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Asymptotic Expansion ofM-Estimator

Over Wiener Space?
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Abstract. In this paper we consider anM-estimator defined as a solution of a given estimating
function. Sufficient conditions of existence of anM-estimator and its stochastic expansion are
presented. In the case where the underlying probability space is a Wiener space and the leading
term of the stochastic expansion is a martingale, asymptotic expansions of its distribution function
are obtained with the aid of Malliavin calculus. Applications to a stationary ergodic diffusion model
are also discussed.
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1. Introduction

Let 2 ⊂ RRR be a parameter space, and(Xn,Un, µnθ ) a probability space for every
n ∈ NNN1 and everyθ ∈ 2. Denote byθ0 the true value of an unknown parameter in
2. In this article we consider anM-estimatorθ̂ defined as a solution of an estimating
equationgn(Xn, θ) = 0, wheregn is a given estmating function andXn is a random
variable over(Xn,Un, µnθ ) for everyn ∈ NNN .

Under some regularity conditions, the probability that a solution of the estimating
equationgn(Xn, θ) = 0 exists is close to 1 and anM-estimatorθ̂n is well defined.
Furthermore, whenr−1

n (θ̂n − θ0) has an asymptotic distribution for some positive
sequence{rn}, n ∈ NNN tending to zero, we may obtain a stochastic expansionr−1

n (θ̂n−
θ0) = Mn+rnNn+Rn, whereMn andNn are random variables, andRn is a remainder
term which is small in a certain sense. If we have an asymptotic expansion of the
distribution ofYn = Mn + rnNn, it is easy to derive an asymptotic expansion of the
distribution ofr−1

n (θ̂n − θ0) with the help of the well-knownDeltamethod. We will
present a sufficient condition under which anM-estimatorθ̂n is well defined and it
has a stochastic expansion as above.

In the case whereMn is a terminal random variable of a continuous martingale, the
martingale central limit theorem shows that if the quadratic variation ofMn converges
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in probability to a constant andNn has an asymptotic distribution, the distribution of
Yn converges weakly to a normal distribution. As for asymptotic expansions of a mar-
tingale, Mykland [3] obtained asymptotic expansions of the expectationE[f (Mn)]
for a classC2-functionf , and Mykland [4] extended these results to higher order
ones. On the other hand, the cases wheref is not regular are treated by Yoshida
[8–10] in the light of Malliavin calculus: asymptotic expansions ofP(Yn ∈ B) for
any Borel setB are presented by Yoshida [8], and asymptotic ones ofE[f (Yn)] for
any measurable function and the local density(2π)−1

∫
RRR

e−iuxE[eiuYnψn] du for a
truncation functionalψn are also obtained by Yoshida [9]. We will apply Theorem 2
of Yoshida [8] to the normalizedM-estimatorr−1

n (θ̂n − θ0).
The next section presents main results about stochastic expansions and asymptotic

expansions ofM-estimator. As an application of them, we treatM-estimators based
on a stationary ergodic diffusion process in Section 3. The proofs of main results
with their preliminary lemmas are given in Section 4.

2. Asymptotic Expansions

First we consider the existence of anM-estimator and its stochastic expansion over
a general probability space. Suppose that a parameter space2 is a bounded interval
in RRR. The true value of an unknown parameter in2 is denoted byθ0. For every
θ ∈ 2 and everyn ∈ NNN , let (Xn,Un) be a measurable space, and letXθn be anXn-
valued random variable defined on some probability space. The probability measure
induced byXθn is denoted byµnθ . We abbreviate toXn a random variableXθn evaluated
at θ = θ0. Furthermore, suppose that an estimating functiongn is a real-valued
measurable function onXn ×2 such thatgn(x, ·) ∈ C3(2 → RRR1) for anyx ∈ Xn.
The differential operator∂/∂θ is denoted byδ. Then,M-estimatorθ̂n is defined and
its stochastic expansion is given as follows.

THEOREM 1. Assume that for anyθ0 ∈ 2◦ ≡ Int(2), there existp1 > 1, p2 >

1, p3 > 1, γ > 0 with 2/3+max(1/p2, 1/3p3) < γ −1/p1 satisfying the following
conditions:

[C1] supn ‖rngn(Xn, θ0)‖p1 < ∞;

[C2] there exists an open interval2̃ ⊂ 2◦ includingθ0 andIθ0(θ) ∈ RRR1 such that

inf
θ∈2̃

Iθ0(θ) > 0, sup
n∈NNN,θ∈2◦

‖r−γn (r2
nδgn(Xn, θ)+ Iθ0(θ))‖p2 < ∞;

[C3] there exists a functionLθ0(θ) ∈ RRR1 such that

sup
n∈NNN, θ∈2◦

‖r−γn (r2
nδ

2gn(Xn, θ)+ Lθ0(θ))‖p2 < ∞;
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[C4] sup
n∈NNN

‖ sup
θ∈2◦

|r2
nδ

3gn(Xn, θ)| ‖p3 < ∞.

Then

P [(∃1θ̂n ∈ 2̃, gn(Xn, θ̂n) = 0) and (|θ̂n − θ0|6 rγn )] = 1 − o(rn). (2.1)

Moreover for some extension̂θn : Xn → 2, there exist constantsC > 0 andε > 0
such that

P [|R|6Crε+1
n ] = 1 − o(rn), (2.2)

where

R = r−1
n (θ̂n − θ0) − (I−1

θ0
(θ0)Zn,1 + rnI

−2
θ0
(θ0)Zn,1Zn,2 −

−1
2rnI

−3
θ0
(θ0)Lθ0Lθ0(θ0)Z

2
n,1), (2.3)

Zn,1 = rngn(Xn, θ0), Zn,2 = r−1
n (r2

nδgn(Xn, θ0)+ Iθ0(θ0)). (2.4)

Proof. See Section 4.

Remark 1.If we replace [C2] with the condition that there exists a function
Iθ0(θ) ∈ RRR1 such that

Iθ0(θ0) > 0, sup
n∈NNN,θ∈2◦

‖r−γn (r2
nδgn(Xn, θ)+ Iθ0(θ))‖p2 < ∞,

then we see from the continuity ofIθ0(θ), which is shown in Lemma 1, that there
exists a neighborhood̃2 of θ0 such that

inf
θ∈2̃

Iθ0(θ) > 0.

Then we can obtain the same result as above.

Remark 2.When2̃ = 2◦, we obtain the global consistency of theM-estimator̂θn.
For example, consider the maximum likelihood estimator of the family of diffusion
processes defined by the stochastic differential equation:

dXt = θb(Xt) dt + dwt.

Thengn is given by

gT ((Xt)06 t6 T , θ) =
∫ T

0
b(Xt) dXt − θ

∫ T

0
b(Xt)

2 dt.

If
∫ T

0 b(Xt)
2 dt/T converges in probability to a positive constantV (independent of

θ ) asT → ∞ underθ0, thenIθ0(θ) = V and we obtain the global non-degeneracy.
Moreover, if this family is parameterized asθ = θ(u), then

Iu0(u) = V [θ̈ (u)(θ(u)− θ(u0))+ (θ̇(u))2].
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For instance, in the case thatθ = √
u, 0< a1 < u < a2, one has

Iu0(u) = V

4
u−3/2u

1/2
0 ,

and the global non-degeneracy still holds true.

Next, we consider anM-estimator over Wiener space and present an asymptotic
expansion of its distribution function. For eachn ∈ NNN , let(Wn,Hn, P n)be a (partial)
r-dimensional Wiener space:Wn = W(n,1) × W(n,2), andPn = P (n,1) ⊗ P (n,2),
where(W(n,1), Hn, P (n,1)) is a usual Wiener space and(W(n,2),BBB(n,2), P (n,2)) is a
probability space. LetDDDn

p,s be the Sobolev space of Wiener functionals onWn.
AlthoughDDDn

p,s is equipped with a Sobolev norm depending onn, we denote it by
‖ · ‖p,s briefly. Denote byσF the Malliavin covariance of a Wiener functionalF
onWn. In the following, we suppose thatXθn : Wn → Xn is a random variable on
(Wn,Hn, P n) for everyθ ∈ 2 and everyn ∈ NNN . As defined in Theorem 1,µnθ is a
probability measure on(Xn,Un) induced fromPn byXθn, andXn is a random variable
Xθn evaluated atθ = θ0. Then theM-estimatorθ̂n for Xn defined in Theorem 1 can
be regarded as a Wiener functionalθ̂n ◦ Xn : Wn → 2. If the leading termZn,1 of
the stochastic expansion in Theorem 1 is a terminal random variable of a continuous
martingale, we can apply the result of Yoshida [8]. For a martingale{M(t)}06 t6 T ,
the bracket〈M〉 denotes the predictable quadratic variation process ofM: moreover
we will abbreviateM(T ) toM and〈M〉(T ) to 〈M〉, for simplicity.

THEOREM 2. For anyθ0 ∈ 2, let θ̂n,Zn,1 andZn,2 be Wiener functionals satisfying
(2.1)–(2.4). Assume that the following conditions hold:

[A1] Zn,1, Zn,2 ∈ ∩p>1DDD
n
p,4 for anyn ∈ NNN ;

[A2] (i) there exist continuous martingales{Z′
n,1(t)} with Z′

n,1 ∈ ∩p>1DDD
n
p,4 and

〈Z′
n,1〉 ∈ ∩p>1DDD

n
p,3;

(ii) for some positive constantτ ,

sup
n

‖Z′
n,1‖p,4 + sup

n

‖r−1
n ((τIθ0(θ0))

−2〈Z′
n,1〉 − 1)‖p,3 +

+ sup
n

‖Zn,2‖p,4 + sup
n

‖r−1
n (Zn,1 − Z′

n,1)‖p,4 < ∞;

[A3] there exists a random vector(Z, ξ, ζ, ρ) such that

((τIθ0(θ0))
−1Z′

n,1, r
−1
n ((τIθ0(θ0))

−2〈Z′
n,1〉 − 1), Zn,2, r

−1
n (Zn,1 − Z′

n,1))

⇒ (Z, ξ, ζ, ρ) in law,

and ∂2
z (E[ξ |Z = z]φ(z)) is bounded integrable, whereφ(z) is the standard

normal density.
[A4] there exists a constantc > 0 such thatlimn→∞ P(σZ′

n,1
< c) = 0.
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Then for anyp > 1, there exists a constantC > 0and a positive sequenceεn = o(rn)

such that

1n6C(1 + log+(r−1
n ))P (σZ′

n,1
< c)1/p + εn, (2.5)

where

1n = sup
x

∣∣∣∣P [(τ rn)
−1(θ̂n − θ0)6 x] −

∫ x

−∞
pn(z) dz

∣∣∣∣ , (2.6)

and

pn(z) = φ(z)+ 1
2rn∂

2
z (E[ξ |Z = z]φ(z))−

− rnI
−1
θ0
(θ0)∂z

(
E
[
zζ − 1

2τLθ0(θ0)z
2 + τ−1ρ |Z = z

]
φ(z)

)
. (2.7)

Proof. This follows immediately from Theorem 2 of Yoshida [8] by means of the
Deltamethod.

3. Diffusion Process

As in the previous section, suppose that the parameter space2 is a bounded interval
inRRR, and denote byθ0 the true value of the unknown parameter in2. Letb be a real-
valued function onRRR×2. In this section, we consider a one-dimensional stationary
ergodic diffusion processXθ = (Xθt : t ∈ RRR+) defined by

dXt = bθ(Xt) dt + dwt,

with stationary distributionνθ given by

νθ ( dx) = nθ(x)∫∞
−∞ nθ(u) du

dx,

where

nθ(x) = exp

(
2
∫ x

0
bθ(u) du

)
.

Assume thatbθ ∈ C4,4(RRR×2), supx ∂xbθ (x) < 0, ∂xbθ (x) is bounded inx for each
θ and there exist positive constantsm1 andC1 such that

sup
θ∈2

|δi∂jx bθ (x)|6C1(1 + |x|)m1, (3.1)

for anyx ∈ RRR and for anyi, j = 0, . . . ,4. It is then immediately shown that for any
p > 1

sup
t∈RRR+

‖Xθt ‖p < ∞. (3.2)
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Note that in this model the random variablesXθt are defined on the same Wiener
space, while in Section 2 the underlying probability spaces(Wn,Hn, P n) ofXθn may
be distinct from each other. For simplicity, we omit the symbolθ0 from the notations
of functions ofθ when they are evaluated atθ = θ0, for example,X = Xθ0, ν = νθ0.

First, we consider an estimating function given by

gT (X, θ) = fθ(XT )− fθ(X0)−
∫ T

0
Aθfθ(Xt) dt,

wheref is a given real-valued function onRRR ×2, andAθ is a differential operator
defined by

Aθ = 1
2∂

2
x + bθ(x)∂x.

This estimating function was treated in Lánska [5] and also in Yoshida [7], and it
has an advantage because it is robust, that is, in the sense thatgT is continuous inX
with respect to the supremum norm over each compact set. If∂xfθ = δbθ , it follows
from Itô’s formula that

gT (X, θ) =
∫ T

0
∂xfθ (Xt) dwt +

∫ T

0
(∂xfθ · bθ0)(Xt) dt −

−
∫ T

0
(∂xfθ · bθ)(Xt) dt

=
∫ T

0
δbθ (Xt) dXt −

∫ T

0
(δbθ · bθ)(Xt) dt,

and hence that theM-estimator coincides with the maximum likelihood estimator in
this case. In the following, we will verify the conditions in Theorem 1 and Theorem
2 for this estimating functiongT , and will present an asymptotic expansion of the
distribution of theM-estimator corresponding togT (X, θ) = 0. Suppose thatfθ ∈
C5,4(RRR ×2) and there exist positive constantsm2 andC2 such that

sup
θ∈2

|δi∂jx fθ (x)|6C2(1 + |x|m2), (3.3)

for anyx ∈ RRR and for anyi = 0, . . . ,4, j = 0, . . . ,5. Denoteδi(Aθfθ ) by kθ,i for
eachi = 0, . . . ,4. Then supθ |kθ,i | have at most polynomial growth order. Define
Iθ0(θ) andLθ0(θ) by

Iθ0(θ) = ν(kθ,1) and Lθ0(θ) = ν(kθ,2), (3.4)

respectively. LetZT,1 andZT,2 be Wiener functionals defined by

ZT,1 = T −1/2gT (X, θ0) (3.5)

and

ZT,2 = T 1/2(T −1δgT (X, θ0)+ Iθ0(θ0)). (3.6)
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Assume either that

ν((∂xfθ0)
2) > 0, inf

θ∈2̃
Iθ0(θ) > 0 (3.7)

for an open interval̃2 ⊂ 20 includingθ0, or that

ν((∂xfθ0)
2) > 0, Iθ0(θ0) > 0. (3.8)

Denote byτ a constant
√
ν((∂xfθ0)

2)/Iθ0(θ0). For continuous functionh : RRR → RRR,
defineGh : RRR → RRR by

Gh(x) = −
∫ x

0

1

n(y)

∫ ∞

y

2n(u)h(u) du dy,

if ∫ ∞

0
n(u)|h(u)| du < ∞.

Let

ZT,1(t) = 1√
T

∫ t

0
∂xfθ0(Xs) dws,

then we see from Itô’s formula thatZT,1 = ZT,1(T ). Therefore we will regard
ZT,1 itself as the terminal random variableZ′

T ,1 given in Assumptions [A2]–[A4] of
Theorem 2. SinceAθ0Gh = h for any continuous functionh with ν(h) = 0, we have
that

ZT,2 = T −1/2(δfθ0(XT )− δfθ0(X0))− T −1/2
∫ T

0
(kθ0,1(Xt)− ν(kθ0,1)) dt

= op(1)− T −1/2(Gk̄(XT )−Gk̄(X0))+ T −1/2
∫ T

0
∂xGk̄(Xt) dwt

= op(1)+ T −1/2
∫ T

0
∂xGk̄(Xt) dwt,

wherek̄ = kθ0,1 − ν(kθ0,1). Similarly, we see that

√
T ((τIθ0(θ0))

−2〈ZT,1〉T − 1) = T −1/2
∫ T

0

[
(∂xfθ0)

2(Xt)

ν((∂xfθ0)
2)

− 1

]
dt

= op(1)− T −1/2
∫ T

0
∂xGl̄(Xt) dwt,

where

l̄(x) = (∂xfθ0)
2(x)

ν((∂xfθ0)
2)

− 1.
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It is easy to show from Lemma 6 of Yoshida [10] that∂xGk̄ and∂xGl̄ have at most
polynomial growth order. Therefore, it follows from the martingale central limit
theorem that

((τIθ0(θ0))
−1ZT,1,

√
T ((τIθ0(θ0))

−2〈ZT,1〉T − 1), ZT,2)

⇒ N(0, 6) as T → ∞,

where6 = (6i,j ) is a symmetric matrix given by

6 =




1 −ν(∂xfθ0 · ∂xGl̄)√
ν((∂xfθ0)

2)

ν(∂xfθ0 · ∂xGk̄)√
ν((∂xfθ0)

2)

ν((∂xGl̄)
2) −ν(∂xGl̄ · ∂xGk̄)

sym ν((∂xGk̄)
2)


 .

This implies that Assumption [A3] of Theorem 2 holds withZT,1 = Z′
T ,1 andρ = 0.

Assumptions [A1], [A2] and [A4] can also easily be verified from Lemmas 2, 4, and
5 of Yoshida [10] and from Lemma 7 of Yoshida [10], respectively.

Let us verify the conditions [C1]–[C4] in Theorem 1. From the Burkholder–
Davis–Gundy inequality, we have that for some constantcp1 > 0 depending only on
p1 > 1,

‖T −1/2gT (X, θ0)‖p1 = T −1/2

{
E

[(∫ T

0
∂xfθ0(Xt) dwt

)p1
]}1/p1

6 cp1T
−1/2

{
E

[(∫ T

0
(∂xfθ0(Xt))

2dt

)p1/2
]}1/p1

.

Owing to Jensen’s inequality and (3.3), we see that

‖T −1/2gT (X, θ0)‖p1 6 cp1‖∂xfθ0(X0)‖2p1 < ∞.

Hence [C1] of Theorem 1 holds. In the same fashion, we see that for anyγ > 0 and
anyp2 > 1 there exists a positive constantcp2 > 0 depending only onp2 such that∥∥∥∥T γ/2−1

∫ T

0
∂xGk̄θ (x)

(XT ) dwt

∥∥∥∥
p2

6 cp2T
(γ−1)/2‖∂xGk̄θ (x)

(X0)‖2p2,

wherek̄θ (x) = kθ,1(x)− ν(kθ,1). Therefore we obtain from the stationarity ofX that
for γ > 0 andp2 > 1,

‖T γ/2(T −1δgT (X, θ)+ Iθ0(θ))‖p2

6 2T γ/2−1‖δfθ (X0)‖p2 + 2T γ/2−1‖Gk̄θ (x)
(X0)‖p2 +

+ cp2T
(γ−1)/2‖∂xGk̄θ (x)

(X0)‖2p2.
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Applying the same argument as in the proof of Lemma 6 in Yoshida [10] together
with (3.1) and (3.3), we see that there exists a positive constantC3 and a positive
integerm3 such that

sup
θ∈2

|Gk̄θ (x)
(x)|6C3(1 + |x|m3) and sup

θ∈2
|∂xGk̄θ (x)

(x)|6C3(1 + |x|m3).

Thus, it follows that forγ ∈ (0, 1), p2 > 1 andε > 0,

sup
T>ε,θ∈2◦

‖T γ/2(T −1δgT (X, θ)+ Iθ0(θ))‖p2 < ∞.

Combining this and (3.7) (or (3.8)), we see that [C2] of Theorem 1 holds. In exactly
the same way, it follows that forγ ∈ (0, 1), p2 > 1 andε > 0,

sup
T>ε,θ∈2◦

‖T γ/2(T −1δ2gT (X, θ)+ Lθ0(θ))‖p2 < ∞,

and hence that [C3] of Theorem 1 holds. Furthermore, it follows from Sobolev’s
inequality that for some constantC2◦ > 0

‖ sup
θ∈2◦

|T −1δ3gT (X, θ)| ‖p3

6C2◦

(∫
2◦

‖T −1δ3gT (X, θ)‖p3
p3

dθ +
∫
2◦

‖T −1δ4gT (X, θ)‖p3
p3

dθ

)1/p3

6C2◦ |2◦|1/p3

((
sup
θ∈2◦

‖T −1δ3gT (X, θ)‖p3

)p3

+

+
(

sup
θ∈2◦

‖T −1δ4gT (X, θ)‖p3

)p3
)1/p3

.

Since

‖T −1δigT (X, θ)‖p3 6 2T −1‖δifθ (X0)‖p3 + 2T −1‖Gkθ,i−ν(kθ,i )(X0)‖p3 +
+ cp3T

−1/2‖∂xGkθ,i−ν(kθ,i )(X0)‖p3 + ν(kθ,i),

for eachi = 3, 4 and for some constantcp3 > 0, it is also seen that forp3 > 1 and
ε > 0,

sup
T>ε

‖ sup
θ∈2◦

|T −1δ3gT (X, θ)| ‖p3 < ∞.

Thus we see that the conditions [C1]–[C4] of Theorem 1 holds. Consequently, the
verification of the assumptions in Theorems 1 and 2 is completed. In this way, we
have:

THEOREM 3. Assume that (3.1), (3.3) and (3.7) (or (3.8)) hold true. Then there exists
an M-estimatorθ̂T corresponding to the estimating functiongT , and the asymptotic
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expansion of its distribution function is given by

P(
√
T τ−1(θ̂T − θ0)6 x) = 8(x)+ 1

2
√
T
61,2(1 − x2)φ(x)−

− 1√
T
I−1
θ0
(θ0)

(
61,3 − 1

2
τLθ0(θ0)

)
×

× x2φ(x)+ o(1/
√
T ).

We give the results of the numerical studies of this asymptotic expansion in
Figures 1 and 2. In the former,Xθ is the diffusion process corresponding tobθ(x) =
−θx, the Ornstein–Uhlenbeck process, and in the latter,Xθ is the diffusion process
corresponding tobθ(x) = −θ(x3 + x). In each figure,M-estimator is the max-
imum likelihood estimator, and asymptotic expansions given above are compared
with the true distribution functions obtained by Monte-Carlo simulations (100 000
repetitions).

Next we consider a slightly different estimating functiong̃T defined by

g̃T (X, θ) = −
∫ T

0
Aθfθ(Xt) dt.

Taking the same steps as forgT , one can easily show that conditions [C1]–[C4] hold
true for thisg̃T with Iθ0 andLθ0 defined by (3.4), and that there exists anM-estimator
θ̃T satisfying (2.1)–(2.4). DefinẽZT,1 andZ̃T ,2 by

Z̃T ,1 = T −1/2g̃T (X, θ0) and Z̃T ,2 = T 1/2(T −1δg̃T (X, θ0)+ Iθ0(θ0)),

respectively. Then we can show thatZ̃T ,1 andZ̃T ,2 ∈ ∩p>1DDD
n
p,4 in the same fashion

as forZT,1 andZT,2 given by (3.5) and (3.6), respectively. In this case,Z̃T ,1 itself is
not a terminal random variable of a martingale, but we see that the terminal random
variableZT,1 satisfies assumptions [A2]–[A4] of Theorem 2 forZ̃T ,1 and Z̃T ,2 as
follows. From (3.2), (3.3) and the stationarity ofX, it is easy to show that for any
p > 1 and anyε > 0,

sup
T>ε

‖
√
T (Z̃T ,1 − ZT,1)‖p,4 = sup

T>ε

‖fθ0(XT )− fθ0(X0)‖p,4 < ∞.

We can also show from (3.1), (3.3), and Lemmas 2, 4, 6 of [10] that for anyp > 1
and anyε > 0,

sup
T>ε

‖Z̃T ,2‖p,4 = sup
T>ε

‖T −1/2
∫ T

0
k̄(Xt) dt‖p,4

= sup
T>ε

‖T −1/2(Gk̄(XT )−Gk̄(X0))‖p,4 +

+ sup
T>ε

‖T −1/2
∫ T

0
∂xGk̄(Xt) dwt‖p,4 < ∞.
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Figure 1. Distribution functions ofM-estimator;bθ (x) = −θx.

Therefore it suffices to show [A3] of Theorem 3. Let

VT,1 = 1√
T τIθ0

∫ T−T 1/2

T 1/2
∂xfθ0(Xt) dwt,

V ∗
T ,1 = − 1√

T

∫ T−T 1/2

T 1/2
∂xGl̄(Xt) dwt,

and

VT,2 = 1√
T

∫ T−T 1/2

T 1/2
∂xGk̄(Xt) dwt.

It then follows that the asymptotic distribution of the random vector

((τIθ0)
−1ZT,1,

√
T ((τIθ0)

−2〈ZT,1〉T − 1), Z̃T ,2, fθ0(XT ), fθ0(X0))



96 YUJI SAKAMOTO AND NAKAHIRO YOSHIDA

Figure 2. Distribution functions ofM-estimator;bθ (x) = −θ(x3 + x).

is equal to the asymptotic one of(VT,1, V ∗
T ,1, VT,2, fθ0(XT ), fθ0(X0)). SinceXT has

a strong mixing property (cf. Doukhan [1]; Veretennikov [6]; Kusuoka and Yoshida
[2]), we obtain from covariance inequality that for any(u1, . . . , u5) ∈ RRR5,

E[exp(
√−1(u1VT,1 + u2V

∗
T ,1 + u3VT,2 + u4fθ0(XT )+ u5fθ0(X0)))]

→ E[exp(−1
2(u1, u2, u3)6(u1, u2, u3)

′)]×
× E[exp(

√−1u4fθ0(X0))]E[exp(
√−1u5fθ0(X0))],

asT → ∞. Thus we see from Theorem 2 that the asymptotic expansion ofθ̃T
coincides with that of̂θT .

THEOREM 4. Assume that (3.1), (3.3) and (3.7) (or(3.8)) hold true. Then there exists
an M-estimatorθ̃T corresponding to the estimating functiong̃T , and the asymptotic
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expansion of its distribution function is given by

P(
√
T τ−1(θ̃T − θ0)6 x) = 8(x)+ 1

2
√
T
61,2(1 − x2)φ(x)−

− 1√
T
I−1
θ0
(θ0)

(
61,3 − 1

2
τLθ0(θ0)

)
x2φ(x)+

+ o(1/
√
T ).

4. Proof of Theorems

We first present some preliminary lemmas.

LEMMA 1. Assume that[C2]–[C4] in Theorem 1 hold for someγ > 0, p2 > 1 and
p3 > 1. ThenIθ0 ∈ C1(2◦) andδIθ0(θ) = Lθ0(θ).

Proof. Settingp = min(p2, p3), then for anyθ1, θ2 ∈ 2◦,

|Lθ0(θ1)− Lθ0(θ2)|

6
2∑
i=1

‖r2
nδ

2gn(Xn, θi)+ Lθ0(θi)‖p + ‖
∫ θ1

θ2

|r2
nδ

3gn(Xn, θ)| dθ‖p

6 rγn
2∑
i=1

‖r−γn (r2
nδ

2gn(Xn, θi))+ Lθ0(θi)‖p +

+ |θ1 − θ2| sup
θ∈2◦

‖r2
nδ

3gn(Xn, θ)‖p.

From [C3] and [C4] in Theorem 1, there exists a constantC independent ofθ1 and
θ2 such that

|Lθ0(θ1)− Lθ0(θ2)|6C|θ1 − θ2|.
This implies thatLθ0(θ) is continuous on2◦. Furthermore, for anyθ1, θ2 ∈ 2◦,∣∣∣∣Iθ0(θ1)− Iθ0(θ2)−

∫ θ1

θ2

Lθ0(θ) dθ

∣∣∣∣
6

2∑
i=1

‖r2
nδgn(Xn, θi)+ Iθ0(θi)‖p2 +

+
∥∥∥∥
∫ θ1

θ2

|r2
nδ

2gn(Xn, θ)+ Lθ0(θ)| dθ

∥∥∥∥
p2

6 rγn
2∑
i=1

‖r−γn (r2
nδgn(Xn, θi)+ Iθ0(θi))‖p2 +

+ |θ1 − θ2|rγn sup
θ∈2◦

‖r−γn (r2
nδ

2gn(Xn, θ)+ Lθ0(θ))‖p2.
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Therefore it follows from [C2] and [C3] in Theorem 1 that

Iθ0(θ1)− Iθ0(θ2) =
∫ θ1

θ2

Lθ0(θ) dθ

SinceLθ0(θ) is continuous on2◦, it is seen thatδIθ0(θ) = Lθ0(θ).

LEMMA 2. Let γ > 0 and p2 > 1 with γp2 > 1. Assume that[C2]–[C4] in
Theorem 1 hold. Then there exists a constant C independent ofn such that

P [ inf
θ∈2̃
(−r2

nδgn(Xn, θ)) > C] = 1 − o(rn).

Proof. From [C2] in Theorem 1, there exists a constantC independent ofn such
that infθ∈2̃ Iθ0(θ) > 2C. Therefore it follows that

P

[
inf
θ∈2̃
(−r2

nδgn(Xn, θ))6C
]

6P
[

inf
θ∈2̃
(−r2

nδgn(Xn, θ)− Iθ0(θ))+ inf
θ∈2̃

Iθ0(θ)6C
]

6P

[
sup
θ∈2̃

|r2
nδgn(Xn, θ)+ Iθ0(θ)|>C

]
.

From Sobolev’s inequality and Lemma 1, it is seen that for anyXn ∈ Xn, there exists
a constantC2̃ > 0 independent ofn such that

sup
θ∈2̃

|r2
nδgn(Xn, θ)+ Iθ0(θ)|

6C2̃
(∫

2̃

|r2
nδgn(Xn, θ)+ Iθ0(θ)|p2 dθ+

+
∫
2̃

|r2
nδ

2gn(Xn, θ)+ Lθ0(θ)|p2 dθ

)1/p2

.

This shows that

P

[
sup
θ∈2̃

|r2
nδgn(Xn, θ)+ Iθ0(θ)|>C

]

6P
[∫

2̃

|r2
nδgn(Xn, θ)+ Iθ0(θ)|p2 dθ >

1

2

(
C

C2̃

)p2
]

+

+
[∫

2̃

|r2
nδ

2gn(Xn, θ)+ Lθ0(θ)|p2 dθ >
1

2

(
C

C2̃

)p2
]

6 2

(
C2̃

C

)p2
(
E

[∫
2̃

|r2
nδgn(Xn, θ)+ Iθ0(θ)|p2 dθ

]
+

+ E

[∫
2̃

|r2
nδ

2gn(Xn, θ)+ Lθ0(θ)|p2 dθ

])
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6 2

(
C2̃

C

)p2

|2̃|rγp2
n

(
sup
θ∈2̃

‖r−γn (r2
nδgn(Xn, θ)+ Iθ0(θ))‖p2

p2
+

+ sup
θ∈2̃

‖r−γn (r2
nδ

2gn(Xn, θ)+ Lθ0(θ))‖p2
p2

)
.

Sinceγp2 > 1, it follows that

P

[
inf
θ∈2̃
(−r2

nδgn(Xn, θ))6C
]

= o(rn),

which completes the proof.

In the following lemma,θ̂n stands for a generic point in2◦ not necessarily the
M-estimate.

LEMMA 3. For any sequencêθn ∈ 2◦, R defined by (2.3) can be rewritten as

R = I−1
θ0
(θ0)(rnZn,2R3 − 1

2rnLθ0(θ0)(2I
−1
θ0
(θ0)Zn,1R3 + R2

3) +
+ 1

2r
−1
n R4(θ̂n − θ0)

2 + rnR1 − rngn(Xn, θ̂n)),

where

R1 = 1

2

∫ 1

0
(1 − t)2δ3gn(Xn, θ0 + t (θ̂n − θ0)) dt (θ̂n − θ0)

3,

R2 = 1
2rnδ

2gn(Xn, θ0)(θ̂n − θ0)
2 + rnR1,

R3 = I−1
θ0
(θ0)(Zn,2(θ̂n − θ0)+ R2 − rngn(Xn, θ̂n)),

and

R4 = r2
nδ

2gn(Xn, θ0)+ Lθ0(θ0).

Proof. Sincegn(Xn, θ) ∈ C3(2◦ → RRR) for anyXn ∈ Xn, it follows from Taylor’s
formula that

gn(Xn, θ̂n)− gn(Xn, θ0) = δgn(Xn, θ0)(θ̂n − θ0)+
+ 1

2δ
2gn(Xn, θ0)(θ̂n − θ0)

2 + R1. (4.9)

Since

r2
nδgn(Xn, θ0) = rnZn,2 − Iθ0(θ0), Zn,1 = rngn(Xn, θ0),

it follows from (4.9) that

rngn(Xn, θ̂n)− Zn,1 = (rnZn,2 − Iθ0(θ0))r
−1
n (θ̂n − θ0)+

+ 1
2rnδ

2gn(Xn, θ0)(θ̂n − θ0)
2 + rnR1

= −Iθ0(θ0)r
−1
n (θ̂n − θ0)+ Zn,2(θ̂n − θ0)+ R2.
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Hence we obtain that

r−1
n (θ̂n − θ0) = I−1

θ0
(θ0)Zn,1 + R3. (4.10)

Moreover, we have from (4.9) and (4.10) that

rngn(Xn, θ̂n)− Zn,1 = (rnZn,2 − Iθ0(θ0))r
−1
n (θ̂n − θ0)+

+ 1
2rn(R4 − Lθ0(θ0))(r

−1
n (θ̂n − θ0))

2 + rnR1

= −Iθ0(θ0)r
−1
n (θ̂n − θ0)+ rnZn,2(I

−1
θ0
(θ0)Zn,1 + R3)−

− 1
2rnLθ0(θ0)(I

−1
θ0
(θ0)Zn,1 + R3)

2 +
+ 1

2r
−1
n R4(θ̂n − θ0)

2 + rnR1

= −Iθ0(θ0)r
−1
n (θ̂n − θ0)+ rnI

−1
θ0
(θ0)Zn,1Zn,2 −

− 1
2rnLθ0(θ0)I

−2
θ0
(θ0)Z

2
n,1 +

+ rnZn,2R3 − 1
2rnLθ0(θ0)(2I

−1
θ0
(θ0)Zn,1R3 + R2

3)+
+ 1

2r
−1
n R4(θ̂n − θ0)

2 + rnR1.

Therefore the proof is complete.

Proof of Theorem 1.For someC > 0, letXn
0 be the subset ofXn defined by

Xn
0 : = {Xn ∈ Xn| inf

θ∈2̃
(−r2

nδgn(Xn, θ)) > C, |r2−γ
n gn(Xn, θ0)| < C},

and let0γ (u) be a function on [−1, 1] defined by

0γ (u) : = r
2−γ
n gn(Xn, θ0)∫ 1

0 (−r2
nδgn(Xn, θ0 + r

γ
n ut)) dt

.

Suppose thatn0 ∈ NNN satisfies that∀n> n0, (θ0 − r
γ
n , θ0 + r

γ
n ) ⊂ 2̃. Then, for any

Xn ∈ Xn
0 and anyn> n0, 0γ (u) ∈ [−1, 1]. Therefore it follows from Brouwer’s

fixed point theorem that ifXn ∈ Xn
0 andn> n0, then there exists âu ∈ [−1, 1] such

that0γ (û) = û. Settingθ̂n = θ0 + r
γ
n û, we have from Taylor’s formula that

gn(Xn, θ̂n) = gn(Xn, θ0)+
∫ 1

0
δgn(Xn, θ0 + t (θ̂n − θ0)) dt (θ̂n − θ0)

= gn(Xn, θ0)−
∫ 1

0
(−r2

nδgn(Xn, θ0 + rγn ût)) dtrγ−2
n û

= rγ−2
n (0γ (û)− û)

∫ 1

0
(−r2

nδgn(Xn, θ0 + rγn ût)) dt = 0.

Sincegn(Xn, ·) is monotone on2̃ for anyXn ∈ Xn
0, we see that ifXn ∈ Xn

0 and
n> n0, then there exists a uniquêθn ∈ 2̃ satisfyinggn(Xn, θ̂n) = 0 and sucĥθn lies
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in therγn -neighborhood ofθ0. The proof of the first assertion of Theorem 1 will be
complete if we show that

P [Xn
0] = 1 − o(rn).

From [C1] andγ < 1 − 1/p1,

P [r2−γ
n |gn(Xn, θ0)|>C] 6

r
(1−γ )p1
n

Cp1
‖rngn(Xn, θ0)‖p1

p1
= o(rn).

Combining this and Lemma 2, we obtain that

P [(Xn
0)
c] 6P

[
inf
θ∈2̃
(−r2

nδgn(Xn, θ))6C
]

+ P [r2−γ
n |gn(Xn, θ0)|>C] = o(rn).

Thus we have the first assertion of Theorem 1:

P [(∃1θ̂n ∈ 2̃, gn(Xn, θ̂n) = 0) and (|θ̂n − θ0| < rγn )] = 1 − o(rn).

If n> n0, thenθ̂n is well defined as a unique solution of the equationgn(Xn, θ) = 0
for anyXn ∈ Xn

0. We extendθ̂n to a2-valued random variable on the whole ofXn

and denote it by the same symbolθ̂n.
Let us prove the second half of Theorem 1. Forγ ′ ∈ (2/3, γ ) andα ∈ (0, 3γ −2),

let Xn
1 be a subset ofXn defined by

Xn
1 =

{
Xn ∈ Xn| |r2

nδgn(Xn, θ0)+ Iθ0(θ0)| < r
γ ′
n ,

|r2
nδ

2gn(Xn, θ0)+ Lθ0(θ0)| < r
γ ′
n , sup

θ∈2◦
|r2
nδ

3gn(Xn, θ)| < r−αn

}
.

From the definitions ofXn
0 andXn

1, if Xn ∈ Xn
0 ∩ Xn

1, then

|θ̂n − θ0|6 rγn , |Zn,1| < Crγ−1
n , |Zn,2| < rγ

′−1
n , |R4| < rγ

′
n .

It is easy to show that for anyXn ∈ Xn
0 ∩ Xn

1,

|R1|6 1
6r

3γ−2−α
n , |R2|6 1

2r
2γ−1
n (|Lθ0(θ0)| + rγ

′
n )+ 1

6r
3γ−1−α
n

and

|R3|6 I−1
θ0
(θ0)(r

γ+γ ′−1
n + 1

2r
2γ−1
n (|Lθ0(θ0)| + rγ

′
n )+ 1

6r
3γ−1−α
n ).

Therefore ifXn ∈ Xn
0 ∩ Xn

1, then Lemma 3 implies

r−1
n |R|6 I−1

θ0
(θ0)(r

γ ′−1
n |R3| + 1

2 |Lθ0(θ0)|(2I−1
θ0
(θ0)Cr

γ−1
n |R3| + |R3|2)+

+ 1
2r

2γ+γ ′−2
n + 1

6r
3γ−2−α
n ).

Since 2/3 < γ ′ < γ < 1 and 0< α < 3γ − 2, there exists a constantC1 > 0
such that for anyXn ∈ Xn

0 ∩ Xn
1, |R3|6C1r

1/3
n . Moreover, settingε = min(3γ −
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2 − α, γ ′ − 2/3), we see that there exists a constantC2 > 0 such that for any
Xn ∈ Xn

0 ∩ Xn
1, r

−1
n |R|6C2r

ε
n .

The proof will be complete if we show that

P [Xn
0 ∩ Xn

1] = 1 − o(rn). (4.11)

From Markov’s inequality, we see that

P [(Xn
1)
c] 6 P [|r2

nδgn(Xn, θ0)+ Iθ0(θ0)|> rγ ′
n ] +

+ P [|r2
nδ

2gn(Xn, θ0)+ Lθ0(θ0)|> rγ ′
n ] +

+ P

[
sup
θ∈2◦

|r2
nδ

3gn(Xn, θ)|> r−α
n

]
6 rp2(γ−γ ′)

n E|r−γn (r2
nδgn(Xn, θ0)+ Iθ0(θ0))|p2 +

+ rp2(γ−γ ′)
n E|r−γn (r2

nδ
2gn(Xn, θ0)+ Lθ0(θ0))|p2 +

+ rαp3
n E

∣∣∣∣ sup
θ∈2◦

∣∣∣∣ r2
nδ

3gn(Xn, θ0)

∣∣∣∣
∣∣∣∣
p3

.

Sinceγ−1/p2 > 2/3 and 3γ−2> 1/p3, we can choose someγ ′ ∈ (2/3, γ−1/p2)

andα ∈ (1/p3, 3γ − 2). For suchγ ′ andα, it is shown thatP [(Xn
1)
c] = o(rn). As

is shown in a previous subsection,

P [(Xn
0)
c] = o(rn).

Therefore the proof is complete.
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Note

1Even if the index setNNN is replaced byRRR+, the results of this paper hold true.
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