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Abstract: An asymptotic distribution theory of the nonsynchronous covariation process for con-
tinuous semimartingales (Hayashi and Yoshida (2005b), Hayashi and Yoshida (2006)) is studied.
In the setup, two continuous semimartingales are sampled at stopping times, in a nonsynchronous
manner. The nonsynchronous covariation is a consistent estimator for the �true�quadratic covaria-
tion of the semimartingales, as the mesh size of the sampling intervals shrinks to zero. In particular,
we deal with the case when the limiting variation process of the normalized �approximation error�
is random, which leads to the convergence to mixed normality, or �conditional�Gaussian martin-
gale. A class of consistent estimators for the asymptotic variation process is proposed based on
kernels, which will be useful from a viewpoint of statistical inferences. An example is presented.
Key words: discrete sampling; high-frequency data; martingale central limit theorem; nonsyn-
chronicity; quadratic variation; realized volatility; stable convergence; semimartingale

1 Introduction

1.1 Background

For the last decade, intraday �nancial time-series, so-called high-frequency data, have been becom-
ing increasingly available both in coverage and information contents. The use of high-frequency
data has been expected to improve dramatically �nancial risk managements; one of such applica-
tions includes the estimation of variance-covariance structure of the �nancial markets, which is an
essential routine operation for all the �nancial institutions.

In the literature, it is standard to use realized volatility (or realized variance) for estimating
�integrated�variance when asset returns are regarded to be sampled from di¤usion-type processes.
Likewise, when �integrated�covariance is of interest, the use of realized covariance is fairly common.
Nevertheless, the standard realized covariance estimator has a serious �aw in its structure when it
is applied to multivariate tick-by-tick (�raw�) data, where time-series are recorded irregularly, in a
nonsynchronous manner.

The authors addressed the issue in Hayashi and Yoshida (2005b) and showed that realized
covariance tends to be downward biased when its de�ning regular interval size is small relative
to the frequency of observations. In the same paper, the authors proposed how to circumvent
such biasedness by proposing a new estimator and showed that the estimator is unbiased when the
underlying di¤usion-type processes have no drift and is consistent as the mesh size of observation
intervals tends to zero (or the frequency of observations tends to in�nity) for a �xed terminal time
of observation.

The authors then proved that the proposed estimator is asymptotically normally distributed
(Hayashi and Yoshida (2004), Hayashi and Yoshida (2006)). This paper is in particular a sequel to
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Hayashi and Yoshida (2006). The previous paper had a limitation in its results; its main theorem
assumed that the asymptotic variance for the proposed estimator is non-random, which is certainly
restrictive. That is, typically the asymptotic variance can depend on the variance and covariance of
the underlying processes, which are not only of our interest but intrinsically random in our setting.

This paper removes the restriction, i.e., by allowing the asymptotic variance to be random. We
derive asymptotic �mixed�normality, or convergence to �conditional�Gaussian martingales, in the
space of càdlàg functions on [0;1). Besides, a class of consistent estimators for the asymptotic
variance is suggested based on kernels. Having such an estimator at hand enables us to conduct
statistical inferences utilizing the proposed covariance estimator for the �true�integrated covariance.

The statistics literature has a long list of studies on estimation problems of the di¤usion para-
meter for di¤usion processes based on discrete-time samples; see , for instance, the references in
Hayashi and Yoshida (2006). Nevertheless, nonsynchronicity seems to have been almost neglected.

1.2 Setup

We �x a stochastic basis B = (
;F ; (Ft)t2R+ ; P ). Let X = (Xt)t2R+ and Y = (Yt)t2R+ be con-
tinuous local martingales,

�
Si
�
i2Z+ and

�
T j
�
j2Z+ be a.s. strictly increasing sequences of stopping

times, Si " 1 and T j " 1 with S0 = 0, T 0 = 0.
We will use the following symbols throughout the paper:

Ii =
�
Si�1; Si

�
, J j =

�
T j�1; T j

�
;

Ii(t) =
�
Si�1 ^ t; Si ^ t

�
, J j(t) =

�
T j�1 ^ t; T j ^ t

�
;

rn(t) = max
i2N

jIi(t)j _max
j2N

jJ j(t)j:

Here, j�j denotes the Lebesgue measure, and N = f1; 2; :::g. In the preceding paper, the processes
X and Y were implicitly assumed to be observable at some �xed terminal time T , which was
non-essential but slightly annoying. The implicit assumption is abandoned in the current paper.

We will refer to
�
Ii
�
i2N and

�
J j
�
j2N, or equivalently to

�
Si
�
i2Z+ and

�
T j
�
j2Z+ , as the sampling

designs (or simply the designs) for X and Y . Also, the sampling designs truncated by time t,�
Ii(t)

�
i2N and

�
J j(t)

�
j2N, may be referred to as the random partitions of [0; t).

For simplicity, when we say �pair (i; j) overlaps�it will mean either Ii(t) \ J j(t) 6= ? (i.e., the
two intervals Ii and J j overlap by time t), or Ii \ J j 6= ? (i.e., by any time), depending on the
situation.

For processes V and W , V �W denotes the integral (either stochastic or ordinary) of V with
respect to W so far as it exists and well-de�ned. When the integrator W is continuous, it is always
true that V� �W = V �W , where Vt� = lims"t Vs, the left limit at t.

For a stochastic process V and an interval I, V (I) = Vb�Va� with a = inf I and b = sup I, the
increment of V over an interval I; moreover V (I)t = Vb^t � V(a^t)�, which de�nes the increment
as a process. For an interval I, we put I (t) = I \ [0; t). Note that, according to the notation,
V (I)t = V (I (t)) for any t provided that V is a continuous process.

Corresponding to every sampling intervals Ii and J j , we de�ne the point processes

Iit = 1[Si�1;Si)(t), J
j
t = 1[T j�1;T j)(t):

The quantity of interest is the quadratic covariation of the two processes X and Y , denoted as
[X;Y ]. As its �sample counterpart,�in this paper we investigate the following quantity:
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De�nition 1.1 (Hayashi and Yoshida (2005b), Hayashi and Yoshida (2006)) The non-
synchronous covariation process of local martingales X and Y , associated with sampling
designs I =

�
Ii
�
i2N and J =

�
J j
�
j2N is de�ned by

fX;Y ; I;J gt =
1X
i;j=1

X(Ii)tY (J
j)t1fIi(t)\Jj(t) 6=?g, t 2 R+:

We may write it simply as fX;Y gt if there is no fear of confusion about the sampling designs
I and J . It has been shown that fX;Y gt is a �consistent estimator�for [X;Y ]t.

Theorem 1.1 (Hayashi and Yoshida (2005b), Hayashi and Kusuoka (2004)) For each t,
as n!1;

fX;Y gt
P! [X;Y ]t ;

provided rn(t)
P! 0.

In light of the stated theorem, the authors emphasize that fX;Y gt is regarded as a generalization
in the context of nonsynchronous sampling schemes of the standard de�nition of the quadratic
covariation process for semimartingales in stochastic analysis.

In this paper, we are going to investigate the limiting distribution of the process fX;Y g�.

We denote by C (R+) the space of continuous functions on R+ equipped with the locally uniform
topology, and by D (R+) the space of càdlàg functions on R+ equipped with the Skorokhod topology.
A sequence of random elements Xn de�ned on a probability space (
;F ; P ) is said to converge
stably in law to a random element X de�ned on an appropriate extension (e
; eF ; eP ) of (
;F ; P ) if
E [Y g (Xn)]! E [Y g (X)] for any F-measurable and bounded random variable Y and any bounded
and continuous function g. We then write Xn !ds X. See Rényi (1972), Aldous and Eagleson
(1978), and Rootzén (1980). Clearly, stable convergence in law implies (ordinary) convergence in
law. A sequence of (Xn) of stochastic processes is said to converge to a process X uniformly on

compacts in probability (abbreviated ucp) if, for each t > 0, sup0�s�t jXn
s �Xsj

P! 0 as n!1.

2 Asymptotic distribution theory

2.1 Stable convergence of the estimation error

The estimation error of fX;Y g is given by

(2.1) Mn
t = fX;Y gt � [X;Y ]t =

X
i;j

Lijt K
ij
t

where

Kij
t = 1fIi(t)\Jj(t) 6=?g;

Lijt =
�
Ii� �X

�
� �
�
J j� � Y

�
t
+
�
J j� � Y

�
�
�
�
Ii� �X

�
t
:

Our interest lies on the quadratic variation of Mn so as to explore asymptotics. According to
Lemma 3.1 of Hayashi and Yoshida (2006),

Mn
t =

X
i;j

Lij� �K
ij
t ;
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in particular, Mn
t is a continuous local martingale with

(2.2) [Mn;Mn]t =
X
i;j;i0;j0

�
Kij
�K

i0j0

�

�
�
h
Lij ; Li

0j0
i
t
=: V n (M;M)t :

Let

V n (M;X; Y )t =
X
i;j

Kij
� �
n
X
�
Ii
�
� � [X;Y ]

�
J j
�o

t
+
X
i;j

Kij
� �
�
Y
�
J j
�
� [X;X]

�
Ii
�	
t

and

V n (M;Y;X)t =
X
i;j

Kij
� �
n
X
�
Ii
�
� � [Y; Y ]

�
J j
�o

t
+
X
i;j

Kij
� �
�
Y
�
J j
�
� [X;Y ]

�
Ii
�	
t
:

In view of the standard martingale central limit theorem, we formally state the following con-
dition. (bn) denotes a sequence of positive numbers tending to 0 as n!1.

[A1�] There exist an (Ft)-adapted, nondecreasing, continuous process (Vt)t2R+ such that

b�1n V
n (M;M)t

P! Vt as n!1 for every t.

[B1] b�1n V
n (M;X; Y )t

P! 0 and b�1n V
n (M;Y;X)t

P! 0 as n!1 for every t.

We consider the condition:

[W] There exist an (Ft)-predictable process w such that V� =
R �
0 w

2
sds.

An aim of this paper is to prove the following statement:

[SC] b
� 1
2

n Mn !ds M in C (R+) as n ! 1, where M� =
R �
0 wsd

fWs and fW is a one-dimensional
Wiener process (de�ned on an extension of B) which is independent of F .

Proposition 2.1 Suppose that [A1�], [B1] and [W] are ful�lled. Then [SC] holds.

Proof. Notice that [Mn; X] = V n (M;X; Y ) and [Mn; Y ] = V n (M;Y;X). Since [Mn; N ] = 0

for any bounded martingale N on B, we obtain the stable convergence of b�
1
2

n Mn from Jacod (1997)
(or Jacod and Shiryaev (2000), Theorem IX.7.3, p.584).

Each expression of V n (M;M), V n (M;X; Y ) and V n (M;Y;X) is rather abstract; it may be of
little help for explicitly calculating the quadratic variation/covariation and identifying the limiting
distribution of Mn. From this regard, the preceding paper Hayashi and Yoshida (2006) introduce
the following quantity so as to pursue more concrete appearance particularly of V n (M;M). We
remark that the argument there is general enough so that it can indeed apply in the current setup
as well.

Let

(2.3) V iji
0j0

t =
n�
Ii�I

i0
�

�
� [X;X]

o
t

n�
J j�J

j0

�

�
� [Y; Y ]

o
t
+
n�
Ii�J

j0

�

�
� [X;Y ]

o
t

n�
Ii
0
�J

j
�

�
� [X;Y ]

o
t
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and set V ij = V ijij . V iji
0j0 is designed to approximate

h
Lij ; Li

0j0
i
when the interval lengths

��Ii��,���Ii0���, ��J j��, and ���J j0��� are su¢ ciently small.
We postulate the following hypothesis:

[B2] For every t 2 R+,

(2.4) b�1n
X
i;j;i0;j0

�
Kij
�K

i0j0

�

�
�
h
Lij ; Li

0j0
i
t
= b�1n

X
i;j;i0;j0

�
Kij
�K

i0j0

�

�
� V iji

0j0

t + oP (1)

as n!1.

Denote [X] = [X;X] and [Y ] = [Y; Y ] as usual. Let

V
n
t =

X
i;j

[X]
�
Ii(t)

�
[Y ]
�
J j(t)

�
Kij
t +

X
i

[X;Y ]
�
Ii(t)

�2
+
X
j

[X;Y ]
�
J j(t)

�2 �X
i;j

[X;Y ]
��
Ii(t)

�
\
�
J j(t)

��2
;

The following proposition will be used for identifying the limiting form of the quadratic variation:

Proposition 2.2 Suppose [B2] holds. Then, Mn = (Mn
t )0�t�T is a continuous local martingale

with
[Mn;Mn]t = V

n
t + oP (bn) ;

as n!1.

For a proof, see Hayashi and Yoshida (2006).

We modify [A1�] as follows:

[A1] There exist an (Ft)-adapted, nondecreasing, continuous process (Vt)02R+ such that b
�1
n V

n
t
P!

Vt as n!1 for every t.

Accordingly, we can rephrase Proposition 2.1 as follows:

Proposition 2.3 Suppose that [A1], [B1], [B2] and [W] are ful�lled. Then [SC] holds.

Condition [B2] is too technical to check in practice. A su¢ cient condition will be given in
Section 2.3. Condition [B2] will also disappear in the main theorems that hypothesize amiable
conditions.

2.2 Convergence of the sampling measures and a representation of Vt

In Hayashi and Yoshida (2005a), the authors introduced empirical distribution functions of the
sampling times given by

H1
n(t) =

X
i

jIi(t)j2, H2
n(t) =

X
j

jJ j(t)j2;(2.5)

H1\2
n (t) =

X
i;j

j
�
Ii \ J j

�
(t)j2, H1�2

n (t) =
X
i;j

jIi(t)jjJ j(t)jKij
t ;
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where j�j is the Lebesgue measure. Clearly, the four functions are (Ft)-adapted, non-decreasing,
piecewise-quadratic continuous functions, whose graphs contain �kinks�at the observation stopping
times. Note that they altogether preserve the information regarding the (random) positions of the
nonsynchronous sampling times

�
Si
�
and

�
T j
�
.

[A1�]: There exists a possibly random, nondecreasing, continuous functions H1;H2;H1\2, and

H1�2 on [0; T ], such that each Hk =
R t
0 h

k
sds for some density h

k, and that b�1n H
k
n(t)

P! Hk(t) as
n!1 for every t 2 R+ and k = 1; 2; 1 \ 2; 1 � 2.

Then, an extension of Theorem 2.2 of Hayashi and Yoshida (2005a) is given as follows.

Proposition 2.4 Suppose [A1�], [B1] and [B2] are ful�lled, and that each [X], [Y ], and [X;Y ] is
absolutely continuous with a locally bounded derivative. Then [SC] is valid with ws given by

(2.6) ws =

q
[X]0s [Y ]

0
s h

1�2
s +

�
[X;Y ]0s

�2
(h1s + h

2
s � h1\2s ):

Proof. Lemma 2.1 below identi�es the limiting variation process V in the condition [A1] by
(2.6). Thus Proposition 2.3 implies the assertion.

Lemma 2.1 Suppose [X], [Y ], and [X;Y ] are continuously di¤erentiable. Then, [A1�] implies that

(i) b�1n
X
i

[X;Y ]
�
Ii(t)

�2 P!
Z t

0

�
[X;Y ]0s

�2
H1(ds);

(ii) b�1n
X
j

[X;Y ]
�
J j(t)

�2 P!
Z t

0

�
[X;Y ]0s

�2
H2(ds);

(iii) b�1n
X
j

[X;Y ]
��
Ii \ J j

�
(t)
�2 P!

Z t

0

�
[X;Y ]0s

�2
H1\2(ds);

(iv) b�1n
X
i;j

[X]
�
Ii(t)

�
[Y ]
�
J j(t)

�
Kij
t

P!
Z t

0
[X]0s [Y ]

0
sH

1�2(ds):

as n!1 for every t.

For a proof, see Hayashi and Yoshida (2006).

2.3 Su¢ cient condition for [B2]: strong predictability

We have presented a basic version of the limit theorems as Propositions 2.1 and 2.3, in the latter
of which Condition [B2] is assumed. Under more general sampling, however, [B2] is still technical.
A more tractable condition on the sampling scheme to ensure [B2] is desirable for practical per-
spectives. The �strong predictability condition�introduced by Hayashi and Yoshida (2006) serves
for such purpose.

Let � and �0 be constants satisfying 4
5 _ � < �

0 < 1.

[A2]: For every n; i 2 N, Si and T i are
�
G(n)t

�
-stopping times, where

n
G(n)t

o
t2R+

is the �ltration

given by G(n)t = F�
t�b�n

�
_0 for t 2 R+.
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For real-valued function x on R+, the modulus of continuity on [0; T ] is denoted as

(2.7) w(x; �; T ) = sup
s;t;js�tj��
0�s;t�T

jx(t)� x(s)j

for T; � � 0. Write H�
t = sup0�s�t jHsj for a process H.

[A3]: (i) [X], [Y ], and [X;Y ] are absolutely continuous. (ii) Moreover, for the density processes
f = [X]0, [Y ]0 and [X;Y ]0, w(f ;h; t) = OP

�
h
1
2
��
�
as h! 0 for every t; � 2 (0;1), and jf0j <1,

a.s.

Remark : It should also be noted that (ii) will imply that, for any t,

(2.8)
�
[X]0

��
t
<1;

�
[Y ]0

��
t
<1;

�
[X;Y ]0

��
t
<1; almost surely :

[A4]: rn(t) = oP
�
b�
0
n

�
for every t 2 R+.

Remark : In Hayashi and Yoshida (2006), the authors used a di¤erent parametrization for the
exponents of bn in [A2] and [A4]. That is, � and � adopted there can be rewritten here in terms of
� and �0 as

� = � � 2
3
, and � = �0 � 2

3
:

As mentioned earlier, these conditions altogether form a su¢ cient condition for [B2].

Proposition 2.5 [B2] holds true under [A2], [A3] and [A4].

For a proof, see Hayashi and Yoshida (2006).

2.4 Limit theorems for semimartingales: main results

Up to the previous sections we focused on the case without drifts, i.e., when X and Y are martin-
gales. In this section, we relax the restriction; we consider the case when X and Y are continuous
semimartingales.

Suppose that X � AX +MX and Y � AY +MY are continuous semimartingales, where AX

and AY are �nite variation parts, MX and MY are continuos martingale parts. Like the previous
sections, we treatX and Y square-integrable, because the usual localization argument can apply due
to the path continuity. In this case the nonsynchronous covariation process of X and Y associated
with

�
Ii
�
and

�
J j
�
can be de�ned exactly by the same way as De�nition 1.1.

The following are used for the case when X and Y have drifts AX and AY .

[A5]: AX and AY are absolutely continuous, and w(f ;h; t) = OP

�
h
1
2
��
�
as h ! 0 for every

t 2 R+ and some � 2 (0; 1=4), for the density processes f =
�
AX
�0
and

�
AY
�0
.

Remark : [A5] implies that for any t > 0,

(2.9)
�
Al

0��
t
<1; almost surely, l = X;Y:
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[A6]: For every t, as n!1,

b�1n
X
i

��Ii(t)��2 + b�1n X
j

��J j(t)��2 = Op(1).

Remark : Condition [A5] is slightly stronger than (C4�) of Hayashi and Yoshida (2004). Condition
[A1] does not imply [A6]. Indeed, it is possible to make a sampling scheme that includes [n7=10]
intervals of n�4=5 in length and [X] and [Y ] do not increase on the union of those intervals, and also
[A1] holds. However [A6] breaks in this case. On the other hand, [A1�] implies [A6]. The Poisson
sampling scheme considered in Hayashi and Yoshida (2004) is an example.

Let

B1;t =
1X
i;j=1

AX(Ii)tM
Y
�
J j
�
t
Kij
t , B2;t =

1X
i;j=1

AY (J j)tM
X
�
Xi
�
t
Kij
t ;

B3;t =

1X
i;j=1

AX(Ii)tA
Y
�
J j
�
t
Kij
t :

Then,

fX;Y gt �
1X
i;j=1

MX(Ii)tM
Y (J j)tK

ij
t +B1;t +B2;t +B3;t:

Lemma 2.2 Suppose that [A2]�[A6] are satis�ed. Then, for any t > 0, as n!1,

b�1=2n B�l;t = oP (1), l = 1; 2; 3:

The negligibility of B�l;t is proved by Lemma 5.1 in Hayashi and Yoshida (2006).

Here is our �rst main result:

Theorem 2.1 Suppose that X and Y are continuous semimartingales.
(a) If [A1]-[A6] and [W] are satis�ed, then [SC] holds.
(b) If [A1�], [A2]-[A5] are satis�ed, then [SC] holds for w given by (2.6).

Proof. In both cases (a) and (b), [A2]�[A6] holds, hence Lemma 2.2 ensures the behavior of
fX;Y gt is the same as that of

�
MX ;MY

	
in the �rst order; that [X;Y ] =

�
MX ;MY

�
is trivial.

Eventually, we will consider

Mn
t =

�
MX ;MY

	
t
�
�
MX ;MY

�
t
=
X
i;j

Lijt K
ij
t

in place of (2.1), but in the present situation with

Lijt =
�
Ii� �MX

�
� �
�
J j� �MY

�
t
+
�
J j� �MY

�
�
�
�
Ii� �MX

�
t
:

Condition [B2] holds under the assumptions according to Proposition 2.5; note that V iji
0j0

t is un-
changed and that [A3] still holds even if

�
MX ;MY

�
replaces (X;Y ). Therefore, once condition

[B1] is veri�ed for
�
MX ;MY

�
, (a) follows from Proposition 2.2 and (b) from Proposition 2.4.
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After all, what we have to show is that b
� 1
2

n V n(M;MX ;MY ) = oP (1) and b
� 1
2

n V n(M;MY ;MX) =
oP (1) as n!1 for every t. In the current context, for instance, V n(M;MX ;MY ) is now given by

V n(M;MX ;MY ) =
X
i;j

Kij
� �
n
MX

�
Ii
�
� �
�
MX ;MY

� �
J j
�o

t
+
X
i;j

Kij
� �
�
MY

�
J j
�
�
�
MX ;MX

� �
Ii
�	
t
:

Since
�
MX ;MX

�
and

�
MX ;MY

�
possessing [A3] also satisfy the property described in [A5] (which

is originally postulated for AX and AY ), exactly the same argument made for IIt in the proof for
Lemma 5.1 of Hayashi and Yoshida (2006) to give b

� 1
2

n V n(M;MX ;MY ) = oP (1). The convergence

of b
� 1
2

n V n(M;MY ;MX) = oP (1) is veri�ed in the same fashion.

2.5 Empirical nonsynchronous covariation process

A keen reader may be aware that fX;Y gt may not always be observable. Although this fact is
not crucial in the development of the asymptotic distribution theory, from a viewpoint of practical
applications it is certainly a distracting feature. The argument here is the way how to amend such
a minor �aw pertaining to the previous construction (1.1).

De�nition 2.1 The empirical nonsynchronous covariation process of X and Y associated with
sampling designs I =

�
Ii
�
i2N and J =

�
J j
�
j2N is the process

fX;Y gt =
1X
i;j=1

Si_T j�t

X(Ii)Y (J j)1fIi\Jj 6=?g; t 2 R+:

Obviously,

fX;Y gt =
1X
i;j=1

Si_T j�t

X(Ii)tY (J
j)t1fIi(t)\Jj(t) 6=?g:

It is the piecewise constant, càdlàg version of the nonsynchronous covariation process and

fX;Y gt = fX;Y gt

at t 2 � =
�
Si
�
\
�
T j
�
(i.e., �synchronous�points). Otherwise they do not coincide in general;

however the di¤erence is negligible as shown next.
The empirical version fX;Y gt is observable at any t, hence is a statistic, as intended.

Lemma 2.3 As n!1;

b
� 1
2

n

�
fMX ;MY g �

�
MX ;MY

	� ucp! 0:

Proof. To proceed, we introduce the following symbols:

I
�
J j
�
t
=
X
i

Kij
t I

i
t , j � 1; J

�
Ii
�
t
=
X
j

Kij
t J

j
t , i � 1:

We can interpret for instance that I
�
J j
�
t
is the f0; 1g-valued process corresponding to the smallest

(aggregate) interval consisting of Iis that covers a given J j . As per the notation system introduced

9



earlier, I
�
J j
�
(t) denotes the aggregate interval truncated by time t, hence X

�
I
�
J j
�
(t)
�
will mean

the increment of X over it.
Clearly, for any t, there exists one (and only one) pair (i; j) such that t 2

�
Si�1; Si

�
and

t 2
�
T j�1; T j

�
. Call such indices it and jt in what follows. Notice by construction, for arbitrary

�xed time s, is � 1 = max
�
i : Si � s

	
and js � 1 = max

�
j : T j � s

	
.

We remark that
��I �J js� (s)�� � 2rn (s) and

��J �Iis� (s)�� � 2rn (s) for any s. In fact, for the
former, because

I
�
J js
�
(s) �

�
SiTjs�1�1; s

�
� IiTjs�1 [

�
SiTjs�1 ; s

�
;

we have ��I �J js� (s)�� � ��IiTjs�1 ��+ �s� SiTjs�1� � ��IiTjs�1 ��+ �s� T js�1� � 2rn (s)
since T js�1 � SiTjs�1 . The latter can be shown by the same way.

Put �t = fMX ;MY gt �
�
MX ;MY

	
t
, the gap between the two quantities of interest.

Case: Sis�1 < T js�1: For i � is � 1,�
Ii \ J j 6= ?

�
=)

�
supJ j � T js�1 � s

�
=)

�
Ii(s) \ J j(s) 6= ?

�
;

i.e., any �overlapping�pair (i; j) with i � is�1 must be one �completed�by the �xed time s. Such
pairs are included in the summation in both fMX ;MY g and

�
MX ;MY

	
. Consequently, when

the gap between the two quantities has to be evaluated, only the remaining overlapping pairs (i; j)
with i = is are to be taken into account. Thus, for any s; t with s � t,

j�sj �
��MX

�
Iis(s)

��� ��MY
�
J
�
Iis
�
(s)
���

� w
�
MX ; rn (t) ; t

�
� w
�
MY ; 2rn (t) ; t

�
:

Case: Sis�1 > T js�1: By symmetry,

j�sj �
��MX

�
I
�
J js
�
(s)
��� ��MY

�
J js(s)

���
� w

�
MX ; 2rn (t) ; t

�
� w
�
MY ; rn (t) ; t

�
:

Case: Sis�1 = T js�1: By the same token,

j�sj �
��MX

�
Iis(s)

��� ��MY
�
J js(s)

���
� w

�
MX ; rn (t) ; t

�
� w
�
MY ; rn (t) ; t

�
:

Therefore, putting all together, we have

j�sj � w
�
MX ; 2rn (t) ; t

�
� w
�
MY ; 2rn (t) ; t

�
:

Since MX and MY are continuous local martingales, due to the martingale representation as
Brownian motion, for any t > 0 and any " > 0;

w
�
MX ;h; t

�
� h

1
2
�"

as h # 0. The same inequality is true for Y as well. Hence,

j�sj � 2rn (t)1�2" :

10



From [A4], one can conclude

b
� 1
2

n sup
s2[0;t]

j�sj = oP
�
b
( 23+�)(1�2")�

1
2

n

�
= oP (1) ;

since � 2
�
�; 13

�
with � 2

�
2
15 ;

1
3

�
and " > 0 can be taken arbitrarily small.

Set

B1;t =
1X
i;j=1

Si_T j�t

AX(Ii)MY
�
J j
�
Kij , B2;t =

1X
i;j=1

Si_T j�t

AY (J j)MX
�
Xi
�
Kij ;

B3;t =
1X
i;j=1

Si_T j�t

AX(Ii)AY
�
J j
�
Kij ;

where Kij = 1fIi\Jj 6=?g, then we obtain the corresponding discrete version of the decomposition

fX;Y gt �
1X
i;j=1

Si_T j�t

MX(Ii)MY (J j)Kij +B1;t +B2;t +B3;t:

Lemma 2.4 Suppose that [A2]�[A6] are satis�ed. Then, for any t > 0, as n!1,

b�1=2n B
�
l;t = oP (1), l = 1; 2; 3:

Outline of Proof. The negligibility of B�l;t is already stated in Lemma 2.2. The (uniform)

di¤erence between Bl and B1, after rescaled b
�1=2
n , can also be shown to be negligible, by applying

a similar argument to the proof of Lemma 2.3.
For M

n
= fX;Y g � [X;Y ], we will show:

[SCE] b
� 1
2

n M
n !ds M in D (R+) as n ! 1, where M =

R �
0 wsd

fWs and fW is a one-dimensional
Wiener process (de�ned on an extension of B) which is independent of F .

Here is our second main result:

Theorem 2.2 Suppose that X and Y are continuous semimartingales.
(a) If [A1]-[A4] and [W] are satis�ed, then [SCE] holds.
(b) If [A1�], [A2]-[A5] are satis�ed, then [SCE] holds for w given by (2.6).

3 Statistical applications and example

3.1 Stochastic di¤erential equations

Suppose that X1 and X2 are continuous Itô semimartingales,

(3.1) dXk
t = �

k
t dt+ �

k
t dW

k
t , k = 1; 2;

where �kt are (Ft)-adapted, continuous processes, �kt are strictly positive, (Ft)-adapted, continuous
processes, k = 1; 2. The (Ft)-adapted Brownian motions W k

t are correlated with d
�
W 1;W 2

�
t
=

11



�tdt, where �t is an (Ft)-adapted, continuous process. This model is a stochastic volatility model,
a standard model in the �nance literature. In the meantime, we continue to use the same symbols
I =

�
Ii
�
i2N and J =

�
J j
�
j2N for the sampling designs associated with X

1 and X2, respectively.
Under the assumption the quadratic variations / covariation are expressible ash

Xk
i
t
=

Z t

0

�
�ks

�2
ds, k = 1; 2;

�
X1; X2

�
t
=

Z t

0
�s�

1
s�
2
sds:

Besides, we assume the following smooth condition for �, �k, k = 1; 2, together with �k, k = 1; 2:

[A3�]: For every � > 0 and t 2 R+, w (f ;h; t) = OP
�
h
1
2
��
�
as h # 0 for f = �1; �2 and �.

[A5�]: For some � 2 (0; 1=4) and any t 2 R+, w (f ;h; t) = OP
�
h
1
2
��
�
as h # 0 for f = �k, k = 1; 2.

Notice that, if �X1�is read as �X�and �X2�as �Y �as in the previous section, it can be seen that
[A3�] implies [A3](ii) while [A5�] implies [A5](ii), respectively.

Remark : Together with path continuity, [A3�] and [A5�] imply that the paths of �, �k, �k, k = 1; 2
are all Hölder continuous with exponent

�
1
2 � �

�
.

Now, de�ne the distribution functions associated with the sampling designs I and J by

H
1
n(t) =

X
i: Si�t

jIij2, H
2
n(t) =

X
j: T j�t

jJ j j2;

H
1\2
n (t) =

X
i;j:

Si_T j�t

jIi \ J j j2, H
1�2
n (t) =

X
i;j:

Si_T j�t

jIijjJ j jKij ;

where Kij = 1fIi\Jj 6=?g. This time, the four functions are (Ft)-adapted, with non-decreasing,
piecewise constant, càdlàg paths, which �jump�at the observation stopping times. They are all
observable at any t.

[A1�]: There exist a possibly random, nondecreasing functions H1;H2;H1\2, and H1�2 on [0; T ],
such that each h1; h2; h1\2, and h1�2 on [0;1), such that Hk(t) =

R1
0 hksds for some density h

k,

and that <1 and b�1n H
k
n(t)

P! Hk(t) as n!1 for every t 2 R+ and k = 1; 2; 1 \ 2; 1 � 2.

The equivalence of [A1�] and [A1�] can be veri�ed. In fact,

H
k
n(s) � Hk

n(s) � H
k
n(s) + 2rn(t)

2, for all s 2 [0; t] , k = 1; 2; 1 \ 2; 1 � 2.

We take on the case k = 1 � 2 only, for all the others are straightforward. The �rst inequality
is obvious by construction. Moreover, according to a similar argument adopted in the proof for
Lemma 2.3, for any s; t with s � t,

H1�2
n (s)�H1�2

n (s) �
��Iit(t)�� ��J �Iit� (t)�� _ ��I �J jt� (t)�� ��J jt(t)�� � 2rn (t)2

so that
sup
s2[0;t]

���H1�2
n (s)�H1�2

n (s)
��� � 2rn (t)2 :

12



Hence, the second inequality also holds. Since b�1n rn(t)
2 P! 0 under [A4] for example, we have

ascertained that the convergence of b�1n H
1�2
n is equivalent to that of b�1n H

1�2
n .

Then, by the application of Theorem 3.1 we have the following theorem:

Theorem 3.1 Suppose that X and Y are continuous semimartingales. Suppose that either [A1�] or
[A1�], and [A2], [A3�], [A4] and [A5�] are satis�ed. Then, for Mn = b

�1=2
n

�
fX;Y g �

R �
0 �s�

1
s�
2
sds
�

and M
n
= b

�1=2
n

�
fX;Y g �

R �
0 �s�

1
s�
2
sds
�
, [SC] and [SCE] hold for w given by

(3.2) ws =

Z �

0

q
(�1s�

2
s)
2 h1�2s + (�s�1s�

2
s)
2 (h1s + h

2
s � h1\2s ):

3.2 Studentization

We shall brie�y discuss studentization. Consider ws given in (3.2). In our context, wt is not
observable since it contains unknown quantities such as �t�1t �

2
t ; neither is

R �
0 w

2
sds. Suppose we �nd

a statistic \R t
0 w

2
sds such that

\Z �

0
w2sds

P!
Z �

0
w2sds (in D)

as n!1.
Then, the stable convergence stated in Theorem 3.1 implies that 

b�1=2n M
n
;
\Z �

0
w2sds

!
L!

�
M;

Z �

0
w2sds

�
;

with [M;M ] =
R �
0 w

2
sds; in particular, for every t > 0,

b
� 1
2

n

�
fX1; X2gt �

R t
0 �s�

1
s�
2
sds
�

q
\R t
0 w

2
sds

L! N(0; t)

as n!1, whenever
R t
0 w

2
sds > 0 a.s. I.e., the �studentized�estimation error of the nonsynchronous

covariation is asymptotically normally distributed, which can be used for inferences.

3.3 Construction of \R t
0
w2sds: Kernel-based approach

Let K(u) be a kernel function such that
R1
�1K (u) du = 1 and K (u) � 0 for all u. K is assumed to

be absolutely continuous with
R1
�1 jK

0 (s)j ds <1. Here, K 0 may mean a �generalized�derivative.
Moreover, for convenience, we introduce the following symbol: For arbitrary window size h > 0, let

Kh(u) =
K(uh)
h (so that

R1
�1Kh (u) du = 1).

For every t � 0; de�ne

@ ^fX1; X2g
h

t =

Z 1

�1
fX1; X2gsK

0
h (t� s) ds;

@f̂Xkg
h

t = @
^fXk; Xkg

h

t ; k = 1; 2

13



which are observable for any h > 0 and n � 1.
Using these quantities, de�ne, for any h > 0, n � 1,

\Z t

0
w2sds =

Z t

0
@f̂X1g

h

s@f̂X2g
h

s b
�1
n H

1�2
n (ds)

+

Z t

0
@ ^fX1; X2g

h

s b
�1
n

�
H
1
n +H

2
n �H

1\2
n

�
(ds):

This quantity is also observable for any h > 0, n � 1, and t > 0. Since the integrators Hk
n(�) have

piecewise constant, càdlàg paths, the integrations are indeed summations taken at the sampling
times up to time t, which are easy to implement.

Proposition 3.1 Under the assumptions in Theorem 3.1,

\Z �

0
w2sds

ucp!
Z �

0
w2sds

as n!1, provided that b
1
2
nh�1 ! 0.

Proof. Let Mn
t = fX1; X2gt �

�
X1; X2

�
t
, then clearly it satis�es b

� 1
2

n sups2[0;t]
��Mn

s

�� = Op(1)
(for any t > 0) under the conditions [A1] through [A6]. Thus, by the integration-by-parts formula,

@ ^fX1; X2g
h

t =

Z 1

�1

��
X1; X2

�
s
+M

n
s

�
K 0
h (t� s) ds

=
�
X1; X2

�
s
Kh (t� s)

��1
s=�1 +

Z 1

�1

�
X1; X2

�0
s
Kh (t� s) ds+Op(b

1
2
n )

Z 1

�1

��K 0
h (t� s)

�� ds
= �t�

1
t �
2
t + w(��

1�2;h; t) +Op(b
1
2
nh

�1);

uniformly in t 2 [0; t0] for any t0 > 0. This can be realized by choosing h such that b
1
2
nh�1 ! 0, or

h = b
1
2
��

n for arbitrary � 2
�
0; 12
�
. The last term is because

R1
�1 jK

0
h (t� s)j ds =

R1
�1

jK0( t�sh )j
h2

ds =

O(h�1).
Similarly,

@f̂Xkg
h

t =
�
�kt

�2
+ w(

�
�k
�2
;h; t) +Op(b

1
2
nh

�1);

uniformly in t 2 [0; t0] for any t0 > 0.
Therefore, it is immediate to obtain the assertion of the proposition.

Special case:
A special case of kernel-based approach is the following naïve approach (�historical averages�).

For any s > 0 and for any h > 0, de�ne

@fX1; X2ghs =
1

h

�
fX1; X2gs � fX1; X2gs�h

�
;

@fXkg
h

s = @fXk; Xkg
h

s ; k = 1; 2:

Speci�cally, as h! 0 (with b
1
2
nh�1 ! 0), they can be expressed as

@fX1; X2ghs = �s�
1
s�
2
s + w(��

1�2;h; s) +Op(b
1
2
nh

�1)
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and
@fXkg

h

s =
�
�ks

�2
+ w(

�
�k
�2
;h; s) +Op(b

1
2
nh

�1);

uniformly in s 2 [0; t] for t > 0. The corresponding \R t
0 w

2
sds is especially easy to implement in

practice.

3.4 Poisson sampling with a random change point

As an illustration, we consider the case when the sampling times are Poisson arrival times but there
is a �change point�in that their arrival intensities will change once the underlying processes hit pre-
speci�ed boundaries. More precisely, suppose that (F 0t)-adapted processes �; �k; �k;W k; �k; k = 1; 2
are given on a stochastic basis (
0;F 0; (F 0t) ; P 0). The processes Xk are de�ned by (3.1). Let �k

(k = 1; 2) be (F 0t)-stopping times.
On an auxiliary probability space (
00;F 00; P 00), there are random variables

�
Si
�
;
�
T j
�
; (S

i
); (T

j
)

that are mutually independent Poisson arrival times with intensity �k = npk, pk 2 (0;1), k = 1; 2,
respectively for

�
Si
�
;
�
T j
�
and with �

k
= npk, pk 2 (0;1), k = 1; 2, respectively for (Si); (T j).

We construct the product stochastic basis (
;F ; (Ft) ; P ) by


 = 
0 � 
00; F = F 0 �F 00; Ft = F 0t �F 00 P = P 0 � P 00:

On the new basis the random elements aforementioned can be extended in the usual way; i.e.,
W k (!0; !00) =W k (!0), Si (!0; !00) = Si (!00), (!0; !00) 2 
, and so forth.

The sampling design I =
�
Si
�
for X will be made of

�
Si
�
and (S

i
) as follows: The sampling

for X takes place �rst at each of
�
Si
�
of the ��rst kind�. Sooner or later, the stopping time �1

may arrive. Once it arrives, then at
�
�1 + 1p

n

�
the stochastic �alarm clock�of the �second kind�

(S
i
) will start, at each arrival time of which X will subsequently be sampled. Accordingly, all the

arrival times used will form the sampling times
�
Si
�
, from which the sampling design I will be

made.
�
T j
�
and (T

j
) will form the sampling design J for Y in the same way. Note that in this

construction we control the magnitude of the �average�interval size bn = 1
n (up to a multiplier).

Formally,
�
Si
�
is constructed as follows: Put �1n = �

1 + 1p
n
. De�ne Si sequentially by

S1 = inf
l2N

n
SlfSl<�1ng; �

1
n + S

1
o
;

Si = inf
l;m2N

n
SlfSi�1<Sl<�1ng;

�
�1n + S

m�
fSi�1<�1n+Smg

o
; i � 2:

�
T j
�
is de�ned by the same way. Here, we have introduced the notation: For a stopping time T

(with respect to a �ltration (Ft)) and a set A 2 FT , let TA (!) = T (!) if ! 2 A;TA (!) = +1
otherwise. Then, TA is in fact a stopping time as well (cf., J-S I.1.15, p.4).

In the present situation, the �ltration
�
G(n)t

�
consists of

G(n)t � F 0(t�n��)_0 �F
00; t 2 R+:

For a
�
G(n)t

�
-stopping time T , the �stopped��-�eld G(n)T is de�ned in the usual way:

G(n)T =
n
A 2 F : A \ fT � tg 2 G(n)t , all t � 0

o
:
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We claim:

Lemma 3.1 Sis and T js are
�
G(n)t

�
-stopping times.

Proof. It su¢ ces to consider
�
Si
�
only. We prove the assertion by induction. Beforehand,

�rst note that Sl and S
m
are

�
G(n)t

�
-stopping times. Since �1 is an (Ft)-stopping time, �1n �

�1 + 1p
n
is a

�
G(n)t

�
-stopping time, hence, �1n + S

m
is a

�
G(n)t

�
-stopping time as well. Moreover,

since
�
Sl < �1n

	
2 G(n)

Sl
, SlfSl<�1ng is a

�
G(n)t

�
-stopping time. Therefore, S1 is a

�
G(n)t

�
-stopping

time as well.
Suppose for now that Si�1 is a

�
G(n)t

�
-stopping time. Then, it is true that

�
Si�1 < �1n + S

m	 2
G(n)
�1n+S

m . At the same time,
�
Si�1 < Sl < �1n

	
=
�
Si�1 < Sl

	
\
�
Sl < �1n

	
2 G(n)

Sl
. These facts

implies that Si is in fact a
�
G(n)t

�
-stopping time, as asserted.

Consequently, by the argument made for Proposition 1 of , we have, as n!1,

nH1
n(t)

P! 2

p1
�
�1 ^ t

�
+
2

p1
�
t� �1 ^ t

�
=:

Z t

0
h1sds;

nH2
n(t)

P! 2

p2
�
�2 ^ t

�
+
2

p2
�
t� �2 ^ t

�
=:

Z t

0
h2sds;

nH1\2
n (t)

P! 2

p1 + p2
�
�1 ^ �2 ^ t

�
+

2

p1 + p2
�
�2 ^ t� �1 ^ �2 ^ t

�
+

2

p1 + p2
�
�1 ^ t� �1 ^ �2 ^ t

�
+

2

p1 + p2
�
t�
�
�1 _ �2

�
^ t
�
=:

Z t

0
h1\2s ds;

nH1�2
n (t)

P!
�
2

p1
+
2

p2

��
�1 ^ �2 ^ t

�
+

�
2

p1
+
2

p2

��
�2 ^ t� �1 ^ �2 ^ t

�
+

�
2

p1
+
2

p2

��
�1 ^ t� �1 ^ �2 ^ t

�
+

�
2

p1
+
2

p2

�
(t� � ^ t) =:

Z t

0
h1�2s ds;

for every t.

Corollary 3.1 Under the same hypotheses as Theorem ??, as n!1,

b�1=2n Mn L!
Z �

0
gsdfWs (stably),

where

gs =

8>>>>>>>>>><>>>>>>>>>>:

r
(�1s�

2
s)
2
�
2
p1
+ 2

p2

�
+ (�s�1s�

2
s)
2
�
2
p1
+ 2

p2
� 2

p1+p2

�
(s � �1 ^ �2)r

(�1s�
2
s)
2
�
2
p1
+ 2

p2

�
+ (�s�1s�

2
s)
2
�
2
p1
+ 2

p2
� 2

p1+p2

�
1f�1��2g

+

r
(�1s�

2
s)
2
�
2
p1
+ 2

p2

�
+ (�s�1s�

2
s)
2
�
2
p1
+ 2

p2
� 2

p1+p2

�
1f�1>�2g (�1 ^ �2 < s � �1 _ �2)r

(�1s�
2
s)
2
�
2
p1
+ 2

p2

�
+ (�s�1s�

2
s)
2
�
2
p1
+ 2

p2
� 2

p1+p2

�
(�1 _ �2 < s)

and fW is an independent Brownian motion.
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Remark: Since �1 and �2 are (Ft)-stopping times the process (gt) is (Ft)-adapted, as dic-
tated. An example of such �ks are boundary hitting times: �1 = inf

�
t > 0 : Xt > K

1
	
,

�2 = inf
�
t > 0 : Yt > K

2
	
, K1;K2 2 (0;1).

Special case: For simplicity, suppose there is only one change point; in particular, let � = �2 �
�1 = inf

�
t > 0 : Xt > K

1
	
. Then, the express for gt reduces to

gs =

8>><>>:
r
(�1s�

2
s)
2
�
2
p1
+ 2

p2

�
+ (�s�1s�

2
s)
2
�
2
p1
+ 2

p2
� 2

p1+p2

�
(s � �)r

(�1s�
2
s)
2
�
2
p1
+ 2

p2

�
+ (�s�1s�

2
s)
2
�
2
p1
+ 2

p2
� 2

p1+p2

�
(� < s)

:

Moreover, if X1 = �1W 1, then the density of the �rst passage time � (to K1) can be written
explicitly as

f(t) =
K1r

2�
�
(�1)2 t

�3 e�
(K1)

2

2(�1)2t , t > 0

(cf. Karatzas-Shreve (91), p.96).
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