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Asymptotic Expansion oM -Estimator
Over Wiener Space
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Abstract. In this paper we consider avl-estimator defined as a solution of a given estimating
function. Sufficient conditions of existence of dftestimator and its stochastic expansion are
presented. In the case where the underlying probability space is a Wiener space and the leading
term of the stochastic expansion is a martingale, asymptotic expansions of its distribution function
are obtained with the aid of Malliavin calculus. Applications to a stationary ergodic diffusion model
are also discussed.
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1. Introduction

Let ® C R be a parameter space, a(¥', ", uj;) a probability space for every
n € N! and every € ©. Denote by, the true value of an unknown parameter in
©. In this article we consider avi-estimatoid defined as a solution of an estimating
equationg, (X,, 8) = 0, whereg, is a given estmating function arig, is a random
variable overx”, 1", uy) for everyn € N.

Under some regularity conditions, the probability that a solution of the estimating
equationg,(X,, 6) = 0 exists is close to 1 and an-estimatord, is well defined.
Furthermore, whem;l(én — 6p) has an asymptotic distribution for some positive
sequencér,}, n € N tending to zero, we may obtain a stochastic expangié(ﬁn —

0o) = M, +r,N,+ R,, whereM, andN, are random variables, amR} is aremainder
term which is small in a certain sense. If we have an asymptotic expansion of the
distribution ofY,, = M,, + r, N,,, it is easy to derive an asymptotic expansion of the
distribution ofr,;l(é,, — o) with the help of the well-knowelta method. We will
present a sufficient condition under which lrestimatord, is well defined and it

has a stochastic expansion as above.

Inthe case whergf,, is aterminal random variable of a continuous martingale, the
martingale central limittheorem shows that if the quadratic variatidd,ofonverges
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in probability to a constant anll, has an asymptotic distribution, the distribution of
Y, converges weakly to a normal distribution. As for asymptotic expansions of a mar-
tingale, Mykland [3] obtained asymptotic expansions of the expect@[gh(M,,)]
for a classC?-function £, and Mykland [4] extended these results to higher order
ones. On the other hand, the cases whglie not regular are treated by Yoshida
[8-10] in the light of Malliavin calculus: asymptotic expansionsiify, € B) for
any Borel seB are presented by Yoshida [8], and asymptotic oneB[¢f(Y,,)] for
any measurable function and the local densiy)* Iz e " E[e "y, ] du for a
truncation functional/,, are also obtained by Yoshida [9]. We will apply Theorem 2
of Yoshida [8] to the normalizeM—estimatorrn‘l(é,, — 6p).

The next section presents main results about stochastic expansions and asymptotic
expansions oM-estimator. As an application of them, we tréétestimators based
on a stationary ergodic diffusion process in Section 3. The proofs of main results
with their preliminary lemmas are given in Section 4.

2. Asymptotic Expansions

First we consider the existence of Bhestimator and its stochastic expansion over

a general probability space. Suppose that a parameter §pacebounded interval

in R. The true value of an unknown parameter@nis denoted byd,. For every

6 € ® and everyn € N, let (X", 11") be a measurable space, andXétbe anx”-
valued random variable defined on some probability space. The probability measure
induced byX? is denoted by.?. We abbreviate t&(, a random variabl&’ evaluated

at6 = 0y. Furthermore, suppose that an estimating funcgpns a real-valued
measurable function ak” x © such thatg, (x, -) € C3(® — R%) foranyx € X”.

The differential operatod/a6 is denoted by. Then,M-estimatord, is defined and

its stochastic expansion is given as follows.

THEOREM 1. Assume that for angly € ®° = Int(®), there existp; > 1, po >

1, p3 > 1,y > Owith2/34+max(1/p», 1/3p3) < y —1/p1 satisfying the following
conditions

[C1] sup, lr.gn(Xa, 00)”111 < 00,

[C2] there exists an open interval ¢ ©° includingfy and Iy, (8) € R* such that

inf I5,(0) > 0, sup iy, Y (r28gu (X, 0) + I (0 p, < 00
6e® neN,0e®°

[C3] there exists a functiohg, (6) € R* such that

sup I, Y (r286%g, (X, 0) 4 Lgy(0) | p, < 00
neN,0e®°
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[C4] supll sup|r283g,(X,, O)| |l ps < 00.
neN 6e®°

Then
P[(316, € ©, g,(X,,6,) =0 and (16, — 6| <] =1—o0(r,). (2.1)

Moreover for some extensic@g: X" — ©, there exist constant§ > O ande > 0
such that

P[IRI<Cry™] = 1—o(ry), (2.2)
where
R=r" 0, —00) — (Ig"(00) Zu.1 + rulgy?(00) Zn 1 Zy 2 —
—3rnl.%(00) Loy Loy (00) Z2 ). (2.3)
Zna=ragn(Xn, 000, Zna =1, (r788a(Xy, 60) + 15o(60))- (2.4)
Proof. See Section 4. ]

Remark 1.1f we replace [C2] with the condition that there exists a function
Ip,(8) € R such that

Iy, (60) > 0, sup [lr, 7 (r78gn (X, 0) + Iog 0l 5, < 00,
neN,0e®°

then we see from the~ continuity @f,(6), which is shown in Lemma 1, that there
exists a neighborhoo@ of 6y such that

inf Iy, (6) > 0.
0c®

Then we can obtain the same result as above.

Remark 2.When® = ©°, we obtain the global consistency of fileestimatop,.
For example, consider the maximum likelihood estimator of the family of diffusion
processes defined by the stochastic differential equation:

Theng, is given by

T T
gr((Xo<i<r, 0) =/ b(X,) dX; —9/ b(X,)?dt.
0 0

If fOT b(X,)?dt/ T converges in probability to a positive constahtindependent of
0) asT — oo underfy, thenly,(9) = V and we obtain the global non-degeneracy.
Moreover, if this family is parameterized as= 6 (1), then

Lio(u) = V[Gu) (O W) — 0(uo)) + (0 (w))?.
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For instance, in the case that= /u, 0 < a1 < u < ap, one has

V' 35 12
1, (n) = Zu 3/2u0/ ,

and the global non-degeneracy still holds true.

Next, we consider aM-estimator over Wiener space and present an asymptotic
expansion of its distribution function. For eacle N, let(W", H", P") be a (partial)
r-dimensional Wiener spacét” = Wb x w2 andp" = p®D g pn2,
where(W™ D H" pt.Dyis a usual Wiener space a2, B2 p®2)is g
probability space. LeD’, = be the Sobolev space of Wiener functionals .
Although D’) is equipped with a Sobolev norm dependingmwe denote it by
Il - Il briefly. Denote byor the Malliavin covariance of a Wiener functional
on W". In the following, we suppose that’: W — X" is a random variable on
(W", H", P") for everyd € ® and everyn € N. As defined in Theorem L is a
probability measure og”, 1I") induced fromP” by X¢, andX,, is arandom variable
X? evaluated af = 6. Then theM-estimatom, for X, defined in Theorem 1 can
be regarded as a Wiener functiofalo X,: W" — @. If the leading ternz, ; of
the stochastic expansion in Theorem 1 is a terminal random variable of a continuous
martingale, we can apply the result of Yoshida [8]. For a marting#l&)}o <, < 7.
the bracketM) denotes the predictable quadratic variation procesd ofmoreover
we will abbreviateM (T) to M and(M)(T) to (M), for simplicity.

THEOREM 2. Foranyé, € ©, letd,, Z,1andZ, , be Wiener functionals satisfying
(2.1)—(2.4). Assume that the following conditions hold:

[Al] Z,1,Z,2 € Np=1D") 4 foranyn € N;
[A2] (i) there exist continuous martingaléZ, ,(1)} with Z, , € N,-1D’ , and
(Z;l]_) € ﬁp>1l)r;,,3;
(i) for some positive constamt

SUpIIZ,, 41l p.a + suplir, *(t15,(60)) "*(Z, 1) — Dl p3 +
n n

-1
+ Sup”Zn,Z”pA + 3Up||”n (Zp1— Z;l’l)||[7,4 < 00;
n

n

[A3] there exists a random vectoz, &, ¢, p) such that

((t o 00)) 12, 1, 1 (T lgy(00)) (Z)) 1) — ), Zu2o 1 (Zoa — Z, 1)
= (Z,&,¢,p) In law,

and 9%(E[§]Z = z]¢(z)) is bounded integrable, whekg(z) is the standard
normal density
[A4] there exists a constant> 0 such thatim,,_, Ploz <o) = 0.
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Thenforany > 1, there exists a constaft > 0and a positive sequeneg = o(r,,)
such that

A, <CAA+log (N Ploy <Y +e, (2.5)

where

X

A, =sup P[(Trn)_l(én — 6o) gx] - / Pn(2) dz

—00

, (2.6)

and
Pn(@) = ¢(2) + 3r,02(E[E|1Z = 2]¢(2) —
— ruly (0003 (E [2¢ — 37Lg(00)* + T 0 |Z = 2]9(2) . (2.7)

Proof. This follows immediately from Theorem 2 of Yoshida [8] by means of the
Deltamethod.

3. Diffusion Process

As in the previous section, suppose that the parameter §paca bounded interval

in R, and denote by, the true value of the unknown paramete@inLetb be a real-
valued function orR x ®. In this section, we consider a one-dimensional stationary
ergodic diffusion procesx’ = (X? : t € R, ) defined by

dXt = bg(X[) dt + du},,
with stationary distribution, given by

ng(x)

V@(dX) = W

’

where

ne(x) = eXp(Z /X by () du) .
0

Assume thaby, € C**(R x ®), sup, d,bg(x) < 0, 3,by(x) is bounded in for each
© and there exist positive constamis andC; such that

supl8' 8{ by (x)| < Ca(1+ [x)™, (3.1)
0e®
foranyx € Randforanyi, j =0, ..., 4. Itis thenimmediately shown that for any
p>1
supllX7l, < oo. (3.2)

t€R+
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Note that in this model the random variablé$ are defined on the same Wiener
space, while in Section 2 the underlying probability spades, H", P") of X may
be distinct from each other. For simplicity, we omit the symigdtom the notations
of functions of9 when they are evaluated@t= 6o, for example X = X%, v = vy,.

First, we consider an estimating function given by

T
gr(X,0) = fo(X7) — fo(Xo) _,/o Ag fo(X,) dt,

where f is a given real-valued function d® x ®, andAy is a differential operator
defined by

Ag = 302 + by (x)d,.

This estimating function was treated irahska [5] and also in Yoshida [7], and it
has an advantage because it is robust, that is, in the sengg tisatontinuous inX
with respect to the supremum norm over each compact sktfdf= 8by, it follows
from 1td’s formula that

T T
gr(X,0) = /o 3xf0(Xz)dwt+/c; (0x fo - bap)(X,) dt —

T
—/0 (0x fo - bo)(X;) dt

T T
/ 8y (X1) dX, —/ (8bg - be)(X,) dt,
0 0

and hence that thd-estimator coincides with the maximum likelihood estimator in
this case. In the following, we will verify the conditions in Theorem 1 and Theorem
2 for this estimating functiorgy, and will present an asymptotic expansion of the
distribution of theM-estimator corresponding & (X, 0) = 0. Suppose thafy <
C5>*(R x ®) and there exist positive constamis andC, such that

sup|8’d/ fo(x)| < Ca(1 + |x|™2), (3.3)
0e®

foranyx e Randforanyi =0,...,4,j =0,...,5. Denote’ (A, fy) by kg ; for
eachi = 0,...,4. Then sup|ky ;| have at most polynomial growth order. Define
Ig,(9) and Ly, (6) by

lgy(0) = v(kg,1) and Lg,(0) = v(ko2), (3.4)
respectively. LeZ; ; andZr » be Wiener functionals defined by

Zr1=T "gr(X, 60) (3.5)
and

Zro=TY(T7 g1 (X, 60) + Is(60)). (3.6)
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Assume either that

V(8 fo)?) > 0, inf I,,(6) > 0 (3.7)
[4=C)

for an open interva® c ©° includingéy, or that

v((8y fo)?) > 0, I4,(Fo) > 0. (3.8)
Denote byr a constant/v((dx fs,)?)/ s, (00). For continuous function: R — R,
defineG,: R — R by

Gi(x) = —/i/ 20 (u)h (i) du dy,
0 ”(Y) y

/oon(u)lh(u)ldu < 00.
0

Let

1 t
ZT,l(t) = ﬁ/(; axfOO(Xs) dwm

then we see from d&ts formula thatZ; 1 = Zr1(T). Therefore we will regard
Zr 1 itself as the terminal random variab#g. ; given in Assumptions [A2]-[A4] of
Theorem 2. Sincé, G, = h for any continuous function with v(h) = 0, we have
that

T
Zro = T Y28 fs(X1) — 8fsy(Xo)) — T2 fo (koo 1(X ) — v(koy.1)) Ot

T
— 0,(1) = T"Y2(G(X1) — G(Xo)) + T2 /O 5,G(X,) du,

T
= 0,(1) + T‘l/Z/ 3. Gr(X,) dwy,
0
wherek = kg, 1 — v(kgy.1). Similarly, we see that

_ _ "1 (0 fa)2(X1)
o 2 o 1/2 o _
T((tlgy(60) (Zra)r —1D =T /0 [—V((axfgo)z) 1] dr

T
= 0,(1) — T‘l/zf 3, Gi(X,) dw,,
0
where
_ (axféo)z(x)

iy = Qefa)’0) )
)= G fD
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It is easy to show from Lemma 6 of Yoshida [10] tléaG; andd, G; have at most
polynomial growth order. Therefore, it follows from the martingale central limit
theorem that

(T15o00)) " Z1.1, VT (T 195(60) *(Z7.2)7 — 1), Zr1.2)
= N@©,X) asT — oo,
whereX = (%; ;) is a symmetric matrix given by
_ V(Bx foo - 0xGp) V(i foo - 0:Gp)
V(@ fa)® (3 f0)?)
v((0:Gp?) —v(9: G- 0:Gp)
sym v((0:Gp)d)

This implies that Assumption [A3] of Theorem 2 holds with ; = Z; ; andp = 0.
Assumptions [A1], [A2] and [A4] can also easily be verified from Lemmas 2, 4, and
5 of Yoshida [10] and from Lemma 7 of Yoshida [10], respectively.

Let us verify the conditions [C1]-[C4] in Theorem 1. From the Burkholder—
Davis—Gundy inequality, we have that for some constgnt- 0 depending only on
p1>1,

T P1 1/[71
ITY2g7 (X, 00)llpy, = T—W{E[( fo axfao(x,)dwt) “
T p1/2 Y
< cplT‘l/Z{E{(/ (axfeo(X,))Zdt) “ :
0

Owing to Jensen’s inequality and (3.3), we see that

IT~Y2g7 (X, 00)l py < €py 10x fo (X0 2, < 00.

Hence [C1] of Theorem 1 holds. In the same fashion, we see that for an® and
any p» > 1 there exists a positive constant > 0 depending only op, such that

wherek, (x) = ko 1(x) — v(kg 1). Therefore we obtain from the stationarityXfthat
fory > Oandp, > 1,

-1/2
<CpT V218,66, (X0) 129
p2

T
Tv/271 / 3G, )(X7) du,
0

1T (T 887 (X, 0) + I, (0) | ,
<2128 [y (Xo)lp, + 2T/ * G 0 (Xo)lp, +

+ ¢p TY 2118, Gr, () (X0)ll2ps-
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Applying the same argument as in the proof of Lemma 6 in Yoshida [10] together
with (3.1) and (3.3), we see that there exists a positive consgtaand a positive
integerm3z such that

SUP|Gp, vy (X)] < C3(1+ [x]™®) and  sufd, G, ()| < Ca(1+ [x|™).
0c® 0e®

Thus, it follows that fory € (0, 1), p» > 1 ande > 0,

sup I TY2(T8gr (X, 0) + Igy (), < 00.
T>€,0€0°

Combining this and (3.7) (or (3.8)), we see that [C2] of Theorem 1 holds. In exactly
the same way, it follows that far € (0, 1), po > 1 ande > 0,

sup |IT"2(T718%gr (X, 0) + Log(@))ll p, < 00,
T>e€,0e@°

and hence that [C3] of Theorem 1 holds. Furthermore, it follows from Sobolev’s
inequality that for some constafitye > 0

I sup|T 1837 (X, 0)] Il ps
0e®°

1/ps
< Ceor (/ 1T~ 837 (X, 0))173 do + / ||T18“gT<X,9)||§gde)
@° @°

p3
< Coo|©°|Y/P2 ((sup 1T 837 (X, 9>||p3) +
fe®°

pa\ 1/p3
+<sup||T—la4gr<X,9>||p3) ) :

fe®°

Since

1T gr (X, Dllps < 2T IS f3(X0)lps + 2T Gy y—vito ) (X0) I ps +
+ Cps T V2118, Gy s — ity ) (X0) | g + 1 (ka0

for eachi = 3, 4 and for some constanf, > 0, itis also seen that fgyz > 1 and
e > 0,

supl| sup|7~*6%¢7 (X, 0)] |l p < 0.

T>e 0e®°
Thus we see that the conditions [C1]-[C4] of Theorem 1 holds. Consequently, the
verification of the assumptions in Theorems 1 and 2 is completed. In this way, we
have:

THEOREM 3. A:ssumethat (3.1),(3.3)and (3.7) (or (3.8)) hold true. Then there exists
an M-estimatoi¥; corresponding to the estimating functigpn, and the asymptotic
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expansion of its distribution function is given by

PWTt Y 0r — o) <x) = () + 2jle,z(l — ) (x) —
1 L6 (= L Lo, (0
~ 7 ( o)( 13~ 5T b o)) X
x x2¢(x) + 0(1/T).

We give the results of the numerical studies of this asymptotic expansion in
Figures 1 and 2. In the formex? is the diffusion process correspondingtax) =
—6x, the Ornstein—Uhlenbeck process, and in the laki@iis the diffusion process
corresponding tay(x) = —0(x2 + x). In each figure M-estimator is the max-
imum likelihood estimator, and asymptotic expansions given above are compared
with the true distribution functions obtained by Monte-Carlo simulations (100 000
repetitions).

Next we consider a slightly different estimating functigndefined by

T
gr(X,0) = —/0 Ap fo(X,) dt.

Taking the same steps as fgr, one can easily show that conditions [C1]-[C4] hold
true for thisgy with 75, andLg, defined by (3.4), and that there existsirestimator
6r satisfying (2.1)—(2.4). Defin&; ; andZ7 , by

Zra=TY?§:(X,00) and Zrp=TY>(T7183r (X, 60) + Ig,(b0)),

respectively. Then we can show tf%gt,l andZm € m,,>lD;’,’4 in the same fashion

as forZ; 1 andZr » given by (3.5) and (3.6), respectively. In this cage, itself is

not a terminal random variable of a martingale, but we see that the terminal random
variable Z ; satisfies assumptions [A2]-[A4] of Theorem 2 féﬁl and ZT,Z as
follows. From (3.2), (3.3) and the stationarity Bf it is easy to show that for any

p > landany > 0,

SUPIVT (Zr1 — Zr.1)l p.a = SUPIl fon(X7) = fap(X0) I p.a < 00.

T>e¢ T>e¢
We can also show from (3.1), (3.3), and Lemmas 2, 4, 6 of [10] that fopanyl
and anye > 0,

T
supll Zr2llpa = sup|| T2 / k(X,)dt] .4
0

T>e T>e

= sup||T Y3(Gi(X7) — Gi(Xo) |l p.a +

T>e

T
+supIT 2 [8,G() du . < .
0

T>e
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Figure 1. Distribution functions of\/-estimatorpy (x) = —6x.
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Therefore it suffices to show [A3] of Theorem 3. Let

\Z3

*
T,

and

Vre=—=

It then follows that the asymptotic distribution of the random vector

((Tlo)) 2 Z70, NT (T Iog) 2 Zr2)1 — 1), Z1.20 fao(X7)s fo(X0))

1

1

\/T‘L’Igo

l T—T1Y2

_ﬁ T2

T1/2

1 T—T1/2

JT Jrae

0 G7(X;) dwy,

0,Gr(X,) dw,.

1 T-TY/?
f B, foo(X,) cu,.

95
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Figure 2. Distribution functions of¥/-estimatorpy (x) = —0(x3 + x).

is equal to the asymptotic one Ofr 1, V7 1, Vr 2, fo,(X1), fa,(X0)). SinceXr has
a strong mixing property (cf. Doukhan [1]; Veretennikov [6]; Kusuoka and Yoshida
[2]), we obtain from covariance inequality that for am, ... , us) € R®,
E[exp(~/ =1(u1Vr 1+ u2Vy 1 + usVr 2 + uafo,(X1) + us fo,(X0)))]
— E[exp(—3(u1, uz, uz) T (u1, uz, us))]
x E[exp(v/—Lua fo,(X0)] E[eXp(v/—Lus fo,(X0))],

asT — oo. Thus we see from Theorem 2 that the asymptotic expansiah of
coincides with that of;.

THEOREM4. Assume that (3.1), (3.3) and (3.7) (or(3.8)) hold true. Then there exists
an M-estimato; corresponding to the estimating functi@pn, and the asymptotic
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expansion of its distribution function is given by

- 1
P(WTt Y0 — ) <x) = <I>(x)+2 ﬁzl,z(l—x%gb(x)—
irle (2 }L 9)2 )+
~ 7 (o) | 13— 57 60(6o) | x“¢(x
+ o(1/VT).

4. Proof of Theorems
We first present some preliminary lemmas.
LEMMA 1. Assume thaiC2]-[C4]in Theorem 1 hold for some > 0, p» > 1and

p3 > 1. Thenly, € C1(©°) and sy, (0) = Lgy(0).
Proof. Settingp = min(p», p3), then for anydy, 6, € ©°,

|Lgo(61) — L, (62)]
2

01
< 3 252,00 + L@, + | [ 128, (X, 001 1,
i=1 02

2
<PV Y (12828, (Xns 60)) + Loy 01, +
=1

+ 161 — 62| sup 12838, (X, )|l -
0e®°

From [C3] and [C4] in Theorem 1, there exists a constamdependent of; and
6, such that

[Lgy(61) — Lgy(62)| < Cl01 — 02].

This implies thatLg,(0) is continuous or®°. Furthermore, for anyy, 6, € ®°,

01
1oy (61) —190(92)—/ L90(9)d9‘

02

2

< Nr28gn (X 6) + Tog (01, +
i=1

01
/ 12828, (X, 0) 4 Ly (6)] d6
o

2

+

P2
2
<P Y Iy (r28gu (X, 00) + Log(0) 1, +
=1

+ 161 — O2lrY supllr, Y (r28%g, (X, 0) + LagO) |l p,-
fe®°
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Therefore it follows from [C2] and [C3] in Theorem 1 that

01
Igy(01) — 1g,(02) = / L, (6) do

02
SinceLg,(#) is continuous or®°, it is seen thas Iy,(0) = Lg,(6). O

LEMMA 2. Lety > 0O andp, > 1with yp, > 1. Assume thafC2]-[C4] in
Theorem 1 hold. Then there exists a constant C independerguath that

P[inf (—r28g.(X,, 0)) > C] =1 —o(ry).
0e®

Proof. From [C2] in Theorem 1, there exists a const@rihdependent of such
that inf,_g 15,(6) > 2C. Therefore it follows that

P [in[ (—r28gn(Xu, 0)) < C}
6ec®

<P [int(—r,fégn(Xm 60) — 1, (0)) + Inf I5, () < C}
0e® 0e®

<P [SUIOIrngn(Xn, 0) + Iy, (0)| > C} .
Hed

From Sobolev’s inequality and Lemma 1, it is seen that for¥ny X", there exists
a constanCq > 0 independent of such that

sup(r28g, (X, 0) + Ig,(0)]
9e®

<Cg (/ |r788n(Xn, ) + 15,(6)72 dO+
(S]

1/p2
+ f 1r26%gu (X, 0) + Ly (0)]72 de) ,
(S]

This shows that

P [Suplr,ngn(Xn, 0) + 1oy (0)] = C}
0e®

1 C P2
<P | 1r288,(X0,0) + Ipy@)2d0 > [ — ) |+
o 2\C
1/C

p2
+ [/ |r352gn(Xn,9)+Loo(9)|”2d9>—<—) }
® 2 C(;)

N\ P2
<2 (%) <E [/ |r288n (X, 0) + Iy ()7 dG} +
(C]

(C]

+E U 12828, (X, 0) + Ly (0)]72 d@])
e
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(OF Pz
<2 (_0) 1©[ry72 | supllr,” (rZ8gn(Xn. 0) + Igy (0172 +
¢ EE)

+ suplir, ” (ry8%g, (X, 0) + L90<0>)||§§> :
He®

Sinceyp, > 1, it follows that

P [int<—r38gn<xn, 0)) < C} = o(ry),
6e®

which completes the proof. O

In the following lemmayg, stands for a generic point i@° not necessarily the
M-estimate.
LEMMA 3. For any sequencé, € ©°, R defined by (2.3) can be rewritten as
R = I;*(600)(raZn2R3 — 3raLoy(00) (215 (60) Zu 1 R3 + R3) +
+ %F;1R4(é” - 90)2 +raR1 — 1 gn(Xa, én))s

where
1 ! 2¢3 A A 3
Ry = 5/ (1—1)°6°8,(Xn, 60 + t (6, — 6p)) dt (6, — 60)°,
0

Ry = 1r,6%g,(X,, 00)6, — 00) + r, Ry,

Ry = I, "(00)(Zn2(0y — 00) + Ro — rugu(Xu. 6,)),
and
R4 = 12828, (X, 60) + Lo, (60).

Proof. Sinceg, (X,,0) € C3(®° — R)foranyX, e X",itfollows from Taylor's
formula that

80 (X, ) — 82(X,00) = 884(X,,60)(Bn — 60) +
+ 26%8.4(X,, 00) (6 — 60)* + Ru. (4.9)

Since

rfggn(xn’ Oo) = rnZn,Z - 100(90)a Zn,l = rngn(Xna 80).
it follows from (4.9) that

rngn(Xm é\n) - Zn,l - (rnZn,Z - 190(60))7;1(9,1 - QO) +

+ 21,8224 (X,0, 00) (01 — 00)* + ru Ry
= —Ig,(00)r; 20, — 60) + Z,.2(6, — 60) + R2.
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Hence we obtain that
1y 20 — 00) = 15, " (00) Zu1 + Rs. (4.10)
Moreover, we have from (4.9) and (4.10) that
780Xy 00) — Zu1 = (rnZu2 — 19, (00))r, (6, — 60) +
+ 21 (R — Log(00)) (r; 260 — 00))% + ru R1
= —Igy(O0)r, 20y — 00) + 14 Zn2(Ig, (00) Zy1 + R3) —
— 3raLgy(00) (U5, (00) Zn.1 + Ra)* +
+ %r,;lel(én — 90)2 +r,R1
- _190(90)7‘;1_1(9/1 - 90) + rnlggl(eO)Zn,lZn,Z -
— 2raLgy(00) 15,2 (B0) Z2 1 +
+ rnZn2Rs — 37 Loy (00) (215, (00) Zy.1Rs + R3) +
+ %rn_lRﬁl(én - 90)2 + ryRy.

Therefore the proof is complete. O

Proof of Theorem 1For someC > 0, letXf be the subset " defined by

X5 ={X, € X"inf (—r%6g,(X,,0)) > C,  |r>7g,(X,,60)| < C},
0ec®

and letl", (v) be a function on{1, 1] defined by

2—y
T'n gn(Xn» 90)
I'y(u): = i » .
fo (_ry%agn(Xnv 0o + rput)) dt

Suppose thatg € N satisfies tha¥n > no, (6o — r., 60 + r}) C ©. Then, for any
X, € X{ and anyn >no, I', (1) € [—1, 1]. Therefore it follows from Brouwer’s
fixed point theorem that ik, € X andn > ng, then there existsa e [—1, 1] such

thatl", (i) = u. Settingén = 0o + r} i1, we have from Taylor’s formula that
A 1 A~ A
8n(Xn, 0n) = gu(X,, 6o) +/ 88n (X, 60 + t(6, — 6p)) dt (6, — 6o)
0
1
— g (X, 0) — / (=128, (Xn, 6o + 1/ iir)) der? 2
0
1
= r’73(, @) — ﬁ)/ (—128g,(X,1, 00 + rYait)) dt = 0.
0

Sinceg, (X,, -) is monotone or® for any X,, € X3, we see that ifx,, € Xj and
n > no, then there exists a uniqég € © satisfyingg, (X, 6,) = 0 and sucld, lies
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in ther) -neighborhood o8y. The proof of the first assertion of Theorem 1 will be
complete if we show that

P[Xp] =1—o(ry).
From [Cl]andy < 1—1/p1,

A-y)p1
P[r277 g, (X, 60)| > C] <

70 gn (X, B0) I} = 0(rn).

Combining this and Lemma 2, we obtain that
P[(Xp)]<P [inf (—r28g,(Xu, 0)) < C} + P[rZ7 g,(Xy, 60)| = C] = o(ry).
0e®

Thus we have the first assertion of Theorem 1:
P[(310, € ©, 8,(X,,0,) =0 and (16, — ol < r)] = 1— o(r,).

If n > no, thend, is well defined as a unique solution of the equagp@X,,, 6) = 0
forany X, € Xj. We extend), to a®-valued random variable on the whole ¥f
and denote it by the same symisq!

Let us prove the second half of Theorem 1. Fbe (2/3, y) anda € (0, 3y —2),
let X’ be a subset of” defined by

X = {Xn € X"| |r28¢u(Xn, 00) + Igy(B0)| <17,

126280 (Xo, 00) + Lag(0)| < Y, SUPr28%g, (X, 0)] <1, }
0e®°

From the definitions okj andX], if X, € X§ N X7, then

10p — 6ol <7Y, |Zual < Crl™Y |Zyol <1l 7Y |Ral <7
It is easy to show that for any, e X N X7,

[RUI< G2 |Ral < 3rd M Lgp(B0)| + 1) + g 1
and

|Rs| < I, (O0) (r} T ™+ 312V M Loy (B0)| + 7)) + 2r ).
Therefore ifX, € Xj N X7, then Lemma 3 implies

ra HRI< I (B0) () YRl + 4 | Ly (60)| (215, (00)Cr | Rs| + | Rsf?) +
AL A

Since 23 <y’ <y <landO0< o < 3y — 2, there exists a consta@y > 0
such that for anyX,, € X§ N X7, |R3| gClrnl/s. Moreover, setting = min(3y —
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2 —a,y’ — 2/3), we see that there exists a consté@ht > 0 such that for any
X, € X3N XL, r 7RI < Corf
The proof will be complete if we show that

PIX{NX]] =1—o0(rn). (4.12)
From Markov’s inequality, we see that

PLEDT < P[r28g.(Xu. 60) + Ipy(B0) | =11 +
+ P[[r28%g,(X,, 60) + Lop(60)| =171 +

+ P [sup r283g,(X,,, 0)] > r,:“}
0e®°

er(V_”/)Elr;y(V,?Sgn(Xm o) + I5,(60))7* +

+ 120V E = (128528, (X ., B0) + Lo (60))|72 +
pP3

N

+ r2P3E | sup| r28%g, (X, 6o)

fe®°

Sincey —1/p, > 2/3and 3 —2 > 1/ p3, we can choose some € (2/3, y —1/p2)
anda € (1/ps3, 3y — 2). For suchy” anda, it is shown thatP[(X])] = o(r,). As
is shown in a previous subsection,

P[(Xp)T = o(ry).

Therefore the proof is complete.
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Note

1Even if the index seN is replaced byR ,, the results of this paper hold true.
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