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Abstract

With the help of a general methodology of asymptotic expansions for mixing processes, we

obtain the Edgeworth expansion for log-returns of a stock price process in Barndorff-Nielsen

and Shephard’s stochastic volatility model, in which the latent volatility process is described

by a stationary non-Gaussian Ornstein–Uhlenbeck process (OU process) with invariant

selfdecomposable distribution on Rþ: The present result enables us to simultaneously explain

non-Gaussianity for short time-lags as well as approximate Gaussianity for long time-lags. The

Malliavin calculus formulated by Bichteler, Gravereaux and Jacod for processes with jumps and

the exponential mixing property of the OU process play substantial roles in order to ensure a

conditional type Cramér condition under a certain truncation. Owing to several inherent

properties of OU processes, the regularity conditions for the expansions can be verified without

any difficulty, and the coefficients of the expansions up to any order can be explicitly computed.
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1. Introduction

In this paper we are concerned with the model ðX ;Y Þ ¼ fðX t;Y tÞgt2Rþ
given by

dX t ¼ �lX t dt þ dZt,

dY t ¼ ðgþ bX tÞdt þ
ffiffiffiffiffiffi
X t

p
dwt þ rdZt; Y 0 ¼ 0, ð1Þ

where Z ¼ ðZtÞt2Rþ
and w ¼ ðwtÞt2Rþ

; respectively, denote a subordinator (increasing
Lévy process) and a Wiener process independent of Z, and ðl; g;b; rÞ 2 ð0;1Þ 
 R3

are constants. The process X is called an Ornstein–Uhlenbeck process (OU process),
where the initial variable X 0 is supposed to be independent of ðZ;wÞ: The positivity
of l together with a mild condition on the Lévy measure of Z ensures existence of an
invariant distribution of X, which is necessarily selfdecomposable. The purpose of
this paper is to obtain the Edgeworth expansion of an expectation E½f ðT�1=2HT Þ� as
T ! 1; where

HT :¼Y T � E½Y T �

¼ b
Z T

0

ðX s � E½X 0�Þds þ

Z T

0

ffiffiffiffiffiffi
X s

p
dws þ rðZT � E½ZT �Þ ð2Þ

and f : R ! R is a measurable function at most polynomial growth; see Section 2.1
for precise formulation. We suppose that X is strictly stationary with a stationary
distribution admitting moments of any order, and also that the Lévy measure of Z

satisfies mild regularity conditions.
Eq. (1) is Barndorff-Nielsen and Shephard’s continuous-time stochastic volatility

model, in which X stays in Rþ and describes a time-varying volatility: for clarity, we
here do not adopt the unusual timing dZlt for dZt of Barndorff-Nielsen and
Shephard (in that case, a given marginal distribution of X is unchanged whatever
l40 is); of course, this is not essential for validity of the expansion. This model not
only captures several stylized features in finance and turbulence, but also offers a
great deal of analytic tractability. See Barndorff-Nielsen and Shephard [5] and
Barndorff-Nielsen [1] for details, and also Barndorff-Nielsen et al. [3] for a summary
of recent developments in this direction. If X is ergodic, then the martingale central
limit theorem yields that

ðE½X 0�TÞ
�1=2 Y T � gT � b

Z T

0

X s ds � rðZT � E½ZT �Þ

� �

¼ ðE½X 0�TÞ
�1=2

Z T

0

ffiffiffiffiffiffi
X s

p
dws ð3Þ

weakly tends to the standard normal variable as T ! 1: This is called
‘‘aggregational Gaussianity’’, which is recognized as one of important stylized
features in turbulence as well as finance: here the ergodicity of X and exponential
b-mixing property are indeed ensured by our Assumption 1 in Section 2.1 (cf.
Masuda [15,16] for more general results). In this paper we consider the term
‘‘aggregational Gaussianity’’ as the central limit effect of the log-return T�1=2HT ;
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thus our setup in principle includes (3) with g ¼ b ¼ r ¼ 0: For real market data, it is
quite well known that a distribution of log-returns exhibits non-Gaussianity for
short time-lags and approximate Gaussianity for long time-lags. For this reason, it is
interesting to investigate the higher order asymptotics of LðT�1=2HT Þ as well as its
central limit effect for T ! 1; so that we obtain a result which simultaneously
explain non-Gaussianity for small T and approximated Gaussianity for large T.

To be convenient for readers, we now refer to some previous results concerning an
OU process X whose solution is explicitly given by

X t ¼ e�ltX 0 þ

Z t

0

e�lðt�sÞ dZs. (4)

The corresponding references to the items (1)–(3) below can be found in Masuda [15,
Section 2].

(1) Any selfdecomposable distribution, which is known to be unimodal and
absolutely continuous with respect to the Lebesgue measure, can be realized as a
stationary distribution of an OU process; more precisely, there is one-to-one
correspondence between a possible stationary distribution of an OU process and a
selfdecomposable distribution.

(2) Two theoretical construction of a stationary OU process with concrete
marginal distribution are possible. First, suppose that a selfdecomposable
distribution F is given. If jðu;F Þ is differentiable at ua0 and moreover if the
function u 7! uqukðu;F Þ is continuous at u ¼ 0; then there exists a stationary OU
process X with the marginal distribution F and Z determined by kðu;Z1Þ ¼

luqukðu;F Þ: Secondly, we can determine the stationary distribution F of X via a given
generating triplet of Z1; in this case, the Lévy measure PZ ðdzÞ of Z must meetZ

jzj41

log jzjPZ ðdzÞo1.

(3) If X is strictly stationary and the Lévy measure of F admits a differentiable
density gF ðxÞ for xa0; then the Lévy measure of Z admits a density gZðxÞ given by

gZðxÞ ¼ �l�1
fgF ðxÞ þ xqgF ðxÞg. (5)

Relation (5) is convenient to determine Z, given F.
(4) If F (resp. Z1) admits the kth cumulant, then Z1 (resp. F) admits the kth

cumulant as well and they are related by

klkðkÞF ¼ kðkÞZ1
. (6)

See Barndorff-Nielsen and Shephard [5, Section 2.1]; if we use Barndorff-Nielsen
and Shephard’s custom dZlt instead of dZt; then (6) becomes kkðkÞF ¼ kðkÞZ1

:
An important and remarkable feature is that we can explicitly write down the

coefficients of the asymptotic expansions up to any order, utilizing the relationZ t

0

X s ds ¼ Zðl; tÞX 0 þ

Z t

0

Zðl; t � sÞdZs, (7)
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where Zðl; uÞ ¼ l�1
ð1 � e�luÞ: formula (7) directly follows from the explicit

expression (4), or, the affine structure of the process, see Duffie et al. [11]. The
formula (6) enables us to write down the coefficients of the asymptotic expansion in
terms of only kðkÞF or only kðkÞZ1

; k 2 N: One can consult Barndorff-Nielsen and
Shephard [7] for a detailed analysis of integrated OU processes. Norberg [19]
suggested the use of positive OU processes as a stochastic interest rate, and
there moments of present values in actuarial context as well as price of zero-
coupon bonds was studied, building on several explicit Laplace transforms
concerning OU processes. See also Dassios and Jang [10, Section 2], where some
conditional Laplace transforms of integrated positive processes of shot noise type
were given.

Now let us observe that direct validation of the Edgeworth expansion, namely
direct estimate of the characteristic function of T�1=2HT ; is intractable. Lemma 3
below, which is more or less well known, and conditional argument (note that here X

and w are independent) enable us to write down the characteristic function of
T�1=2HT as

jðu;T�1=2HT Þ :¼ expf�iuT1=2ðbþ lrÞE½X 0�g


E exp
iub

T1=2
�

u2

2T

� �
Zðl;TÞX 0

� �� 	


 exp

Z T

0

log E½expfKðu; sÞZ1g�ds

� �
, ð8Þ

where the complex-valued function K is given by

Kðu; sÞ ¼
iu

T1=2
frþ bZðl; sÞg �

u2

2T
Zðl; sÞ

whose real part is negative, so that E½expfKðu; sÞZ1g� indeed exists since Z is a
subordinator; see e.g. Sato [25, Theorem 30.1]. The most direct route to obtain the
Edgeworth expansion is estimating jðu;T�1=2HT Þ for large juj; this is called the
‘‘global approach’’ recently developed in Yoshida [27,28] covering processes with
jumps. Unfortunately, the expression of jjðu;T�1=2HT Þj involves the following
rather intractable term coming from the Lévy-integral part in (8)

exp

Z T

0

Z
Rþ

exp z
iu

T1=2
ðrþ bZðl; sÞÞ �

u2

2T
Zðl; sÞ

� �� 	
� 1

� �
PZðdzÞds

� �








,

where PZ denotes the Lévy measure of Z. Hence we shall take another route.
In this paper we are going to look at the ‘‘local approach’’, which is initiated by

Götze and Hipp [12] recently extended to continuous-time framework by Yoshida
[29]. [See also the previous works [13,23,24,29] for some statistical applications in
this direction.] According to the Markov property of X as well as its exponential
mixing property, this approach will turn out to be tailor-made for our aim. The main
task is then to establish the following estimate for some t0;B40; which results from
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the integration-by-parts formula:

E sup
jujXB

jE½ceiuH
t0 jX 0;X t0 �j

" #
o1, (9)

where c fulfilling E½c�40 is a truncation functional, which enables us to extract
a ‘‘nice event’’. Though (9), called the ‘‘conditional type Cramér condition’’, is
generally not easy to verify, the concrete structure of the model (1) considerably
simplifies the task. Also, the truncation technique is often inevitable, and this is
indeed the case for our goal. In the proof we shall construct c in a tangible way in
order to avoid the irregular square-root diffusion coefficient of Y, and consequently
validate the expansion. See Section 4 for details.

The result is given in Section 2, and then Section 3 presents the explicit formulae
for the asymptotic expansion. Section 4 devotes to proving the validity of the
expansion.
2. Edgeworth expansion for log-returns

Let ðO;F;F ¼ ðFtÞt2Rþ
;PÞ be a stochastic basis endowed with an F-adapted

non-trivial subordinator Z and an F-adapted Wiener process w as well as an
F0-measurable random variable X 0 independent of ðw;ZÞ: Throughout this article,
jðu; xÞ stands for the characteristic function of x indicating a random variable or a
distribution, and we write kðu; xÞ ¼ log jðu; xÞ for the corresponding cumulant
transform. The (partial) differentiation with respect to some variable v will be
denoted by qv; or simply by q when there is no confusion.

Since Z is a subordinator, it can be completely characterized via a drift bZ and a
Lévy measure PZ; i.e.

jðu;ZtÞ ¼ exp t ibZu þ

Z
Rþ

ðeiuz � 1ÞPZ ðdzÞ

� �� �
,

where bZX0; suppPZ � Rþ and
R

0ozp1 zPZ ðdzÞo1:

2.1. The formulation of the expansion

Before stating our results, we shall briefly present the formulation of the
Edgeworth expansion; see Yoshida [29] for a more general exposition.

Denote by wr;T ðuÞ the rth cumulant function of T�1=2HT (r 2 N; rX2), where H is
defined by (2)

wr;T ðuÞ ¼ qr
u log E½expðiuT�1=2HT Þ�.

Define ~Pr;T ðuÞ by the formal expansion

exp
X1
r¼2

1

r!
wr;T ðuÞ

 !
¼ exp

1

2
w2;T ðuÞ

� �
þ
X1
r¼1

T�r=2 ~Pr;T ðuÞ.
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Fix p 2 N (pX3), and define Ĉp;T ðuÞ by

Ĉp;T ðuÞ ¼ exp
1

2
wT ;2ðuÞ

� �
þ
Xp�2

r¼1

T�r=2 ~Pr;T ðuÞ.

Then the ðp � 2Þth Edgeworth expansion, say Cp;T ; is defined by the Fourier
inversion of Ĉp;T : Denote by fð�;SÞ the one-dimensional Gaussian density with
mean zero and variance S40; and let hrðy;SÞ stand for the rth Hermite polynomial
associated with fð�;SÞ

hrðy;SÞ ¼ ð�1Þrfðy;SÞ�1qr
yfðy;SÞ.

Put wr;T ¼ ð�iÞrwr;T ð0Þ; the rth cumulant of T�1=2HT ; and write w2;T as ST for
convenience: in our case, wr;T ¼ OðT�ðr�2Þ=2Þ for T ! 1: Then the density of Cp;T

with respect to the Lebesgue measure is given by

gpðy;T�1=2HT Þ ¼ f1 þ Gp;T ðyÞgfðy;ST Þ,

where

Gp;T ðyÞ ¼
Xp�2

k¼1

Xk

l¼1

X
k1 ;...;kl2N:

k1þ���þkl¼k

wk1þ2;T � � � � � wklþ2;T

l!ðk1 þ 2Þ! � � � ðkl þ 2Þ!
hkþ2lðy;ST Þ.

For instance, the third-order approximation g4ðy;T�1=2HT Þ (corresponding to the
second-order Edgeworth expansion) is given by

g4ðy;T�1=2HT Þ ¼ fðy;ST Þ 1 þ
X2

k¼1

Bk;T ðyÞ

( )
,

where

B1;T ðyÞ ¼
w3;T

3!

y3

S3
T

�
3y

S2
T

� �
,

B2;T ðyÞ ¼
w4;T

4!

y4

S4
T

�
6y2

S3
T

þ
3

S2
T

� �
þ

w2
3;T

2!ð3!Þ2
y6

S6
T

�
15y4

S5
T

þ
45y2

S4
T

�
15

S3
T

� �
.

Let p0 ¼ 2½p=2� and denote by EðM ; p0Þ the set of all measurable functions
f : R! R satisfying jf ðxÞjpMð1 þ jxjp0 Þ for every x 2 R: Put

Dp;T ðf Þ ¼ jE½f ðT�1=2HT Þ� �Cp;T ½f �j

and

oðf ; d; nÞ ¼
Z
R

sup
jyjpd

jf ðx þ yÞ � f ðxÞjnðdxÞ

for d40; measurable function f and Borel measure n on R:
Suppose that ST ! S40 as T ! 1; and fix any positive constant S0 such that

S04S: We say that ‘‘Estimate (10) holds true for T�1=2HT ’’ if ‘‘for any M ;K40;
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there exist positive constants Mn and dn such that

Dp;T ðf ÞpMnoðf ;T�K ;fðx;S0ÞdxÞ þ oðT�ðp�2þdnÞ=2Þ (10)

for T ! 1 uniformly in f 2 EðM ; p0Þ’’. Our goal is to show that Estimate (10) holds
true for T�1=2HT : We impose the following moment condition.

Assumption 1. X is strictly stationary with invariant distribution F admitting
moments of any order.

Remark 1. A natural question is that ‘‘given a desired order of the expansion, is it
possible to specify up to what order of F’s moments are actually required?’’. To
answer this, apart from [A2] easy to check (see Section 4), we must carefully estimate
the moment of the dominating polynomial P of jCðĉ�;�0 Þj (see (36) and (37) in the
proof), where the function C essentially comes from the integration by parts
formula, and hence the specification of the required order is in principle possible.
However, we do not pursue this problem here because in most applications (cf.
Barndorff-Nielsen and Shephard [5–7]), Condition [A2] is fulfilled and it is not so
constructive to spare the space to count the order.

In the sequel, we denote by kðkÞx the kth cumulant of x; a random variable or a
distribution.

2.2. The result

Clearly H satisfies

dHt ¼ bðX t � kð1ÞF Þdt þ
ffiffiffiffiffiffi
X t

p
dwt þ rdZ̄t; H0 ¼ 0, (11)

where Z̄t ¼ Zt � E½Zt� ¼ Zt � E½Z1�t is the centred Z. Since l40 and Z is a
subordinator, we have supp F � Rþ: If PZ admits moments of any order outside
neighborhoods of the origin, then Assumption 1 is satisfied under LðX 0Þ ¼ F :

Denote by LZ the Poisson random measure associated with jumps of Z, and let it
be written as

LZðdt;dzÞ ¼ m[Zðdt;dzÞ þ mZðdt;dzÞ (12)

for some Poisson random measures m[Z and mZ: Correspondingly, write

PZðdzÞ ¼ n[ZðdzÞ þ nZðdzÞ, (13)

where n[Z and nZ stand for the Lévy measures on Rþ associated with m[Z and mZ;
respectively.

Assumption 2. There exists a non-empty open subset of Rþ on which the Lévy
measure nZ admits a positive C3-density with respect to the Lebesgue measure.

We need the C3-property of the density of nZ for the condition ð ~A
0
� 4Þ of

Bichteler et al. [8]. The Lévy measure n[Z may be any one as long as Assumption 1 is
satisfied; in particular, we may take n[Z � 0 if PZ admits a sufficiently smooth
positive density. Many examples of F treated by Barndorff-Nielsen and Shephard
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satisfy Assumptions 1 and 2; for instance, generalized inverse Gaussian, tempered
stable and selfdecomposable modified stable (cf. [6]).

Now we are in a position to state the main result.

Theorem. Let H be given by (11). Suppose that Assumptions 1 and 2 are met, and fix

any positive number S0 such that

S04kð1ÞF þ
2

l
ðbþ lrÞ2kð2ÞF .

Then, Estimate (10) holds true for T�1=2HT :

The proof is deferred to Section 4.

Remark 2. It is also possible to prove Estimate (10) for ðX ;Y Þ is given by

dX t ¼ �lX t dt þ dZt,

dY t ¼ ðgþ bX tÞdt þ rdZt; Y 0 ¼ 0.

The Lévy process Z here may take values in the whole line. In this case, the regularity
of LðX ;HÞ; which plays an essential role in derivation of the expansion, is inferior to
that of (1) since we have only one-dimensional random input Z against the two-
dimensional objective ðX ;HÞ: Hence, it is not clear whether LðX ;HÞ possesses
enough regularity. In particular, for pure-jump Z, this distributional problem is
mathematically interesting in its own right. Under rather mild conditions, we can
also guarantee the expansion even for Z of pure-jump type. It turns out that in this
case the restriction rlþ ba0 is necessary for non-degeneracy of the limit
distribution of T�1=2HT : See Masuda and Yoshida [17] for details.
3. Coefficients of the expansion

As already mentioned, formula (7) is useful for computation of the coefficients of
the expansion. Simple but tedious computations lead to explicit expressions of wr;T :

A minor modification of Lukacs [14, Theorem 1] yields the following simple
lemma.

Lemma 3. Let Z be a subordinator, let h : ½0;T � 
 R ! C be continuous in the first

component, and suppose that the real part of hðs; uÞ is non-positive for every ðs; uÞ: Then

log E exp

Z T

0

hðs; uÞdZs

� �� 	
¼

Z T

0

log E½expfhðs; uÞZ1g�ds

for every u 2 R:

As in (8), it readily follows from Lemma 3 that under Assumption 1

wr;T ðuÞ ¼ qr
ukðaT ðuÞ;F Þ þ

Z T

0

qr
ukðbT ðv; uÞ;Z1Þdv; rX2, (14)
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where

aT ðuÞ ¼
ubffiffiffiffi

T
p þ i

u2

2T

� �
Zðl;TÞ,

bT ðv; uÞ ¼
uffiffiffiffi
T

p fbZðl; vÞ þ rg þ i
u2

2T
Zðl; vÞ.

The elementary chain rule for differentiations and the above (14) yield the explicit
expressions for wr;T : Note that if b ¼ r ¼ 0; then all odd-order cumulants vanish. See
Theorem 2.2 of Nicolato and Venardos [18] for the Laplace transform of T�1=2HT :

The following formula is convenient for computations of wr;T (for the second-term
on the right-hand side in (14)):

Jk;lðTÞ :¼

Z T

0

fbZðl; vÞ þ rgkZðl; vÞl ds ¼
Xk

j¼0

k

j

 !
bjrk�jI lþjðTÞ (15)

for k; l 2 N [ f0g; where

ImðTÞ ¼

Z T

0

fZðl; vÞgm dv; m 2 N [ f0g

satisfy the recurrence formula

IkðTÞ ¼ l�1Ik�1ðTÞ � ðlkÞ�1
fZðl;TÞgk; k 2 N

from which we get

ImðTÞ ¼ l�mT � l�ðmþ1Þ
Xm

q¼1

q�1flZðl;TÞgq; mX1,

I0ðTÞ ¼ T . ð16Þ

Eqs. (15) and (16) imply that

1

T
Jk;lðTÞ ! l�ðkþlÞ

Xk

j¼0

k

j

 !
bjrk�jlk�j

¼ l�ðlþkÞ
ðbþ rlÞk

as T ! 1: In particular, we get

ST ¼ w2;T ! kð1ÞF þ
2

l
ðbþ lrÞ2kð2ÞF 40.

For the next two, we obtain

w3;T ¼ T�1=2fkð3ÞF T�1ðb3
ðZðl;TÞÞ

3
þ 3lJ3;0ðTÞÞ

þ 3kð2ÞF T�1ðbðZðl;TÞÞ
2
þ 2lJ1;1ðTÞÞg

�T�1=2f3l�2
ðbþ rlÞ3kð3ÞF þ 6l�1

ðbþ rlÞkð2ÞF g
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and

w4;T ¼ T�1fkð4ÞF T�1ðb4
ðZðl;TÞÞ

4
þ 4lJ4;0ðTÞÞ

þ 6kð3ÞF T�1ðb2
ðZðl;TÞÞ

3
þ 3lJ2;1ðTÞÞ

þ 3kð2ÞF T�1ððZðl;TÞÞ
2
þ 2lI2ðTÞÞg

�T�1f4l�3
ðbþ rlÞ4kð4ÞF þ 18l�2

ðbþ rlÞ2kð3ÞF þ 6l�1kð2ÞF g,

where F T�GT means that FT=GT ! 1 as T ! 1: As is mentioned, wr;T ¼

OðT�ðr�2Þ=2Þ in general.

Remark 4. Barndorff-Nielsen and Shephard [6] advocated that the tempered stable
distribution denoted by TSðk; d; xÞ; where 0oko1; d40; and xX0; is one of good
candidates for F when the model is applied to finance; a special case is IGðd; xÞ for
k ¼ 1

2 : For TSðk; d; xÞ; we must assume that x40 for Assumption 1, and in this case
the normal tempered stable distribution (NTS) including the normal inverse
Gaussian (NIG) for k ¼ 1

2
appears as the approximation of the distribution of the

instantaneous log-return. NTS as well as NIG is known to be able to exhibit
skewness and steepness (fat tails) very flexibly and it also possesses the reproducing-
property. Further, the cumulant generating function of TSðk; d; xÞ is simply given by
dfx� ðx1=k

� 2uÞkg; from which one can easily get

kðkÞTSðk;d;xÞ ¼ �dð�2Þkxðk�kÞ=k
Yk�1

j¼0

ðk� jÞ; k 2 N.

4. Proof of theorem

The proof will be carried out essentially by applying Theorem 4 of Yoshida [29],
which targets at stochastic differential equations with jumps. The theorem just
referred to is a special case of Theorem 1 of Yoshida [29] covering general partial
mixing processes, hence, for reference let us briefly mention Theorem 1 of Yoshida
[29] before entering the proof.

Building on the Markov nature and stationarity of X, the exponential mixing
version of Theorem 1 of Yoshida [29] asserts that it suffices to verify the following
conditions:
[A1]
 X is strongly mixing with exponential rate;

[A2]
 for each T 2 Rþ; supt2½0;T � kHtkLpþ1ðPÞo1;

[A3]
 (a version of conditional type Cramér conditions) there exist positive constants t0;

a, a0 and B, and a truncation functional c : ðO;FÞ ! ð½0; 1�;Bð½0; 1�ÞÞ such that
0oa; a0o1; 4a0oða � 1Þ2 and that the following two conditions are met:

E sup
jujXB

jE½ceiuH
t0 jX 0;X t0 �j

" #
oa0, ð17Þ

1 � E½c�oa. ð18Þ
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difficult in general to check [A3] directly, however, we can employ infinite
It is
dimensional stochastic calculus (Malliavin calculus) with truncation to verify it, and

resultingly, more easy-to-check conditions than those of Theorem 1 of Yoshida [29]
can be given: this is just what Theorem 4 of Yoshida [29] provides. There [A3] is
replaced by another condition called ½A3Q�; in which local non-degeneracy of a
Malliavin covariance matrix of interest as well as some other regularity conditions is
required. Our plan is thus to verify [A1], [A2] and ½A3Q� under our assumptions.

We see that Assumption 1 directly ensures [A1] and [A2]: X is exponentially b-
mixing hence exponentially strong-mixing under Assumption 1, see Masuda [15,
Theorem 4.3] for details; turning to [A2], the relation (6) implies that Z1 as well as F

admits moments of any order, hence Burkholder-Davis-Gundy’s and Jensen’s
inequalities readily ensure [A2]. Thus it remains to verify [A3].

In addition to direct application of Theorem 4 of Yoshida [29] itself, we shall
introduce an auxiliary process ~H for H, which will turn out to be essential for the
condition ð ~A

0
� 4Þ of Bichteler et al. [8] to be fulfilled in our context. Here the

condition ð ~A
0
� rÞ; r 2 N; is a series of conditions for smoothness of the coefficients

of stochastic differential equations of interest, moreover, it requires polynomial
growth rate of the derivatives of the coefficients; see p. 147 of Bichteler et al. [8] for
details. More precisely, we shall circumvent the irregular behavior of the derivatives
of H’s diffusion coefficient

ffiffiffiffiffiffi
X t

p
near the origin, introducing a suitable truncation

functional.
In the rest of this section, we write ~m[Zðdt; dzÞ ¼ m[Zðdt; dzÞ � n[ZðdzÞdt and

~mZðdt;dzÞ ¼ mZðdt;dzÞ � nZðdzÞdt; recall (12) and (13).

4.1. Transforming the Poisson random measure

Under Assumption 1, the Lévy–Itô decomposition gives

Zt ¼ lkð1ÞF t þ

Z t

0

Z
Rþ

z ~m[Zðds; dzÞ þ

Z t

0

Z
Rþ

z ~mZðds;dzÞ

for each t 2 Rþ: Under Assumption 2, we can find an open set EA;0 ¼ ðc1; c2Þ with
0oc1oc2o1; on which nZ admits a C3-density gZ such that infz2EA;0 gZðzÞ40:

To begin with, we partly rewrite the stochastic differential equation of ðX ;HÞ;
replacing partial jumps associated with mZ corresponding to the region ðc1; c2Þ by the
uniform Poisson space, so that the resulting compensating measure becomes the
Lebesgue measure; this is required for direct application of the theory of Bichteler
et al. [8]. Under Assumption 2, this corresponds to the change of variable

zn ¼ znðzÞ ¼

Z c2

z

gZðvÞdv; z 2 EA;0. (19)

Write gþ
ZðzÞ ¼ znðzÞ: Then gþ

ZðzÞ is strictly decreasing on EA;0; hence gþ
Zðc1Þ4

gþ
Zðc2Þ40: Accordingly we haveZ t

0

Z c2

c1

z ~mZðds;dzÞ ¼

Z t

0

Z gþ
Z
ðc1Þ

gþ
Z
ðc2Þ

g�
Zðz

nÞ ~mn

Zðds; dznÞ, (20)
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where g�
Z stands for the inverse function of z 7! gþ

ZðzÞ; which is also strictly
decreasing, and ~mn

Zðdt;dznÞ ¼ mn
Zðdt;dznÞ � dt dzn with the integer-valued random

measure mn
Z defined byZ t

0

Z a2

a1

hðs; zÞmZðds; dzÞ ¼

Z t

0

Z gþ
Z
ða1Þ

gþ
Z
ða2Þ

hðs; g�
Zðz

nÞÞmn

Zðds;dznÞ (21)

for each t 2 Rþ; a1; a2 2 R such that a1oa2; and for any measurable function h on
Rþ 
 Rþ: Put EA ¼ ðgþ

Zðc2Þ; g
þ
Zðc1ÞÞ: For B 2 BðEAÞ and t 2 Rþ we have

E½mn

Zð½0; t�;BÞ� ¼ lðBÞt,

where lð�Þ stands for the Lebesgue measure. Then the stochastic differential equation
of ðX ;HÞ becomes

dX t

dHt

 !
¼ ðkð1ÞF � X tÞ

l

�b

 !
dt þ

0ffiffiffiffiffiffi
X t

p

 !
dwt

þ

Z
Rþ

z
1

r

 !
f ~m[Z þ 1Ec

A;0
~mZgðdt;dzÞ þ

Z
~EA

JAðz
nÞ

1

r

 !
~mn

Zðdt;dznÞ,

ð22Þ

where Ec
A;0 denotes the complement of EA;0; ~EA ¼ EA [ ðgþ

Zðc1Þ;1Þ; and

JAðz
nÞ ¼ g�

Zðz
nÞ1EA

ðznÞ; zn 2 ~EA.

Note that (22) is clearly graded associated with the grading R2 ¼ R
 R of R2 in the
sense of 5-5 of Bichteler et al. [8]. Also, note that for each t 2 Rþ the random number
mn

Zð½0; t�;EAÞ is a.s. finite, and that the function zn 7! JAðz
nÞ is of class C4 on ~EA by

virtue of Assumption 2 and the inverse function theorem.

Remark 5. We have presented a (partial) transformation of the Poisson random
measure mZ demonstratively, however, we should note that it is always possible to
extract a uniform Poisson random measure from any Poisson random measure m on
I 
 E � Rþ 
 R; at least as soon as m’s Lévy measure admits a positive density on E.
Of course this is true of the multi-dimensional case.

Let ðÔ; Ĝ; P̂Þ be the canonical space defined as follows. Let ð ~O; ~G; ~PÞ stand
for the canonical product Wiener–Poisson space over a non-empty time-interval
½0; t0�; and then define ðÔ; ĜÞ by the product measurable space ðÔ; ĜÞ ¼ ðRþ 

~O;BðRþÞ � ~GÞ: Define a probability measure P̂ by P̂ ¼ F 
 ~P: under P̂; the
projection to the first space, say x̂; yields the same law as F, the canonical projec-
tion w is a one-dimensional Wiener process, and the canonical projections m[Z þ

1Ec
A;0
mZ and mn

Z are independent Poisson random measures on ½0; t0� 
 Rþ and

½0; t0� 
 ~EA; respectively. Also, x̂ and ðw;m[Z þ 1Ec
A;0
mZ; m

n
ZÞ are independent under

P̂: We shall consistently write Z for its distributional equivalent on the space

ðÔ; Ĝ; P̂Þ; i.e. LðZjPÞ ¼ LðZjP̂Þ; where LðxjQÞ stands for the distribution of a

random variable x under a probability measure Q: accordingly, we still write Z̄t ¼

Zt � Ê½Z1�t:



ARTICLE IN PRESS

H. Masuda, N. Yoshida / Stochastic Processes and their Applications 115 (2005) 1167–1186 1179
On the space ðÔ; Ĝ; P̂Þ; we consider the flow ðX ðt; vÞ;Hðt; vÞÞ> associated with
ðX ;HÞ starting from v ¼ ðx; hÞ> 2 Rþ 
 R

X ðt; vÞ ¼ e�ltx þ

Z t

0

e�lðt�sÞ dZs,

Hðt; vÞ ¼ h þ b
Z t

0

ðX ðs; vÞ � kð1ÞF Þds þ

Z t

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X ðs; vÞ

p
dws þ rZ̄t. ð23Þ

We shall execute the Malliavin calculus for this flow on a suitable event fĉ�;�040g;
where ĉ�;�0 is the truncation functional introduced in the next subsection.

4.2. Construction of a truncation functional

Here we concretely construct a truncation functional ĉ�;�0 defined on ðÔ; Ĝ; P̂Þ; in
order to extract a ‘‘nice event’’ on which an integration-by-parts formula can be
applied: the meaning of the argument ð�; �0Þ will be clarified below. We must show
that such an event has positive P̂-probability. The functional ĉ�;�0 corresponds to a
distributional equivalent of c appearing in [A3].

Let j1 2 C1
B ðRþ; ½0; 1�Þ be a non-increasing function such that j1ðxÞ ¼ 1 if

0pxp1=2 and j1ðxÞ ¼ 0 if xX1; where C1
B ðRþ; ½0; 1�Þ denotes the set of all ½0; 1�-

valued smooth functions defined on Rþ with bounded derivatives. We shall consider
ĉ�;�0 of the form

ĉ�;�0 ¼ j1ðx̂�;�0 Þ (24)

for some x̂�;�0 2 DL
2;1�; where DL

2;1� denotes the domain of the extended Malliavin
operator L employed in Yoshida [29, Section 5]: see Bichteler et al. [8, Section 9] for a
detailed exposition.

From now on, we shall construct a ‘‘nice event’’ step by step, and then suitably
define x̂�;�0 ((33) below). In what follows, we fix arbitrary positive constants x0 and t0;
and put v̂ ¼ ðx̂; 0Þ>:

Step 1. Define an auxiliary event A1 by

A1 ¼ fx̂Xelt0x0g.

Clearly P̂½A1�40 since any non-trivial selfdecomposable distribution possesses an
unbounded support. Since Z is a subordinator, from (23) we see that X ðt; v̂ÞX
e�ltx̂Xelðt

0�tÞx0Xx0 on A1 for every t 2 ½0; t0�; so that we have inf0ptpt0 X ðt; v̂ÞXx0

uniformly on A1:
Fix any function t 2 C1

b ðRþ;RþÞ satisfying the following conditions, where
C1

b ðRþ;RþÞ stands for the set of all smooth functions on Rþ with bounded
derivatives of orderX1:
(t-1)
 tðxÞ ¼
ffiffiffi
x

p
for xXx0=7;
(t-2)
 x 7! tðxÞ and x 7! qtðxÞ are globally Lipschitz.



ARTICLE IN PRESS

H. Masuda, N. Yoshida / Stochastic Processes and their Applications 115 (2005) 1167–11861180
Using this t; define a process ~Hð�; vÞ byZ t Z t
~Hðt; vÞ ¼ h þ b
0

ðX ðs;xÞ � kð1ÞF Þds þ
0

tðX ðs;xÞÞdws þ rZ̄t

which is same as H except for the smooth diffusion coefficient. By the previous
paragraph, Hð�; vÞ ¼ ~Hð�; vÞ for t 2 ½0; t0� on A1:

Step 2. Let c0j and c00j (j ¼ 1; 2) be positive constants such that 0oc1oc01oc001o
c002oc02oc2o1; and write �EA ¼ ðgþ

Zðc
00
2Þ; g

þ
Zðc

00
1ÞÞ!EA: Let ZA 2 C1

B ðRþ;RþÞ be any

function satisfying infzn2 �EA
ZAðz

nÞ40; and ZAðz
nÞ ¼ 0 for zneðgþ

Zðc
0
2Þ; g

þ
Zðc

0
1ÞÞ: we shall

utilize this ZA as an auxiliary function satisfying 10-1 of Bichteler et al. [8].
Denote by r the differential operator with respect to v ¼ ðx; hÞ>: On account of

the expression (23), the matrix-valued process ~Kð�; vÞ ¼ rðX ð�; vÞ; ~Hð�; vÞÞ> is given by

~Kðt; vÞ ¼
e�lt 0

bl�1
ð1 � e�ltÞ þ qx

R t

0
tðX ðs; vÞÞdws 1

 !
. (25)

Denote by At the ð2; 1Þ-component of the right-hand side of (25). In view of

Assumption 1, the definition of t; and (23), it is clear that E½
R t0

0 tðX ðs; v̂ÞÞ2 ds�o1

and E½
R t0

0 fqxtðX ðs; v̂ÞÞg2 ds�o1: Then it is well known that the Lipschitz property
(t-2) ensures existence of a differentiable version of x 7!

R t

0 tðX ðs; vÞÞdws; so
we have

~At :¼ qx

Z t

0

tðX ðs; vÞÞdws






x¼x̂

¼

Z t

0

e�lsðqtÞ � ðX ðs; vÞÞdws






x¼x̂

.

Fix t1 2 ð0; t0Þ and z0 2 �EA: Take a sufficiently small constant �40 so that I �1 :¼ðt1 �

�; t1 þ �Þ � ð0; t0Þ and that E�
A :¼ðz0 � �; z0 þ �Þ � �EA: Now we define A�

2 by

A�
2 ¼ fmn

ZðI
�
1;E

�
AÞ ¼ 1g. (26)

Obviously P̂½A�
2� ¼ 4�2 expð�4�2Þ40 for any �40:

Step 3. Next, for �040 we introduce

A�0

3 ¼ sup
0ptpt0

j ~Atjo�0
( )

. (27)

Because of the boundedness of x 7! qtðxÞ; ~A is a continuous F-martingale. Enlarging
the underlying stochastic basis, we see that there exists a standard Wiener process
B ¼ ðBtÞt2Rþ

such that ~At ¼ B½ ~A�t
(e.g. Rogers and Williams [22, Theorem IV 34.11]),

where ½ ~A�t ¼
R t

0 e�2lsfðqtÞ � ðX ðs; v̂ÞÞg2 ds; and obviously ½ ~A�t0pkqtk2
1t0: Therefore,

we can estimate as

P̂½A�0

3 jA
�
2� ¼ P̂ P̂ sup

0ptpt0
jB½ ~A�t

jo�0






sðX ;mn

ZÞ

" #




A�
2

" #

XP̂ P̂ sup
0ptpkqtk2

1t0
jBtjo�0






sðX ;mn

ZÞ

" #




A�
2

" #
,
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where the random number

P̂ sup
0ptpkqtk2

1t0
jBtjo�0






sðX ;mn

ZÞ

" #

is a.s. positive for any t0; �040 (cf. Billingsley [9, p. 97]). Hence we obtain that
P̂½A�0

3 jA
�
2�40 a.s. Putting A�;�0 ¼ A1 \A�

2 \A�0

3 ; we have

P̂½A�;�0 � ¼ P̂½A1�P̂½A
�
2 \A�0

3 �

¼ P̂½A1�P̂½A
�
2�P̂½A

�0

3 jA
�
2�

40

for any � and �0: Note that we can control � and �0 independently due to the
independence between mn

Z and w.
Step 4. With the smooth modification ~H introduced before, the Malliavin

covariance matrix Uð�; v̂Þ associated with the flow ðX ð�; v̂Þ; ~Hð�; v̂ÞÞ> is well-defined for
t 2 ½0; t0�; and given by

Uðt; v̂Þ ¼ ~Kðt; v̂Þ ~Sðt; v̂Þ ~Kðt; v̂Þ>; t 2 ½0; t0�, (28)

where, on A�;�0 ;

~Sðt; v̂Þ ¼

Z t

0

~Kðs; v̂Þ�1
0 0

0 X ðs; v̂Þ

 !
~Kðs; v̂Þ> �1 ds

þ

Z t

0

Z
EA

VAðz
nÞ ~Kðs; v̂Þ�1

1 r

r r2

 !
~Kðs; v̂Þ> �1mn

Zðds;dznÞ ð29Þ

with VAðz
nÞ ¼ fqJAðz

nÞg2ZAðz
nÞ: see Bichteler et al. [8, Section 10] for details. Due

to (25) and non-negative definiteness of the second term of the right-hand side of
(29), we see that

~Sðt0; v̂ÞX

Z t0

0

~Kðs; v̂Þ�1
0 0

0 X ðs; v̂Þ

 !
~Kðs; v̂Þ> �1 ds

þ

Z
I �1

Z
E�

A

V Aðz
nÞ ~Kðs; v̂Þ�1

1 r

r r2

 !
~Kðs; v̂Þ> �1mn

Zðds; dznÞ

¼

R
I �1

R
E�

A
V Aðz

nÞe2lsmn
Zðds;dznÞR

I �1

R
E�

A
VAðz

nÞelsðr� elsAsÞmn
Zðds;dznÞ

0
@

sym.R
I �1

R
E�

A
VAðz

nÞðr� elsAsÞ
2mn

Zðds;dznÞ þ
R t0

0 X ðs; v̂Þds

1
A
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on A�;�0 ; hence

det ~Sðt0; v̂ÞX

Z
I �1

Z
E�

A

VAðz
nÞe2lsmn

Zðds;dznÞ

 !




Z
I �1

Z
E�

A

V Aðz
nÞðr� elsAsÞ

2mn

Zðds;dznÞ þ

Z t0

0

X ðs; v̂Þds

 !

�

Z
I �1

Z
E�

A

VAðz
nÞelsðr� elsAsÞmn

Zðds;dznÞ

 !2

. ð30Þ

Clearly

det Uðt0; v̂Þ ¼ e�2lt0det ~Sðt0; v̂Þ (31)

in view of (25) and (28). We shall show that det ~Sðt0; v̂Þ40 to conclude that
det Uðt0; v̂Þ40 uniformly on A�;�0 ; i.e. local non-degeneracy of Uðt0; v̂Þ: In the sequel,
we use the small order symbol o00ð1Þ for random or non-random variables R�;�0 such
that R�;�0 ! 0 as �; �0 # 0 uniformly on A�;�0 :

Under Assumption 2, zn 7!V Aðz
nÞ is of class C3 and strictly positive uniformly on

E�
A: Apply Taylor’s theorem around z0 and t1 to obtain

V Aðz
nÞe2ls ¼ VAðz0Þe

2lt1 þ o00ð1Þ,

V Aðz
nÞðr� elsAsÞ

2
¼ VAðz0Þfr� bl�1

ðelt1 � 1Þg2 þ o00ð1Þ,

V Aðz
nÞelsðr� elsAsÞ ¼ V Aðz0Þe

lt1fr� bl�1
ðelt1 � 1Þg þ o00ð1Þ.

Substituting these three displays in (30), we get

det ~Sðt0; v̂ÞXfVAðz0Þe
2lt1 þ o00ð1Þg


 V Aðz0Þðrþ l�1b� l�1belt1 Þ
2
þ

Z t0

0

X ðs; v̂Þds þ o00ð1Þ

( )

� fV Aðz0Þe
lt1ðrþ l�1b� l�1belt1 Þ þ o00ð1Þg2

¼ VAðz0Þe
2lt1

Z t0

0

X ðs; v̂Þds þ o00ð1Þ. ð32Þ

Here we used the fact that, for any �; �040; mn
ZðI

�
1;E

�
AÞ ¼ 1 on A�;�0 : Therefore it

follows from (31) and (32) that

det Uðt0; v̂Þ ¼ e�2lt0det ~Sðt0; v̂Þ

Xe2lðt1�t0ÞV Aðz0Þx0t0 þ o00ð1Þ

on A�;�0 : Without loss of generality we may suppose that ZAðz0Þ is sufficiently large
(by choosing ZA suitably), so letting � and �0 be sufficiently small we may take

det Uðt0; v̂ÞX3

on A�;�0 : Fix � and �0 like this in the rest of the proof.
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Step 5. Now we define a functional x̂�;�0 2 DL
2;1� by

x̂�;�0 ¼
1

1 þ det Uðt0; v̂Þ
þ

2

1 þ 7x̂x�1
0 e�lt0

; (33)

it is clear that x̂�;�0 2
T

po1 LpðP̂Þ: By the choice of � and �0 in the previous step, we see
that

0oP̂½A�;�0 �pP̂½det Uðt0; v̂ÞX3; x̂Xelt0x0�

pP̂
1

1 þ det Uðt0; v̂Þ
p

1

4
;

2

1 þ 7x̂x�1
0 e�lt0

p
1

4

� 	

pP̂ x̂�;�0p
1

2

� 	
.

Consequently, det Uðt0; v̂Þ ¼ 0 implies ĉ�;�0 fdet Uðt0; v̂Þg�1 ¼ 0 (with the convention
0 � 1 ¼ 0). We thus end up with

Lemma 6. Let ĉ�;�0 be of the form (24). Then there exists x̂�;�0 2 DL
2;1� such that

P̂½x̂�;�0p 1
2
�40 and that ĉ�;�0 fdet Uðt0; v̂Þg�1 2

T
po1 LpðP̂Þ for each t040:
4.2.1. On the condition ð ~A
0
� 4Þ

We must check ð ~A
0
� 4Þ of Bichteler et al. [8] for the flow ðX ð�; vÞ;Hð�; vÞÞ>: Here �

and �0 are fixed so that the assertion of Lemma 6 holds true.
As already mentioned, the diffusion coefficient

ffiffiffiffiffiffiffiffiffiffiffiffiffi
X ðt; vÞ

p
of Hð�; vÞ causes trouble

for ð ~A
0
� 4Þ: However, it is sufficient that we can apply the integration-by-parts

formula on the event carved out by the truncation functional ĉ�;�0 : Now, let us note that
the definition (24) leads to the following inclusive relation:

fĉ�;�040g � fx̂�;�0p1g

�
2

1 þ 7x̂x�1
0 e�lt0

p1

� �

¼
x0e

lt0

7
px̂

( )

� inf
0pspt0

X ðs; v̂ÞX
x0

7

� �
.

Thus, the property (t-1) implies that Hðt; v̂Þ ¼ ~Hðt; v̂Þ for t 2 ½0; t0� on fĉ�;�040g: in
other words, we have

Lfðc�;�0 ; 1fc�;�040gðX t0 ;Ht0ÞÞjPg ¼ Lfðĉ�;�0 ; 1fĉ�;�040gðX ðt0; v̂Þ;Hðt0; v̂ÞÞÞjP̂g,

where c�;�0 and Ht0 (both defined on the original probability space ðO;F;PÞ) stand
for a distributional equivalent of ĉ�;�0 and ~Hðt0; 0Þ; respectively. On the other hand, it
is quite straightforward to verify ð ~A

0
� 4Þ for fðX ð�; v̂Þ; ~Hð�; v̂ÞÞ>gt2½0;t0�; so that we

have obtained
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Lemma 7. Under Assumptions 1 and 2, the process f1
fĉ�;�040gðX ð�; v̂Þ;Hð�; v̂ÞÞ>gt2½0;t0�

meets ( ~A
0
� 4).

4.2.2. An integration-by-parts formula and moment conditions

Here � and �0 are still fixed as the assertion of Lemma 6 holds true. On ðÔ; Ĝ; P̂Þ;
consider the Malliavin operator ðL;DL

2;1�Þ: Denote by GL the bilinear form

corresponding to L: namely, for F ;G 2 DL
2;1�

GLðF ;GÞ ¼ LðFGÞ � GLF � FLG. (34)

Put Ẑ ¼ ðX ðt0; v̂Þ;Hðt0; v̂ÞÞ and Sn

1 ½ĉ�;�0 ; Ẑ� ¼ fspq

Ẑ
;D�1

Ẑ
ĉ�;�0 g; where sẐ ¼ ðspq

Ẑ
Þ ¼

GLðẐ; ẐÞ and DẐ ¼ det sẐ (we shall use similar notation for the other variables).

According to the truncation via ĉ�;�0 ; we can now follow the argument in Yoshida
[29, Section 4.2], except that H’s diffusion coefficient is replaced under our truncation.
This validates the conditional type Cramér condition: to be precise, for any B40;
distributional equivalence and the integration-by-parts formula yield that

E sup
u:jujXB

jE½c�;�0e
iuH

t0 jX 0;X t0 �j

" #

¼ E sup
u:jujXB

jE½c�;�0e
iu ~H

t0 jX 0;X t0 �j

" #

¼ Ê sup
u:jujXB

jÊ½ĉ�;�0e
iu ~Hðt0;v̂ÞjX ðt0; v̂Þ�j

" #

¼ Ê sup
u:jujXB

jðiuÞ�1Ê½eiu ~Hðt0;v̂ÞCðĉ�;�0 ÞjX ðt0; v̂Þ�j

" #
, ð35Þ

where Lððc�;�0 ; ~Ht0 ÞjPÞ ¼ Lððĉ�;�0 ; ~Hðt0; v̂ÞÞjP̂Þ; and the functional C is given by

Cðĉ�;�0 Þ ¼ GLðX ðt0; v̂Þ;s�1
X ðt0;v̂Þĉ�;�0GLðX ðt0; v̂Þ; ~Hðt0; v̂ÞÞÞ

� GLðĉ�;�0 ; ~Hðt0; v̂ÞÞ � 2ĉ�;�0L
~Hðt0; v̂Þ

þ 2s�1
X ðt0;v̂Þĉ�;�0GLðX ðt0; v̂Þ; ~Hðt0; v̂ÞÞLX ðt0; v̂Þ ð36Þ

which is well-defined on fĉ�;�040g: It follows from (35) that

E sup
u:jujXB

jE½c�;�0e
iuH

t0 jX 0;X t0 �j

" #
p

1

B
Ê½jCðĉ�;�0 Þj�.

It suffices to show Cðĉ�;�0 Þ 2 L1ðP̂Þ: if this is true, then (17) of [A3] follows by letting
B be sufficiently large. Note that (18) in [A3] holds true with c ¼ c�;�0 since
P½c�;�040� ¼ P̂½ĉ�;�040� and this probability is positive by virtue of Lemma 6.

As remarked in Yoshida [29, Section 5.1], there exists a polynomial function P
such that

jCðĉ�;�0 ÞjpPð1
fjx̂�;�0 jp1gQðt0; v̂Þ�1; jUðt0; v̂Þj; jV ðt0; v̂Þj; jUnðt0; v̂Þj; jsx̂�;�0 jÞ, (37)
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where Qðt0; v̂Þ ¼ det Uðt0; v̂Þ; V ðt0; v̂Þ ¼ LẐ 2 R2 and Unðt0; v̂Þ ¼ GLðUðt0; v̂Þ;
Uðt0; v̂ÞÞ 2 R4 � R4:

(a) In Lemma 6, we have seen that 1
fjx̂�;�0 jp1gQðt0; v̂Þ�1

2
T

po1 LpðP̂Þ:

(b) Since Ẑ 2 DL
2;1� and L takes its values in

T
po1 LpðP̂Þ; we see that V ðt0; v̂Þ and

Uðt0; v̂Þ belong to
T

po1 LpðP̂Þ:

(c) Applying Theorems 10-3 and 10-17 of Bichteler et al. [8] repeatedly and then
using Theorem 5-10 of the same monograph, it is not difficult to see that Unðt0; v̂Þ 2T

po1 LpðP̂Þ; taking into account that t 2 C1
b ðRþÞ:

(d) Since x̂�;�0 2
T

po1 LpðP̂Þ; it follows from (34) and the property of L that

sx̂�;�0 2
T

po1 LpðP̂Þ:

Summarizing the above now yields

Lemma 8. Under Assumptions 1 and 2, we have Cðĉ�;�0 Þ 2 L1ðP̂Þ for C of (36).

Combining Lemmas 6, 7 and 8 guarantees ½A3Q� of Yoshida [29], therefore the
proof of Theorem is complete.
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