Local Saito-Kurokawa *A*-packets and *l*-adic cohomology of Rapoport-Zink tower for GSp(4) (joint work with Tetsushi Ito)

Yoichi Mieda

Graduate School of Mathematical Sciences, University of Tokyo

January 27, 2021

Local Langlands correspondence

G: connected reductive group over \mathbb{Q}_p , split for simplicity. LLC for *G* is a conjectural map between

- isom. classes of irreducible smooth representations of $G(\mathbb{Q}_p)$
- conj. classes of *L*-parameters $W_{\mathbb{Q}_p} imes \mathsf{SL}_2(\mathbb{C}) o \widehat{G}$

with finite fiber. Here

- $W_{\mathbb{Q}_p}$ is the Weil group of \mathbb{Q}_p .
- \widehat{G} is the dual group of G over \mathbb{C} .

The fiber Π_{ϕ} of $\phi \colon W_{\mathbb{Q}_{\rho}} \times SL_2(\mathbb{C}) \to \widehat{G}$ is called the *L*-packet.

If $G = GL_n$, then $\widehat{G} = GL_n(\mathbb{C})$ and LLC is known (Harris-Taylor). In this case, every *L*-packet is a singleton, i.e., LLC is bijective.

Lubin-Tate tower

LLC for GL_n was constructed by means of *p*-adic geometry.

 $\exists \text{ Lubin-Tate tower } \{M_{\mathcal{K}}\}_{\mathcal{K} \subset \mathsf{GL}_n(\mathbb{Z}_p): \text{ compact open}}:$

- Each M_K is an (n-1)-dimensional smooth rigid space over $\widehat{\mathbb{Q}}_p^{\mathrm{ur}}$.
- $M_{\mathsf{GL}_n(\mathbb{Z}_p)}$ is the (n-1)-dimensional open unit disc over $\widehat{\mathbb{Q}}_p^{\mathrm{ur}}$.
- *M_K*/*M<sub>GL_n(ℤ_p)* is a finite étale covering.
 If *K* ⊲ GL_n(ℤ_p), it is Galois with Galois group GL_n(ℤ_p)/*K*.
 </sub>
- $GL_n(\mathbb{Q}_p)$ acts on $\{M_K\}_{K \subset GL_n(\mathbb{Z}_p)}$ (Hecke action).

D[×] acts on {M_K}<sub>K⊂GL_n(ℤ_p), where D is the central division algebra over ℚ_p with inv(D) = 1/n.
Fix a prime ℓ ≠ p and an isomorphism ℚ_ℓ ≅ ℂ.
Consider ℓ-adic étale cohomology Hⁱ_{LT} := lim_K Hⁱ_c(M_K ⊗<sub>ℚ^{ur}_p ℂ_p, ℚ_ℓ).
</sub></sub>

This is a representation of $\operatorname{GL}_n(\mathbb{Q}_p) \times D^{\times} \times W_{\mathbb{Q}_p}$.

Lubin-Tate tower and LLC

$$\mathcal{H}^i_{\mathrm{LT}} := arprojlim_{\mathcal{K}} \mathcal{H}^i_{c}(\mathcal{M}_{\mathcal{K}} \otimes_{\widehat{\mathbb{Q}}^{\mathrm{ur}}_p} \mathbb{C}_p, \overline{\mathbb{Q}}_\ell)$$
: rep. of $\mathsf{GL}_n(\mathbb{Q}_p) imes D^{ imes} imes \mathcal{W}_{\mathbb{Q}_p}$

Theorem (Deligne, Carayol (n = 2), Harris-Taylor $(n \ge 3)$) Let π be a sc (=supercuspidal) rep. of $GL_n(\mathbb{Q}_p)$. Put $\rho = JL(\pi)$ and $\sigma = LLC(\pi)$. Then $Hom_{D^{\times}}(H^i_{LT}, \rho)^{sm} = \begin{cases} \pi \boxtimes \sigma(\frac{n-1}{2}) & i = n-1, \\ 0 & i \neq n-1. \end{cases}$

Key of the proof in the case n = 2:

• Relation between $\{M_{\mathcal{K}}\}_{\mathcal{K}\subset \mathsf{GL}_2(\mathbb{Z}_p)}$ and the modular curve.

Lubin-Tate tower (n = 2) vs modular curve

Fix a sufficiently small compact open subgroup $K^p \subset GL_2(\mathbb{A}^{\infty,p})$.

- $\mathsf{Sh}_{\mathsf{GL}_2(\mathbb{Z}_p)K^p}$: integral modular curve over $\widehat{\mathbb{Z}}_p^{\mathrm{ur}}$ with level $\mathsf{GL}_2(\mathbb{Z}_p)K^p$
- $\mathsf{Sh}^{\mathrm{ss}}_{\mathsf{GL}_2(\mathbb{Z}_p)\mathcal{K}^p,\overline{\mathbb{F}}_p} \subset \mathsf{Sh}_{\mathsf{GL}_2(\mathbb{Z}_p)\mathcal{K}^p,\overline{\mathbb{F}}_p}$: the supersingular locus (0-dimensional)
- $\mathsf{Sh}^{\mathrm{ss.red.}}_{\mathsf{GL}_2(\mathbb{Z}_p)\mathcal{K}^p,\widehat{\mathbb{Q}}_p^{\mathrm{ur}}} := \mathrm{sp}^{-1}(\mathsf{Sh}^{\mathrm{ss}}_{\mathsf{GL}_2(\mathbb{Z}_p)\mathcal{K}^p,\overline{\mathbb{F}}_p}) \subset \mathsf{Sh}_{\mathsf{GL}_2(\mathbb{Z}_p)\mathcal{K}^p,\widehat{\mathbb{Q}}_p^{\mathrm{ur}}}:$ the supersingular reduction locus (rigid analytic open)
- $\mathsf{Sh}_{\mathcal{KK}^p,\widehat{\mathbb{Q}}_p^{\mathrm{ur}}}^{\mathrm{ss.red.}} = \mathsf{inverse image of } \mathsf{Sh}_{\mathsf{GL}_2(\mathbb{Z}_p)\mathcal{K}^p,\widehat{\mathbb{Q}}_p^{\mathrm{ur}}}^{\mathrm{ss.red.}} \mathsf{ in } \mathsf{Sh}_{\mathcal{KK}^p,\widehat{\mathbb{Q}}_p^{\mathrm{ur}}}.$

$$ightarrow \mathsf{Sh}^{\mathrm{ss.red.}}_{\mathcal{KK}^p,\widehat{\mathbb{Q}}^{\mathrm{ur}}_p} = \widetilde{D}^{ imes} \setminus (M_{\mathcal{K}} imes \mathsf{GL}_2(\mathbb{A}^{\infty,p})/\mathcal{K}^p),$$

where \widetilde{D} is a quaternion division algebra over \mathbb{Q} with $ram(\widetilde{D}) = \{\infty, p\}$.

Summary:

The supersingular reduction locus of the modular curve is uniformized by the Lubin-Tate tower.

Yoichi Mieda (University of Tokyo)

Rapoport-Zink tower for GSp₄

 \exists GSp₄-version of the Lubin-Tate tower

= Rapoport-Zink tower $\{M_{\mathcal{K}}\}_{\mathcal{K}\subset \mathsf{GSp}_4(\mathbb{Z}_p)}$:

For simplicity we put $G := GSp_4$.

- Each M_K is a 3-dimensional smooth rigid space over $\widehat{\mathbb{Q}}_p^{\mathrm{ur}}$.
- $M_K/M_{G(\mathbb{Z}_p)}$ is a finite étale covering. If $K \lhd G(\mathbb{Z}_p)$, it is Galois with Galois group $G(\mathbb{Z}_p)/K$.
- G(Q_p) acts on {M_K}_{K⊂G(Z_p)} (Hecke action).
- $J(\mathbb{Q}_p)$ acts on $\{M_K\}_{K \subset G(\mathbb{Z}_p)}$, where J is a non-trivial inner form of G.

$$\begin{split} H^{i}_{\mathrm{RZ}} &:= \varinjlim_{\mathcal{K}} H^{i}_{c}(M_{\mathcal{K}} \otimes_{\widehat{\mathbb{Q}}_{p}^{\mathrm{ur}}} \mathbb{C}_{p}, \overline{\mathbb{Q}}_{\ell}). \\ \text{This is a representation of } G(\mathbb{Q}_{p}) \times J(\mathbb{Q}_{p}) \times W_{\mathbb{Q}_{p}}. \end{split}$$

Aim of this talk

$$H^i_{\mathrm{RZ}} := arprojlim_{\mathcal{K}} H^i_c(M_{\mathcal{K}} \otimes_{\widehat{\mathbb{Q}}_p^{\mathrm{ur}}} \mathbb{C}_p, \overline{\mathbb{Q}}_\ell)$$
: rep. of $G(\mathbb{Q}_p) imes J(\mathbb{Q}_p) imes W_{\mathbb{Q}_p}$

Aim of this talk:

Describe the $G(\mathbb{Q}_p)$ -sc part of H^i_{RZ} by means of LLC for G and J.

Remark

- LLC for G and J are established by Gan-Takeda and Gan-Tantono, respectively. No geometry is needed (use LLC for GL₂ and GL₄).
- LLC for G and J are more difficult (=interesting?) than that for GL_n .
 - \exists *L*-packet which is not a singleton.
 - \exists *L*-packet containing both sc rep. and non-sc rep.
 - \exists non-trivial theory of local *A*-packets.

 \rightsquigarrow I expect that description of $H^i_{\rm RZ}$ is more interesting than that of $H^i_{\rm LT}.$

LLC for G and J

• LLC for G is due to Gan-Takeda.

• LLC for J is due to Gan-Tantono.

For an *L*-parameter $\phi \colon W_{\mathbb{Q}_p} \times SL_2(\mathbb{C}) \to \widehat{G} = GSp_4(\mathbb{C})$, let Π_{ϕ}^G (resp. Π_{ϕ}^J) denote the *L*-packet for *G* (resp. *J*) attached to ϕ .

Assume that Π_{ϕ}^{G} contains a sc rep. $\rightarrow \exists 4$ cases:

	$\#\Pi_{\phi}^{G} = \#\Pi_{\phi}^{J}$	#sc in Π_{ϕ}^{G}	$\#$ sc in Π_{ϕ}^{J}
l (stable)	1	1	1
	2	2	2
	2	1	1
IV	2	1	0

We focus on the case III (I and II are easier): $r: \widehat{G} = \operatorname{GSp}_4(\mathbb{C}) \hookrightarrow \operatorname{GL}_4(\mathbb{C}) \rightsquigarrow r \circ \phi = (\phi_0 \boxtimes \mathbf{1}) \oplus (\chi \boxtimes \operatorname{Std})$ $(\exists \phi_0: 2\text{-dim. irr. rep. of } W_{\mathbb{Q}_p}, \exists \chi: a \text{ character of } W_{\mathbb{Q}_p})$

LLC for $G(\mathbb{Q}_p)$ and $J(\mathbb{Q}_p)$

The case III: $r \circ \phi = (\phi_0 \boxtimes \mathbf{1}) \oplus (\chi \boxtimes \mathbf{Std})$. • $\Pi_{\phi}^G = \{\pi_{sc}, \pi_{disc}\}; \pi_{sc} = \text{non-generic sc}, \pi_{disc} = \text{generic non-sc}.$ • $\Pi_{\phi}^J = \{\rho_{sc}, \rho_{disc}\}; \rho_{sc} = \text{sc}, \rho_{disc} = \text{non-sc}.$

Need technical assumption: det $\phi_0 = 1$, $\chi^2 = 1$ ($\Rightarrow \operatorname{Im} \phi \subset \operatorname{Sp}_4(\mathbb{C})$).

We also consider the following A-parameter ψ related to $\phi :$

$$W_{\mathbb{Q}_p} \times SL_2(\mathbb{C}) \times SL_2(\mathbb{C}) \xrightarrow{\psi} \widehat{G}(\mathbb{C})$$
swap SL₂ factors
$$W_{\mathbb{Q}_p} \times SL_2(\mathbb{C}) \times SL_2(\mathbb{C})$$

 $\begin{aligned} \Pi^G_\psi, \ \Pi^J_\psi: \ \text{local A-packets of G and J, respectively.} \\ \bullet \ \Pi^G_\psi &= \{\pi_{\rm sc}, \pi_{\rm nt}\}; \ \pi_{\rm nt} = \text{non-tempered.} \\ \bullet \ \Pi^J_\psi &= \{\rho_{\rm sc}', \rho_{\rm nt}\}; \ \rho_{\rm sc}' = \text{sc (expected to equal $\rho_{\rm sc}$), $\rho_{\rm nt} = \text{non-temp.} \end{aligned}$

Main Theorem

For an irred. smooth rep. ρ of $J(\mathbb{Q}_{\rho})$, put $H^{i,j}_{\mathrm{RZ}}[\rho] := \mathrm{Ext}^{j}_{J(\mathbb{Q}_{\rho})}(H^{i}_{\mathrm{RZ}},\rho)^{\mathcal{D}_{c}-\mathrm{sm}}_{\mathrm{sc}}$. Here $(-)_{\mathrm{sc}}$ is the $G(\mathbb{Q}_{\rho})$ -supercuspidal part. Split semisimple rank of $J(\mathbb{Q}_{\rho}) = 1 \implies H^{i,j}_{\mathrm{RZ}}[\rho] = 0$ if $j \neq 0, 1$.

Theorem (Ito-M.)

(i)
$$H_{\rm RZ}^{i,0}[\rho_{\rm sc}] \cong \begin{cases} \pi_{\rm sc} \boxtimes \phi_0(\frac{3}{2}) & i = 3, \\ 0 & i \neq 3, \end{cases}$$
 $H_{\rm RZ}^{i,1}[\rho_{\rm sc}] = 0.$ Similar for $\rho_{\rm sc}'$.
(ii) $H_{\rm RZ}^{i,0}[\rho_{\rm disc}] \cong \begin{cases} \pi_{\rm sc} \boxtimes \chi(1) & i = 3, \\ 0 & i \neq 3, \end{cases}$ $H_{\rm RZ}^{i,1}[\rho_{\rm disc}] \cong \begin{cases} \pi_{\rm sc} \boxtimes \chi(2) & i = 4, \\ 0 & i \neq 4. \end{cases}$
(iii) $H_{\rm RZ}^{i,0}[\rho_{\rm nt}] \cong \begin{cases} \pi_{\rm sc} \boxtimes \chi(2) & i = 4, \\ 0 & i \neq 4, \end{cases}$ $H_{\rm RZ}^{i,1}[\rho_{\rm nt}] \cong \begin{cases} \pi_{\rm sc} \boxtimes \chi(1) & i = 3, \\ 0 & i \neq 4. \end{cases}$

Recall: $r \circ \phi = (\phi_0 \boxtimes \mathbf{1}) \oplus (\chi \boxtimes \mathbf{Std}).$ $\Pi_{\phi}^{\mathcal{G}} = \{\pi_{\mathrm{sc}}, \pi_{\mathrm{disc}}\}, \ \Pi_{\phi}^{\mathcal{J}} = \{\rho_{\mathrm{sc}}, \rho_{\mathrm{disc}}\}, \ \Pi_{\psi}^{\mathcal{G}} = \{\pi_{\mathrm{sc}}, \pi_{\mathrm{nt}}\}, \ \Pi_{\psi}^{\mathcal{J}} = \{\rho_{\mathrm{sc}}', \rho_{\mathrm{nt}}\}.$

Yoichi Mieda (University of Tokyo)

10/21

Main Theorem

Theorem (the case j = 0)

(i)
$$H_{\rm RZ}^{i,0}[\rho_{\rm sc}] \cong \begin{cases} \pi_{\rm sc} \boxtimes \phi_0(\frac{3}{2}) & i = 3, \\ 0 & i \neq 3. \end{cases}$$

(ii) $H_{\rm RZ}^{i,0}[\rho_{\rm disc}] \cong \begin{cases} \pi_{\rm sc} \boxtimes \chi(1) & i = 3, \\ 0 & i \neq 3. \end{cases}$
(iii) $H_{\rm RZ}^{i,0}[\rho_{\rm nt}] \cong \begin{cases} \pi_{\rm sc} \boxtimes \chi(2) & i = 4, \\ 0 & i \neq 4. \end{cases}$

Very rough summary:

- A piece of LLC for G and J appear in $H_{\rm RZ}^3$.
- Non-tempered local A-packet for J contributes to $H_{\rm RZ}^4$.
- ∃ sc rep. appearing outside the middle degree.
 (it happens only when its *L*-parameter has non-trivial SL₂(ℂ)-part)

Remark

By working in a suitable derived category, we may also consider the derived version $H^*_{\mathrm{RZ}}[\rho] := \mathrm{Ext}^*_{J(\mathbb{Q}_p)}(R\Gamma_{\mathrm{RZ}},\rho)^{\mathcal{D}_c\text{-sm}}_{\mathrm{sc}}$ of $H^{i,j}_{\mathrm{RZ}}[\rho]$. We can recover ϕ and ψ from the $W_{\mathbb{Q}_p}$ -action and the Lefschetz operator on $H^*_{\mathrm{RZ}}[\rho_{\mathrm{disc}}]$ and $H^*_{\mathrm{RZ}}[\rho_{\mathrm{nt}}]$, respectively. (cf. Dat's work in the GL_n case)

Rough ideas of proof

- Inputs from local geometry.
- Use of global method:
 - Relation between RZ tower and Siegel threefold.
 - Suitable globalization of elements of Π^G_φ, Π^G_ψ, Π^J_φ, Π^J_ψ.
- $H_{\rm RZ}^{i,j}[
 ho_{\rm nt}]$ is easier than $H_{\rm RZ}^{i,j}[
 ho_{
 m disc}]$.

Theorem (Ito-M.)

$H_{\mathrm{RZ,sc}}^{i}=0$ if $i \neq 2, 3, 4$.

- $2 = 3 1 = \dim M_{\text{GSp}_4(\mathbb{Z}_p)} \dim \mathcal{M}_{\text{red}}$, where \mathcal{M} is the natural formal model of $M_{\text{GSp}_4(\mathbb{Z}_p)}$. (cf. the supersingular locus of the Siegel threefold is 1-dimensional.)
- Method is similar to M.'s proof of $H^i_{LT,sc} = 0$ for $i \neq n-1$, but much more complicated (mainly because connected components of \mathcal{M} are not affine).

Theorem (M.)

 $H^2_{\mathrm{RZ,sc}}$ doesn't contain $J(\mathbb{Q}_p)$ -non-sc subquotient.

• Use $H^2_{\mathrm{RZ},G(\mathbb{Q}_p)\operatorname{-sc},J(\mathbb{Q}_p)\operatorname{-non-sc}} \xrightarrow{\operatorname{Zelevinsky involution}} H^5_{\mathrm{RZ},G(\mathbb{Q}_p)\operatorname{-sc},J(\mathbb{Q}_p)\operatorname{-non-sc}}$ and the theorem above.

Inputs from local geometry

Theorem (M.)

 $\varinjlim_{K} H^{i}_{c}((M_{K}/p^{\mathbb{Z}}) \otimes_{\widehat{\mathbb{Q}}_{p}^{\mathrm{ur}}} \mathbb{C}_{p}, \overline{\mathbb{Q}}_{\ell})[\pi_{\mathrm{sc}}^{\vee}] \text{ has finite length as a representation of } J(\mathbb{Q}_{p}).$

• Use the duality isomorphism between RZ tower for G and RZ tower for J due to Kaletha-Weinstein and Chen-Fargues-Shen.

RZ tower vs Siegel threefold

- For $K' \subset G(\mathbb{A}^{\infty})$, $Sh_{K'} := Siegel threefold/\mathbb{Q}$ with level K'.
- $H^{i}_{c}(Sh) := \lim_{K'} H^{i}_{c}(Sh_{K'} \otimes_{\mathbb{Q}} \overline{\mathbb{Q}}, \overline{\mathbb{Q}}_{\ell})$: rep. of $G(\mathbb{A}^{\infty}) \times Gal(\overline{\mathbb{Q}}/\mathbb{Q})$. It is rather understood by using GLC for G.
- $\mathsf{Sh}_{\mathcal{K}',\widehat{\mathbb{Q}}_p^{\mathrm{ur}}}^{\mathrm{ss.red.}} \subset \mathsf{Sh}_{\mathcal{K}',\widehat{\mathbb{Q}}_p^{\mathrm{ur}}}$: supersingular reduction locus.
- For K^p ⊂ G(A^{∞,p}), Sh^{ss.red.}_{KK^p,Q^{ur}_p} is uniformized by M_K.
 → ∃ Hochschild-Serre spectral sequence (due to Fargues):

$$E_2^{r,s} = \mathsf{Ext}_{J(\mathbb{Q}_p)}^r(H^{6-s}_{\mathrm{RZ}}(3), \mathcal{A}(J)_1)_{\mathrm{sc}} \Rightarrow H^{r+s}(\mathsf{Sh}^{\mathrm{ss.red.}}_{\widehat{\mathbb{Q}}_p^{\mathrm{ur}}})_{\mathrm{sc}}.$$

Here $\mathcal{A}(J)_1$ is the space of automorphic forms on $J(\mathbb{A})$, trivial at ∞ . (\exists suitable globalization of J/\mathbb{Q}_p to \mathbb{Q} .)

• $H^{r+s}(\operatorname{Sh}_{\widehat{\mathbb{Q}}_{p}^{\operatorname{ur}}}^{\operatorname{ss.red.}})_{\operatorname{sc}} \cong H_{c}^{r+s}(\operatorname{Sh})_{\operatorname{sc}}.$ (Boyer's trick and Imai-M. or Lan-Stroh (stronger))

Main Theorem again

Now we are ready to prove:

Theorem

(i)
$$H_{\rm RZ}^{i,0}[\rho_{\rm sc}] \cong \begin{cases} \pi_{\rm sc} \boxtimes \phi_0(\frac{3}{2}) & i = 3, \\ 0 & i \neq 3, \end{cases}$$
 $H_{\rm RZ}^{i,1}[\rho_{\rm sc}] = 0.$ Similar for $\rho_{\rm sc}'$.
(ii) $H_{\rm RZ}^{i,0}[\rho_{\rm disc}] \cong \begin{cases} \pi_{\rm sc} \boxtimes \chi(1) & i = 3, \\ 0 & i \neq 3, \end{cases}$ $H_{\rm RZ}^{i,1}[\rho_{\rm disc}] \cong \begin{cases} \pi_{\rm sc} \boxtimes \chi(2) & i = 4, \\ 0 & i \neq 4. \end{cases}$
(iii) $H_{\rm RZ}^{i,0}[\rho_{\rm nt}] \cong \begin{cases} \pi_{\rm sc} \boxtimes \chi(2) & i = 4, \\ 0 & i \neq 4, \end{cases}$ $H_{\rm RZ}^{i,1}[\rho_{\rm nt}] \cong \begin{cases} \pi_{\rm sc} \boxtimes \chi(1) & i = 3, \\ 0 & i \neq 4. \end{cases}$

 $\begin{array}{l} \mathsf{Recall:} \ r \circ \phi = (\phi_0 \boxtimes \mathbf{1}) \oplus (\chi \boxtimes \mathsf{Std}). \\ \Pi_{\phi}^{\mathsf{G}} = \{\pi_{\mathrm{sc}}, \pi_{\mathrm{disc}}\}, \ \Pi_{\phi}^{J} = \{\rho_{\mathrm{sc}}, \rho_{\mathrm{disc}}\}, \ \Pi_{\psi}^{\mathcal{G}} = \{\pi_{\mathrm{sc}}, \pi_{\mathrm{nt}}\}, \ \Pi_{\psi}^{J} = \{\rho_{\mathrm{sc}}', \rho_{\mathrm{nt}}\}. \end{array}$

Determination of $H_{\mathrm{RZ}}^{i,j}[ho_{\mathrm{nt}}]$

By using Gan's result ("The Saito-Kurokawa space"), choose

- Π : cuspidal automorphic representation of $G(\mathbb{A})$
- Σ : cuspidal automorphic representation of $J(\mathbb{A})$

such that

- $\Pi_p \cong \pi_{\rm sc}$, Π^{∞} contributes to $H^2_c({\operatorname{Sh}})$ and $H^4_c({\operatorname{Sh}})$.
- if Π' is an autom. rep. of $G(\mathbb{A})$ such that $\Pi'_{\nu} \cong \Pi_{\nu} \ (\forall \nu \neq p, \infty)$ and Π'_{p} is sc, then $\Pi = \Pi'$ (a kind of strong multiplicity one).

•
$$\Sigma_{p} \cong \rho_{\mathrm{nt}}, \ \Sigma_{\infty} \cong \mathbf{1}.$$

• if Σ' is an autom. rep. of $J(\mathbb{A})$ such that $\Sigma'_{\nu} \cong \Sigma_{\nu} \ (\forall \nu \neq p)$, then $\Sigma = \Sigma'$ (a kind of strong multiplicity one).

•
$$\Pi^{\infty,p} = \Sigma^{\infty,p}$$
 (note: $G(\mathbb{A}^{\infty,p}) = J(\mathbb{A}^{\infty,p})$).

Take $\Pi^{\infty,p}$ -isotypic part of the spectral sequence

$$E_2^{r,s} = \operatorname{Ext}_{J(\mathbb{Q}_p)}^r(H^{6-s}_{\operatorname{RZ}}(3), \mathcal{A}(J)_1)_{\operatorname{sc}} \Rightarrow H^{r+s}_c(\operatorname{Sh})_{\operatorname{sc}}.$$

Determination of $H_{\mathrm{RZ}}^{i,j}[ho_{\mathrm{nt}}]$

By taking $\Pi^{\infty,p}$ -isotypic part of the spectral sequence

$$E_2^{r,s} = \mathsf{Ext}_{J(\mathbb{Q}_p)}^r(H^{6-s}_{\mathrm{RZ}}(3), \mathcal{A}(J)_1)_{\mathrm{sc}} \Rightarrow H_c^{r+s}(\mathsf{Sh})_{\mathrm{sc}},$$

we get a short exact sequence

$$0 \to H^{i+1,1}_{\mathrm{RZ}}[\rho_{\mathrm{nt}}] \to \pi_{\mathrm{sc}} \boxtimes H^{6-i}_c(\mathsf{Sh})[\Pi^\infty](3) \to H^{i,0}_{\mathrm{RZ}}[\rho_{\mathrm{nt}}] \to 0.$$

By assumption, $H_c^{6-i}(Sh)[\Pi^{\infty}](3) \neq 0$ only if i = 2, 4.

On the other hand, by input from local geometry, $H_{\rm RZ}^{5,1}[\rho_{\rm nt}] = H_{\rm RZ}^{2,0}[\rho_{\rm nt}] = 0$. Hence

 $H^{4,0}_{\mathrm{RZ}}[\rho_{\mathrm{nt}}]\cong\pi_{\mathrm{sc}}\boxtimes H^2_c(\mathsf{Sh})[\Pi^\infty](3),\ H^{3,1}_{\mathrm{RZ}}[\rho_{\mathrm{nt}}]\cong\pi_{\mathrm{sc}}\boxtimes H^4_c(\mathsf{Sh})[\Pi^\infty](3).$

Determination of $H_{\rm RZ}^{i,j}[\rho_{\rm disc}]$

Choose Π and Σ similarly, but Π^{∞} contributes to $H_c^3(Sh)$. Then get a short exact sequence

$$0 \to H^{4,1}_{\mathrm{RZ}}[\rho_{\mathrm{disc}}] \to \pi_{\mathrm{sc}} \boxtimes H^3_c(\mathsf{Sh})[\Pi^\infty](3) \to H^{3,0}_{\mathrm{RZ}}[\rho_{\mathrm{disc}}] \to 0.$$

Since $H_c^3(Sh)[\Pi^{\infty}](3)$ is 2-dim. indecomposable as a $W_{\mathbb{Q}_p}$ -rep., it suffices to determine dim $H_{\mathrm{RZ}}^{i,j}[\rho_{\mathrm{disc}}][\pi_{\mathrm{sc}}]$. This is done by

- $[\rho_{nt}] + [\rho_{disc}] = [induced]$ in the Grothendieck group.
- $\sum_{i=0}^{\infty} (-1)^i \dim \operatorname{Ext}_{J(\mathbb{Q}_p)/p^{\mathbb{Z}}}^i(V, \operatorname{induced}) = 0$ for V of finite length (Schneider-Stuhler), and the finiteness result explained before:

Theorem

 $\varinjlim_{K} H^{i}_{c}((M_{K}/p^{\mathbb{Z}}) \otimes_{\widehat{\mathbb{Q}}_{p}^{\mathrm{ur}}} \mathbb{C}_{p}, \overline{\mathbb{Q}}_{\ell})[\pi_{\mathrm{sc}}^{\vee}] \text{ has finite length as a representation of } J(\mathbb{Q}_{p}).$

Determination of $\mathcal{H}_{\mathrm{RZ}}^{i,j}[\rho_{\mathrm{sc}}]$ and $\mathcal{H}_{\mathrm{RZ}}^{i,j}[\rho_{\mathrm{sc}}]$

It is the simplest case because $H_{\mathrm{RZ}}^{i,1}[\rho_{\mathrm{sc}}] = H_{\mathrm{RZ}}^{i,1}[\rho_{\mathrm{sc}}'] = 0.$