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Abstract

In a class of continuous-time filtering models with Gaussian limit, we provide a practical scheme of an
approximation of a conditional expectation given finite-dimensional observations, in the light of the double
Edgeworth expansion. Simple and explicit expressions up to the second order are given, so that we can
easily write a computer program.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Let (2,7 ,F = (#),er,,P) be a complete stochastic basis endowed with an r,-dimensional
standard Wlener process w = (w*)."_,, an ry-dimensional pure jump Lévy process L = (Lﬂ)
with mean zero, and one-dimensional cadlag process 0° = (0;),g, independent of (w, L). For
simplicity, we suppose that a non-random limit process 6° = lim, 100 exists, however, (see Remark
A.2). On this basis, we consider the two-dimensional process (X*, Y*) = {(X}, Y))},cr,, € € (0, 1],

*Corresponding author.
E-mail address: hiroki@math.kyushu-u.ac.jp (H. Masuda).

0167-7152/$ - see front matter © 2004 Elsevier B.V. All rights reserved.
d0i:10.1016/j.sp1.2004.08.002


www.elsevier.com/locate/stapro

38 H. Masuda, N. Yoshida | Statistics & Probability Letters 70 (2004) 3748

described by the following system of partially linear stochastic differential equations:

Iy rr
dX? = {a(0f) + Ay (O)X: + AY (0D Yehdr+ Y A0 dwi +& > Ap(0;_)dLf,
a=1 =1

X5 =xo ()
and
Iy rL
dY? = {b(09) + BY (0)X: + By (09 Yiydr + > B,(05)dw? +& > By(0;_)dL,
a=1 p=1
Yf) =)o, (2)

where x( and y, are (known) constants independent of e.

Let m,n e N, and put X* = (X;"I,X.j’z,...,Xfm)T and Y =(Y;,Y,,..., Y;I)T, where (tj)]’il
and (sj);“=l are non-random time points such that 0<#<--- <t, and 0<s;<--- <s,: noO
restriction is imposed on the magnitude relation between ¢, and s,. The purpose of this note is,
apart from full technical exposition, to provide a practical scheme for computation of the

conditional expectation
II*(y; 9) == Plg(XHY* = y]

for a reasonable class of g : R” — R, with a view to compute simulations. The essential tool we
apply here is the double Edgeworth expansion (DEE), cf. Yoshida (2003), which leads to an
approximate value of IT°(y; g) in terms of a power series of ¢ with coefficients depending on y and
g. To the best of our knowledge, there are no existing results in this direction.

The model (X%, Y?) may be regarded as a Gaussian filtering model randomly perturbed by
(L, 0°). The magnitude of the perturbation determined by the parameter &: (X°, Y°) is nothing but
a well investigated Gaussian system. By choosing (L,0°) variously, we can flexibly express
(X?, Y?)’s non-Gaussianity, (auto)correlation structure, and so on. To say nothing of the classical
continuous-time Kalman—Bucy filter model, our model includes, for instance, a continuous-time
analog of partial non-Gaussian state space (conditionally Gaussian state space models); see
Shephard (1994), Carter and Kohn (1996), and Doucet and Andrieu (2001), where several
Markov chain Monte Carlo algorithms were studied.

Applicability of the DEE to such stochastic differential equations in a slightly simpler form
than (1) and (2) has been already mentioned in Yoshida (2003, Example 4), though neither
detailed computation nor practical scheme was given there. We should note that since Y? here is
typically continuously distributed and non-Gaussian for each ¢ € (0, 1], we cannot write down
IT%(y; g) explicitly in general. Moreover, when we try to carry out the Monte Carlo procedure
with a small target window around the conditioning value y as in Yoshida (2003, Example 2), it
may not work well and is very time-consuming different from the DEE (see Section 3). In
diffusion-based filtering models, Del Moral et al. (2001) discussed an approximation algorithm of
the filter via the Monte Carlo procedure and the Euler scheme and gave some precise error bounds
in L'-sense.
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In Section 2, we shall briefly present a general framework of DEEs (without truncation); in this
note we deal only with sufficiently regular situations and do not go for the weakest possible
assumptions (see Section 2.2 for some technical remarks). The simple but illustrative numerical
examples which exhibit usefulness of the DEE will be given in Section 3. The Appendix is devoted
to derivation of the explicit DEE up to the second order.

2. Double Edgeworth expansion
2.1. The formula
Hereafter we shall suppose that the conditions of Theorem 5 of Yoshida (2003) are fulfilled:

precisely, we suppose that

(A1) a Malliavin operator % exists on B and in connection with ¥, X® and Y? admit a smooth
stochastic expansion, say X¢ ~ (o + el + & +---and Yo~ fo+ef | + &, +---,as e 0
in the sense of Yoshida (2003, Definition 2), where the coefficients (;, ;) are random vectors

given by the formal Taylor expansion around ¢ = 0 (in particular, {; = (X ?1, X ?2, R ¢ ?m)T,
1] I 1
G= XX o=, v, Y0 and £y = (Y YU YT where

FlK .= (af)oFs, k € N, for a random function &+ F?);
(A2) the determinant of the Malliavin covariance of (X% Y?®), say 4, satisfies
lim sup, o P[4, 7]<oo for every p>1.

Let .%/(R™) stand for the set of Schwartz tempered distributions on R”. Also, let p(z) denote the
density of a random variable F. Then, uniformly on every compact subsets of {y € R" : p/o(y) >0},
we have the DEE

I(y; 9) ~ co(v; 9) + ec1(v; 9) + 22 (v 9) + - - -

as ¢ | 0, where {cj(y; g)};>o are described in terms of {(;,f)};>0, in particular,

co(y; 9) = Plg(Co)lf o = ¥l 3)

a:9) = () [ [ 00900 (PLEI(Cf o) = (o™ (e )

000 LIS o) = (), ) d
(v 9)(~0,) - (PLF11fy = 310 0)] )

with the dot denoting the divergence (see Yoshida (2003, Section 6) for details). We are concerned
here with derivation of reduced forms of c¢yo(y;¢g) and c¢;(y;g) together with numerical
implementation: ¢o(y; g) is easily obtained due to Gaussianity of ({y,f), however, for ¢;(y; g),
we should take account of the randomness of 0''1. The details are deferred to the Appendix. In this
note, we do not consider the higher order terms.
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2.2. Some remarks on the regularity conditions

Denoting &) = (X7, Ys)T we can rewrite (1) and (2) as

doé = (01 + @:d%) dt + 0> dw, + 03 dL,,
Dy =1,

where @ and @, j = 1,2,3, are matrix-valued random functions (of 07), and 7 = (x0,1,) ", from
which we easily see that

t
P = l['j{n + / (PO ds + 0% dw, + 0> dLS)} (5)
0

with V% = exp( f(f ©? du). Once the coefficients and the process 0° are concretely given, we can
verify conditions (A1) and (A2) in the context of the (partial) Malliavin calculus for processes with
jumps, cf. Bichteler et al. (1987). In terms of the explicit expression (5) of the solution, we
primarily need sufficient integrability of the integrands of (5) (the functionals of 6°) as well as their
sufficient smoothness in ¢, under existence of higher order moments of the Lévy measure of L
outside neighborhoods of the origin: especially, if 6° itself is described by a stochastic differential
equation driven by a Lévy process independent of (w, L), then it is possible to list a set of easily
verifiable conditions. Also, if the diffusion part of @ is completely non-degenerate, then it may be
possible to validate (A2) without utilizing the jump part. Further, we should note that we can
actually treat more general situations, using a truncation functional, cf. Yoshida (2003, Theorem
4). By virtue of the truncation, not complete but local non-degeneracy of (X?, Y?) may be sufficient
to induce the validity of the DEE; indeed, the truncation technique often turns out to be inevitable
when the coefficients of (1) and (2) possess certain singularity. Nevertheless, how to choose the
truncation functional essentially depends on the concrete structure of 0° and the coefficients of (1)
and (2). For such reasons, we shall not go into the greatest generality of argument in this note.
One dimensionality of the processes X*, Y* andf’ is just for notational simplicity; we can treat
cases where X°, Y? and 0° are multi-dimensional without any substantial change. Further, we can
treat cases where the coefficients of (1) and (2) may depend on ¢ and ¢ (such as A())( (07,¢,0),
regarding (0%, ¢, £) as 0°; in this sense, that L is pure jump type and has mean zero is not essential.
In addition, let us remark that our Gaussian limit setting is ad hoc to avoid the technical problem
of conditional expectations associated with (multiple) Lévy integrals, which was mentioned in
Yoshida (2003, Example 3).

3. Numerical examples

For some simple cases, we shall compare the DEE with Monte Carlo simulations, where the
Monte Calro trials are counted only when all of (Y¢ )/ | Simultaneously hit the target windows
(s, — 0.025, Y, + 0.025])_, for given conditioning values (62 ) [ in each simulation, the number of
actual trials and the correspondlng consumed time on 3.2 GHz PC are reported. In the first two
examples, theoretical values of IT%(y; g) can be written down, while this is not the case for the last
two examples. Let us stress that our DEE can evaluate an approximate value of IT°(y; g) in a flash,



H. Masuda, N. Yoshida | Statistics & Probability Letters 70 (2004) 3748 41

and it is obvious that our method would work more effectively for higher-dimensional
conditioning cases. The DEE formulae in all the examples as well as the theoretical expressions for
IT%(y; g) in the first two examples can be computed without difficulty. Hence we do not give those
expressions to save space.

Example 1. Let g(x) =x; m =1, n =2 with t{; =5, = 1 and s; = 0.5; a(0) = 1.360, b(0) = —0.50,
all of A()f, Ag, BY, BY are null; r, =2 with 4;(0) = 0.5, 42(0) = B;(0) = 1, and By(0) = 0.8;
L=0; £¢=0.2; yy5 =0 and y, =0.05. Here 0° is the drifted Wiener process given by 0; =
e(t 4 2w¥), where w* is a standard Wiener process independent of w. This is a two-dimensional
conditioning version of the numerical example in Yoshida (2003, Example 2).

Example 2. As mentioned in Section 2.2, the processes may be multi-dimensional; here is such an
example. Let g(x) = x; m = n = 1 with t; = s; = 1; a(f) = 2.50 and h(0) = 1.66 and all of Aé(, AOY,
Bé(, Bg/ are null; r, =3 with A4;(0) =1, 4,(0) = —0.5, A3(0) = 0.7, B1(0) = 0.2, B,(0) = 0.6,
B;()=—1; L=0; e=0.2. Let 6° be given by 0 = &0.5¢ + w¥) with w* as above. Now, we
consider another observed process ¥* given by

d¥; = 1.56;dr+ 1.2dw} +0.5dw; —02dw;, ¥, =0,
and regard (¥*, Y°) as Y*. Here we set the conditioning values as y, = 0.02 and 7, = 0.1 (Table 1).

Example 3. Let us consider a case of non-Gaussian 0°. Let g(x) = x;m=1,n =1 with t; = s =
1; a(0) =20, b(0) = 1.50, all of Ay, A), BY, BY are null; r, =2 with 4,(0) =3, 4,(0) =2,
Bi(0) = 0.7, and B»(0) =0.8; L=0; ¢ =0.1; y, = 0.1. Let L* be a normal inverse Gaussian Lévy
motion with parameters («, f5, 9, 1) = (5,1,1,0) and define 6° by 0 = ¢L¥; see Barndorff-Nielsen
(1998) for details of the normal inverse Gaussian distribution NIG(q, f3, 9, i).

Example 4. Let g(x) = x*; m=1, n =1 with t; = s; = 1; a(0) = b(0) = 0; AOX(H) =20, B{ (0) =
1.50, and Ag and Bg’ are null; r,, = 2 with 4,(0) = 1, 4,(0) = 0, B1(0) = 0, and B»(0) = 0.5; L = 0;
¢ =0.2; y; = 0.1. Let 6° be given by 0; = &(t 4+ 0.7w?) with w* as before (Table 2).

In each example, it could be said that the second-order term c¢;(y; g) reasonably improves the
accuracy of the approximation.

Table 1
Results of Examples 1 and 2 with 10" Monte Carlo trials

Example 1 Example 2
Theoretical value 0.205018 0.210021
Actually counted trials (/107) 4875 2808
Consumed time 2h23min 565 2h46 min 54
Monte Carlo 0.204624 0.200184
DEE lst order 0.039634 0.0709198
DEE 2nd order 0.169918 0.14059
DEE Ist+2nd 0.209552 0.21151




42 H. Masuda, N. Yoshida | Statistics & Probability Letters 70 (2004) 3748

Table 2
Results of Examples 3 and 4 with 10° Monte Carlo trials, where “Difference rate”= (DEE — MC)/MC

Example 3 Example 4
Actually counted trials (/10°) 18935 38582
Consumed time 20min 34 s 18min7s
Monte Carlo 0.298084 0.876365
DEE Ist order 0.327434 1
DEE 2nd order —0.0297154 —0.133333
DEE 1st+2nd 0.297718 0.866667
Difference rate —0.123% —1.106%

Appendix: Explicit computations up to the second order

Here we obtain reduced forms of ¢y(y; g) and ¢;(y; g) of (3) and (4) in order to run a computer
program successfully through a PC. Note that we presuppose that the coefficients of (5) and 6° be

smooth in ¢ (Section 2.1).

A.1. Some preliminaries
Put ZV = (X%, ¥9T, z® = (x, YT and Z = (ZzV7, ZzP")". Then

dZ[ = K[Z[ dr + (Ct dr + G[ dVV[ + Jl‘— dL[),
Zo=(n".0.0)",

where
e = ()TN = (@(0)), b)) 1ea(0)ol, b)) T,
Ay A450) 0 0
X (KE” 0 >= BY(0)) By 0 0
kP K oAF (ODO 245 (ODO A0 45O
oBy (00l B (06 By () B (6))
A0 o A4, 0)
G, = (GE”) | om@ - @)
G a4;%0 ... 84, (%6l

0B - 0B, O

(6)
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and
0 0
Jt:<(()l)>: ~00 ~00
Ji Al(et) T A"L(Ht)
B0 - B0

Note that ¢, KO, GV and JU are deterministic, while ¢®, K® and G® are random owing to
0. Solving (6), we see that Z) and Z® are given by

t t
20 =0+ [ HE sy [ He d, ™
0 0
t t t
Zgz) — ng)n_'_/ Mgt’c(])’C(z))(Q[l])ds+/ Mgr’G(l)’G(Z))(Q[l])dWS+/ Mgt’O’J(”) dL,. (8)
0 0 0
where

_[(e” 0 _ f
0, = (ng) 51) = exp /0 K.ds |,

O (resp. 0?) being non-random (resp. random), and
(1) 1 _
HE'™ = gD Y,
NG 2 — 1 - - 1 -
M = 102" = 010" 0P (@) + 0P

for s € [0, /] and functions 1) and 1® on [0, 7]; in (8), the integrands attached by the argument (6'")

are r(le)m(zc)lom. We shall denote by Hff:iﬁ(l)) the xkth component of Hi”’(l)), in the same manner for
Mgl’l R ).

Remark A.1. Clearly Q satisfies dQ, = K,Q, dt with Q, = 14, or, equivalently,
ol = k" oM dr, 0 =1,
2 2) A1 ) A2 2
do? = (K70 + K" gMydt, 0f =0.
Here I stands for the k-dimensional identity matrix. If we can simulate sample paths of 0/ in a

certain way, then, using them, it is straightforward to simulate sample paths of Q; apply, e.g.,
Runge—Kutta method after generating a trajectory of 0! over the time interval [0, 7,,, V s,].

A.2. The first-order cy(y; g)

Put Z(lo.f ) =t Nppn(u®, 2°), where we implicitly assume that X° is non-degenerate. Write

0" = (4} (1);,_,. then, it follows from (7) that 1® = (uf);"" is given by
1 1 D

o g1 (t)xo + g3 W)y + Jo HYL ds, (I=12,...,m)

I — . P 1)

45 (sr-mxo + 433 (si-m)vo + [o ™" HSds,  (I=m+1L,m+2,...,m+n),
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and that all the components of X are fully described by

r tiNt
0 y07 _ (t:,G) 77(t,GM) Ce
COV[X[i,th] = E] /0 Hips Hiys ds (j=12,....m),
o

r SiNSj
0 yo0 ,GV) 77(5,G1) ..
Cov[Y), Y11= /O HE O HY s (L =1,2,...n),
=1
0 0 - T (1,G) (5,67 : :
Cov[X), Y01= | H He, ds (i=1,....m j=1,...,n).
o=1

Decomposing u’ and 2° as
1 m n
W= m (u(“) =m (3, I}
" W) n <281 222>’
we have Z({olf =) = N’"(”go\fo(y)’ Z(C)ol/'o) with
.UEOV'O(V) = ,Uo’l + Z?z(zgz)_l(y - No’z)a
X0, =20 — 2h(E5) T,

Therefore, the first-order coefficient is given by
i) = [ o0z 00,20 d ©)

where ¢(:; ,ugo‘ 7, ), Zgo‘ r,) denotes the Gaussian density with mean vector '“(C)ol /s (v) and covariance

matrix Zg0|f0. For any g € #(R™), co(y; g) can be easily evaluated through iterative sampling from
Nm('ugolfo(y)’ Z‘(L.V)olfo)'

A.3. The second-order c¢1(y; g)

We prepare a simple lemma. Let P#1%2(.) stand for a regular conditional distribution of y, given
a(y,); we drop i, in this notation if a(y,) is trivial.

Lemma A.1. Let X, Y and Z be random elements taking values in some measurable spaces (S, %),
(T, 7)and (U, ), respectively. Assume that S and T are Borel spaces, that X and Y are independent
and that Z is o(X)-measurable. Further, let ¢ . (Sx T, ® 7) — (R, Z(R)) be a measurable

function such that

/ 10(x, 1) P*V(dx, dy) < oo. (10)
SxT
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Then we have almost surely

/ (v, »)PRVZ(dx, dy) = / / o (v, ) PP (dx) P (dy). (11)
SxT T JS

Proof. Clearly PXV12(.), PXIY:2)(.) and PY14(.) exist. Since X and Y are conditionally independent
given ¢(Z) under the assumptions, we have PXIV9(.) = PX%(.) as. Also PY4(-) = PY(-) as.
because Y and Z are independent. Therefore, the disintegration argument yields

| otcnPzandn = [ [ onp o A@or T
SxT T JS
= [ [ otenPianran,
T JS

which ends the proof. [

We shall apply Lemma A.1 by allocating (w, L), 0! and (¢, f, o) to X, Y and Z, respectively;
specifically, (11) implies that we may compute ¢;(y;g) by regarding 01 as a deterministic
process at first and then integrating it over the corresponding path-space. Under
suitable integrability conditions associated with (10), the path-integration can be carried
out numerically through the Monte Carlo procedure by generating sample paths of 6
repeatedly.

Remark A.2. It should be noted that, by applying Lemma A.1, it is possible to deal with the case
where 0° is random; then (., f, o) (resp. ({;,f,)) turns out to be nothing but a 0°-conditionally
(resp. (6°, 0M)-conditionally) Gaussian random vector.

We proceed step by step.
Step 1. Recalling (4), we should begin with computing

W y) = PIXNGof) = ()] (G =1.2,....m),
ey =PIYW(ofo) = ()] (k=1,2,...,n),
) =PYUIfo =y (k=12,...,n).

Put Q(z) (q(z)(t 0[1]))?J:1. Then, from (8), X' g] and ng are given by

0

@
X“ {qll)(tja l])xO+q(2)(t]’9[1])y0+/ M(t/ . )(9[1])ds

rll
(t, G“),G(z)) 1 ‘ (. 0_]( )
/ M(ljoc):s (0[ ]) dW?} /))1 / M(ljﬁ) S— dLﬂ

= XE} ’ (e“b + X5 sy, (12)
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and

pa)

Sk &)
Yl = {Qzl)(sk, 1])x0+q(222)(sk;9[1])y0+/0 M OM) ds

’n 'L Sk
GG “ 0,J0
#30 [ %WWM§+§ZA M ar!
p=1
= ng’l(e[”) + Y2 say. (13)

Suppose that | admits moments of any order; recall that P[L;] = 0 is presupposed. Independence
between ({o,f,) and L, (12), (13), and Lemma A.1 together imply that

23 (x,y) = / / XM (g) dplGso=tean pdg) 4 / xi2apt,
W (x,p) = / / YE}C]J(Q)dpwl{(éo,fo)=(x,y)} PG[”(da)+ / Ygl],zdpL’

y,f@;) = / / Ygil’l(a) dP»vI{fo:y}Pgm(da) " / YEEQ drt,

and it is easy to see that all the second terms on the right-hand side vanish: we implicitly assume
that the determlnlstlc process (M (1.0.J¢ ))) cr, 18 locally square-integrable. We shall write P! ][F 1=
[F (@)P""'(da) in the sequel.

Step 2. It follows from the 0'-conditional Gaussianity of (X[l (oM, o,/ ) that

. X
" [ / XE,”’I(-)dP”"{<Co=fo>=<x3y>}] = PP 4 P20 {(y) - u‘)},

where

O]

i
1.X 2. . 2, . (,
W (@) = ¢ a)x0 + 4313 )y, + /O M}

and the (1,/)-element of Z][-l]’X(a) € R® R™" is given by

“(a)ds

Iy LGN G( ) G(Z))

(1)
Coll X! (@), X0 =" 0 My @HS ) ds (1=1,2,...,m),

a=1

Py LiNSI—m 1) ~Q2) 1
11,1 (t GG ms
Cot vt =30 [T M s as

x(Il=m+1,m+2,...,m+ n);

note that, at this point, we regard “a” as a deterministic function. For notational simplicity, we
write

Ej[-l]’X(')(ZO)_I = ( ( ) éij( )lé m+]( ) ] m+n( ))
= :j;1(‘)|Ej;2('))-
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Then we have

ey = UL+ PRI - 10D + PUIERI0 — 1), (14)
and clearly 6x.iX (x,y)= Pgm[éfj]. As for /I,f (x,y) and y{'(y), we can derive similar expressions, say
W ooy = PP 4 PUEL 16— 1Y + PUIELID - 1), (15)
W) =PI 1+ PU 1 - 1), (16)

Step 3. Put (297! T/Jr’;, and then write oy = (0],...,05,,) and opb =

= ( _1
(Opts -+ -2 Opmen) for 1=1,2,...,m+ n. It follows from (14) that
(=09) - PG 1(Conf ) = (, y)]piﬂf @)

—pCOI/O(xly)Z{/lX(x V)(o (1)(X wh+a (2)()’ u*?) — Po[][éj)i]} (17)

Similarly, with the obvious notation, we can get
(=0y) - (PIf 110, o) = o, ™7 (e, M ()

¢ z _ _ (1]
= pVo(x1) > 1 00k = 1D + 03k o — 10D = PUEL, ) (18)
k=1

and, putting (23,)~" = (0> 7)i_; with 67?7 e R@ R" and y [ (01) = @, (01, ...,y (0"),
it also follows that

(=) - {PU1fo = I OV 0N = S F e (0 — 1) — PU ). (19)
k=1

Step 4. Putting together expressions (14)—(19) and the original formula (4), we now conclude
that ¢;(y; g) can be written as

a9 => Vg +> VP9 + coly; g){z Voo -+ V}j”(y)}, (20)
j=1 k=1 j=1 k=1

where each term is given as follows:

Vi:g) = SP0U: 9) + 03 Ua 0 9) PV IEN],
VO(y;9) = S(”(y)vl(y 9) + 0oy U2 g)Pﬁ“ (=51,
VP0) = PRI = 1) + a0 = PRI - 1) — PP,

4 0. 1 [1]
Vﬁc)()’) P [ ) Y]0m+k o — 12+ 0m+k o - u*) P’ E. 2]0’ 1)
| 22).—1 1 Y | 1
A (N B ey T VU e Tkl B [0 ) I i [V
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with
S(l)(J’) P K ]X]O'/_-(ll) + 0'/_-(12)()’ — u* " HX] + P E,{(z]()’ i 2)0', (1)
$P0) = PP o ey + b0 = KOOPTIELT+ PUIELID — 10 s

Ui(y;9) = / g(x)(x — p*hHpVo(x]y) dx,
RY”

Us(y; 9) = / g(x)(x — p*h e — p*M)Tphollo(xy) dx.
Rln

Thus we have seen that, once the coefficients of (1) and (2) meeting (A1) and (A2) are given, all
the terms appearing in (9) and (20) can be automatically evaluated through the Monte Carlo
procedure including path-integrations with respect to 0!!). By applying some standard numerical
techniques, it is easy to write a corresponding computer program.
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