p>1 Ds

p(H } i
) for any s�l&2m.

Proposition 2 (Integration-by-Parts Formula 2). For some m # N,
suppose that F # �p>1 D2m+1

p (Rd ) and � # �p>1 D2m
p satisfy the condition

i�2m, i+j�4m, i, j # Z+ O (det _F )&j Di� # .
q>1

Lq(H } i
). (5.8)

Then it holds that for any T # S(Rd ),

|
W

(AmT )(F) �P(dw)=|
W

T(F ) 9 F
2m(w; �) P(dw). (5.9)

Proof. From (5.8), we can choose q>1 such that &(det _F )&j Di�&q<�.
If q>r>1, there exists q$>1 such that 1�q+1�q$=1�r. Moreover choose
r$>1 and p>1 such that 1�r+1�r$=1�p. Then, by (5.7) and Ho� lder's
inequality, it follows that for any non-negative integer l satisfying 0�l�
m&1,

&9 F
2l ( } ; �)&p, 2� :

s�2l, s+t�4l

Cr, r$ &(det _F )&t Ds�&r, 2 &QF
(s, t; 2l )&r$, 2

� :

s+t�4l
s�2l

C� r, r$ &QF
(s, t; 2l )&r$, 2 :

2

k=0

&Dk [(det _F )&t Ds�]&r

� :

s+t�4l
s�2l

C� r, r$ &QF
(s, t; 2l )&r$, 2 :

2

k=0

:
k

v=0 \
k
v+

_ :
v

u=0

&(det _F )&t&u Dk&v+s �&q &Rv, t, u (_F )&q$ ,

where Rv, t, u(_F ) is a polynomial in the H-derivatives of _F . Since
k&v+s�2m, t+u+k&v+s�4m&2, r<q and F # �p>1 D2m+1

p (Rd ), it
follows that &9 F

2l ( } ; �)&p, 2<�.
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Similarly we see that if i�2, i+j�4, then

&(det _F)&j Di9 F
2l ( } ; �)&p<�.

Since Am&(l+1)T # S(Rd ), we obtain, from Proposition 1,

|
W

(� i� iAm&(l+1)T)(F ) 9 F
2l (w; �) P(dw)

=|
W

(Am&(l+1)T )(F ) 8F
ii (w; 9 F

2l (w; �)) P(dw).

Consequently,

|
W

(Am&lT)(F ) 9 F
2l (w; �) P(dw)=|

W
(Am&(l+1)T)(F) 9 F

2(l+1) (w; �) P(dw).

As a result, we obtain (5.9) by induction. K

Proposition 3. Let q>1 and m # Z+. Assume that F # �p>1 D2m+1
p (Rd )

and � # �p>1 D2m
p satisfy the condition

i�2m, i+j�4m, i, j # Z+ O (det _F )&j Di� # Lq(H } i
). (5.10)

Then, for p(q>p>1), there exists a constant C F, �
p, 2m such that

&�T(F )&p, &2m�C F, �
p, 2m &A&mT&� (5.11)

for any T # S(Rd ).

Proof. Take p$>1 so that 1�p+1�p$=1. As 1�p$+1�q<1, we can
choose r$>1 such that 1�p$+1�q=1�r$. Moreover choose r so that
1�r+1�r$=1. Then we see that for any G # D�,

&(det _F )&j Di(�G )&r$� :
i

k=0
\ i

k+ &(det _F )&j Di&k��DkG&r$

�cp$, m :
i

k=0 \
i
k+ &(det _F )&j Di&k�&q &G&p$, 2m<�,

(5.12)

where cp$, m is a positive constant. Therefore if we replace � by �G in
Proposition 2, we see that F and �G satisfy (5.8); we can apply (5.9).
Hence, from (5.7) and (5.12), it follows that
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} |W
�T(F ) GP(dw) }= } |W

(A&mT )(F ) 9 F
2m(w; �G ) P(dw) }

�&A&mT&� |
W

|9 F
2m(w; �G )| P(dw)

�&A&mT&� :

i+j�4m
i�2m

&QF
(i, j ; 2m)&r

_&(det _F )&j Di (�G )&r$

�cp$, m &A&mT&� :

i+j�4m
i�2m

&QF
(i, j ; 2m) &r

_ :
i

k=0
\ i

k+ &(det _F )&j Di&k�&q &G&p$, 2m .

In this way, (5.11) follows from the duality. K

Proposition 4 (Integration-by-Parts Formula 3). Let m # Z+ and
q>1. Assume that F # �p>1 D2m+1

p (Rd ) and � # �p>1 D2m
p satisfy (5.10). If

1<p<q and 1�p+1�p$=1, then for any T # C� &2m(Rd ) and G # D2m
p$ ,

Dp
&2m ( (� } T ) b F, G) Dp$

2m=|
W

(A&mT )(F) 9F
2m(w; �G ) P(dw). (5.13)

Proof. Let Tn # S(Rd ) satisfy &A&mT&A&mTn &� � 0 (n � �). From
(2.1) and Proposition 2, it follows that

Dp
&2m ( (� } T) b F, G) Dp$

2m= lim
n � � |

W
(AmA&mTn)(F ) �GP(dw)

= lim
n � � |

W
(A&m Tn)(F ) 9 F

2m(w; �G ) P(dw). (5.14)

Since limn � � &A&mTn&A&mT&�=0, there exists a positive constant C
independent of n such that |(A&mTn)(F ) 9 F

2m( } ; �G )|�C |9 F
2m( } ; �G )|. As

9 F
2m( } ; �G ) is integrable, we obtain the desired result. K
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