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ASYMPTOTIC EXPANSION FOR STOCHASTIC
PROCESSES: AN OVERVIEW AND EXAMPLES

Yuji Sakamoto* and Nakahiro Yoshida**

The asymptotic expansion method for ε-Markov processes with a mixing prop-
erty is briefly reviewed. It is illustrated by a point process marked by a diffusion
process. As a typical application, the expansion formula for the M -estimator based
on ε-Markov data is exhibited.

Key words and phrases: Asymptotic expansions, ε-Markov process, Malliavin cal-
culus.

1. Introduction

The aim of this article is to give an overview of the developments in the
theory of the asymptotic expansion for stochastic processes of continuous time.
Today we know two typical methods of asymptotic expansion: the martingale
approach and the mixing approach. These methods are complementary to each
other. The martingale approach was found first and applied to derive an asymp-
totic expansion for ergodic diffusion processes. However, if the diffusion process
satisfies a sufficiently nice mixing condition, then the mixing approach is more
effective. On the other hand, the martingale approach is still useful when the
higher-order terms do not obey an asymptotic normal law, which makes it im-
possible to apply the mixing approach. Such examples are seen in a stochastic
regression model with a long memory explanatory variable, and in estimation
of a volatility parameter over a finite time interval. In the latter example, the
data is strongly time dependent, so that it requires a global estimate of the
smoothness of random variables. In this sense, the martingale approach is also
called the global approach. Contrarily, the mixing approach is called the local
approach since the regularity often comes from a local (in time) estimate of the
characteristic function.

We will focus our attention on the mixing approach in this article. In Sec-
tion 2, we recall a stochastic process having the “ε-Markovian” structure as an
underlying stochastic process. The ε-Markov model written in continuous time
may seem to be complicated, however it has an advantage because nonlinear
(Markovian) time series models are included in the present model by natural
embedding. Section 3 gives an illustrative application. We demonstrate an ap-
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plication of the Malliavin calculus to verify the condition for the regularity of the
distribution. We hope our discussion here explains intuitively how the Malliavin
calculus works in the theory of the asymptotic expansion. The use of a sup-
port theorem is effective in the treatment of the nondegeneracy of the Malliavin
covariance, see Yoshida (2004). Sections 4 and 5 give other applications. We
refer the interested reader to: Kusuoka and Yoshida (2000) for the mixing prop-
erty and asymptotic expansion of diffusion functionals, Sakamoto and Yoshida
(2004a) for expansion of a functional admitting a stochastic expansion for the
ε-Markov process, Sakamoto (2000) for testing problems, Sakamoto and Yoshida
(2003) for the degenerate case, Uchida and Yoshida (2001) for Akaike’s infor-
mation criterion and others, Yoshida (1997, 2001) for martingales, Masuda and
Yoshida (2005) for application to a stochastic volatility model, and Kutoyants
(2004) for the inference for diffusion processes.

2. ε-Markov process and asymptotic expansion

We consider a d-dimensional càdlàg process Y and an r-dimensional càdlàg
process X on a probability space (Ω,�, P ). For an interval I ⊂ R+, let �X,Y

I be

the σ-field generated by Xt, Yt (t ∈ I), and �dX
I the σ-field generated by Xt−Xs

(s, t ∈ I). Suppose that �X,Y
[0,t] is independent of �dX

[t,∞) for all t ∈ R+, i.e., X is

a process with independent increments. Denote by �Y
I the σ-field generated by

Yt (t ∈ I), and we assume that there exists a nonnegative constant ε such that
Yt is �Y

[s−ε,s] ∨ �dX
[s,t]-measurable for all s, t > 0 with ε ≤ s ≤ t. The process Y is

called an ε-Markov process driven by X. We consider an n-dimensional stochastic
process Z such that Z0 is �[0]-measurable and that the increment Zt−Zs is �[s,t]-

measurable for every s, t ∈ R+, 0 ≤ s ≤ t, where �I = �Y
I ∨ �dX

I . Examples of
Y are diffusion processes, nonlinear AR models, cluster processes and diffusion
processes with jumps.

We are interested in a higher-order approximation of the distribution of ZT .
For this purpose, we consider a model with a mixing property as well as the
existence of moments. Let

α(s, t) = sup
B1∈�[0,s],B2∈�[t,∞)

|P [B1 ∩B2] − P [B1]P [B2]|

and let α(h) = suph′≥h,s∈R+
α(s, s+ h′). We will assume

[A1] There exists a constant a > 0 such that α(h) ≤ a−1e−ah for all h > 0.

Let p ∈ N with p ≥ 3.

[A2] There exists a positive number h0 such that

E[|Z0|p+1] + sup
t,h:t∈R+,h∈[0,h0]

E[|Zt+h − Zt|p+1] <∞

and E[Zt] = 0 for all t ∈ R+.
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We need a condition that insures the regularity of the distribution of the
increments of Z. Suppose that there exist intervals I(j) = [u(j), v(j)] and sub
σ-fields �′

[v(j)−ε,v(j)] of �[v(j)−ε,v(j)] (j = 1, . . . , n′(T )) for which the following
conditions hold:

(i) ε < u(j) ≤ u(j) + ε < v(j) ≤ v(j) + ε < u(j + 1).
(ii) Conditional expectation operator E[· | �[v(j)−ε,v(j)]] = E[· | �′

[v(j)−ε,v(j)]] on

b�[v(j),∞).
1

(iii) lim infT→∞ n′(T )/T > 0 and 0 < infj,T (v(j)−u(j)) ≤ supj,T (v(j)−u(j)) <
∞.

Then (I(j)) form dense reduction intervals with Ĉ(j) = �[u(j)−ε,u(j)] ∨
�′

[v(j)−ε,v(j)].

[A3] There exist truncation functionals ψj : (Ω,F) → ([0, 1],B([0, 1])) and con-
stants a, a′ ∈ (0, 1) and B > 0 such that 4a′ < (1 − a)2 and
(i) 1

n′(T )

∑
j E[supu:|u|≥B |E[eiu·ZI(j)ψj | Ĉ(j)]|] < a′ for large T , where

ZI(j) = Zv(j) − Zu(j).

(ii) 1
n′(T )

∑
j E[ψj ] > 1 − a for large T .

Remark 1. In order to validate an asymptotic expansion formula, it suffices
to assume that α(h) decays at a sufficiently large polynomial order. It is possible
to relax [A3], though it is sufficient for our use here; see Yoshida (2004).

As usual, we prepare the notations for the representation of the expansion.
Let χT,r be the r-th cumulant function of T−1/2ZT defined by

χT,r(u) =
dr

dεr
(logE[exp(iεu · T−1/2ZT )]) |ε=0 .

Obviously, χT,r’s are polynomials in u = (u1, . . . , un) satisfying

χT,r(u) = ir
n∑

α1,...,αr=1

λα1···αruα1 · · ·uαr

where λα1···αr is the r-th cumulant of T−1/2ZT . Particularly, denote the co-
variance matrix (λα1α2) by ḡ. For any positive definite matrix σ = (σαβ), the
Hermite polynomials hα1···αj are defined by

hα1···αj (z;σ) =
(−1)j

φ(z;σ)
∂α1 · · · ∂αjφ(z;σ), ∂α =

∂

∂zα
,

where φ(z;σ) is the density function of the normal distribution with mean 0 and
covariance matrix σ. Define the functions P̃T,r(u) by the formal Taylor expansion:

exp

( ∞∑
r=2

εr−2

r!
χT,r(u)

)
= exp

(
1

2
χT,2(u)

)
+

∞∑
r=1

εr

T r/2
P̃T,r(u).

1 For any σ-field �, b� denotes the set of bounded �-measurable functions.
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Denote by Ψ̂T,k(u) the k-th partial sum of the RHS of the above equation with

ε = 1, and define a signed measure ΨT,k as the Fourier inversion of Ψ̂T,k. It is
called the (formal) Edgeworth expansion, and can be represented by the density
function

ΨT,k(z) =
k∑

j=0

T−j/2ΞT,j(z)φ(z; ḡ),

where ΞT,j(z)’s are polynomials in z defined by ΞT,0(x) = 1 and

ΞT,j(z) =

j∑
m=1

1

m!

∑
k1+···+km=j
k1≥1,...,km≥1

λ̄
α1

1···α1
k1+2 · · · λ̄αm

1 ···αm
km+2

(k1 + 2)! · · · (km + 2)!
hα1

1···α1
k1+2···αm

1 ···αm
km+2

(z; ḡ)

for j ≥ 1 with λ̄
αi

1···αi
ki+2 = T ki/2λ

αi
1···αi

ki+2 . Note that αi
s’s are indices running

from 1 to n and that we here adopt the Einstein summation convention for them.
For M > 0 and γ > 0, the set E(M,γ) of measurable functions on R

n is defined
by

E(M,γ) = {f : R
n → R, measurable, |f(x)| ≤M(1 + |x|)γ (x ∈ R

n)}.

For measurable function f : R
n → R, positive definite matrix σ and r > 0, let

ω(f, r, σ) =

∫
Rn

sup{|f(x+ y) − f(x)| : |y| ≤ r}φ(x;σ)dx.

We then have the following asymptotic expansion formula.

Theorem 2.1. Assume that χT,2(u) → −u′Σu as T → ∞ for a positive
definite matrix Σ. Let Σo be a symmetric matrix satisfying Σ < Σo. Suppose
that the Assumptions [A1], [A2], [A3] are fulfilled. Then for any k ∈ N, M , γ,
K > 0, there exist constants δ > 0 and c > 0 such that for f ∈ �(M,γ),

|E[f(T−1/2ZT )] − ΨT,k[f ]| ≤ cω(f, T−K ,Σo) + ε
(k)
T ,

where ε
(k)
T = o(T−(k+δ)/2) uniformly in �(M,γ), and

ΨT,k[f ] =

∫
Rn

f(z)ΨT,k(z)dz.

Each discrete time model, e.g., m-Markov chains, can be embedded into a
continuous time ε-Markov process considered here, and therefore the theorem
above can be applied to such models.

For any matrix-valued deterministic process (Ct) converging to a non-singu-
lar matrix, the distributional expansions of T−1/2CTZT and a transform of it can
be derived from this result. Since most of the statistical estimators are asymptot-
ically equivalent to a transform of T−1/2CTZT , their distributional asymptotic
expansions are also obtained as applications. See Sakamoto and Yoshida (2004a).
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3. Point process marked by a diffusion process

We will discuss an illustrative example. For any T > 0, let X = (Xt)t∈[0,T ]

be a d-dimensional stationary diffusion process satisfying a stochastic differential
equation

dXt = V0(Xt)dt+ V (Xt)dwt,(3.1)

where V0 = (V i
0 )i=1,...,d ∈ C∞

b (Rd; Rd) 2, V = (V i
α)i=1,...,d,α=1,...,r ∈ C∞

b (Rd; Rd ⊗
R

r), and w is an r-dimensional standard Wiener process. Let N be a Poisson pro-
cess with intensity λ and independent of X. We are interested in the asymptotic
expansion of the normalized additive functional Z̄T defined by Z̄T = T−1/2ZT

and

ZT =

∫ T

0
g(Xt)dNt,

where g ∈ C∞
↑ (Rd) 3 and E[g(X0)] = 0. In terms of the previous section, X is

a 0-Markov process driven by (w,N), and Z is an additive functional of w, N ,
and X.

Suppose that (i) E[|X0|p] < ∞ for any p > 0 and that (ii)4 there exists a
positive constant a such that

‖E[h | �X
[s]] − E[h]‖1 ≤ a−1e−a(t−s)‖h‖∞

for any s, t ∈ R+, s ≤ t and for any bounded �X
[t,∞)-measurable function h,

where �X
I = σ[Xt : t ∈ I]. Note that (i) and (ii) ensure [A1] and [A2] in the

previous section if we regard the Wiener and Poisson processes (w,N) and the
diffusion process X in this section as driving process X and ε-Markov process Y
respectively in the previous section; see Lemma 1 of Yoshida (2004).

Since the characteristic function ϕ(u) of Z̄T is given by

ϕ(u) = E

[
exp

{∫ T

0
λ(eiuT

−1/2g(Xt) − 1)dt

}]
,

any cumulant of Z̄T can be easily obtained. For example, the second and third

cumulants, κ
(2)
T and κ

(3)
T , are given by

κ
(2)
T = E

[(∫ T

0
λT−1/2g(Xt)dt

)2
]

+ E

[∫ T

0
λT−1g(Xt)

2dt

]
,

κ
(3)
T = E

[(∫ T

0
λT−1/2g(Xt)dt

)3
]

+ 3E

[∫ T

0
λT−1g(Xt)

2dt

∫ T

0
λT−1/2g(Xt)dt

]

+ E

[∫ T

0
λT−3/2g(Xt)

3dt

]
.

2 C∞
b is the space of smooth functions with bounded derivatives of positive order.

3 C∞
↑ denotes the space of smooth functions, all derivatives of which are of at most polynomial

growth.

4 Veretennikov (1987, 1997) and Kusuoka and Yoshida (2000) provided sufficient conditions for (ii).
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The principal parts of the above expectations can be represented by the Green
function for the generator

A =
d∑

i=1

V i
0 (x)

∂

∂xi
+

1

2

d∑
i,j

r∑
k=1

V i
k (x)V j

k (x)
∂2

∂xi∂xj

of the diffusion process X. For a measurable function f : R
d → R, let G〈f〉 be a

function such that AG〈f〉 = f − ν(f), and [f ] = −V ′∇G〈f〉, where ν(f) is the
expectation of f w.r.t. the stationary distribution ν of X: ν(f) =

∫
Rd f(x)ν(dx).

We then have

κ
(2)
T = λ2ν([g] · [g]) + λν(g2) +O(T−1)

and

κ
(3)
T =

1√
T
{3λ3ν([[g] · [g]] · [g]) + 3λ2ν([g] · [g2]) + λν(g3)} +O(T−3/2).

For simplicity, we will assume uniform ellipticity: there exists a positive
constant c0 such that

ξ′V (x)V (x)′ξ ≥ c0|ξ|2 (ξ ∈ R
d).

Let 0 < t1 < t0, and let Ȳ be the solution to the variational equation:

dȲt =

[
∂xV0(Xt) 0

∂xAg(Xt)1{t≤t1} 0

]
Ȳtdt+

r∑
α=1

[
∂xVα(Xt) 0

∂x((∂xg)Vα)(Xt)1{t≤t1} 0

]
Ȳtdw

α

Ȳ0 = Id+1.

We apply the partial Malliavin calculus that shifts only the Wiener part and
keeps the initial value X0 and the Poisson part unchanged. Define a process gt
by the stochastic differential equation

dgt = 1{t≤t1}Ag(Xt)dt+
r∑

α=1

1{t≤t1}∂xg(Xt)Vα(Xt)dw
α
t ,

g0 = g(X0).

For an element h = (hαt )α=1,...,r;t∈[0,t0] of the Cameron-Martin space, the H-
derivative (DhXt, Dhgt) satisfies the stochastic differential equations

dDhXt = ∂xV0(Xt)DhXtdt+ ∂xVα(Xt)DhXtdw
α
t + Vα(Xt)ḣ

α
t dt,

dDhgt = 1{t≤t1}∂xAg(Xt)DhXtdt+ 1{t≤t1}∂x((∂xg)Vα)(Xt)DhXtdw
α
t

+ 1{t≤t1}∂xg(Xt)Vα(Xt)ḣ
α
t dt,

DhX0 = 0, Dhg0 = 0

by using Einstein’s convention. This implies that[
DhXt

Dhgt

]
=

r∑
α=1

Ȳt

∫ t

0
Ȳ −1
s

[
Vα(Xs)

1{s≤t1}∂xg(Xs)Vα(Xs)

]
ḣαs ds.
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Then, on the event {∆Nt1 = 1, Nt0 = 1}, the Malliavin covariance matrix σ of

(Xt0 , Zt0) = (Xt0 , g(Xt1)) = (Xt0 , gt0)

corresponding to the shift of w |[0,t0] is given by

σ =

∫ t0

0
Ȳt0 Ȳ

−1
t

[
v(Xt) 1[0,t1]v(Xt)(∂xg(Xt))

′

sym. 1[0,t1]∂xg(Xt)v(Xt)(∂xg(Xt))
′

]
(Ȳ −1

t )′Ȳ ′
t0dt,

where

v(x) =
r∑

α=1

Vα(x)Vα(x)′.

Take a point x∗ ∈ R such that ∂xg(x∗) �= 0. We can choose sufficiently small
t0 > 0 so that

σ∗ :=

∫ t0

0

[
v(x∗) 1[0,t1]v(x∗)(∂xg(x∗))

′

sym. 1[0,t1]∂xg(x∗)v(x∗)(∂xg(x∗))
′

]
dt

is positive definite uniformly in t1 on some nonempty interval [t−, t+] ⊂ (0, t0); it
is possible if one takes small t+ for t0. Fix ϕ ∈ C∞(R; [0, 1]) such that ϕ(v) = 1
if |v| ≤ 1

2 and ϕ(v) = 0 if |v| ≥ 1. Define a functional ψ for c > 0 by

ψ = ϕ(c−1|X0 − x∗|2)ϕ(c−1|σ(σ∗)
−1 − Id+1|2)1{Nt−=0,Nt+=Nt0=1}.

We note that σ and σ∗ in this representation depends on the single jump time
t1.

The functional ψ is smooth in Malliavin’s sense, moreover P [ψ > 0] > 0 since
the path X is drifting near x∗ with positive probability as a consequence of the
support theorem. Choose sufficiently small c, then σ is uniformly nondegenerate
on the event {ψ > 0}. By using the integration-by-parts formula in the Malliavin
calculus, we can apply Theorem 2 of Yoshida (2004), p. 571 to validate the formal
Edgeworth expansion of L{Z̄T } as Theorem 2.1.

Here we will briefly sketch the role of σ. Applying the integration-by-parts
formula in the Malliavin calculus, one obtains

iuE[eiuZt0ψ | X0, Xt0 ] = E[eiuZt0σ−pΨ | X0, Xt0 ]

for all u ∈ R, where p is some positive number and Ψ is a functional that is
smooth in the Malliavin’s sense and vanishes on {ψ = 0}; see Yoshida (2004) for
details. Thus

E

[
sup
|u|≥B

|E[eiuZt0ψ | X0, Xt0 ]|
]

= E

[
sup
|u|≥B

|E[eiuZt0σ−pΨ | X0, Xt0 ]|
|u|

]

≤ 1

B
E[σ−p|Ψ|],

and the right-hand side tends to zero as B → ∞, which, together with the
stationarity, implies Condition [A3].
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4. Nonparametric estimator for diffusion process

Suppose that X is the stationary diffusion process satisfying the stochastic
differential equation (3.1), and assume the exponential mixing condition and
X0 ∈ ∩p>1L

p as well as the smoothness of the coefficients of the stochastic
differential equation. However, we only consider the case where the dimension of
X is one (d = 1). Let F ∈ C∞

↑ (R), and ϑ = E[F (X0)]. In this section, we will
present an asymptotic expansion of the nonparametric estimator

ϑ∗T =
1

T

∫ T

0
F (Xt)dt

for ϑ, which is asymptotically normal and asymptotically efficient in a nonpara-
metric sense (see Kutoyants and Yoshida (2007)). We consider the functional

ZT =

∫ T

0
q(Xt)dt,

where q(x) = F (x) − ϑ.
We assume that the invariant probability measure ν has the support R, and

it is given by the density

dν

dx
=

n(x)∫∞
−∞ n(y)dy

,(4.1)

where

n(x) =
1

V 2(x)p(x)
, p(x) = exp

{
−2

∫ x

0

V0(u)

V (u)2
du

}
,∫ ∞

−∞
n(x)dx <∞.

In the non-parametric estimation considered here, the role of Fisher infor-
mation does play the quantity

I∗ =


4E




 M(X0)

V (X0)
dν

dx
(X0)




2



−1

,(4.2)

where M(y) = E[(F (X0) − ϑ)1{X0<y}]. For continuous function f : R → R, the
Green function Gf can be expressed explicitly as

Gf (x) =

∫ x

−∞
p(y)

(∫ y

−∞
2f(v)n(v)dv

)
dy

whenever it exists. We write

[f ] = −V∇Gf−E[f(X0)].
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Define the set of functions C by

C =

{
f ∈ C↑(R)

∣∣∣∣
∫ ∞

−∞
f(x)n(x)dx = 0;

p(·)
∫ ·

−∞
f(x)n(x)dx ∈ L1((−∞, 0]); [f ], Gf ∈ C↑(R)

}
.

Fix I* ∈ (0, I∗) arbitrarily.

Theorem 4.2 (Kutoyants and Yoshida (2007)). Let k ∈ N, and let M,γ,
K > 0. Suppose that F is not a constant. Then
(1) There exist constants δ > 0 and c > 0 such that for h ∈ E(M,γ),

|E[h(
√
T (ϑ∗T − ϑ))] − ΨT,k[h]| ≤ cω(h, T−K , I−1

* ) + ε
(k)
T ,

where ε
(k)
T = o(T−(k+δ)/2) uniformly.

(2) The signed-measure dΨT,1 has a density dΨT,1(z)/dz = pT,1(z) with

pT,1(z) = φ(z;κ
(2)
T )

(
1 +

1

6
κ

(3)
T h3(z;κ

(2)
T )

)
,

where κ
(r)
T is the r-th cumulant of

√
T (ϑ∗T − ϑ). Moreover , if q and [q]2 −

ν([q]2) belong to C, then

pT,1(z) = p∗T,1(z) +RT (z),

where

p∗T,1(z) = φ(z; 0, I−1
∗ )

(
1 +

1

2
√
T
E[[[q]2][q](X0)]h3(z; I

−1
∗ )

)
and

lim
T→∞

√
T sup

z∈R
{|RT (z)| exp(bz2)} = 0

for some positive constant b. In particular ,∣∣∣∣E[h(
√
T (ϑ∗T − ϑ))] −

∫
R

h(z)p∗T,1(z)dz

∣∣∣∣ ≤ cω(h, T−K , I−1
* ) + ε̃T

with ε̃T = o(1/
√
T ) uniformly in h ∈ E(M,γ).

See Kutoyants and Yoshida (2007) for details of this theorem.

5. M-estimator

Let Θ be an open bounded convex set included in R
p. Let (Xt)t∈[0,∞) be an

ε-Markov process defined on some probability space, and for each T > 0, denote
by XT the path space of XT = (Xt)t∈[0,T ]. Let ψT be an R

p-valued function

defined on XT × Θ. Fix θ0 ∈ Θ arbitrarily, and let Θ̃ ⊂ Θ be a subset including
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θ0. For the existence of the M -estimator corresponding to ψT , it is possible to
show that for given m > 0 and γ ∈ (3/4, 1), under some regularity conditions,
there exists a subset X̃T ⊂ XT such that P [XT ∈ X̃T ] = 1− o(T−m/2) as T → ∞
and that

XT ∈ X̃T ⇒ ∃1θ̂T ∈ Θ̃ s.t. ψT (XT , θ̂T ) = 0, and |θ̂T − θ0| < T−γ/2.

For the details, see Theorem 6.1 of Sakamoto and Yoshida (2004a). We refer to
any extension of θ̂T defined on the whole sample space XT or the pull-back of
that map to the probability space as the M -estimator for θ0, and also denote it
by θ̂T .

Denote the a-th elements of θ and ψ(XT , θ) by θa and ψa;(X
T , θ) respec-

tively, and denote δa1 · · · δakψa;(X
T , θ) by ψa;a1···ak(X

T , θ) where δa = ∂/∂θa.
Let ∆a;(θ) = E[ψa;(X

T , θ)], ν̄a; = T−1E[ψa;(X
T , θ0)], and ν̄a;a1···ak =

T−1E[ψa;a1···ak(X
T , θ0)]. Put

Za; = T−1/2(ψa;(X
T , θ0) − E[ψa;(X

T , θ0)])

and
Za;A = T−1/2(ψa;A(XT , θ0) − E[ψa;A(XT , θ0)])

for any index sequence A = a1 · · · ak whose elements aj(j = 1, . . . , k) run from 1
to p.

Suppose that supT,θ ∆a;(θ) < ∞ and (ν̄a;b)
p
a,b=1 is nonsingular. Denote the

inverse matrix of (ν̄a;b)
p
a,b=1 by (ν̄a;b)pa,b=1, and let ∆a; = −ν̄a;a′∆a′;(θ0), ν̄

a;
A =

−ν̄a;a′ ν̄a′;A Za; = −ν̄a;a′Za′;, and Za;
A = −ν̄a;a′Za′;A for any index sequence A.

For any extended M -estimator θ̂T and any bounded function β ∈ C2(Θ; Rp)
with bounded first and second derivatives, define a modified M -estimator θ̂∗T by

θ̂∗T = θ̂T − 1

T
β(θ̂T )

and let Ra
3 be a random variable defined by

√
T (θ̂∗T − θ0)

a = Za; +
1√
T

(
Za;

bZ
b; +

1

2
ν̄a;

bcZ
b;Zc; + ∆a; − βa

)
(5.1)

+
1

T

(
1

6
(ν̄a;

bcd + 3ν̄a;
beν̄

e;
cd)Z

b;Zc;Zd;

+ ν̄a;
bcZ

b;Zc;
dZ

d; +
1

2
ν̄b;cdZ

a;
bZ

c;Zd;

+
1

2
Za;

bcZ
b;Zc; + Za;

bZ
b;
cZ

c;

− Zb;δbβ
a + ∆b;(Za;

b + ν̄a;
bcZ

c;)

)
+

1

T
√
T
Ra

3,

where a = 1, . . . , p, and βa is the a-th element of β. For the remainder term Ra
3

above, it can be proved that for given m > 0, under some conditions, there exist
C > 0 and ε > 0 such that

P [T−1/2|Ra
3| ≤ CT−ε/2, a = 1, . . . , p] = 1 − o(T−m/2).(5.2)
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See Theorem 6.2 of Sakamoto and Yoshida (2004a).

Let Z
(0)
T = T 1/2(Z1;, . . . ,Zp;) and Z

(1)
T = T 1/2(Z1;1, . . . , Zp;p︸ ︷︷ ︸

p2

, Z1;11, . . . , Zp;pp︸ ︷︷ ︸
p3

).

We require the following conditions:

(i) (Cov[Za;, Zb;])pa,b=1 is non-singular;

(ii) there exists a random variable ŻT consisting of the elements of Z
(1)
T , and

a) Cov(T−1/2Z∗
T ) converges to a positive matrix, where Z∗

T = (Z
(0)
T , ŻT );

b) Z̈T = LŻT for some matrix L, where Z̈T is the random variable con-

sisting of the elements of Z
(1)
T except those of ŻT ;

c) (Z∗
t )t∈[0,∞) is an additive functional of the ε-Markov process (Xt)t∈[0,∞)

driven by some process.

Let (gab) = (Cov[Za;, Zb;]), (gab) = (gab)−1, V a;
a1···ak,b = Cov[Za;

a1···ak ,

Zb′;]gb′b, µ̃
a;
bc = (V a;

b,c + V a;
c,b + ν̄a;

bc)/2, η̃a;
b,c = V a;

b,c + ν̄a;
bc, and

Ua;
bcd =

1

6


ν̄a;

bcd +

[3]∑
(bc,d)

V a;
bc,d


+

1

3

[3]∑
(bc,d)

µ̃d′;
bcη̃

a;
d′,d.

Put M̃a;
b,
c;
d = E[Za;

bZ
c;
d] − V a;

b,b′V
c;
d,d′E[Zb′Zd′ ], Ña;

,
b;
,
c;
d = T 1/2E[ZaZb; ·

(Zc;
d − V c;

d,d′Z
d′)], λ̄abc = T 1/2 Cum[Za;, Zb;, Zc;], Habcd = T Cum[Za;, Zb;, Zc;,

Zd;]. We then obtain a third order asymptotic expansion of the distribution of
the modified M -estimator θ̂∗T under certain regularity conditions [C0]–[C4] in
Sakamoto and Yoshida (2004a).

Theorem 5.3. Let ĝ > limT→∞ g, M and γ′ be positive constants. Suppose
that the conditions [A1], [A2], [A3] for Z∗

T in place of ZT hold true. Then there
exist constants c > 0, C̃ > 0, ε̃ > 0 such that for any function f ∈ E(M,γ′),∣∣∣∣E[f(

√
T (θ̂∗T − θ0))] −

∫
dy(0)f(y(0))qT,2(y

(0))

∣∣∣∣(5.3)

≤ cω(f, C̃T−(ε̃+2)/2, ĝ) + o(T−1),

where

qT,2(y
(0)) = φ(y(0); gab)

(
1 +

1

6
√
T
cabchabc(y

(0); gab)

+
1√
T

(µ̃a;
cdg

cd − β̃a)ha(y
(0); gab)

+
1

2T
Aabhab(y

(0); gab)

+
1

24T
cabcdhabcd(y

(0); gab)
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+
1

72T
cabccdefhabcdef (y

(0); gab)

)
,

cabc = λ̄abc + 6µ̃c;
a′b′g

a′agb
′b,

Aab = 2(λ̄acd + µ̃a;
c′d′g

c′cgd
′d)µ̃b;

cd + 2δc
′

c Ñ
a;
,
c;

,
b;

c′ + gcc
′
M̃ b;

c,
a;

c′

+ 2((∆c;η̃a;
c,b′ − δb′β

a) + δa1
b1
M̃a;

a1

b1;
b′ + 3Ua;

cdb′g
cd)gb

′b

+ (µ̃a;
cdg

cd − β̃a)(µ̃b;
efg

ef − β̃b),

cabcd = Habcd + 4cabc(µ̃d;
efg

ef − β̃d) + 24(λ̄abe + 2µ̃a;
b′e′g

b′bge
′e)µ̃c;

d′eg
d′d

+ 12(gbb
′
gdd

′
M̃ c;

d′,
a;

b′ + Ña;
,
b;

,
c;

d′g
dd′) + 24Ua;

b′c′d′g
b′bgc

′cgd
′d.

As for this result, we refer the reader to Sakamoto and Yoshida (1998, 2004a,
2004b).
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