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Abstract

With the help of a general methodology of asymptotic expansions for mixing processes, we
obtain the Edgeworth expansion for log-returns of a stock price process in Barndorff-Nielsen
and Shephard’s stochastic volatility model, in which the latent volatility process is described
by a stationary non-Gaussian Ornstein—Uhlenbeck process (OU process) with invariant
selfdecomposable distribution on R, . The present result enables us to simultaneously explain
non-Gaussianity for short time-lags as well as approximate Gaussianity for long time-lags. The
Malliavin calculus formulated by Bichteler, Gravereaux and Jacod for processes with jumps and
the exponential mixing property of the OU process play substantial roles in order to ensure a
conditional type Cramér condition under a certain truncation. Owing to several inherent
properties of OU processes, the regularity conditions for the expansions can be verified without
any difficulty, and the coefficients of the expansions up to any order can be explicitly computed.
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1. Introduction

In this paper we are concerned with the model (X, Y) = {(X,, Y/)},cg, given by
dX[ == _/ledl + dZ[,
dY[Z("/‘i‘ﬁX;)dt‘i‘\/Xtth+det, Y()ZO, (1)

where Z = (Z/),cg, and w = (W;),cg, , respectively, denote a subordinator (increasing
Lévy process) and a Wiener process independent of Z, and (1,7, 8, p) € (0, 00) x R?
are constants. The process X is called an Ornstein—Uhlenbeck process (OU process),
where the initial variable X is supposed to be independent of (Z, w). The positivity
of A together with a mild condition on the Lévy measure of Z ensures existence of an
invariant distribution of X, which is necessarily selfdecomposable. The purpose of
this paper is to obtain the Edgeworth expansion of an expectation E[f(T~'/>H7)] as
T — oo, where

HT = YT — E[YT]
T T
y / (X, — E[Xo])ds + / VX dw, + p(Zr — E[Z7) @
0 0

and f : R — R is a measurable function at most polynomial growth; see Section 2.1
for precise formulation. We suppose that X is strictly stationary with a stationary
distribution admitting moments of any order, and also that the Lévy measure of Z
satisfies mild regularity conditions.

Eq. (1) is Barndorff-Nielsen and Shephard’s continuous-time stochastic volatility
model, in which X stays in R, and describes a time-varying volatility: for clarity, we
here do not adopt the unusual timing dZ;, for dZ, of Barndorff-Nielsen and
Shephard (in that case, a given marginal distribution of X is unchanged whatever
A>01is); of course, this is not essential for validity of the expansion. This model not
only captures several stylized features in finance and turbulence, but also offers a
great deal of analytic tractability. See Barndorff-Nielsen and Shephard [5] and
Barndorff-Nielsen [1] for details, and also Barndorff-Nielsen et al. [3] for a summary
of recent developments in this direction. If X is ergodic, then the martingale central
limit theorem yields that

T
(ELX]T) (YT T p / X,ds - p(Zy — E[ZTD)
— (EXIT) / VX, dw, 3)

weakly tends to the standard normal variable as 7 — oco. This is called
“aggregational Gaussianity”’, which is recognized as one of important stylized
features in turbulence as well as finance: here the ergodicity of X and exponential
p-mixing property are indeed ensured by our Assumption 1 in Section 2.1 (cf.
Masuda [15,16] for more general results). In this paper we consider the term
“aggregational Gaussianity” as the central limit effect of the log-return 7~'/?H;
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thus our setup in principle includes (3) with y = f = p = 0. For real market data, it is
quite well known that a distribution of log-returns exhibits non-Gaussianity for
short time-lags and approximate Gaussianity for long time-lags. For this reason, it is
interesting to investigate the higher order asymptotics of #(T~/>H ) as well as its
central limit effect for T — oo, so that we obtain a result which simultaneously
explain non-Gaussianity for small 7" and approximated Gaussianity for large 7.

To be convenient for readers, we now refer to some previous results concerning an
OU process X whose solution is explicitly given by

t
X, =e¢ "Xy + / e =9 dz,. 4)
0
The corresponding references to the items (1)—(3) below can be found in Masuda [15,
Section 2].

(1) Any selfdecomposable distribution, which is known to be unimodal and
absolutely continuous with respect to the Lebesgue measure, can be realized as a
stationary distribution of an OU process; more precisely, there is one-to-one
correspondence between a possible stationary distribution of an OU process and a
selfdecomposable distribution.

(2) Two theoretical construction of a stationary OU process with concrete
marginal distribution are possible. First, suppose that a selfdecomposable
distribution F is given. If ¢(u; F) is differentiable at u#0 and moreover if the
function u+> ud,k(u; F) is continuous at u = 0, then there exists a stationary OU
process X with the marginal distribution F and Z determined by k(u;Z;) =
Au0,k(u; F). Secondly, we can determine the stationary distribution F of X via a given
generating triplet of Z; in this case, the Lévy measure I17(dz) of Z must meet

/ log |z| [Tz (dz) < o0.
lz1>1

(3) If X is strictly stationary and the Lévy measure of F admits a differentiable
density gp(x) for x#0, then the Lévy measure of Z admits a density g,(x) given by

97(x) = =2~ {gp(x) + xDg £ (x)}. Q)

Relation (5) is convenient to determine Z, given F.
(4) If F (resp. Z,) admits the kth cumulant, then Z; (resp. F) admits the kth
cumulant as well and they are related by

Jaxy) =« (6)

See Barndorff-Nielsen and Shephard [5, Section 2.1]; if we use Barndorff-Nielsen
and Shephard’s custom dZ;, instead of dZ;, then (6) becomes kkgf) = K%? .

An important and remarkable feature is that we can explicitly write down the
coefficients of the asymptotic expansions up to any order, utilizing the relation

t t
[ s =noxos [ ni-saz. )
0 0
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where #(4,u) = A~'(1 —e ). formula (7) directly follows from the explicit
expression (4), or, the affine structure of the process, see Duffie et al. [11]. The
formula (6) enables us to write down the coefficients of the asymptotic expansion in
terms of only K(Fk) or only K?, k € N. One can consult Barndorff-Nielsen and
Shephard [7] for a detailed analysis of integrated OU processes. Norberg [19]
suggested the use of positive OU processes as a stochastic interest rate, and
there moments of present values in actuarial context as well as price of zero-
coupon bonds was studied, building on several explicit Laplace transforms
concerning OU processes. See also Dassios and Jang [10, Section 2], where some
conditional Laplace transforms of integrated positive processes of shot noise type
were given.

Now let us observe that direct validation of the Edgeworth expansion, namely
direct estimate of the characteristic function of T-'/2H, is intractable. Lemma 3
below, which is more or less well known, and conditional argument (note that here X
anc}/zw are independent) enable us to write down the characteristic function of
T '/“Hy as

@(u; T™"2Hy) = exp{—iuT"*(B + 4p)E[X o]}

: 2
xE {exp{ (;uTl/fz - ;—T) n(A, T)XOH
T
X exp{/ log E[exp{K(u, s)Z}] ds}, (8)
0

where the complex-valued function K is given by

: 2
K(u$) = 75 (o + (.9} = 5271049

whose real part is negative, so that E[exp{K(u,s)Z,}] indeed exists since Z is a
subordinator; see e.g. Sato [25, Theorem 30.1]. The most direct route to obtain the
Edgeworth expansion is estimating ¢(u; T~'/>?Hr) for large |ul; this is called the
“global approach” recently developed in Yoshida [27,28] covering processes with
jumps. Unfortunately, the expression of |@(u; T~'/>H7)| involves the following
rather intractable term coming from the Lévy-integral part in (8)

T . )
exo | /. (ex0 |={ s+ o = 57000 | = 1)ty 0}

where IT; denotes the Lévy measure of Z. Hence we shall take another route.

In this paper we are going to look at the “local approach”, which is initiated by
Gotze and Hipp [12] recently extended to continuous-time framework by Yoshida
[29]. [See also the previous works [13,23,24,29] for some statistical applications in
this direction.] According to the Markov property of X as well as its exponential
mixing property, this approach will turn out to be tailor-made for our aim. The main
task is then to establish the following estimate for some #°, B> 0, which results from

>
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the integration-by-parts formula:

E | sup |E[pe 01X o, X ]l | <1, )
lu|=B
where y fulfilling E[yy]>0 is a truncation functional, which enables us to extract
a ‘“nice event”. Though (9), called the ‘“‘conditional type Cramér condition™, is
generally not easy to verify, the concrete structure of the model (1) considerably
simplifies the task. Also, the truncation technique is often inevitable, and this is
indeed the case for our goal. In the proof we shall construct ¥ in a tangible way in
order to avoid the irregular square-root diffusion coefficient of Y, and consequently
validate the expansion. See Section 4 for details.
The result is given in Section 2, and then Section 3 presents the explicit formulae
for the asymptotic expansion. Section 4 devotes to proving the validity of the
expansion.

2. Edgeworth expansion for log-returns

Let (2, 7,F = (F),cr,,P) be a stochastic basis endowed with an F-adapted
non-trivial subordinator Z and an F-adapted Wiener process w as well as an
Z p-measurable random variable X independent of (w, Z). Throughout this article,
¢o(u; &) stands for the characteristic function of ¢ indicating a random variable or a
distribution, and we write x(u; &) = log @(u; &) for the corresponding cumulant
transform. The (partial) differentiation with respect to some variable v will be
denoted by 0,, or simply by 0 when there is no confusion.

Since Z is a subordinator, it can be completely characterized via a drift bz and a
Lévy measure Iz, i.e.

ou; Z,) = exp{l(z’bzu + [ (-1, (dz)) },
Ry
where bz >0, suppIl; C Ry and [,___, z 11z (dz)<c0.
2.1. The formulation of the expansion

Before stating our results, we shall briefly present the formulation of the
Edgeworth expansion; see Yoshida [29] for a more general exposition.

Denote by y, 7(«) the rth cumulant function of T~'2Hy (r e N, r>2), where H is
defined by (2)

%r.r(w) = 0, log Elexp(uT~"?Hr)].
Define P, r(u) by the formal expansion

> 1 1
exp (Z 5 m(u)) = exp <2 m(u)) +

0 ~
TP, r(u).
r=2 _

r=1
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Fix p € N (p=3), and define ¥, r(u) by

. 1 B2 s
¥, (1) = exp (5 XT,z(u)> + Z TP, r(u).

r=1

Then the (p —2)th Edgeworth expansion, say ¥, r, is defined by the Fourier
inversion of ¥, r. Denote by ¢(-;2) the one-dimensional Gaussian density with
mean zero and variance X~ >0, and let /,(y; X) stand for the rth Hermite polynomial
associated with ¢(-; 2)

h(;2) = (=) 2)'0,(; 2).

Put y.7 = (—=1)"y,.7(0), the rth cumulant of 7~ 2H 1, and write Yo as Xr for
convenience: in our case, x,7 = O(T~ =2/2) for T — co. Then the density of Y1
with respect to the Lebesgue measure is given by

9,(; T™'2Hr) = (1 + Gpr(0)}p(y; Z1),

where

Xiy+2,T """ Xkj+2,T
1 2T).
G,r(y) = Z Z ) ;N s+ 20 (k1 1 2)1 B2 (v; Z7)

ky + +/c/_/\

For instance, the third-order approximation g,(y; T~'/>Hr) (corresponding to the
second-order Edgeworth expansion) is given by

2
94(: T™'?Hr) = (y; ZT){1 +)° Bk,T(V)}:

k=1
where
3
_Lr(y 3y
KRS
Bar(y) = 74r<i_6_y2 i) Br (y_6_15y4 45y2_£)
4\ 2 2% 203\ 2 2 5%

Let p, =2[p/2] and denote by &(M,p,) the set of all measurable functions
/R — R satisfying |[f(x)| < M(1 + |x|?) for every x € R. Put
A1) = |E (T~ Hp)] = ¥yl
and
off:6.) = [ sup 1f(r+3) ~ ()
R |y|<é

for >0, measurable function f and Borel measure v on R.
Suppose that X7 — X¥>0 as T — oo, and fix any positive constant Z° such that
20> ¥ We say that “Estimate (10) holds true for T-'?H7" if “for any M,K >0,
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there exist positive constants M* and * such that
Apr()SM*o(fs T, ;X% dx) + o(T- 032 (10)

for T — oo uniformly in f € (M, p,)”. Our goal is to show that Estimate (10) holds
true for 7-'/2H7. We impose the following moment condition.

Assumption 1. X is strictly stationary with invariant distribution F admitting
moments of any order.

Remark 1. A natural question is that ““given a desired order of the expansion, is it
possible to specify up to what order of F’s moments are actually required?”. To
answer this, apart from [A2] easy to check (see Section 4), we must carefully estimate
the moment of the dominating polynomial # of |¥(y, )| (see (36) and (37) in the
proof), where the function ¥ essentially comes from the integration by parts
formula, and hence the specification of the required order is in principle possible.
However, we do not pursue this problem here because in most applications (cf.
Barndorff-Nielsen and Shephard [5-7]), Condition [A2] is fulfilled and it is not so

constructive to spare the space to count the order.
In the sequel, we denote by Kf(ék) the kth cumulant of £, a random variable or a
distribution.

2.2. The result

Clearly H satisfies

dH,; = f(X, — V) dr + /X, dw, + pdZ,, H, =0, (11

where Z, = Z,— E[Z]=Z,— E[Z]t is the centred Z. Since A>0 and Z is a
subordinator, we have supp F C R,. If IT; admits moments of any order outside
neighborhoods of the origin, then Assumption 1 is satisfied under ¥ (X,) = F.

Denote by A, the Poisson random measure associated with jumps of Z, and let it
be written as

Az(dt,dz) = p(dr, dz) + uy(de,dz) (12)
for some Poisson random measures u and u,. Correspondingly, write
M z(dz) = v)(dz) + vz(dz), (13)

where v and vz stand for the Lévy measures on R, associated with uJ and pu,
respectively.

Assumption 2. There exists a non-empty open subset of R, on which the Lévy
measure v admits a positive C*-density with respect to the Lebesgue measure.

We need the C-property of the density of v, for the condition (;1/ —4) of
Bichteler et al. [8]. The Lévy measure v% may be any one as long as Assumption 1 is
satisfied; in particular, we may take v% =0 if IT, admits a sufficiently smooth
positive density. Many examples of F treated by Barndorff-Nielsen and Shephard
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satisfy Assumptions 1 and 2; for instance, generalized inverse Gaussian, tempered
stable and selfdecomposable modified stable (cf. [6]).
Now we are in a position to state the main result.

Theorem. Let H be given by (11). Suppose that Assumptions 1 and 2 are met, and fix
any positive number X° such that

2
X0 K%l) + 7 s+ )»p)zic}z).
Then, Estimate (10) holds true for T~/>H .

The proof is deferred to Section 4.

Remark 2. It is also possible to prove Estimate (10) for (X, Y) is given by

dXt == _)VX[ dt+dZ[,
dY, =@ +pX)di+pdZ, Y,=0.

The Lévy process Z here may take values in the whole line. In this case, the regularity
of (X, H), which plays an essential role in derivation of the expansion, is inferior to
that of (1) since we have only one-dimensional random input Z against the two-
dimensional objective (X, H). Hence, it is not clear whether (X, H) possesses
enough regularity. In particular, for pure-jump Z, this distributional problem is
mathematically interesting in its own right. Under rather mild conditions, we can
also guarantee the expansion even for Z of pure-jump type. It turns out that in this
case the restriction pi+ f#0 is necessary for non-degeneracy of the limit
distribution of 7-'>Hy. See Masuda and Yoshida [17] for details.

3. Coefficients of the expansion

As already mentioned, formula (7) is useful for computation of the coefficients of
the expansion. Simple but tedious computations lead to explicit expressions of y, r.

A minor modification of Lukacs [14, Theorem 1] yields the following simple
lemma.

Lemma 3. Let Z be a subordinator, let h:[0,T] x R — C be continuous in the first
component, and suppose that the real part of h(s, u) is non-positive for every (s,u). Then

T T
logE[exp{/ h(s, u) dZSH = / log E[exp{h(s,u)Z}]ds
0 0
for every u € R.

As in (8), it readily follows from Lemma 3 that under Assumption 1

T
L) = azk(ar(u);F)—i—/ O k(br(v,u); Z)dv, r=2, (14)
0
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where

upf u?
= p— | — )L T
u u?
bT(U, Ll) = ﬁ {,[))’7(1: U) + p} + [ ﬁ 17(/19 U)'
The elementary chain rule for differentiations and the above (14) yield the explicit
expressions for y, . Note thatif § = p = 0, then all odd-order cumulants vanish. See
Theorem 2.2 of Nicolato and Venardos [18] for the Laplace transform of T~'/>H .

The following formula is convenient for computations of y, r (for the second-term
on the right-hand side in (14)):

T k (kY
Ji(T) = /0 {Bn(2, v) + pYn(2,v) ds =y ( j ) B o 11,(T) (15)
=0

for k,/ € N U {0}, where

T
In(T) = / (o) v, m e NU{0)
0

satisfy the recurrence formula
I(T) = 27 Leo(T) = G~ (4, DY, ke N

from which we get

In(T) = J7"T =370y g W DY, m=1,
q=1
I(T)=T. (16)
Egs. (15) and (16) imply that
1 ,
(D) = 0 Get]) KR = 37 RB 4 pa)f
ki(T) Z i B (B + p2)

j=0

as T — oo. In particular, we get
Sr=1r = KW +2 (/3 + 7)) >

For the next two, we obtain

= TV T (B0, )Y + 3230(T))
+ 3P T (B2, T)) +2211(T)))
~T V230728 4 pa) k) + 6271 (B + p?)
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and

tar = T DTV B0, T + 42d40(T))
+ 6D T (B (2, T)) + 342.0(T))
+ 3P T (A, T)) + 2415(T)))
~T 453 B+ pi)'isD + 18272 (B + p)* + 647 1Py,

where Fr~Gr means that Fr/Gr — 1 as T — oo. As is mentioned, XrT =
O(T~"=?/2) in general.

Remark 4. Barndorff-Nielsen and Shephard [6] advocated that the tempered stable
distribution denoted by 7'S(k, o, ), where O0<k<1, §>0, and £=0, is one of good
candidates for F when the model is applied to finance; a special case is IG(d, &) for
K= % For TS(x, 0, &), we must assume that £>0 for Assumption 1, and in this case
the normal tempered stable distribution (NTS) including the normal inverse
Gaussian (NIG) for x =% appears as the approximation of the distribution of the
instantaneous log-return. NTS as well as NIG is known to be able to exhibit
skewness and steepness (fat tails) very flexibly and it also possesses the reproducing-
property. Further, the cumulant generating function of TS(x, d, &) is simply given by
oME—(EVr = 2u)*}, from which one can easily get

k—1
K%(K,é,s) = —3(=2) gt H(K —J), keN.
=0

4. Proof of theorem

The proof will be carried out essentially by applying Theorem 4 of Yoshida [29],
which targets at stochastic differential equations with jumps. The theorem just
referred to is a special case of Theorem 1 of Yoshida [29] covering general partial
mixing processes, hence, for reference let us briefly mention Theorem 1 of Yoshida
[29] before entering the proof.

Building on the Markov nature and stationarity of X, the exponential mixing
version of Theorem 1 of Yoshida [29] asserts that it suffices to verify the following
conditions:

[A1] X is strongly mixing with exponential rate;

[A2] for each T € Ry, sup,cpo 7 1Hll ;1 (p) < 003

[A3] (a version of conditional type Cramér conditions) there exist positive constants #°,
a, d and B, and a truncation functional  : (2, %) — ([0, 1], 4([0, 1])) such that
0<a,d <1, 4d' <(a — 1)* and that the following two conditions are met:

E | sup |E[ye"™0|Xo, Xp]l| <d, (17)

[u|>B

1 - E[y]<a. (18)
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It is difficult in general to check [A3] directly, however, we can employ infinite
dimensional stochastic calculus (Malliavin calculus) with truncation to verify it, and
resultingly, more easy-to-check conditions than those of Theorem 1 of Yoshida [29]
can be given: this is just what Theorem 4 of Yoshida [29] provides. There [A3] is
replaced by another condition called [43%], in which local non-degeneracy of a
Malliavin covariance matrix of interest as well as some other regularity conditions is
required. Our plan is thus to verify [A1], [A2] and [439] under our assumptions.

We see that Assumption 1 directly ensures [A1] and [A2]: X is exponentially f-
mixing hence exponentially strong-mixing under Assumption 1, see Masuda [15
Theorem 4.3] for details; turning to [A2], the relation (6) implies that Z; as well as F
admits moments of any order, hence Burkholder-Davis-Gundy’s and Jensen’s
inequalities readily ensure [A2]. Thus it remains to verify [A3].

In addition to direct application of Theorem 4 of Yoshida [29] itself, we shall
introduce an auxiliary process H for H, which will turn out to be essential for the
condition (/~1/ — 4) of Bichteler et al. [8] to be fulfilled in our context. Here the
condition (/T —r), ¥ € N, is a series of conditions for smoothness of the coefficients
of stochastic differential equations of interest, moreover, it requires polynomial
growth rate of the derivatives of the coefficients; see p. 147 of Bichteler et al. [8] for
details. More precisely, we shall circumvent the irregular behavior of the derivatives
of H’s diffusion coefficient /X, near the origin, introducing a suitable truncation
functional.

In the rest of this section, we write fi%(dz,dz) = u%(dt,dz) —v5(dz)ds and
fiz(dt,dz) = p,(dt,dz) — vz(dz) de; recall (12) and (13).

4.1. Transforming the Poisson random measure

Under Assumption 1, the Lévy-It6 decomposition gives

_/ucg)l—i—/ / Z,uz(ds dz)+/ / zfi,(ds,dz)
R, Ry

for each ¢ € Ry. Under Assumption 2, we can find an open set E 4o = (1, ¢2) with
0<cy <y <oo, on which vz admits a C3-density gz such that inf.cg,  g(2)>0.

To begin with, we partly rewrite the stochastic differential equation of (X, H),
replacing partial jumps associated with p, corresponding to the region (cj, ¢;) by the
uniform Poisson space, so that the resulting compensating measure becomes the
Lebesgue measure; this is required for direct application of the theory of Bichteler
et al. [8]. Under Assumption 2, this corresponds to the change of variable

o
=z = / gz(w)dv, ze€ E,p. (19)

Write g5 (z) = z%(z). Then g}(z) is strictly decreasing on E, g, hence g}(c;)>
g%(c2)>0. Accordingly we have

/ / 2fi(ds, d2) = / /g g;:')gzc*)ﬁ;(ds, dz, 20)
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where g stands for the inverse function of z+> g¥(z), which is also strictly
decreasing, and j%(ds, dz*) = u%(dr,dz*) — drdz* with the integer-valued random
measure p% defined by

[ ras t rgi(a)
/ / (s, p(ds, dz) = / / (s, g ()i (ds, d=%) 1)
0 aj 0 g}r(aZ)

for each t € Ry, aj,a, € R such that a; <a,, and for any measurable function % on
Ry x Ry. Put E4 = (95(c2), g%(c1)). For B e #(E,) and t € Ry we have

E[u5(0, 1, B)] = I(B)t,

where /(-) stands for the Lebesgue measure. Then the stochastic differential equation
of (X, H) becomes

dx, M A q 0 4
a, ) =0 TN g ) o)
1 1
+ [ z< >{:“Z+IEA0MZ}(dt @+ [ h(z*)( )ﬁz(dt,dZ*),
R+ p E4 p

(22)
where EZ,O denotes the complement of E 4, E,=E4 U (g%(c1),00), and

Ja(*) = g (), (), ek,
Note that (22) is clearly graded associated with the grading R?> = R x R of R? in the
sense of 5-5 of Bichteler et al. [8]. Also, note that for each ¢t € R the random number
1[0, 7], E 4) is a.s. finite, and that the function z* - J 4(z*) is of class C* on E 4 by
virtue of Assumption 2 and the inverse function theorem.

Remark 5. We have presented a (partial) transformation of the Poisson random
measure (i, demonstratively, however, we should note that it is always possible to
extract a uniform Poisson random measure from any Poisson random measure y on
I x E C Ry x R, at least as soon as u’s Lévy measure admits a positive density on E.
Of course this is true of the multi-dimensional case.

Let (Q, G, P) be the canonical space defined as follows. Let (Q,%, P) stand
for the canonical product Wiener—Poisson space over a non-empty time-interval
[0,7°], and then define (Q ) by the product measurable space (Q G) = (R4 x
Q,B(R,)® %). Define a probability measure P by P=F x P: under P, the
projection to the first space, say X, yields the same law as F, the canonical projec-
tion w is a one-dimensional Wiener process, and the canonical projections w2, +
g, puy and wh are independent Poisson random measures on [0,/] x R, and
[0,1°] x E 4, respectively. Also, X and (w,pu% + 1 £, Mz 1) are independent under
P. We shall consistently write Z for its distributional equivalent on the space
(Q,%,P), ie. L(Z|P)= L(Z|P), where Z(¢]Q) stands for the distribution of a
random variable ¢ under a probability measure Q: accordingly, we still write Z, =

— E[Z\]t.
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On the space (f?, @, P), we consider the flow (X(z,v), H(z,v))" associated with
(X, H) starting from v = (x,h)" € Ry x R

t
Yo =e it [0z,
0
t
H(t,v)=h+ ﬁ/ (X(s,v) — KF))dS + / VX(s,v)dwy + pZ,. (23)
0

We shall execute the Malliavin calculus for this flow on a suitable event {lﬂ” >0},
where w? » 1s the truncation functional introduced in the next subsection.

4.2. Construction of a truncation functional

Here we concretely construct a truncation functional t@w defined on (fz, g, P), in
order to extract a “nice event” on which an integration-by-parts formula can be
applied: the meaning of the argument (¢, &) will be clarified below. We must show
that such an event has positive P-probability. The functional lﬁ . corresponds to a
distributional equivalent of y appearing in [A3].

Let ¢, € C3(R4+;[0,1]) be a non-increasing function such that ¢,(x) =1 if
0<x<1/2 and ¢,(x) =0 if x>1, where C3 (Ry4;[0, 1]) denotes the set of all [0, 1]-
valued smooth functions defined on R, with bounded derivatives. We shall consider
Y, of the form

Uow = 0100 (24)

for some és o € DZDO , where D%OO_ denotes the domain of the extended Malliavin
operator L employed in Yoshida [29 Section 5]: see Bichteler et al. [8, Section 9] for a
detailed exposition.

From now on, we shall construct a “nice event” step by step, and then suitably
define £, . ((33) below). In what follows, we fix arbitrary positive constants xy and 1,
and put b = (%,0)".

Step 1. Define an auxiliary event .o/ by

R 50
o = {F=e"" xp).

Clearly 13[&{ 1]>0 since any non-trivial selfdecomposable distribution possesses an
unbounded support. Since Z is a subordinator, from (23) we see that X(z,0)>
e M=l Dxy = x on o/, for every 1 € [0, 1], so that we have info, <0 X (2, )X
uniformly on /.

Fix any function 7 e C;°(Ry;Ry) satisfying the following conditions, where
C’(R4;Ry) stands for the set of all smooth functions on R; with bounded
derivatives of order>1:

(z-1) t(x) = /x for x=>x0/7;
(1-2) x+ 1(x) and x+> Ot(x) are globally Lipschitz.
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Using this 7, define a process H(-, v) by

H(t,v)=h+ ﬂ/OI(X(s,x) - K;!)) ds + /Otr(X(s, x))dws + pZ,

which is same as H except for the smooth diffusion coefficient. By the previous
paragraph, H(-,v) = H(-,v) for ¢ € [0,1°] on /,.

Step 2. Let ¢; and ¢/ (j = 1,2) be positive constants such that 0<¢; <c} <<
¢y <ch<cy<oo, and erte E4 = (g5(5),g5(c)) € E4. Let ny € CF(Ry; Ry) be any
function satisfying inf_._z 1,(z*)>0, and 1 4(z*) = 0 for z* ¢ (¢9%(c), g% (c})): we shall

utilize this 14 as an auxiliary function satisfying 10-1 of Bichteler et al. [8].
Denote by V the differential operator with respect to v = (x, /). On account of
the expression (23), the matrix-valued process K(-,v) = V(X (-, v), H(-,v))" is given by

) e—/l 0
K(t,v) = (/32‘1(1 —e )+ 0y [yr(X(s,0) dwy 1 ) | .

Denote by A, the (2, 1)-component of the right-hand side of (25). In view of
Assumpt10n 1, the definition of 7, and (23), it is clear that EJ fo (X (s, )’ ds] < oo
and E[ fo {0,7(X (s, 0))}> ds] < oco. Then it is well known that the Llpschltz property

(t-2) ensures existence of a differentiable version of x> fo (X (s,v))dws, so
we have

A;=0, / [r(X(s, v)dwy| = / te-“(ar)o()((s, v)) dw
0 0

x=x x=Xx

Fix t; € (0,7°) and zy € E,. Take a sufficiently small constant &> 0 so that I f=(t -
e, 11 +¢) C (0,7°) and that E% :=(z0 — &,z0 + ¢) C E4. Now we define &% by

= (15, E) = 1} (26)

Obviously P[.75] = 4¢% exp(—4¢2) >0 for any &> 0.
Step 3. Next, for ¢ >0 we introduce

oA :{ sup |/~1,|<8/}. 27
o<

Because of the boundedness of x> 0t(x), 4 is a continuous F-martingale. Enlarging
the underlying stochastic basis, we see that there exists a standard Wiener process
B = (B/)cr, such that A, = By, (e.g. Rogers and Williams [22, Theorem IV 34.11]),
where [4], = [; e 2#{(31) o (X(s,8))}* ds, and obviously [A].<[|37]|%,¢. Therefore,
we can estimate as

Pletf|o/5) = P|P| sup |By|<¢

01O

a(X, u?)l ’&/ 51

>P|P sup |B,| <¢

0<r<lon) %0

o(X, ui)l ‘&4 ,
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where the random number

P sup |B,|<¢
0< <o) %10

a(X, u*z)]
is a.s. positive for any 2,¢ >0 (cf. Billingsley [9, p. 97]). Hence we obtain that
P[.o/5| 75> 0 as. Putting .o/ = .oy N.o/5 N o/, we have

Pl = Pt |PLoAs N 5]
= Pl |PLAS)PLA5 | 5]
>0

for any ¢ and ¢. Note that we can control ¢ and ¢ independently due to the
independence between u% and w.

Step 4. With the smooth modification A introduced before, the Malliavin
covariance matrix U(-, ?) associated with the flow (X (-, ), H(-, 7)) is well-defined for
t € [0,1°], and given by

U(t,9) = K(1,0)S(1, ) K(1,0)", t€][0,°], (28)

where, on o/%°,

S(t ﬁ):/tk(s 5! ool K(s,0)" ~'ds
’ 0 ’ 0 X(s,0) ’

t N AW
+ /0 /E A Va(zHK(s, f:)l(p p2>K(s, 0" ' (ds, dz%) (29)

with V 4(z%) = {0J 4(z%)}*n ,(z¥): see Bichteler et al. [8, Section 10] for details. Due
to (25) and non-negative definiteness of the second term of the right-hand side of
(29), we see that

I 0 0
S, )= /0 k(s,ﬁ)—1<0 s ﬁ))k(s,f))T ~lds

N L op .
+ / / Va(z)K(s,0)7! , | K(s, &) 7 id(ds, dz¥)
I JE, p P
fpl: fE‘A VA(Z*)eMSﬂé(dS, dZ*)

fp]: fE; VA(Z*)eis(p - CMAS):“;(ds» dZ*)

sym
Jue i VaE)p — 402 (ds, d=*) + [ X(s,8)ds
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on .«/** | hence
det S(1°, 0)> ( / / Va(z%)e* 1 (ds, dz*)>
I JE,

X (/11 /A V(") (p — " A,) 15 (ds, dz*) +/0 X (s, ) ds)

2
- ( / / VA(z*>e’-S<p—e“Aou*z(ds,dz*)) . (30)
i JE,
Clearly
det U2, 8) = e ' det $(1°, §) 31)

in view of (25) and (28). We shall show that detS(#,7)>0 to conclude that
det U(1°, 5) > 0 uniformly on .«7>%, i.e. local non-degeneracy of U({°, 7). In the sequel,
we use the small order symbol 0”(1) for random or non-random variables R, such
that R, — 0 as ¢,& | 0 uniformly on A

Under Assumption 2, z* > V 4(z*) is of class C* and strictly positive uniformly on
E%,. Apply Taylor’s theorem around zj and ¢, to obtain

Va(H)e™ = Va(zo)e® +0"(1),

Va@)p = e“ 4, = Va(zollp — p27' (" = DY +0"(1),

Va(z)e™(p — e” A) = Va(zo)e™ {p — 27" (™ — 1} +0"(1).
Substituting these three displays in (30), we get

det S(°, 8) = {V a4(z0)e™" + 0" (1)}

x { Va(zo)(p + 271 — 27 pey? + / X(s,0)ds + o”(l)}
0
— (Vazo)e" (p + A7 — 27" pe™) + 0" (1)}
= V 4(zo)e¥" / t X(s,0)ds + 0" (1). (32)
0

Here we used the fact that, for any ¢,¢ >0, p5(I{,E%) =1 on /% Therefore it
follows from (31) and (32) that

det U, §) = e det S(£°, §)
>V y(z0)x0r” + 0" (1)

on <7*°. Without loss of generality we may suppose that n 4(z0) 1s sufficiently large
(by choosing 7, suitably), so letting ¢ and ¢ be sufficiently small we may take

det U, 0)>3
on «7**. Fix ¢ and ¢ like this in the rest of the proof.
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Step 5. Now we define a functional Es,s, € Dioo_ by

1 2
1 + det U2, ©) + 14 7xxyle 4"

%s,s’ = (33)

it is clear that %898/ € ﬂp<oo L”(ﬁ). By the choice of ¢ and ¢ in the previous step, we see
that
0< PL/*1< Pldet UL, 8) >3, £>¢""x(]
pl— L L —Az Aogl
14+det U(0,0) ~ 4" 1+ 7%x5le " 4

A s 1
P|:é:;,s’ < 2:| .

Consequently, det U(#°,5) = 0 implies y, , {det U(«, )}~ = 0 (with the convention
0 - oo = 0). We thus end up with

N

N

Lemma 6. Let npgs be of the form (24). Then there exists 658 € D2 co_ Such that
PE, . <11>0 and that ), {det UL, 0)}7" € ), LP(P) for each £>0.

p<oo

4.2.1. On the condmon (A —4)

We must check (A — 4) of Bichteler et al. [8] for the flow (X(-,v), H(-,v))". Here ¢
and ¢ are fixed so that the assertion of Lemma 6 holds true.

As already mentioned, the diffusion coefficient /X (¢, v) of H(-,v) causes trouble
for (A —4). However, it is sufficient that we can apply the integration-by-parts
formula on the event carved out by the truncation functional lﬂg,g/ Now, let us note that
the definition (24) leads to the following inclusive relation:

{l&a,s’ >0} C {él},é,‘/ < 1}

C 2 <1
1+ 7%x; e =

0
{erﬂ.t .
= X
7 ~

C{ inf  X(s,0)> }

0<s<t0

Thus, the property (t-1) implies that H(z, %) = H(z,) for ¢ € [0,°] on {x}e’s, >0}: in
other words, we have

LA W L >0/ X0, HODIPY = LA 1o)X, 0), HE, 0)] P,

where i, , and Hp (both defined on the original probability space (2, 7, P)) stand
for a distributional equivalent of lp . and H(,0), respectively. On the other hand, it
is quite straightforward to verify (A —4) for {(X(-,0), H(-,9)" }repo,0» SO that we
have obtained
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Lemma 7 Under Assumptions 1 and 2, the process {1, (e >0} (X(,0), H(, U))T}te[o ]
meets (A —4).

4.2.2. An integration-by-parts formula and moment conditions

Here ¢ and ¢ are still fixed as the assertion of Lemma 6 holds true. On (Q, @, 13),
consider the Malliavin operator (L, Dioof). Denote by I'p the bilinear form
corresponding to L: namely, for F,G € Dim_

I (F,G) = L(FG) — GLF — FLG. (34)

Put 7 = (X(©°,6), H(®,9) and Si[), . 2] = (0%, 45", ), where o; = (o) =

Ii(%,%) and 4 4 = det g4 (we shall use similar notation for the other variables).
According to the truncation via &8,8,, we can now follow the argument in Yoshida
[29, Section 4.2], except that H’s diffusion coefficient is replaced under our truncation.
This validates the conditional type Cramér condition: to be precise, for any B>0,
distributional equivalence and the integration-by-parts formula yield that

sup |E[lrb;:,;;’eiuH[0 |X0> X,():”

wlu| =B

— E| sup |Ew£,gei“’*ﬁ|xo,xto]'1

wlu| =B

E| sup |E[&g,yei“"<’°’”|X(r°,ﬁ)]|]

w:lu| =B

E| sup |<iu>1E[ei"f“”’“W(!h,g/)mz“,ﬁ>]|], (35)

wlu| =B
where Z((Y,, o Hp)|P) = Lﬁ((l/},. S H, #))|P), and the functional ¥ is given by
V(W) = TLX (@, 8), i o TLX (0, 0), H(, )

- FL(lpc,l:/ﬂ H(Zoa i})) - 2‘7/;;,1;’L1—~1(t0: i})

+ 20}(}10,5)1}8,8,FL(X(IO, 0), H(®°, D)) LX (1°, D) (36)
which is well-defined on {&8,81 >0}. It follows from (35) that

. 1 - A
Sup |E[llb8 II/eluH[() |X0’ Xt()]| < _E[l qj(lpﬁ 8,)|]'
wlu| =B ’ B ?

It suffices to show 'P(l]/ .) € L'(P): if this is true, then (17) of [A3] follows by letting
B be sufficiently large Note that (18) in [A3] holds true with ¥ =, since
Py, . >0]= [tp“ > (] and this probability is positive by virtue of Lemma 6.

As remarked in Yoshida [29, Section 5.1], there exists a polynomial function 2
such that

YWl <2z, <, 0,8 IUDLIVE,DLIUHC, D)l loz D, (37
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where  Q(°,0) = det U, %), V(°,0)=L%Z e R> and U*(°,d) = I (UG, D),
U, ) € R* ® R*.
(a) In Lemma 6, we have seen that 1{‘&31_’,‘<1}Q(t0, Pl e
(b) Since 7 e Dio“ and L takes its values in N

U(#, %) belong to M, _, L7(P).
(c) Applying Theorems 10-3 and 10-17 of Bichteler et al. [8] repeatedly and then
using Theorem 5-10 of the same monograph, it is not difficult to see that U*(0,0) e
() <o L7 (P), taking into account that t € C;°(R4).
(d) Since %8’8/ € ﬂp oo LP(IA’), it follows from (34) and the property of L that

o: € L(P).

Ced! P <00
Summarizing the above now yields

1)
LP(P), we see that V(¢°, p) and

p<oo

Lemma 8. Under Assumptions 1 and 2, we have 'I/(l/}ﬁ’g,) e L'(P) for ¥ of (36).

Combining Lemmas 6, 7 and 8 guarantees [439] of Yoshida [29], therefore the
proof of Theorem is complete.
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