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Abstract. In this paper, we give a notion of the potentially
good reduction locus of a Shimura variety. It consists of the
points which should be related with motives having potentially
good reductions in some sense. We show the existence of such
locus for a Shimura variety of preabelian type. Further, we
construct a partition of the adic space associated to a Shimura
variety of preabelian type, which is expected to describe degen-
erations of motives. Using this partition, we prove that the co-
homology of the potentially good reduction locus is isomorphic
to the cohomology of a Shimura variety up to non-supercuspidal
parts.

1 Introduction

Let (G,X) be a Shimura datum, and ShK(G,X) the Shimura variety attached to
(G,X) and a compact open subgroup K of G(A∞). It is known to be defined over
a number field E, called the reflex field, which is canonically determined by (G,X).
We fix a prime number p and a place v of E above p, and write Ev for the completion
of E at v. The main theme of this article is the “potentially good reduction locus”
of ShK(G,X)Ev = ShK(G,X)⊗E Ev.

To explain what this locus is, let us first assume that (G,X) is of PEL type, in
which case ShK(G,X) parametrizes abelian varieties with additional PEL structures.
We denote by A the universal abelian scheme over ShK(G,X). If moreover the PEL
datum is unramified at p and K = Kp,0K

p where Kp,0 is hyperspecial, by extending
the moduli problem to OEv , we can obtain a good integral model SKp of ShK(G,X)
over OEv (see [Kot92b]). This model is quite important in the study of the `-
adic cohomology of Shimura varieties; see [Kot92a] for instance. Let us denote by
S ∧
Kp the formal completion of SKp along its special fiber, and by S ∧rig

Kp the rigid
generic fiber of it. Then, S ∧rig

Kp is naturally identified with a quasi-compact rigid-
analytic open subset of ShK(G,X)Ev . For a finite extension F of Ev, an F -valued
point x of ShK(G,X)Ev lies in S ∧rig

Kp if and only if the abelian variety Ax over F
has (potentially) good reduction. In this sense, S ∧rig

Kp can be considered as the
locus over which A has (potentially) good reduction. By this reason, we will write
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ShK(G,X)pg
Ev

= S ∧rig
Kp , and call it the potentially good reduction locus. We also

have a rigid-analytic open subspace ShK(G,X)pg
Ev

of ShK(G,X)Ev for a compact
open subgroup K whose p-part is smaller than Kp,0, by taking the inverse image.
The `-adic cohomology of ShK(G,X)pg

Ev
can be computed by using the cohomology of

the nearby cycle complex, provided that ShK(G,X)Ev has a suitable integral model
over OEv .

In this paper, we will introduce the notion of the potentially good reduction
locus for a general Shimura variety. The rough idea is as follows. Let us fix a prime
number `. In the PEL type case, let L be the `-adic automorphic étale sheaf on
ShK(G,X) attached to the standard representation of G. Then, for a finite extension
F of Ev and an F -valued point x of ShK(G,X), the stalk Lx can be identified with
the rational `-adic Tate module V`Ax. By the Neron-Ogg-Shafarevich criterion, we
conclude that Ax has potentially good reduction if and only if Lx is potentially
unramified (resp. potentially crystalline) when ` 6= p (resp. ` = p). This observation
urges us to define in the general case that an F -valued point x of ShK(G,X)Ev is
of potentially good reduction if Lx is potentially unramified/crystalline for every
automorphic étale sheaf L. Actually in the paper, we look at the torsor over x
obtained as the pull-back of lim←−K′⊂K ShK′(G,X)Ev → ShK(G,X)Ev , which is more
concise but essentially equivalent to the above way by the Tannakian duality. Our
potentially good reduction locus is defined as a quasi-compact open subset of the
adic space ShK(G,X)ad

Ev
attached to ShK(G,X)Ev , whose F -valued points consist

of those of potentially good reduction for every F . It is unique, if exists. We will
show the existence of the potentially good reduction locus ShK(G,X)pg

Ev
when the

Shimura datum (G,X) is of preabelian type. Recall that (G,X) is said to be of
preabelian type if there exists a Shimura datum (G′, X ′) of Hodge type such that
(Gad, Xad) ∼= (G′ad, X ′ad). This class contains almost all Shimura data in practice.
As in [Del79, Introduction] and [Mil05, §9], a Shimura variety is believed to have a
moduli interpretation by motives, if the weight homomorphism for (G,X) is defined
over the rational number field. The subset ShK(G,X)pg

Ev
is expected to parametrize

motives with potentially good reduction at v.

We are also interested in what happens outside the locus ShK(G,X)pg
Ev

. In
the PEL type case, degenerations of abelian varieties occur; if a Shimura variety
parametrizes motives, then degenerations of motives should occur. Based on this
observation, we will construct a partition of ShK(G,X)ad

Ev
into finitely many locally

closed constructible subsets labeled by conjugacy classes of certain kind of adelic
parabolic subgroups of G, so that the piece corresponding to G equals ShK(G,X)pg

Ev
.

It is closely related to the theory of integral toroidal compactifications. Actually,
in the PEL type case, we may also use the integral toroidal compactification devel-
oped in [Lan13] to construct our partition (see [IM13, §7]); there should be some
more cases to which the method in [IM13, §7] can be applied (for example, [MP12]).
However, our argument here is almost totally rigid-geometric, and requires only the
existence of the integral toroidal compactifications of the Siegel modular varieties
with hyperspecial level at p ([FC90]) as an input from the integral theory. Note also
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that our partition is independent of any choice, unlike the toroidal compactification
that depends on the choice of a cone decomposition.

By using the partition above, we can compare the `-adic cohomology of the
tower {ShK(G,X)pg

Ev
}K and that of {ShK(G,X)}K . We assume that (G, V ) is of

preabelian type and satisfies the condition SV6 in [Mil05, p. 311]. Let ` be a prime
number different from p, and L an `-adic automorphic étale sheaf on ShK(G,X)
corresponding to an algebraic representation of Gc over Q`, where Gc is the quotient
of G defined in [Mil90, p. 347]. The statement is as follows:

Theorem 1.1 (Theorem 6.1) In the kernel and the cokernel of the natural map

lim−→
K

H i
c(ShK(G,X)pg

Ev
,L)→ lim−→

K

H i
c(ShK(G,X)Ev ,L),

no irreducible supercuspidal representation of G(Qp′) appears as a subquotient for
any prime number p′.

Recall that an irreducible smooth representation of G(Qp′) is said to be super-
cuspidal if it does not appear as a subquotient of the parabolically induced rep-
resentations from any proper parabolic subgroup. Loosely speaking, this theo-
rem is a consequence of the observation that the partition of the complement
ShK(G,X)ad

Ev
\ ShK(G,X)pg

Ev
is “geometrically induced” from proper parabolic sub-

groups of G(Qp′). It will be worth noting that our method is totally geometric, so
that it is also valid in the torsion coefficient case. See Theorem 6.12 for an analogue
of Theorem 1.1 with the F`-coefficients.

We have already mentioned that in the PEL type case the `-adic cohomology
H i
c(ShK(G,X)pg

Ev
,L) can be computed as the cohomology of a nearby cycle complex.

Hence, in this case the theorem above says that the nearby cycle cohomology is iso-
morphic to the compactly supported cohomology up to non-supercuspidal represen-
tations. This result is useful, since it connects the cohomology of Shimura varieties
and that of Rapoport-Zink spaces; see Section 7.3 for a simple example in this di-
rection. Recently, during the preparation of this article, Lan and Stroh obtained
a stronger result that the nearby cycle cohomology is isomorphic to the compactly
supported cohomology in the cases where reasonable integral toroidal compactifica-
tions exist (see [LS15]). However, we have decided to include our weaker result in
this paper, since the argument is totally different.

We sketch the outline of this paper. In Section 2, we consider Galois representa-
tions of a p-adic field with values in a general connected reductive group G. Under
some condition, we attach a parabolic subgroup of G to such a representation. In
Section 3, we give some preliminary results on adic spaces and semi-abelian schemes.
In Section 4, we recall some notation and results on Shimura varieties. In Section
5, we construct a partition of the adic space associated to a Shimura variety of
preabelian type by using results obtained in Section 2. The potentially good reduc-
tion locus is introduced here, as a piece of the constructed partition. In Section 6,
we prove the theorem comparing the cohomology of potentially good reduction loci
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with that of Shimura varieties. In Section 7, we specialize our results to Shimura
varieties of PEL type, and discuss a simple application.

Acknowledgment The authors are grateful to Kai-Wen Lan, who kindly informed
them the result in [LS15]. This work was supported by JSPS KAKENHI Grant
Numbers 24740019, 26610003, 15H03605.

Notation Put Ẑ =
∏

prime p Zp and A∞ = Ẑ ⊗Z Q. For a prime p, put Ẑp =∏
prime p′ 6= p Zp′ and A∞,p = Ẑp⊗ZQ. More generally, for a finite set of primes S, we

put AS =
∏

`∈S Q`, ẐS =
∏

prime p /∈ S Zp and A∞,S = ẐS ⊗Z Q.
For a scheme X over a field F and an extension field L of F , we write XL for

the base change of X to L. Similar notation will be used for adic spaces.
For an algebraic group G, let Z(G) denote the center of G, and Gad = G/Z(G)

the adjoint group of G. For a field L over which G is defined, we write RepL(G) for
the Tannakian category of finite-dimensional algebraic representations of G over L.

Every sheaf and cohomology are considered in the étale topology.

2 Preliminaries on Galois representations

In this section, fix a p-adic field F and its algebraic closure F . Let ` be a prime
number and G a connected reductive group over Q`. Consider a continuous homo-
morphism φ : Gal(F/F )→ G(Q`).

Definition 2.1 (i) Assume that ` 6= p. We say that φ is potentially unramified if
ξ ◦ φ is potentially unramified for any ξ ∈ RepQ`(G).

(ii) Assume that ` = p. We say that φ is potentially crystalline if ξ ◦φ is potentially
crystalline for any ξ ∈ RepQp(G).

(iii) Assume that ` = p. We say that φ is de Rham if ξ◦φ is de Rham (or equivalently,
potentially semistable) for any ξ ∈ RepQp(G).

To measure how far φ is from potentially unramified or potentially crystalline, we
consider the monodromy filtration on ξ ◦φ for each ξ ∈ RepQ`(G). First, we assume
that ` 6= p. Then, for each (ξ, Vξ) ∈ RepQ`(G), we obtain the `-adic representation

(ξ ◦ φ, Vξ) of Gal(F/F ) and its monodromy filtration M•Vξ.

Lemma 2.2 Assume that ` 6= p.

(i) The stabilizer Pξ of the filtration M•Vξ ⊂ Vξ is a parabolic subgroup of G.

(ii) If ξ ∈ RepQ`(G) is faithful, then Pξ stabilizes M•Vξ′ for every ξ′ ∈ RepQ`(G).
In particular Pξ for faithful ξ is independent of ξ. We write Pφ for this Pξ.

(iii) The homomorphism φ is potentially unramified if and only if Pφ = G.

(iv) For the composite φad : Gal(F/F )
φ−→ G(Q`) → Gad(Q`), we have Pφad = P ad

φ ,

where P ad
φ denotes the image of Pφ in Gad.
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(v) For a finite extension F ′ of F contained in F , we put φ′ = φ|Gal(F/F ′). Then we
have Pφ′ = Pφ.

Proof. The assertion (i) follows from [Kis10, Lemma 1.1.1, Lemma 1.1.3], since
Vξ 7→M•Vξ gives a filtration on the Tannakian category RepQ`(G).

Let us prove (ii). For integers m,m′ ≥ 0, the monodromy filtration on V ⊗mξ ⊗
V ∨⊗m

′

ξ can be written by using M•Vξ (see [Del80, Proposition 1.6.9]). Therefore it is
stable under Pξ. As every representation (ξ′, Vξ′) of G appears as a direct summand
of V ⊗mξ ⊗ V ∨⊗m′ξ for some integers m,m′ ≥ 0, the filtration M•Vξ′ is also preserved
by Pξ. This concludes the proof.

For (iii), note that φ is potentially unramified if and only if the monodromy
operator N on Vξ is zero for every ξ ∈ RepQ`(G). If this condition is satisfied, we
have MiVξ = 0 for i < 0 and MiVξ = Vξ for i ≥ 0, thus Pφ = G. Conversely assume
that Pφ = G, in other words, MiVξ is G-stable for every ξ and i. It suffices to show
that N = 0 on Vξ for each irreducible representation ξ of G. Since MiVξ is G-stable,
there exists a unique integer i0 such that MiVξ = 0 (i < i0) and MiVξ = Vξ (i ≥ i0).
Hence we have N(Vξ) = N(Mi0Vξ) ⊂Mi0−2Vξ = 0, as desired.

We prove (iv). Clearly we have P ad
φ ⊂ Pφad . For the reverse inclusion, take

g ∈ G(Q`) which is mapped into Pφad(Q`) under G(Q`) → Gad(Q`). It suffices
to show that g stabilizes M•Vξ for each irreducible representation (ξ, Vξ) of G. Put
W = Vξ⊗V ∨ξ . Since ξ is irreducible, the center of G acts trivially on W . Therefore W

can be regarded as a representation of Gad. In particular, the monodromy filtration
M•W on W is stable under the action of g.

Let j0 be the minimal integer such that Mj0V
∨
ξ = V ∨ξ . Fix an integer i0. Then

we have Mi0+j0W =
∑

i+j=i0+j0
MiVξ ⊗MjV

∨
ξ . Note that Mi0Vξ can be recovered

from Mi0+j0W by

Mi0Vξ =
⋂

f∈HomQ`
(V ∨ξ ,Q`)\{0}

(id⊗f)(Mi0+j0W ). (∗)

Since Mi0+j0W = g(Mi0+j0W ) =
∑

i+j=i0+j0
g(MiVξ)⊗g(MjV

∨
ξ ), the right hand side

of (∗) is also equal to g(Mi0Vξ). Hence we conclude that M•Vξ is stable under g.
The claim (v) is clear, since the monodromy filtration M•Vξ does not change

after restricting φ to Gal(F/F ′).

Next we consider the case ` = p. We shall introduce the notion of the mon-
odromy filtration on a p-adic Galois representation. Let L be a finite extension of
Qp and V a finite-dimensional de Rham L-representation of Gal(F/F ). We regard V
as a Qp-representation of Gal(F/F ) and consider Dpst(V ), where Dpst is the functor
introduced in [Fon94, §5.6]. If we write Qur

p for the maximal unramified extension

of Qp contained in F , Dpst(V ) is an L⊗Qp Qur
p -module equipped with several struc-

tures. Among them, we have the monodromy operator on Dpst(V ), from which the
monodromy filtration M•Dpst(V ) on Dpst(V ) is naturally induced.
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Definition 2.3 Let V be a de Rham L-representation of Gal(F/F ). We say that
V has the monodromy filtration if there exists a Gal(F/F )-stable Qp-subspace MiV
of V such that Dpst(MiV ) = MiDpst(V ) for each i. Such a subspace MiV is unique
and stable under the action of L if it exists, thanks to the fact that Dpst is fully
faithful.

Now, let V be a finite-dimensional de Rham Qp-representation of Gal(F/F ). We

can find a subfield L of Qp which is finite over Qp and a Gal(F/F )-stable L-subspace

VL of V such that VL ⊗L Qp = V . The L-representation VL is de Rham.

Definition 2.4 The condition that VL has the monodromy filtration is independent
of the choice of L and VL. If it is the case, we say that V has the monodromy
filtration, and put MiV = MiVL ⊗L Qp, which is easily seen to be independent of L
and VL. We call M•V the monodromy filtration of V .

Lemma 2.5 Let V , W be finite-dimensional Qp-representations of Gal(F/F ) which
are de Rham and have the monodromy filtrations.

(i) Let V ′ be a direct summand of V as a Gal(F/F )-representation. Then V ′ is de
Rham and has the monodromy filtration.

(ii) The representations V ⊗ W and V ∨ are de Rham and have the monodromy
filtrations. The monodromy filtration M•(V ⊗W ) (resp. M•(V

∨)) is given by
Mn(V ⊗W ) =

∑
i+j=nMiV ⊗MjW (resp. Mn(V ∨) = (V/M−n−1V )∨).

Proof. Let L be a finite extension of Qp. We have only to consider L-representations
in place of Qp-representations. In the following, let V , W be finite-dimensional L-

representations of Gal(F/F ) which are de Rham and have the monodromy filtra-
tions.

We prove (i). We write V = V ′ ⊕ V ′′. Then we have Dpst(V ) = Dpst(V
′) ⊕

Dpst(V
′′) and MiDpst(V ) = MiDpst(V

′)⊕MiDpst(V
′′). Since the essential image of

the functor Dpst is stable under direct factors (see [Fon94, Théorème 5.6.7]), there
exists a Gal(F/F )-stable subspace MiV

′ of V ′ such that Dpst(MiV
′) = MiDpst(V

′).
Hence V ′ has the monodromy filtration.

Next consider (ii). It is known that V ⊗Qp W is a de Rham representation, and
Dpst(V ⊗Qp W ) = Dpst(V )⊗Qur

p
Dpst(W ). The monodromy filtration on Dpst(V ⊗Qp

W ) is given by

MnDpst(V ⊗Qp W ) =
∑
i+j=n

MiDpst(V )⊗Qur
p
MjDpst(W ).

Therefore, if we put Mn(V ⊗QpW ) =
∑

i+j=nMiV ⊗QpMjW , we have Dpst(Mn(V ⊗Qp
W )) = MnDpst(V ⊗Qp W ) by the exactness of Dpst. Hence V ⊗Qp W has the
monodromy filtration.

Let e ∈ L⊗QpL denote the idempotent corresponding to the diagonal component
SpecL ↪→ Spec(L ⊗Qp L). Then, we have e(V ⊗Qp W ) = V ⊗L W . In particular
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V ⊗LW is a direct summand of V ⊗Qp W . Therefore, by (i), V ⊗LW is de Rham
and has the monodromy filtration. Clearly, the monodromy filtration on V ⊗LW =
e(V ⊗Qp W ) is given by

Mn(V ⊗LW ) = eMn(V ⊗Qp W ) =
∑
i+j=n

e(MiV ⊗Qp MjW ) =
∑
i+j=n

MiV ⊗LMjW.

The dual V ∨ can be treated similarly.

Lemma 2.6 Let V be a finite-dimensional Qp-representation of Gal(F/F ). For a

finite extension F ′ of F contained in F , we put V ′ = V |Gal(F/F ′). Then, V is de
Rham and has the monodromy filtration if and only if so is V ′. Moreover we have
M•V

′ = (M•V )|Gal(F/F ′).

Proof. As in the proof of Lemma 2.5, we may replace V by an L-representation of
Gal(F/F ), where L is a finite extension of Qp. By definition, V is de Rham if and
only if V ′ is de Rham. Suppose that V and V ′ are de Rham. We have Dpst(V

′) =
Dpst(V )|Gal(F/F ′). Therefore, if V has the monodromy filtration M•V , then V ′ has
the monodromy filtration (M•V )|Gal(F/F ′). Conversely, assume that V ′ has the mon-
odromy filtration M•V

′. Since Dpst(MiV
′) = MiDpst(V

′) = MiDpst(V ) ⊂ Dpst(V )
is stable under Gal(F/F ), so is MiV

′ ⊂ V ′ = V . Therefore, M•V
′ gives the mon-

odromy filtration of V . This concludes the proof.

Now, let φ : Gal(F/F ) → G(Qp) be a continuous homomorphism, as in the
beginning of this section.

Definition 2.7 Assume that φ is de Rham. We say that φ has the monodromy
filtration if Vξ has the monodromy filtration for every ξ ∈ RepQp(G).

Lemma 2.8 Assume that there exists a faithful algebraic representation (ξ, Vξ) of
G such that Vξ is de Rham and has the monodromy filtration. Then φ is de Rham
and has the monodromy filtration.

Proof. Thanks to Lemma 2.5, we can use the same argument as in the proof of
Lemma 2.2 (ii).

Lemma 2.9 Assume that φ is de Rham and has the monodromy filtration.

(i) The stabilizer Pξ of the filtration M•Vξ ⊂ Vξ is a parabolic subgroup of G.

(ii) If ξ is faithful, then Pξ stabilizes M•Vξ′ for every representation ξ′. In particular
Pξ for faithful ξ is independent of ξ. We write Pφ for this Pξ.

(iii) The homomorphism φ is potentially crystalline if and only if Pφ = G.

(iv) The composite φad : Gal(F/F )
φ−→ G(Qp) → Gad(Qp) is de Rham and has the

monodromy filtration. Moreover we have Pφad = P ad
φ .
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Proof. This can be proved in the same way as Lemma 2.2.

Lemma 2.10 For a finite extension F ′ of F contained in F , φ′ = φ|Gal(F/F ′) is de
Rham and has the monodromy filtration if and only if so is φ. Moreover, if the
above conditions are satisfied, we have Pφ′ = Pφ.

Proof. This is an immediate consequence of Lemma 2.6.

Corollary 2.11 Let ` be a prime number.

(i) Assume that ` 6= p. Then φ is potentially unramified if and only if φad is
potentially unramified.

(ii) Assume that ` = p, φ is de Rham and has the monodromy filtration. Then φ
is potentially crystalline if and only if φad is potentially crystalline.

Proof. The first assertion follows from Lemma 2.2 (iii), (iv), and the second from
Lemma 2.9 (iii), (iv).

Remark 2.12 In fact, Corollary 2.11 (ii) holds without assuming that φ has the
monodromy filtration (we have only to consider the monodromy filtration on the
image of Dpst). However we do not need this fact later.

Remark 2.13 Let ` be a prime number, and assume that φ is de Rham and has
the monodromy filtration if ` = p. If G is defined over Q` and the image of φ is
contained in G(Q`), the parabolic subgroup Pφ is defined over Q`. Indeed, we can
take a faithful representation ξ which is defined over Q`, and then the monodromy
filtration M•Vξ is also defined over Q`.

3 Rigid geometry and semi-abelian schemes

3.1 Notation for adic spaces

Throughout this paper, we will use the framework of adic spaces introduced by
Huber (cf. [Hub93], [Hub94], [Hub96]). Here we recall some notation briefly.

Let S be a noetherian scheme and S0 a closed subscheme of S. We denote the
formal completion of S along S0 by S. Put Srig = t(S)a, where t(S) is the adic
space associated to S (cf. [Hub94, §4]) and t(S)a denotes the open adic subspace of
t(S) consisting of analytic points. It is a quasi-compact analytic adic space.

Let X be a scheme of finite type over S. Put X0 = X ×S S0 and denote the
formal completion of X along X0 by X̂. Then we can construct an adic space
X̂rig in the same way as Srig. The induced morphism X̂rig → Srig is of finite type.
On the other hand, we can construct another adic space X ×S Srig. Indeed, since
we have morphisms of locally ringed spaces (Srig,OSrig) → (t(S),Ot(S)) → (S,OS)
(for the second one, see [Hub94, Remark 4.6 (iv)]), we can make the fiber product
X ×S Srig in the sense of [Hub94, Proposition 3.8]. For simplicity, we write Xad
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for X ×S Srig, though it depends on (S, S0). Since the morphism Srig → S factors
through S0 = S \ S0, we have X ×S Srig = (X ×S S0) ×S0 Srig. In particular, Xad

depends only on X ×S S0. The natural morphism Xad → Srig is locally of finite
type, but not necessarily quasi-compact; see the following example.

Example 3.1 Let R be a complete discrete valuation ring and F its fraction field.
Consider the case where S = SpecR and S0 is the closed point of S. Then, for an
S-scheme X of finite type, Xad can be regarded as the rigid space over F associated
to a scheme X×S SpecF over F . For example, (A1

S)ad = (A1
F )ad is the rigid-analytic

affine line over F and thus is not quasi-compact. On the other hand, (Â1
S)rig is the

unit disc “|z| ≤ 1” in (A1
F )ad, which is quasi-compact.

Lemma 3.2 The functors X 7→ X̂rig and X 7→ Xad commute with fiber products.

Proof. For the functor X 7→ X̂rig, it can be checked easily (cf. [Mie06, Lemma
3.4] and [Mie14, Proof of Lemma 4.4 (v)]). Consider the functor X 7→ Xad. Let
Y → X ← Z be a diagram of S-schemes of finite type. What we should prove is

(Y ×X Z)×S Srig ∼= (Y ×S Srig)×X×SSrig (Z ×S Srig).

It is not totally automatic, since Y ×X Z is not a fiber product in the category of
locally ringed spaces. It follows from the fact that morphisms of locally ringed spaces
Spa(A,A+)→ SpecB for a complete affinoid ring (A,A+) and a ring B correspond
bijectively to ring homomorphisms B → A (this fact is used implicitly in [Hub94,
Remark 4.6 (iv)] to define t(S)→ S).

Let us compare X̂rig and Xad; by the commutative diagram

X̂rig //

��

X

��

Srig // S

and the universality of the fiber product X ×S Srig, we have a natural morphism
X̂rig → Xad.

Lemma 3.3 (i) If X is separated over S, X̂rig → Xad is an open immersion.

(ii) If X is proper over S, X̂rig → Xad is an isomorphism.

Proof. See [Hub94, Remark 4.6 (iv)].

Remark 3.4 Let f : S ′ → S be a morphism of finite type and S ′0 = S ′ ×S S0.
We denote by S ′rig the formal completion of S ′ along S ′0. Then, all constructions
above are compatible with the base change by f . More precisely, for a scheme X
of finite type over S, we have (X ×S S ′)∧rig ∼= X̂rig ×Srig S ′rig and (X ×S S ′)S

′-ad ∼=
Xad×Srig S ′rig. Here (−)S

′-ad denotes the functor (−)ad for the base (S ′, S ′0), namely,
(−)S

′-ad = (−)×S′ S ′rig.
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In the remaining part of this subsection, assume that S is the spectrum of a
complete discrete valuation ring R and S0 is the closed point of S. For a scheme
of finite type X over S, we have a natural morphism of locally and topologically
ringed spaces (t(X̂),O+

t(X̂)
) → (X̂,OX̂) (cf. [Hub94, Proposition 4.1]). Note that

the underlying continuous map t(X̂) → X0 is different from the map t(X̂) → X

considered above. We denote the composite X̂rig ↪→ t(X̂) → X0 by spX̂ , or simply
by sp.

Let Y be a closed subscheme of X0 and X the formal completion of X along Y .
Then we can consider the generic fiber t(X )η = S0 ×S t(X ) of the adic space t(X ).
This is so-called the rigid generic fiber of X due to Raynaud and Berthelot, in the
context of adic spaces. If Y = X0, then t(X )η = X̂rig.

Lemma 3.5 The natural morphism t(X )η → X̂rig induced from X → X̂ is an open
immersion. Its image coincides with sp−1(Y )◦, where (−)◦ denotes the interior in

X̂rig.

Proof. See [Hub98b, Lemma 3.13 i)].

Let X be an adic space locally of finite type over Srig = Spa(F,R), where F
denotes the fraction field of R. For a point x of X, we write κx and κ+

x for the
residue field and the valuation ring at x, respectively. We say that x ∈ X is classical
if κx is a finite extension of F . We denote the set of classical points of X by X(cl).
Further, for a subset Y of X, we put Y (cl) = X(cl) ∩ Y .

Lemma 3.6 Let X be an adic space locally of finite type over Spa(F,R).

(i) For constructible subsets L1, L2 of X (see [Hub96, 1.1.13]), we have L1 ⊂ L2 if
and only if L1(cl) ⊂ L2(cl). In particular, L1 = L2 if and only if L1(cl) = L2(cl).

(ii) For a constructible subset L, we write L− (resp. L◦) for the closure (resp.
interior) of L in X. Then we have L(cl) = L−(cl) = L◦(cl).

Proof. For (i), it suffices to show that L1(cl) ⊂ L2(cl) implies L1 ⊂ L2. Put L =
L1 \ L2 = L1 ∩ (X \ L2). It is a constructible subset of X satisfying L(cl) = ∅.
Let U be an arbitrary affinoid open subset of X . Then, we have (U ∩ L)(cl) = ∅.
Therefore, [Hub93, Corollary 4.3] tells us that U ∩ L = ∅. Now we conclude that
L = ∅, that is, L1 ⊂ L2.

For (ii), it suffices to prove that L(cl) = L−(cl). Take x ∈ L− \L and an affinoid
open neighborhood U of x. Then x lies in the closure of U ∩ L in U . Since U ∩ L
is a constructible subset of the spectral space U , by [Hoc69, Corollary of Theorem
1], there exists y ∈ U ∩L such that x ∈ {y}−. Therefore, by [Hub96, Lemma 1.1.10
ii)], the valuation vx attached to x is not rank 1. In particular x is not classical.
Hence we have L(cl) = L−(cl), as desired.

The following basic lemma is also used in Section 5.
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Lemma 3.7 Let f : X → Y be a quasi-compact quasi-separated étale morphism
between adic spaces.

(i) For a constructible subset L of X, the image f(L) is a constructible subset of
Y .

(ii) For a locally closed subset L of X satisfying f−1(f(L)) = L, the image f(L) is
a locally closed subset of Y .

Proof. The assertion (i) can be proved in the same way as [Hub96, (1) in the proof
of Lemma 2.7.4]. We recall the argument for reader’s convenience. We may assume
that X and Y are quasi-compact and quasi-separated. Fix y ∈ f(L). Let Λ denote
the set of constructible subsets of Y containing y. We have

⋂
W∈ΛW = {y}, as

Y is a spectral space. Since f−1(y) is a finite discrete subset of X, there exists a
quasi-compact open subset U of X such that U ∩ f−1(y) = L ∩ f−1(y). Then we
have U ∩

⋂
W∈Λ f

−1(W ) = L∩
⋂
W∈Λ f

−1(W ). By the quasi-compactness of X with
respect to the constructible topology, there exists W ∈ Λ such that U ∩ f−1(W ) =
L ∩ f−1(W ). Put Vy = U ∩ f−1(W ) = L ∩ f−1(W ), which is a constructible
subset of X. Since f is étale, f(U) is a quasi-compact open subset of Y . Therefore
f(Vy) = f(U) ∩W is a constructible subset of Y .

Since L ∩ f−1(y) ⊂ Vy ⊂ L, we have L =
⋃
y∈f(L) Vy. On the other hand, L is

quasi-compact under the constructible topology of X. Therefore, there exist finitely
many points y1, . . . , ym ∈ f(L) such that L =

⋃m
i=1 Vyi . Now we conclude that

f(L) =
⋃m
i=1 f(Vyi) is a constructible subset of Y , as desired.

Next we consider (ii). Since L is locally closed, it can be written in the form
U ∩W , where U is an open subset of X and W is a closed subset of X. Note that
L− ⊂ W , thus U ∩ L− = L. For simplicity we write L′ = f(L). Since f is an open
map, we can check that f−1(L′)− = f−1(L′−). Therefore we obtain

L = U ∩ L− = U ∩ f−1(L′)− = U ∩ f−1(L′−)

and f(L) = f(U) ∩ L′−. As f is étale, f(U) is open, hence f(L) is locally closed.

3.2 Etale sheaves associated to semi-abelian schemes

We continue to use the notation introduced in the beginning of the previous subsec-
tion. Let U be an open subscheme of S0 = S \ S0 and ` a prime number invertible
on U . Fix an integer m > 0.

Let G be a semi-abelian scheme over S. Namely, G is a separated smooth
commutative group scheme over S such that each fiber Gs of G at s ∈ S is an
extension of an abelian variety As by a torus Ts. We denote the relative dimension
of G over S by d. Assume the following:

– The rank of Ts (called the toric rank of Gs) with s ∈ S0 is a constant r.

– GU = G×S U is an abelian scheme.

11
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Under the first condition, it is known that G0 = G×S S0 is globally an extension

0→ T0 → G0 → A0 → 0,

where T0 is a torus of rank r over S0 and A0 is an abelian scheme over S0 ([FC90,
Chapter I, Corollary 2.11]).

Let us consider two group spaces Ĝrig[`m]Uad and Gad[`m]Uad over Uad, where
(−)Uad denotes the restriction to Uad.

Lemma 3.8 The adic space Gad[`m]Uad is finite étale of degree `2dm over Uad.

Proof. By Lemma 3.2, we have Gad[`m]Uad = (GU [`m])×U Uad. Since GU [`m] is finite
étale of degree `2dm over U , Gad[`m]Uad is finite étale of degree `2dm over Uad (see
[Hub96, Corollary 1.7.3 i)]).

Lemma 3.9 The adic space Ĝrig[`m]Uad is finite étale of degree `(2d−r)m over Uad.

Proof. We may assume that S = SpecR is affine. Let I ⊂ R be the defining ideal
of S0. By replacing R by its I-adic completion, we can reduce to the case where R
is I-adically complete. Put Si = SpecR/I i+1 and Gi = G×S Si.

By [SGA3, Exposé IX, Théorème 3.6, Théorème 3.6 bis], the exact sequence

0→ T0 → G0 → A0 → 0

can be lifted canonically to an exact sequence

0→ Ti → Gi → Ai → 0

over Si, where Ti is a torus over Si and Ai is an abelian scheme over Si (see [Lan13,

§3.3.3]). Let T̂ = lim−→i
Ti and Â = lim−→i

Ai be associated formal groups over S. Then

Ĝ is an extension of Â by T̂ .
By taking `m-torsion points, we get an exact sequence

0→ T̂ [`m]→ Ĝ[`m]→ Â[`m]→ 0

of formal groups over S. Since Ĝrig[`m] ∼= (Ĝ[`m])rig, it suffices to see that (T̂ [`m])rig
Uad

(resp. (Â[`m])rig
Uad) is finite étale of degree `rm (resp. `2(d−r)m) over Uad.

First we consider (T̂ [`m])rig
Uad . Since T̂ [`m] = lim−→i

(Ti[`
m]), it is finite flat over

S = Spf R. Therefore there exists a finite flat R-algebra R′ such that T̂ [`m] =
Spf R′. Moreover, a scheme T ′ = SpecR′ is naturally equipped with a structure
of a commutative group scheme over S = SpecR. Since T ′ is killed by `m and
p is invertible on U , T ′U = T ′ ×S U is a finite étale group scheme over U . By

Lemma 3.3 (ii), we have (T̂ [`m])rig = (T ′)∧rig = T ′ad = T ′ ×S Srig. Therefore

(T̂ [`m])rig
Uad = T ′U ×U Uad is finite étale over Uad (see [Hub96, Corollary 1.7.3 i)]). Its

degree is clearly `rm.
The same argument also works for (Â[`m])rig

Uad .

12
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By Lemma 3.8 and Lemma 3.9, we may regard Ĝrig[`m]Uad and Gad[`m]Uad as
locally constant constructible sheaves over Uad. Since we have a natural open im-
mersion Ĝrig ↪→ Gad, Ĝrig[`m]Uad is a subsheaf of Gad[`m]Uad .

Remark 3.10 In the setting of Remark 3.4, the construction above is clearly com-
patible with the base change by f : S ′ → S.

In the remaining part of this subsection, we consider the case where S = SpecR
is the spectrum of a complete discrete valuation ring R, S0 is the closed point of S
and U = S0 = S \S0. Let η be a geometric point lying over the unique point of Uad.

As in the proof of Lemma 3.9, Ĝ is an extension

0→ T̂ → Ĝ→ Â→ 0

of a formal group Â by T̂ . Therefore, we have Z/`mZ-submodules

T̂ rig[`m]η ⊂ Ĝrig[`m]η ⊂ Gad[`m]η.

By taking inverse limit and tensoring with Q`, we have

T`T̂
rig
η ⊂ T`Ĝ

rig
η ⊂ T`G

ad
η , V`T̂

rig
η ⊂ V`Ĝ

rig
η ⊂ V`G

ad
η ,

where we put V`(−) = T`(−) ⊗Z` Q`. By Lemma 3.9 and its proof, we can deduce

that dimQ` V`T̂
rig
η = r and dimQ` V`Ĝ

rig
η = 2d− r.

Proposition 3.11 Assume that the fraction field F of R is a finite extension of Qp.
For a filtration

0 ⊂ V`T̂
rig
η ⊂ V`Ĝ

rig
η ⊂ V`G

ad
η = V`Gη,

we have the following:

(i) If ` 6= p, the above filtration is the weight filtration of V`Gη.

(ii) If ` = p, then the above filtration is a filtration as semistable representations of
Gal(F/F ). Further, this filtration induces the weight filtration on Dst(VpGη).

Proof. We give a proof of (ii). We can show (i) similarly. Let λ be a polarization of
GU . Then an alternating bilinear pairing

〈 , 〉λ : VpGη × VpGη → Qp(1)

is induced. First, we will prove that (VpĜ
rig
η )⊥ = VpT̂

rig
η . Since

dimQp VpT̂
rig
η + dimQp VpĜ

rig
η = r + (2d− r) = 2d = dimQp VpGη,

it is sufficient to prove that VpT̂
rig
η ⊂ (VpĜ

rig
η )⊥. Namely, we should prove that the

homomorphism VpT̂
rig
η ⊗Qp VpĜ

rig
η → Qp(1) induced by 〈 , 〉λ is zero.

13
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Since VpGη is a semistable representation of Gal(F/F ), so are VpT̂
rig
η and VpĜ

rig
η .

We denote the residue field of F by κF and put q = #κF . Consider the action
of ϕ[κF :Fp] on Dst(VpT̂

rig
η ) and Dst(VpÂ

rig
η ). By [SGA3, Exposé X, Théorème 3.2], T̂

can be algebraized into a torus T over S. Then we have VpT̂
rig
η
∼= VpTη. Therefore

every eigenvalue of ϕ[κF :Fp] on Dst(VpT̂
rig
η ) is a Weil q−2-number (for the definition

of Weil numbers, see [TY07, p. 471]). Similarly, by [Lan13, Proposition 3.3.3.6,

Remark 3.3.3.9], Â can be algebraized into an abelian scheme A over S, and we

have VpÂ
rig
η
∼= VpAη. By the Weil conjecture for the crystalline cohomology of

abelian varieties, every eigenvalue of ϕ[κF :Fp] on Dst(VpÂ
rig
η ) is a Weil q−1-number.

Therefore, every eigenvalue of ϕ[κF :Fp] on Dst(VpT̂
rig
η ⊗Qp VpĜ

rig
η ) is either a Weil q−4-

number or a Weil q−3-number. On the other hand, every eigenvalue of ϕ[κF :Fp] on
Dst(Qp(1)) is equal to q−1, which is a Weil q−2-number. Hence any ϕ-homomorphism

Dst(VpT̂
rig
η ⊗Qp VpĜ

rig
η )→ Dst(Qp(1)) is zero. Since the functor Dst is fully faithful,

any Gal(F/F )-equivariant homomorphism

VpT̂
rig
η ⊗Qp VpĜ

rig
η → Qp(1)

is zero. Hence, we have (VpĜ
rig
η )⊥ = VpT̂

rig
η . Then we have a perfect pairing

VpT̂
rig
η × (VpGη/VpĜ

rig
η )→ Qp(1).

The claim follows from the above arguments and this perfect pairing.

Corollary 3.12 The semistable representation VpGη of Gal(F/F ) has the mon-
odromy filtration in the sense of Definition 2.3.

Proof. It is well-known that in this case the weight filtration and the monodromy
filtration on Dpst(VpGη) = Dst(VpGη) coincide up to shift. Therefore the claim
follows from Proposition 3.11 (ii).

Remark 3.13 Actually, the extension 0→ T̂ → Ĝ→ Â→ 0 considered above can
be algebraized; namely, there exists an exact sequence

0→ T → G\ → A→ 0

of commutative group schemes over S, where T and A are as in the proof of Propo-
sition 3.11, such that its formal completion along the special fiber is isomorphic
to the extension above (see [Lan13, Proposition 3.3.3.6, Remark 3.3.3.9]). Such an
extension is called the Raynaud extension associated to G.

Our construction above is related to the Raynaud extension in the following

way. First, we have a natural isomorphism Ĝrig[`m]η
∼=−→ (G\)ad[`m]η, which is induced

from an open immersion Ĝrig ∼= (Ĝ\)rig ↪→ (G\)ad (see Lemma 3.3 (i)). Moreover, the

image of Ĝrig[`m]η ↪→ Gad[`m]η coincides with the image of the mapG\[`m]η → G[`m]η
in [Lan13, Corollary 4.5.3.12].
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4 Shimura varieties

4.1 Notation on Shimura varieties

Let (G,X) be a Shimura datum, and E(G,X) the reflex field of (G,X). We simply
write E for E(G,X) if there is no risk of confusion. There is the canonical model
over E of the Shimura variety for (G,X), which we denote by {ShK(G,X)}K⊂G(A∞).
Let K ⊂ G(A∞) be a compact open subgroup, which is always supposed to be small
enough so that ShK(G,X) becomes a scheme.

4.2 Siegel modular varieties

Let (V, 〈 , 〉) be a symplectic space of dimension 2n over Q, and L a self-dual Z-
lattice of V . Let (GSp2n, X2n) be the Shimura datum associated to (V, 〈 , 〉). Then
the Shimura variety for (GSp2n, X2n) is called the Siegel modular variety. In this
case the reflex field E(GSp2n, X2n) equals Q. We put

K(N) = Ker(GSp2n(Ẑ)→ GSp2n(Ẑ/N Ẑ))

for N ≥ 1, and

K`,m = Ker(GSp2n(Z`)→ GSp2n(Z/`mZ))

for a prime number ` and m ≥ 0.

We recall a moduli interpretation of ShK(GSp2n, X2n) using integral level struc-
tures. For simplicity, we assume that K = K(N) with N ≥ 3. We consider the
functor from the category of Q-schemes to the category of sets, that associates S to
the set of isomorphism classes of triples (A, λ, η), where

– A is an abelian scheme over S,

– λ : A→ A∨ is a principal polarization, and

– η : L/NL
∼=−→ A[N ] is a symplectic similitude.

This functor is represented by ShK(GSp2n, X2n) (see [Del71, 4.16]).

There is another moduli interpretation using rational level structures. Let S be
a connected Noetherian scheme over Q, and fix a geometric point s of S. We put

T∞(−) =
∏
`

T`(−), V ∞(−) = T∞(−)⊗Z Q,

where ` in the product ranges over all prime numbers. Then, S-valued points of
ShK(GSp2n, X2n) correspond to the isogeny classes of triples (A, λ, ηK), where

– A is an abelian scheme over S,

– λ : A→ A∨ is a Q-polarization, and

– ηK is a π1(S, s)-invariant K-orbit of symplectic similitudes VA∞
∼=−→ V ∞A.
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Using this description, the Hecke action of g ∈ GSp2n(A∞) can be described as

ShK → Shg−1Kg; [(A, λ, ηK)] 7→ [(A, λ, (η ◦ g)g−1Kg)].

See [Del71, 4.12] for the relation between two moduli interpretations.

Assume that K = Kp,0K
p with a compact open subgroup Kp of GSp2n(Ẑp).

Then ShK(GSp2n, X2n) has a natural integral model SKp over Zp constructed as
a moduli space of principally polarized abelian schemes with level structures (cf.
[MFK94, Chapter 7, §3]). Let A denote the universal abelian scheme on SKp .

Thanks to a work of Faltings and Chai [FC90], we have a toroidal compactifica-
tion S tor

Kp of SKp over Zp. We have a semi-abelian scheme on S tor
Kp extending A on

SKp , for which we write the same symbol A.

4.3 Shimura varieties of Hodge type

In this subsection, we assume that (G,X) is of Hodge type. We take an em-
bedding i : (G,X) ↪→ (GSp2n, X2n) of Shimura data. For a compact open sub-

group K̃ of GSp2n(A∞) containing K, we have a natural morphism ShK(G,X) →
ShK̃(GSp2n, X2n) to the Siegel modular variety, which is known to be a closed im-

mersion if K̃ is small enough. We shall recall a moduli interpretation of C-points of
ShK(G,X). Let V be the standard representation of GSp2n. By [DMOS82, I, Propo-
sition 3.1], there exists a finite collection of tensors (sα)α∈J ′ with sα ∈ V mα ⊗ V ∨m′α
such thatG equals the pointwise stabilizer of (sα)α∈J ′ in GSp2n. We put J = J ′q{0},
m0 = m′0 = 1 and let s0 be the symplectic form 〈 , 〉 ∈ V ⊗ V ∨ on V .

Proposition 4.1 A C-valued point of ShK(G,X) corresponds to the isogeny class
of triples (A, (tα)α∈J , ηK), where

– A is an abelian variety over C,

– (tα)α∈J with tα ∈ H1(A,Q)mα ⊗ H1(A,Q)∨m
′
α is a finite collection of Hodge

cycles on A (see [DMOS82, V, §2]) such that ±t0 is a polarization of the rational
Hodge structure H1(A,Q),

– ηK is a K-orbit of A∞-linear isomorphisms VA∞
∼=−→ V ∞A which send s0 to a

(A∞)×-multiple of t0 and sα with α ∈ J ′ to tα,

satisfying the following condition (∗):
(∗) there exists an isomorphism ηQ : V

∼=−→ H1(A,Q) such that η−1
Q sends t0 to a

Q×-multiple of s0, tα with α ∈ J ′ to sα, and the Hodge structure on H1(A,Q)
to a Hodge structure on V induced by an element of X and the embedding
i : G ↪→ GSp2n.

For a proof, see [Mil05, Theorem 7.4].

Lemma 4.2 Let F be a p-adic field containing the reflex field E, and x an F -
valued point of ShK(G,X). Choose an algebraic closure F of F and denote by x
the corresponding geometric point over x.
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We take an isomorphism ι : F
∼=−→ C over E, and write ιx for the C-valued point

of ShK(G,X) determined by x and ι. Let (A, (tα)α∈J , ηK) be a triple in the isogeny
class corresponding to ιx such that A = Ax ⊗F ,ι C. Here Ax is the abelian variety
corresponding to the image of x in the Siegel modular variety. Let us choose a
representative η of ηK. Under ι, it corresponds to a trivialization of the K-torsor
π−1
K (x) on x, where πK denotes the natural map lim←−K′⊂K ShK′(G,X)→ ShK(G,X).

For a prime number `, let LStd◦i,` be the Q`-sheaf on ShK(G,X) corresponding
to the representation Std ◦ i of G on V . For the stalk LStd◦i,`,x, the following hold:

(i) We have a canonical Gal(F/F )-equivariant isomorphism LStd◦i,`,x ∼= V`Ax.
(ii) Each trivialization of the K-torsor π−1

K (x) determines an isomorphism VQ`
∼=−→

LStd◦i,`,x. The isomorphism given by the trivialization corresponding to the cho-

sen representative η equals the composite of VQ`
η`−→∼= V`A

ι−1

−−→∼= V`Ax
(i)∼= LStd◦i,`,x,

where η` denotes the `-part of η.

Proof. The first assertion is essentially a statement for the Siegel case, which is
well-known. The second can be checked directly by working over C.

4.4 Shimura varieties of preabelian type

Definition 4.3 A Shimura datum (G,X) is said to be of preabelian type if there
exists a Shimura datum (G′, X ′) of Hodge type such that (Gad, Xad) ∼= (G′ad, X ′ad).
If a Shimura data is of preabelian type, the associated Shimura variety is said to be
of preabelian type (cf. [Vas99, p. 402]).

Lemma 4.4 Assume that (G,X) is of preabelian type. We take a Shimura datum
(G′, X ′) of Hodge type such that (Gad, Xad) ∼= (G′ad, X ′ad). Let K ′′ be a com-
pact open subgroup of Gad(A∞) which contains the image of K under the map
G(A∞)→ Gad(A∞). We regard it as a compact open subgroup of G′ad(A∞) by the
isomorphism Gad ∼= G′ad. Then there exist a compact open subgroup K ′ ⊂ G′(A∞)
and g1, . . . , gm ∈ G′ad(A∞) such that the following hold:

(i) The morphism (G′, X ′) → (G′ad, X ′ad) and the conjugation by gi induces the
morphism

fi : ShK′(G
′, X ′)→ Shg−1

i K′′gi
(G′ad, X ′ad)→ ShK′′(G

′ad, X ′ad)

for each i.

(ii) The morphism ∐
1≤i≤m

fi :
∐

1≤i≤m

ShK′(G
′, X ′)→ ShK′′(G

′ad, X ′ad)

is surjective.

Proof. This follows from the definition of Shimura varieties of preabelian type and
the fact that Hecke action is transitive on the connected components of a Shimura
variety.
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5 Partition of Shimura varieties

5.1 Partition of classical points

We fix a prime number p and a finite place v of E above p. We write Ov for the
ring of integers of Ev.

Throughout the paper, we assume that a compact open subgroup K of G(A∞)
is small enough so that the following conditions are satisfied:

– The morphism πK : lim←−K′⊂K ShK′(G,X) → ShK(G,X) is a torsor under the

quotient KSh of K by a closed subgroup of K∩Z(G)(A∞) (cf. [Mil05, Theorem
5.28]).

– If the Shimura datum (G,X) satisfies the condition SV5 in [Mil05, p. 311], then
KSh equals K. Note that a Shimura datum of Hodge type satisfies SV5.

Definition 5.1 Let x be a classical point of ShK(G,X)ad
Ev

, and κx an algebraic
closure of κx. We write x for the geometric point corresponding to κx.

By taking the pull-back of πK : lim←−K′⊂K ShK′(G,X) → ShK(G,X), we obtain

a KSh-torsor π−1
K (x) on x. This torsor and its trivialization η over x give rise to a

continuous homomorphism φx,η : Gal(κx/κx)→ KSh. If we change η, the homomor-
phism φx,η changes by a KSh-conjugation.

(i) We write φad
x,η for the composite Gal(κx/κx)

φx,η−−→ KSh → Gad(A∞). If we change
η, the homomorphism φad

x,η changes by a Kad-conjugation, where Kad denotes
the image of K in Gad(A∞). When we are only interested in the Kad-conjugacy
class of φad

x,η, we often drop the subscript η and simply write φad
x for φad

x,η.
For a prime number `, we denote by φad

x,η,` the composite of φad
x,η and the pro-

jection Gad(A∞)→ Gad(Q`).

(ii) Assume that (G,X) satisfies the condition SV5. Then we write φx,η for the

composite Gal(κx/κx)
φx,η−−→ K → G(A∞). As in (i), we often write φx for φx,η,

which is well-defined up to K-conjugacy.
For a prime number `, we define φx,η,` similarly.

Remark 5.2 The homomorphism φad
x,η,` is related to `-adic automorphic étale sheaves

on ShK(G,X) as follows. Let (ξ, Vξ) be a finite-dimensional algebraic representation
of G over Q` such that Ker ξ contains Ker(K → KSh). Then, we have an associated
smooth Q`-sheaf Lξ on ShK(G,X) (cf. [Mil90, Remark III.6.1]). As in Lemma 4.2
(ii), the trivialization η of π−1(x) induces an isomorphism Lξ,x ∼= Vξ. Hence we
obtain an `-adic Galois representation Gal(κx/κx)→ GL(Lξ,x) ∼= GL(Vξ).

(i) If ξ factors throughGad, it is equal to the composite Gal(κx/κx)
φadx,η,`−−−→ Gad(Q`)

ξ−→
GL(Vξ).

(ii) If (G,X) satisfies SV5 (hence any ξ is allowable), it is equal to the composite

Gal(κx/κx)
φx,η,`−−−→ G(Q`)

ξ−→ GL(Vξ).
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The following proposition can be checked easily.

Proposition 5.3 Let (G,X)→ (G′, X ′) be a morphism of Shimura data such that
Z(G) is mapped into Z(G′). Let K ⊂ G(A∞) and K ′ ⊂ G′(A∞) be compact open
subgroups such that K is mapped into K ′. For x ∈ ShK(G,X)ad

Ev
(cl), we write x′

for the image of x under the induced morphism ShK(G,X) → ShK′(G
′, X ′). Then

the diagram

Gal(κx/κx)
φadx //

��

Gad(A∞)

��

Gal(κx′/κx′)
φad
x′ // G′ad(A∞)

is commutative up toK ′ad-conjugacy, whereK ′ad denotes the image ofK ′ inG′ad(A∞).

Proposition 5.4 Assume that (G,X) is of preabelian type.

(i) For x ∈ ShK(G,X)ad
Ev

(cl), φad
x,p is de Rham and has the monodromy filtration.

(ii) Assume that (G,X) is of Hodge type. Then, for x ∈ ShK(G,X)ad
Ev

(cl), φx,p is
de Rham and has the monodromy filtration.

Proof. By Lemma 2.9 (iv), Lemma 2.10, Lemma 4.4 and Proposition 5.3, the as-
sertion (i) is reduced to (ii). We prove (ii). Take an embedding i : (G,X) ↪→
(GSp2n, X2n) into a Siegel Shimura datum and a compact open subgroup K̃ = K̃pK̃

p

of GSp2n(A∞) containing K. By shrinking K, we may assume that K̃p ⊂ K̃p,0 =

GSp2n(Zp) and K̃p is small enough. Then, the morphism

Specκx → ShK(G,X)Ev → ShK̃p,0K̃p(GSp2n, X2n)Qp = SK̃p,Qp

uniquely extends to Specκ+
x → S tor

K̃p
. Let Aκ+x denote the pull-back of the universal

semi-abelian scheme A by this morphism. It extends the abelian variety Ax over
κx. Therefore, the representation VpAx of Gal(κx/κx) is semistable and has the
monodromy filtration by Corollary 3.12.

Let Std: GSp2n → GL(V ) denote the standard representation of GSp2n. By
Lemma 4.2 (i), we have a Gal(κx/κx)-equivariant isomorphism LStd◦i,x,p ∼= VpAx.
We fix a trivialization η of the K-torsor π−1

K (x) over x. By the isomorphism
VQp
∼= LStd◦i,x,p induced from η, we regard VQp as a representation of Gal(κx/κx).

As in Remark 5.2 (ii), it is isomorphic to Std ◦ i ◦ φx,η,p. Summing up, we obtain a
Gal(κx/κx)-equivariant isomorphism Std ◦ i ◦φx,η,p ∼= VpAx. Therefore, we conclude
that Std ◦ i ◦ φx,η,p is semistable (hence de Rham) and has the monodromy filtra-
tion. Since Std ◦ i is a faithful representation of G, φx,η,p is de Rham and has the
monodromy filtration by Lemma 2.8. This completes the proof.

Remark 5.5 Assume that (G,X) satisfies the condition SV6 in [Mil05, p. 312].
Recently, Liu and Zhu announced a result that the p-adic sheaf Lξ,x is de Rham
for any finite-dimensional algebraic representation ξ of Gc over Qp, where Gc is the
quotient of G defined in [Mil90, p. 347] (cf. [LZ16, Theorem 1.2]). This implies that
φad
x,p is de Rham. We do not use this remark later.
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In the sequel, we assume that (G,X) is of preabelian type. Take a finite non-
empty set of primes S such that K = KSK

S, where KS is a compact open subgroup
of G(AS) and KS is a hyperspecial compact open subgroup of G(A∞,S). We write
PG,S(KS) for the set of KS-conjugacy classes of AS-parabolic subgroups of G.

Let η be a trivialization of π−1
K (x) over x. By Proposition 5.4 and the results in

Section 2, we can attach to φad
x,η,` the Q`-parabolic subgroup Pφadx,η,` of Gad for each

` ∈ S and x ∈ ShK(G,X)ad
Ev

(cl). By taking the product with respect to `, we obtain
an AS-parabolic subgroup of Gad. It is easy to observe that the Kad

S -conjugacy class
[
∏

`∈S Pφadx,η,` ] ∈ PGad,S(Kad
S ) is independent of the choice of η. Note that the natural

map PG,S(KS)→ PGad,S(Kad
S ); [P ] 7→ [P ad] is bijective.

Definition 5.6 Let [Px,S] ∈ PG,S(KS) be the KS-conjugacy class that is mapped
to [
∏

`∈S Pφadx,η,` ] under the bijection PG,S(KS)→ PGad,S(Kad
S ).

Remark 5.7 If the Shimura datum (G,X) satisfies the condition SV5, we can
define [Px,S] directly by using φx,η. These two ways give the same result by Lemma
2.2 (iv) and Lemma 2.9 (iv).

By the proof of Proposition 5.4, we obtain the following description of [Px,S] in
the Hodge type case.

Corollary 5.8 Let (G,X) be a Shimura datum of Hodge type with an embedding
(G,X) ↪→ (GSp2n, X2n) into a Siegel Shimura datum. Assume that Kp ⊂ GSp2n(Zp)
and Kp is small enough. For x ∈ ShK(G,X)ad

Ev
(cl), fix an isomorphism ι : κx

∼=−→ C
and let (A, (tα), ηK) be a triple in the isogeny class corresponding to the C-point ιx
of ShK(G,X) such that A = Ax ⊗κx,ι C.

(i) The abelian variety Ax over κx extends to a semi-abelian scheme Aκ+x over κ+
x .

For ` ∈ S, the monodromy filtration M•V`Ax on V`Ax is a shift of the filtration
in Proposition 3.11.

(ii) Fix an arbitrary representative η : VA∞
∼=−→ V ∞A of the K-orbit ηK. For ` ∈ S,

consider the filtration (η−1
` ◦ ι)(M•V`Ax) on VQ` obtained as the inverse image

of M•V`Ax under VQ`
η`−→∼= V`A

ι−1

−−→∼= V`Ax. Then, this filtration is GQ`-split in the

sense of [Kis10, (1.1.2)]. Moreover, if we write Px,η,` for the stabilizer of this
filtration, the KS-conjugacy class [

∏
`∈S Px,η,`] equals [Px,S].

(iii) If (G,X) = (GSp2n, X2n), then Px,η,` in (ii) is the stabilizer of a totally isotropic
subspace of VQ` whose dimension equals the toric rank of the special fiber of
Aκ+x .

Proof. The assertion (i) follows from the proofs of Proposition 5.4 and Corollary
3.12.

We prove (ii). The choice of η gives a trivialization of the K-torsor π−1
K (x) over x,

which is denoted by the same symbol η. By the argument in the proof of Proposition
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5.4, we have Gal(κx/κx)-equivariant isomorphisms

Std ◦ i ◦ φx,η,` = VQ`
η∼= LStd◦i,x,` ∼= V`Ax.

By Lemma 4.2 (ii), their composite is equal to

Std ◦ i ◦ φx,η,` = VQ`
η`−→∼= V`A

ι−1

−−→∼= V`Ax.

Hence the filtration (η−1
` ◦ ι)(M•V`Ax) equals the monodromy filtration M•VQ` on

VQ` with respect to the action of Gal(κx/κx) by Std ◦ i ◦ φx,η,`. Since the mon-
odromy filtration of Std ◦ i ◦φx,η,` extends to a filtration on the Tannakian category
RepQ`(GQ`), we conclude that M•VQ` is GQ`-split by [Kis10, Lemma 1.1.3]. Further,
by Lemma 2.2 (ii) and Lemma 2.9 (ii), we have Px,η,` = Pφx,η,` . Therefore we have
[Px,S] = [

∏
x∈S Px,η,`] by Remark 5.7.

The claim (iii) follows from Corollary 3.12 and the equality (VpĜ
rig
η )⊥ = VpT̂

rig
η

(and its `-adic version) in the proof of Proposition 3.11.

Next we will show that the `-part of Px,S is independent of ` ∈ S in some sense.
To state the result, we need some preparation.

Definition 5.9 (cf. [Pin90, 4.5 Definition]) Let Gad = G1 × · · · × Gr be a decom-
position into Q-simple factors. We say that a parabolic subgroup P of G is an
admissible Q-parabolic subgroup if there exists a parabolic subgroup Pi of Gi for
each i such that P is the inverse image of P1 × · · · × Pr and Pi is either equal to Gi

or a maximal Q-parabolic subgroup of Gi for each i. We write PG,Q for the set of
G(Q)-conjugacy classes of admissible Q-parabolic subgroups of G.

An admissible A∞-parabolic subgroup means a parabolic subgroup of GA∞ which
is G(A∞)-conjugate to an admissible Q-parabolic subgroup of G. Let PG(K) denote
the set of K-conjugacy classes of admissible A∞-parabolic subgroups of G. Further,
we write PG,A∞ for the set of G(A∞)-conjugacy classes of admissible A∞-parabolic
subgroups of G. We have a natural map PG(K)→ PG,A∞ .

Lemma 5.10 (i) The natural map PG(K)→ PG,S(KS) is injective.

(ii) The set PG(K) is finite.

(iii) We take a hyperspecial compact open subgroup K ′′S of Gad(A∞,S) containing
the image of KS, and put K ′′ = Kad

S K
′′S, which is a compact open subgroup

of Gad(A∞). Then, the natural map PG(K)→ PGad(K ′′) is bijective.

Proof. Fix a minimal parabolic subgroup P0 of G. For an admissible Q-parabolic
subgroup P containing P0, we write PG(K)P for the subset of PG(K) consisting of
K-conjugacy classes which are G(A∞)-conjugate to P . Then, we have a bijection

K\G(A∞)/P (A∞)
∼=−→ PG(K)P given by KgP (A∞) 7→ gPg−1.
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Let us prove (i). For an admissible Q-parabolic subgroup P containing P0, we
have

K\G(A∞)/P (A∞) = KS\G(AS)/P (AS)×KS\G(AS)/P (AS) = KS\G(AS)/P (AS).

by the Iwasawa decomposition KSP0(AS) = G(AS). This implies that the composite
PG(K)P ↪→ PG(K) → PG,S(KS) is injective. It suffices to show that the images
of PG(K)P and PG(K)P ′ in PG,S(KS) are disjoint, where P and P ′ are distinct
admissible Q-parabolic subgroups containing P0. If the images of PG(K)P and
PG(K)P ′ intersect, then PQ` and P ′Q` are G(Q`)-conjugate for each ` ∈ S. By
[BT65, Théorème 4.13], this means that P and P ′ are G(Q)-conjugate. Since they
contain P0, they are equal. Note that in particular we have PG(K)P ∩PG(K)P ′ = ∅.
Hence PG(K) equals

∐
P⊃P0

PG(K)P , where P runs through admissible Q-parabolic
subgroups of G containing P0.

Next we prove (ii). It suffices to show that PG(K)P is a finite set for each
admissible Q-parabolic subgroup P of G containing P0. Since

PG(K)P ∼= K\G(A∞)/P (A∞) ∼= KS\G(AS)/P (AS),

it suffices to show that KS\G(AS)/P (AS) is a finite set. Let K0
S be the product of

special compact open subgroups of G(Q`) for ` ∈ S. Then we have K0
SP0(AS) =

G(AS). By shrinking KS, we may assume that KS ⊂ K0
S. Then the map KS\K0

S →
KS\G(AS)/P (AS) is surjective, hence KS\G(AS)/P (AS) is finite.

Finally we prove (iii). Note that admissible Q-parabolic subgroups of G contain-
ing P0 are in bijection with those of Gad containing P ad

0 . Therefore, we have only
to show that PG(K)P → PGad(K ′′)P ad is bijective for every admissible Q-parabolic
subgroup of G containing P0. Further, it is equivalent to the bijectivity of

KS\G(AS)/P (AS)
(∗)−→ Kad

S \Gad(AS)/P ad(AS).

By [Spr98, 15.1.4], we have

G(Q`)/P (Q`) ∼= (GQ`/PQ`)(Q`) ∼= (Gad
Q`/P

ad
Q` )(Q`) ∼= Gad(Q`)/P

ad(Q`)

for each ` ∈ S. Therefore the map G(AS)/P (AS) → Gad(AS)/P ad(AS) is bijective.
The bijectivity of (∗) easily follows from it.

By the proof above, we also obtain the following:

Corollary 5.11 The natural map PG,Q → PG,A∞ is a bijection. In particular, for a
compact open subgroup K of G(A∞), we have a natural map PG(K)→ PG,Q.

Proof. We use the notation in the proof of Lemma 5.10. By definition, the natural
map PG,Q → PG,A∞ is surjective. We shall show that it is injective. Take two
admissible Q-parabolic subgroups P1, P2 of G containing P0. If P1 and P2 are
G(A∞)-conjugate, then [P1] ∈ PG(K)P1∩PG(K)P2 for every compact open subgroup
K of G(A∞). By the proof of Lemma 5.10, it implies that P1 = P2. This completes
the proof.
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Proposition 5.12 For x ∈ ShK(G,X)ad
Ev

(cl), there uniquely exists an element [Px] ∈
PG(K) which is mapped to [Px,S] under the injection PG(K) ↪→ PG,S(KS) in Lemma
5.10 (i). It is independent of S.

To prove this proposition, we use the following lemma.

Lemma 5.13 Let (G,X) be a Shimura datum of Hodge type with an embedding
i : (G,X) ↪→ (GSp2n, X2n) into a Siegel Shimura datum. Recall that V denotes the
standard representation of GSp2n.

Let W be a totally isotropic subspace of V , and define a filtration W•V on V as
follows:

W0V = V, W−1V = W⊥, W−2V = W, W−3V = 0.

We write P for the stabilizer of W•V in G.
Let L be a field of characteristic 0. Assume that the filtration W•V ⊗Q L on

VL = V ⊗QL is GL-split in the sense of [Kis10, (1.1.2)]. Then, P is an admissible Q-
parabolic subgroup of G. Further, if we write P ′ for the stabilizer of W•V in GSp2n,
we have P ′ = i∗P in the notation of [MP12, 2.1.28]. Namely, the cocharacter of
GSp2n associated to P ′ as in [Pin90, 4.1] is equal to i ◦λ, where λ is the cocharacter
of G associated to P .

Proof. We write U for the subgroup of P consisting of elements acting on grW• V
trivially, and ν for the cocharacter Gm → GL(grW• V ) determined from the grading
on grW• V .

By [Kis10, Lemma 1.1.1], PL is a parabolic subgroup of GL, UL is the unipotent
radical of PL, and the cocharacter νL : Gm → GL(grW• V ⊗QL) over L factors through
the closed subgroup PL/UL. Therefore, we conclude that P is a parabolic subgroup
of G, U is the unipotent radical of P , and the cocharacter ν : Gm → GL(grW• V )
factors through P/U . This means that the filtration W•V is G-split by [Kis10,
Lemma 1.1.1]. Take a cocharacter w : Gm → G over Q which induces the filtration
W•V on V . It induces a filtration on the Tannakian category RepQ(G). Let us
prove that this filtration is Cayley in the sense of [Mil90, V, Definition 2.3]. Take
an arbitrary element h ∈ X+. By [Mil90, IV, Example 1.1 (c)] (cf. [Bry83, 4.2.1]),
W•V and h give a mixed Hodge structure on V . Therefore, [Mil90, IV, Proposition
1.3] tells us that w and h define a mixed Hodge structure on Vξ for all objects (ξ, Vξ)
of RepQ(G). Hence the filtration induced from w is Cayley, as desired.

Now, by applying [Mil90, V, Proposition 2.4] to each simple factor of (Gad, Xad) =
(G1, X1)× · · · × (Gr, Xr), we conclude that P is admissible (we use the same argu-
ment as in the proof of Lemma 2.2 (iv) to pass to the adjoint group). The equality
P ′ = i∗P is proved in [Pin90, 4.16].

Proof Proposition 5.12. Only the existence of [Px] requires a proof. By Lemma 2.2
(v), Lemma 2.10, Lemma 4.4, Proposition 5.3 and Lemma 5.10 (iii), we may assume
that (G,X) is of Hodge type. We use the notation in Section 4.3. By shrinking

K, we may assume that Kp ⊂ K̃p,0 = GSp2n(Zp) and Kp is small enough. We use
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the notation in Corollary 5.8. Let Mx = (G\, Y → G\
κx) be the degeneration datum

corresponding to Aκ+x under the functor M in [FC90, Chapter III, Corollary 7.2]. It
gives a 1-motive Mx over κx (cf. [Del74, §10.1]). For each prime ` ∈ S, the `-adic
realization H1(Mx,Q`) of Mx is identified with V`Ax, and equipped with the weight
filtration W•,x,`, which coincides with the monodromy filtration M•V`Ax on V`Ax up
to a shift.

The 1-motive Mx and the fixed isomorphism ι : κx
∼=−→ C gives rise to a 1-motive

Mιx over C. Its Betti realization H1(Mιx,Q) is naturally isomorphic to H1(A,Q)
(recall that (A, (tα)α∈J , ηK) denotes the triple corresponding to the C-point ιx).
We denote the weight filtration on it by W•,ιx,Q. It is known that W−2,ιx,Q is totally
isotropic and W−1,ιx,Q = W⊥

−2,ιx,Q with respect to the polarization ±t0 on A. For

` ∈ S, we write ε` for the comparison isomorphism H1(A,Q) ⊗Q Q`

∼=−→ V`A. The
composite

H1(A,Q)⊗Q Q`
ε`−→∼= V`A

ι−1

−−→∼= V`Ax = H1(Mx,Q`)

carries the filtration W•,ιx,Q ⊗Q Q` onto W•,x,` defined above.

We take a representative η : VA∞
∼=−→ V ∞A of the K-orbit ηK and an isomorphism

ηQ : V
∼=−→ H1(A,Q) as in the condition (∗) of Proposition 4.1. For each prime `,

we can easily observe that g` = η−1
` ◦ ε` ◦ (ηQ ⊗ Q`) preserves the tensors (sα)α∈J ′ .

Therefore g` lies in G(Q`).
We put W•V = η−1

Q (W•,ιx,Q) (it depends on the choice of x, ι and ηQ), and denote
by P ′ the stabilizer of W•V in G. For ` ∈ S, we have

(η−1
` ◦ ι)(W•,x,`) = (η−1

` ◦ ε`)(W•,ιx,Q ⊗Q Q`) = g`(W•V ⊗Q Q`).

By Corollary 5.8 (ii), g`(W•V ⊗QQ`) is GQ`-split. Hence W•V ⊗QQ` is also GQ`-split.
Therefore, Lemma 5.13 tells us that P ′ is an admissible Q-parabolic subgroup of G.
Further, by the above equality, Px,η,` in Corollary 5.8 (ii) is equal to g`P

′
Q`g
−1
` .

Set g = (g`)`∈S × 1 ∈ G(A∞) = G(AS) × G(A∞,S). Then Px = gP ′A∞g
−1 is an

admissible A∞-parabolic subgroup of G, and its image [Px] in PK(G) is mapped to
[
∏

`∈S Px,η,`] = [Px,S] under the injection PG(K) ↪→ PG,S(KS) (for the last equality,
see Corollary 5.8 (ii)). This completes the proof.

Corollary 5.14 For x ∈ ShK(G,X)ad
Ev

(cl) and a prime number ` 6= p, the following
are equivalent:

(i) φad
x,` is potentially unramified.

(ii) φad
x,p is potentially crystalline.

(iii) [Px] = [G].

If the above conditions are satisfied, we say that x is of potentially good reduction.

Proof. By Lemma 2.2 (iii), φad
x,` is potentially unramified if and only if Pφadx,` = Gad

Q` .

By definition this is clearly equivalent to [Px] = [G]. Similarly we can prove the
equivalence of (ii) and (iii).
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Definition 5.15 We denote the map ShK(G,X)ad
Ev

(cl)→ PG(K); x 7→ [Px] by ΦK .

Proposition 5.16 Let (G,X) be a Shimura datum of preabelian type.

(i) The map ΦK is Hecke-equivariant in the following sense. Let K, K ′ be compact
open subgroups of G(A∞), and g an element of G(A∞) such that g−1Kg ⊂ K ′.
Then the diagram

ShK(G,X)ad
Ev

(cl)
ΦK //

g

��

PG(K)

[P ] 7→[g−1Pg]

��

ShK′(G,X)ad
Ev

(cl)
ΦK′ // PG(K ′)

is commutative.

(ii) LetK be a compact open subgroup ofG(A∞), andK ′′ a compact open subgroup
of Gad(A∞) containing the image of K. We write Ead for the reflex field of
(Gad, Xad) and vad the place of Ead below v. Then the diagram

ShK(G,X)ad
Ev

(cl)
ΦK //

��

PG(K)

[P ]7→[P ad]

��

ShK′′(G
ad, Xad)ad

Ead
vad

(cl)
ΦK′′ // PGad(K ′′)

is commutative.

(iii) Assume that (G,X) is of Hodge type, and let i : (G,X) ↪→ (GSp2n, X2n) be an
embedding into a Siegel Shimura datum. Let K be a compact open subgroup
of G(A∞), and K̃ a compact open subgroup of GSp2n(A∞) containing K. Then
the diagram

ShK(G,X)ad
Ev

(cl)
ΦK //

��

PG(K)

[P ]7→[i∗P ]

��

ShK̃(GSp2n, X2n)ad
Qp(cl)

Φ
K̃ // PGSp2n

(K̃)

is commutative.

Proof. The assertions (i) and (ii) are immediate consequences of Proposition 5.3 and
Lemma 5.10 (i). The claim (iii) follows from Lemma 5.13 and the construction of
[Px] in the proof of Proposition 5.12.

In the remaining part of this section, we will prove that the map ΦK comes from
a partition of ShK(G,X)ad

Ev
into locally closed constructible subsets.

Theorem 5.17 For each [P ] ∈ PG(K), there uniquely exists a locally closed con-
structible subset C[P ] of ShK(G,X)ad

Ev
such that

C[P ](cl) = {x ∈ ShK(G,X)ad
Ev(cl) | ΦK(x) = [P ]}.

Furthermore, the subset C[G] is open and quasi-compact.
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Remark 5.18 The subsets {C[P ]}[P ]∈PG(K) in Theorem 5.17 are mutually disjoint
and cover ShK(G,X)ad

Ev
. Indeed, by Lemma 3.6 (i), it can be checked at the level of

classical points, which is obvious.

Theorem 5.17 will be proved in Section 5.3. Admitting this theorem, we have the
following definition.

Definition 5.19 We put ShK(G,X)pg
Ev

= C[G], and call it the potentially good
reduction locus of ShK(G,X)ad

Ev
. It is a quasi-compact open subset of ShK(G,X)ad

Ev

characterized by the following property:

– for x ∈ ShK(G,X)ad
Ev

(cl), x lies in ShK(G,X)pg
Ev

if and only if x is of potentially
good reduction in the sense of Corollary 5.14.

Example 5.20 When ShK(G,X) is proper over E, G has no proper parabolic sub-
group defined over Q. Therefore, we have PG(K) = {[G]} and ShK(G,X)pg

Ev
=

ShK(G,X)ad
Ev

.

5.2 Partition in the Siegel case

In this subsection, we will give a proof of Theorem 5.17 in the Siegel case. We use
the notation in Section 4.2. In particular, recall that (V, 〈 , 〉) is a symplectic space
of dimension 2n over Q and L is a self-dual Z-lattice of V . For simplicity, we write
SK for ShK(GSp2n, X2n)ad

Qp .
It is well-known that conjugacy classes of maximal parabolic subgroups of GSp2n

are parametrized by integers 0 ≤ r ≤ n; the class corresponding to r consists of
parabolic subgroups obtained as stabilizers of r-dimensional totally isotropic sub-
spaces of V . Namely, PGSp2n,Q

∼= {0, 1, . . . , n} under the notation in Definition 5.9.
We write PGSp2n

(K)r for the inverse image of r under the map

PGSp2n
(K)→ PGSp2n,Q

∼= {0, 1, . . . , n}

(see Corollary 5.11). Clearly we have PGSp2n
(K) =

∐
0≤r≤nPGSp2n

(K)r. We put
PGSp2n

(K)≤r =
∐

r′≤r PGSp2n
(K)r′ . Note that PGSp2n

(K)0 = PGSp2n
(K)≤0 = {[G]}.

Proposition 5.21 There uniquely exists a constructible open subset SK,]≤r[ of SK
such that x ∈ SK(cl) belongs to SK,]≤r[ if and only if ΦK(x) ∈ PGSp2n

(K)≤r. More-
over, SK,]≤0[ is quasi-compact.

Proof. By Proposition 5.16 (i), we may shrink K freely. Therefore, we may assume
that Kp is contained in Kp,0 = GSp2n(Zp).

For r ≥ 0, let S tor
Kp,≤r be the subset of S tor

Kp consisting of x ∈ S tor
Kp such that the

toric rank of the semi-abelian variety Ax is at most r. By [Lan13, Lemma 3.3.1.4],
it is an open subset of S tor

Kp .
Since S tor

Kp is proper over Zp, we may consider the specialization map

sp: (S tor
Kp,Qp)

ad = (S tor
Kp )ad = (S tor

Kp )∧rig → S tor
Kp,Fp
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introduced in Section 3.1 (for the second equality, see Lemma 3.3 (ii)). For an integer
r ≥ 0, we put SKp,0Kp,]≤r[ = sp−1(S tor

Kp,≤r,Fp) ∩ S ad
Kp,Qp . It is a constructible open

subset of S ad
Kp,Qp = SKp,0Kp . Further, let SK,]≤r[ be the inverse image of SKp,0Kp,]≤r[

under the natural morphism SK → SKp,0Kp . By Corollary 5.8 (iii), it satisfies the
desired property. Since SKp,0Kp,]≤0[ = sp−1(SKp,Fp), it is quasi-compact. Hence
SK,]≤0[ is also quasi-compact.

For 0 ≤ r ≤ n, we put SK,]r[ = SK,]≤r[ \ SK,]≤r−1[, where SK,]≤−1[ means ∅. It is
a locally closed constructible subset of SK .

Lemma 5.22 The set π0(SK,]r[) of connected components of SK,]r[ is finite, and
consists of locally closed constructible subsets of SK . Hence SK,]r[ is topologically
the disjoint union of elements of π0(SK,]r[).

Proof. By shrinking K, we may assume that Kp is contained in Kp,0 = GSp2n(Zp).
Then the claim is the case X = S tor

Kp,Qp , U = SKp,Qp , U
′ = ShK(GSp2n, X2n)Qp , and

L = sp−1(S tor
Kp,≤r,Fp) \ sp−1(S tor

Kp,≤r−1,Fp) of the subsequent general lemma.

Lemma 5.23 Let F be a p-adic field. Let X be a purely d-dimensional proper
smooth scheme over F , and Y a closed subscheme of X whose dimension is less
than d. We put U = X \ Y , and consider a finite étale surjection f : U ′ → U .

For a locally closed constructible subset L of Xad, we put LU ′ = (f ad)−1(L∩Uad).
Then, the set π0(LU ′) is finite, and consists of locally closed constructible subsets of
U ′ad. In particular, LU ′ is topologically the disjoint union of elements of π0(LU ′).

Proof. Let X ′ be the normalization of X in U ′. By the resolution of singularities,
there exists a purely d-dimensional proper smooth scheme X ′′ over F and a proper

birational morphism φ : X ′′ → X ′ which induces an isomorphism φ−1(U ′)
∼=−→ U ′.

Let us denote the composite X ′′
φ−→ X ′ → X by φ′. By replacing X, Y , L with X ′′,

X ′′ ×X Y , (φ′ad)−1(L) respectively, we may assume that U ′ = U .
We denote by L◦ (resp. L◦U) the interior of L (resp. LU) in Xad (resp. Uad).

Clearly we have L◦U = L◦ \ Y ad. We fix a prime number ` 6= p, and consider the
following commutative diagram:

H0(LF ,F`) //

(1)

��

H0(L◦
F
,F`)

(2)

��

H0(LU,F ,F`) // H0(L◦
U,F
,F`).

Since Xad is proper of finite type over Spa(F,OF ), H0(LF ,F`) is a finite-dimensional
F`-vector space by [Hub98b, Proposition 3.16 i)]. Therefore, to show the finiteness
of π0(LU), it suffices to prove that the map (1) is an isomorphism. On the other
hand, by [Hub98b, Theorem 3.7], the horizontal maps are isomorphisms. Hence it
suffices to prove that (2) is an isomorphism. Note that, by [Hub98a, Lemma 1.3 iii)],
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L◦ and L◦U are taut, and then L◦ ∩ Y ad is also taut. Therefore we can consider the
compactly supported cohomology of these spaces. Since dim(L◦∩Y ad) < d, we have
H2d−1
c ((L◦ ∩ Y ad)F ,F`) = H2d

c ((L◦ ∩ Y ad)F ,F`) = 0. This implies that the natural
map H2d

c (L◦
U,F
,F`) → H2d

c (L◦
F
,F`) is an isomorphism. By the Poincaré duality, we

conclude that the map (2) is an isomorphism.
By the finiteness of π0(LU), every element C of π0(LU) is an open and closed

subset of LU . Since L is locally closed constructible, so is C.

Lemma 5.24 There uniquely exists a map ΨK : π0(SK,]r[)→ PG(K) satisfying the
following: for C ∈ π0(SK,]r[) and x ∈ C(cl), we have ΨK(C) = ΦK(x).

Proof. Let C ∈ π0(SK,]r[). Then, by Lemma 5.22 and Lemma 3.6 (i), we have
C(cl) 6= ∅. Therefore, it suffices to show that ΦK(x) is independent of the choice
of x ∈ C(cl). By Proposition 5.16 (i), we may assume that Kp is contained in
Kp,0 = GSp2n(Zp). Recall that in this case SK,]≤r[ is obtained as the inverse image
under SK → SKp,0Kp of SKp,0Kp,]≤r[, which is equal to sp−1(S tor

Kp,≤r,Fp) ∩S ad
Kp,Qp (see

the proof of Proposition 5.21).
Let S◦K,]r[ be the interior of SK,]r[ in SK . Then, the inverse image of S◦Kp,0Kp,]r[

under SK → SKp,0Kp equals S◦K,]r[. We write C◦ for the interior of C in SK . It is

connected by [Hub98b, Theorem 3.7], and included in S◦K,]r[. Since C is constructible

in SK , we have C(cl) = C◦(cl) by Lemma 3.6 (ii). Hence it suffices to show that
ΦK(x) is independent of the choice of x ∈ C◦(cl).

We apply the construction introduced in Section 3.2 to the case where S =
S tor
Kp,≤r, S0 = S tor

Kp,r,Fp , U = SKp,Qp and G = A|S tor
Kp,≤r

. We write T̂ for the corre-

sponding T̂ . By Lemma 3.5, Uad = U ×S t(S)a = S◦Kp,0Kp,]r[ in this case. Therefore,
for each m ≥ 0 and a prime `, we have three locally constant constructible sheaves

T̂ rig[`m]S◦
Kp,0K

p,]r[
⊂ Ârig[`m]S◦

Kp,0K
p,]r[
⊂ Aad[`m]S◦

Kp,0K
p,]r[

.

We put

V` =
(

lim←−
m

Aad[`m]S◦
Kp,0K

p,]r[
|C◦
)
⊗Q`, F` =

(
lim←−
m

Ârig[`m]S◦
Kp,0K

p,]r[
|C◦
)
⊗Q`,

T` =
(

lim←−
m

T̂ rig[`m]S◦
Kp,0K

p,]r[
|C◦
)
⊗Q`.

They are smooth `-adic sheaves over C◦.
Now we use the moduli interpretation with rational level structures of SK . Fix

a geometric point x0 of C◦, and let ηK be the π1(C◦, x0)-invariant K-orbit of iso-

morphisms VA∞
∼=−→ V ∞Ax0 corresponding to the universal level structure on A|C◦ .

For x ∈ C◦(cl), the rational K-level structure on Ax corresponding to x itself is
obtained in the following manner. Fix a geometric point x lying over x. Since C◦ is
connected, there exists an isomorphism π1(C◦, x0) → π1(C◦, x), which is canonical
up to π1(C◦, x0)-conjugacy. If we fix such an isomorphism, for a smooth sheaf G
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on C◦, we have a functorial isomorphism Gx0
∼=−→ Gx compatible with the π1-actions.

In particular, the smooth sheaf (lim←−N A
ad[N ]C◦) ⊗ Q determines an isomorphism

V ∞Ax0
∼=−→ V ∞Ax. By composing it with each element of ηK, we obtain a K-orbit

of isomorphisms VA∞
∼=−→ V ∞Ax, which turns out to be π1(C◦, x)-invariant. Since the

action of π1(x, x) on V ∞Ax factors through π1(x, x)→ π1(C◦, x), this orbit gives a
rational K-level structure on Ax.

Fix a representative η of ηK and write ηx for the composite of η and the isomor-

phism V ∞Ax0
∼=−→ V ∞Ax. We take a prime number ` and consider the `-part

ηx,` : VQ`
∼=−→
η`
V`Ax0

∼=−→
(∗)

V`Ax

of ηx. Note that the isomorphism (∗) is given by the smooth `-adic sheaf V` intro-
duced above. Moreover, by Corollary 5.8 (i), Proposition 3.11, Corollary 3.12 and
its proof, the monodromy filtrations on V`Ax0 and V`Ax are given by

0 ⊂ T`,x0 ⊂ F`,x0 ⊂ V`,x0 , 0 ⊂ T`,x ⊂ F`,x ⊂ V`,x,

respectively. Since F` and T` are smooth sheaves, the isomorphism (∗) carries the
first filtration to the second. Hence we have η−1

x,`(M•V`Ax) = η−1
` (M•V`Ax0), which is

independent of x ∈ C◦(cl). Therefore, the parabolic subgroup Px,ιx◦ηx,` in Corollary

5.8 (ii), where ιx : κx
∼=−→ C is a fixed isomorphism, is also independent of x. By

Corollary 5.8 (ii) and Lemma 5.10 (i), we conclude that ΦK(x) = [Px] ∈ PGSp2n
(K)

is independent of x.

Now we can prove Theorem 5.17 in the Siegel case.

Proof of Theorem 5.17 for the Siegel case. For [P ] ∈ PGSp2n
(K), take 0 ≤ r ≤ n

such that [P ] lies in PGSp2n
(K)r. We put

C[P ] =
⋃

C∈π0(SK,]r[),
ΨK(C)=[P ]

C.

It is a constructible subset of SK by Lemma 5.22. Since each C ∈ π0(SK,]r[) is open
in SK,]r[, C[P ] is a locally closed subset of SK . We can also check that x ∈ SK(cl)
lies in C[P ] if and only if ΦK(x) = [P ]. We have already checked in Proposition 5.21
that C[G] = SK,]≤0[ is quasi-compact open.

Corollary 5.25 For [P ] ∈ PG(K)r and [P ′] ∈ PG(K)r′ , assume that r > r′ or
r = r′ and [P ] 6= [P ′]. Then we have C−[P ]∩C[P ′] = ∅, where C−[P ] denotes the closure
of C[P ] in SK .

Proof. First assume that r > r′. Since the complement ScK,]≤r′[ of SK,]≤r′[ is a closed
subset of SK , we have

C−[P ] ∩ C[P ′] ⊂ ScK,]≤r′[ ∩ SK,]≤r′[ = ∅.
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Next assume that r = r′ and [P ] 6= [P ′]. By construction, C[P ] is closed in SK,]r[.
Therefore, we have

C−[P ] ∩ C[P ′] = (C−[P ] ∩ SK,]r[) ∩ C[P ′] = C[P ] ∩ C[P ′] = ∅.

For the last equality, see Remark 5.18.

5.3 Existence of partition

In this subsection, we complete the proof of Theorem 5.17 by reducing to the Siegel
case. First we consider the Hodge type case.

Lemma 5.26 Let (G,X) be a Shimura datum of Hodge type with an embedding
i : (G,X) ↪→ (GSp2n, X2n) into a Siegel Shimura datum. For a compact open sub-

group K of G(A∞), there exists a compact open subgroup K̃ of GSp2n(A∞) con-

taining K such that the map PG(K)→ PGSp2n
(K̃); [P ] 7→ [i∗P ] is injective.

Proof. It suffices to prove the following claim:

for [P1], [P2] ∈ PG(K) with [P1] 6= [P2], there exists a compact open sub-

group K̃[P1],[P2] of GSp2n(A∞) containing K such that [i∗P1] 6= [i∗P2] in

PGSp2n
(K̃[P1],[P2]).

Indeed, the intersection of K̃[P1],[P2] for all pairs ([P1], [P2]) with [P1] 6= [P2] satisfies
the desired condition.

Fix a compact open subgroup K̃0 of GSp2n(A∞) containing K. Take represen-

tatives P1, P2 of [P1], [P2], respectively. We put Z = {g ∈ K̃0 | g(i∗P1)g−1 = i∗P2},
which is clearly a closed subset of K̃0. Therefore, a subset KZ of K̃0 is compact,
hence closed. We prove that 1 /∈ KZ. If 1 ∈ KZ, there exists k ∈ K such that
k(i∗P1)k−1 = i∗P2. Taking intersections with G, we obtain kP1k

−1 = P2, which
contradicts the assumption [P1] 6= [P2]. Therefore, we can find a compact open

normal subgroup K̃1 of K̃0 such that K̃1 ∩ KZ = ∅. Then, K̃[P1],[P2] = KK̃1 is a

compact open subgroup of GSp2n(A∞) satisfying K̃[P1],[P2] ∩ Z = ∅. This concludes
the proof.

Proof of Theorem 5.17 for the Hodge type case. We assume that (G,X) is of Hodge
type, and take an embedding i : (G,X) ↪→ (GSp2n, X2n) into a Siegel Shimura da-

tum. Further, we take a compact open subgroup K̃ ⊂ GSp2n(A∞) as in Lemma
5.26.

Let [P ] ∈ PG(K). Since Theorem 5.17 is known for the Siegel case, we have
a locally closed constructible subset C[i∗P ] of ShK̃(GSp2n, X2n)ad

Qp . Let C[P ] be the

inverse image of C[i∗P ] in ShK(G,X)ad
Ev

. Then, C[P ] satisfies the desired condition by
Proposition 5.16 (iii). The subset C[G] is open and quasi-compact, since C[GSp2n] =
SK̃,]≤0[ is open and quasi-compact.

The following lemma is the Hodge type version of Corollary 5.25.
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Lemma 5.27 Let (G,X) be a Shimura datum of Hodge type. Take an embedding
i : (G,X) ↪→ (GSp2n, X2n) into a Siegel Shimura datum. For a compact open sub-
group K of G(A∞) and an integer 0 ≤ r ≤ n, we write PG(K)r for the inverse image
of r under the composite

PG(K)→ PG,Q
i∗−→ PGSp2n,Q

∼= {0, 1, . . . , n}.

For [P ] ∈ PG(K)r and [P ′] ∈ PG(K)r′ , assume that r > r′ or r = r′ and [P ] 6= [P ′].
Then we have C−[P ]∩C[P ′] = ∅, where C−[P ] denotes the closure of C[P ] in ShK(G,X)ad

Ev
.

In particular, if [P ], [P ′] are distinct elements of PG(K) such that P is G(A∞)-
conjugate to P ′, then we have C−[P ] ∩ C[P ′] = ∅.

Proof. We take K̃ as in Lemma 5.26. By definition, we have [i∗P ] ∈ PGSp2n
(K̃)r

and [i∗P
′] ∈ PGSp2n

(K̃)r′ . Since the map PG(K)→ PGSp2n
(K̃) is injective, we have

[i∗P ] 6= [i∗P
′] if r = r′. Hence Corollary 5.25 tells us that C−[i∗P ] ∩ C[i∗P ′] = ∅.

Since the natural morphism ShK(G,X)ad
Ev
→ ShK̃(GSp2n, X2n)ad

Qp maps C[P ] and
C[P ′] into C[i∗P ] and C[i∗P ′], respectively (see the construction of C[P ] in the proof of
Theorem 5.17), the set C−[P ] ∩C[P ′] is mapped into C−[i∗P ] ∩C[i∗P ′] = ∅. Therefore we

conclude that C−[P ] ∩ C[P ′] = ∅.

The last claim follows from the observation that if P and P ′ areG(A∞)-conjugate,
then r = r′.

Now we can prove Theorem 5.17 for the preabelian type case.

Proof of Theorem 5.17. We choose a compact open subgroup K ′′ of Gad(A∞) in
such a way as in Proposition 5.10 (iii), and use the notation in Lemma 4.4. We
write E ′ for the reflex field of (G′, X ′), and choose a place v′ of E ′ above vad (for
the definition of vad, see Proposition 5.16 (ii)).

We have natural maps

PG′(K ′)→ PG′ad(g−1
i K ′′gi)

gi−→ PG′ad(K ′′) ∼= PGad(K ′′) ∼= PG(K)

for each i (see Lemma 5.10 (iii)). Let Si be the inverse image of [P ] ∈ PG(K)
under this map. We put Cad

[P ] =
⋃

1≤i≤m fi(
⋃

[Q]∈Si C[Q]). Since C[Q] for each [Q] ∈ Si
is constructible, Lemma 3.7 (i) tells us that Cad

[P ] is constructible. Let us prove

that Cad
[P ] is locally closed. By Lemma 3.6 (i), Proposition 5.16 (i), (ii) and the

constructibility of Cad
[P ], we can check that the inverse image of Cad

[P ] under
∐

1≤i≤m fi
equals

∐
1≤i≤m

⋃
[Q]∈Si C[Q]. Therefore, Lemma 3.7 (ii) tells us that it suffices to prove

that
⋃

[Q]∈Si C[Q] is locally closed. Note that we have the commutative diagram

PG′(K ′) //

��

PG′ad(g−1
i K ′′gi)

gi
//

��

PG′ad(K ′′) oo
∼= //

��

PGad(K ′′)

��

PG(K)
∼=oo

��

PG′,Q
∼= // PG′ad,Q PG′ad,Q oo

∼= // PGad,Q PG,Q,
∼=oo
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where the vertical arrows are the maps in Corollary 5.11. From this diagram we
can observe that all elements in Si are G′(A∞)-conjugate. Now Lemma 5.27 tells
us that the closure C−[Q] of C[Q] for [Q] ∈ Si does not intersect

⋃
[Q′]∈Si\{[Q]}C[Q′].

Therefore C[Q] is closed (hence open) in
⋃

[Q′]∈Si C[Q′], from which we conclude that⋃
[Q]∈Si C[Q] is locally closed in ShK′(G

′, X ′)ad
E′
v′

, as desired.

Let C[P ] be the inverse image of Cad
[P ] under the map

ShK(G,X)ad
Ev → ShK′′(G

ad, Xad)ad
Ead
vad

∼= ShK′′(G
′ad, X ′ad)ad

Ead
vad

(here Ead and vad are as in Proposition 5.16 (ii)). Then C[P ] satisfies the desired
condition by Proposition 5.16 (i), (ii).

If [P ] = [G], we have Si = {[G′]}. Hence the openness and the quasi-compactness
of C[G] follows from those of C[G′].

Lemma 5.28 Let (G,X) be a Shimura datum of preabelian type. Take a Shimura
datum (G′, X ′) of Hodge type such that (Gad, Xad) ∼= (G′ad, X ′ad), and an embedding
i : (G′, X ′) ↪→ (GSp2n, X2n) into a Siegel Shimura datum. For a compact open
subgroup K of G(A∞) and an integer 0 ≤ r ≤ n, we write PG(K)r for the inverse
image of r under the composite

PG(K)→ PG,Q ∼= PGad,Q
∼= PG′ad,Q ∼= PG′,Q

i∗−→ PGSp2n,Q
∼= {0, 1, . . . , n}.

For [P ] ∈ PG(K)r and [P ′] ∈ PG(K)r′ , assume that r > r′ or r = r′ and [P ] 6= [P ′].
Then we have C−[P ]∩C[P ′] = ∅, where C−[P ] denotes the closure of C[P ] in ShK(G,X)ad

Ev
.

In particular, if [P ], [P ′] are distinct elements of PG(K) such that P is G(A∞)-
conjugate to P ′, then we have C−[P ] ∩ C[P ′] = ∅.

Proof. We use the same notation as in the proof of Theorem 5.17 above, and denote
the morphism ShK(G,X)ad

Ev
→ ShK′′(G

ad, Xad)ad
Ead
vad

∼= ShK′′(G
′ad, X ′ad)ad

Ead
vad

by h. If

a point x belongs to C−[P ] ∩ C[P ′], we can find y ∈ C[P ] specializing to x (see [Hoc69,

Corollary of Theorem 1]). By the construction of C[P ], there exist 1 ≤ i ≤ m,
[Q] ∈ Si and y′ ∈ C[Q] such that h(y) = fi(y

′). Since fi is finite, there exists
x′ ∈ ShK′(G

′, X ′)ad
E′
v′

which is a specialization of y′ and mapped to h(x) by fi. By

Remark 5.18, x′ belongs to C[Q′′] for a unique [Q′′] ∈ PK′(G′). Take r′′ such that
[Q′′] lies in PK′(G′)r′′ . Since x′ ∈ C−[Q] ∩ C[Q′′], Lemma 5.27 tells us that we have

either r < r′′ or [Q] = [Q′′].
We write [P ′′] for the image of [Q′′] under the composite

PG′(K ′)→ PG′ad(g−1
i K ′′gi)

gi−→ PG′ad(K ′′) ∼= PGad(K ′′) ∼= PG(K).

It belongs to PG(K)r′′ . Since h(x) = fi(x
′) ∈ Cad

[P ′′], the point x lies in C[P ′′]. Hence

Remark 5.18 tells us that [P ′] = [P ′′]. In particular we have r′ = r′′, which implies
[Q] = [Q′′]. Therefore we have [P ] = [P ′′] = [P ′], which contradicts the assumption
on [P ′].
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Corollary 5.29 Let (G,X) be a Shimura datum of preabelian type. Let K and
K ′ be compact open subgroups of G(A∞) and g ∈ G(A∞) with g−1Kg ⊂ K ′.
For an element [P ′] of PG(K ′), the inverse image of C[P ′] under the Hecke action
g : ShK(G,X)→ ShK′(G,X) is equal to∐

[P ]∈PG(K),
[g−1Pg]=[P ′] in PG(K′)

C[P ]

as topological spaces.

In particular, for [P ] ∈ PK(G), C[P ] is mapped to C[g−1Pg] under the Hecke action
by g.

Proof. First note that both g−1(C[P ′]) and
⋃

[P ]∈PK(G),[g−1Pg]=[P ′] C[P ] are constructible

subsets and have the same set of classical points by Proposition 5.16 (i). There-
fore, by Lemma 3.6 (i), they are equal. The union

⋃
[P ]∈PK(G),[g−1Pg]=[P ′]C[P ] is set-

theoretically disjoint by Remark 5.18. Let [P1], [P2] be distinct elements of PG(K)
such that [g−1P1g] = [g−1P2g] in PK′(G). Lemma 5.28 tells us that C−[P1]∩C[P2] = ∅.

This implies that C[P1] is closed (hence open) in
⋃

[P ]∈PK(G),[g−1Pg]=[P ′] C[P ]. Now the
proof is complete.

The following lemma will be used in the next section.

Lemma 5.30 Let the notation be as in Lemma 5.28. Put PG(K)≤r =
⋃
r′≤r PG(K)r′ .

Then, Ur,K =
⋃

[P ]∈PG(K)≤r
C[P ] is a constructible open subset of ShK(G,X)ad

Ev
, and

Ur,K \Ur−1,K equals
∐

[P ]∈PG(K)r
C[P ] as topological spaces (here we put U−1,K = ∅).

Proof. By Lemma 5.28, the set
⋃
r′>r

⋃
[P ]∈PG(K)r′

C[P ] is closed in ShK(G,X)ad
Ev

.

Therefore, by Remark 5.18, Ur,K is open in ShK(G,X)ad
Ev

. Since C[P ] is constructible
for every [P ], the subset Ur,K is also constructible.

The claim Ur,K \Ur−1,K =
∐

[P ]∈PG(K)r
C[P ] follows from Lemma 5.28 by the same

argument as in the proof of Corollary 5.29.

Remark 5.31 If (G,X) is of Hodge type (namely, (G,X) = (G′, X ′)), we can also

construct Ur,K in the following way. Take a compact open subgroup K̃ ⊂ GSp2n(A∞)
containing K. Then, Ur,K equals the inverse image of SK̃,]≤r[ under

ShK(G,X)ad
Ev → ShK̃(GSp2n, X2n)ad

Qp = SK̃ .

This is an immediate consequence of Proposition 5.16 (iii) and Proposition 5.21.
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6 Cohomology of Shimura varieties

6.1 Comparison of cohomology

We continue to assume that (G,X) is of preabelian type. For simplicity, we fur-
ther assume that (G,X) satisfies SV6 in [Mil05, p. 311]. We simply write ShK for
ShK(G,X), if there is no risk of confusion. Fix a prime ` which is different from p.
Let Gc be the quotient of G defined in [Mil90, p. 347], and ξ an algebraic represen-
tation of Gc on a finite-dimensional Q`-vector space. Then we have the associated
Q`-sheaf Lξ on ShK (see [Mil90, III, §6]). Moreover, Lξ is equivariant with respect
to the Hecke action.

Let p′ be a prime number. Let us fix a compact open subgroup Kp′ of G(Ẑp′).
We consider the compactly supported cohomology

H i
c(Sh∞,Kp′ ,Ev

,Lξ) = lim−→
Kp′

H i
c(ShKp′Kp′ ,Ev

,Lξ).

The groupG(Qp′)×Gal(Ev/Ev) naturally acts on it. By this action, H i
c(Sh∞,Kp′ ,Ev

,Lξ)
becomes an admissible/continuous representation of G(Qp′) × Gal(Ev/Ev) in the
sense of [HT01, §I.2].

The group G(Qp′)×Gal(Ev/Ev) naturally acts also on

H i
c(Shpg

∞,Kp′ ,Ev
,Lad

ξ ) = lim−→
Kp′

H i
c(Shpg

Kp′K
p′ ,Ev

,Lad
ξ ).

See [Hub98c, §1] for the definition of the compactly supported `-adic cohomol-
ogy for adic spaces. It gives an admissible/continuous representation of G(Qp′) ×
Gal(Ev/Ev) (cf. Lemma 6.6 in the next subsection).

Here we use the notation in [HT01, §I.2]. Let H be a locally profinite group.
For an admissible/continuous representation V of H ×Gal(Ev/Ev) over Q` and an
irreducible admissible representation π of H, put V [π] =

⊕
σ σ
⊕mπ�σ , where σ runs

through finite-dimensional irreducible continuous Q`-representations of Gal(Ev/Ev)
and mπ�σ denotes the coefficient of [π � σ] in the image of V in the Grothendieck
group considered in [HT01, §I.2]. It is a semisimple continuous representation of
Gal(Ev/Ev).

Theorem 6.1 The kernel and the cokernel of the canonical homomorphism

H i
c(Shpg

∞,Kp′ ,Ev
,Lad

ξ )→ H i
c(Sh∞,Kp′ ,Ev

,Lξ)

are non-cuspidal, namely, they have no supercuspidal subquotient of G(Qp′). In
particular, for an irreducible supercuspidal representation π of G(Qp′), we have an
isomorphism

H i
c(Shpg

∞,Kp′ ,Ev
,Lad

ξ )[π] ∼= H i
c(Sh∞,Kp′ ,Ev

,Lξ)[π].

This theorem will be proved in Section 6.2.
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Remark 6.2 Let H i(Sh∞,Kp′ ,Ev
,Lξ) = lim−→Kp′

H i(ShKp′Kp′ ,Ev
,Lξ) be the ordinary

cohomology of our Shimura variety. This is also an admissible/continuous represen-
tation of G(Qp′)×Gal(Ev/Ev). By using the minimal compactification of ShK and
its natural stratification (cf. [Pin92, §3.7]), it is easy to see that the kernel and the
cokernel of the canonical homomorphism

H i
c(Sh∞,Kp′ ,Ev

,Lξ)→ H i(Sh∞,Kp′ ,Ev
,Lξ)

are non-cuspidal as G(Qp′)-representations (in fact, we can use the similar argument
as in the next subsection). Therefore, the kernel and the cokernel of the composite

H i
c(Shpg

∞,Kp′ ,Ev
,Lad

ξ )→ H i
c(Sh∞,Kp′ ,Ev

,Lξ)→ H i(Sh∞,Kp′ ,Ev
,Lξ)

are non-cuspidal by Theorem 6.1.

Remark 6.3 Let IH i(Sh∞,Kp′ ,Ev
,Lξ) = lim−→Kp′

H i(Shmin
Kp′K

p′ ,Ev
, j!∗Lξ) be the inter-

section cohomology of our Shimura variety, where j : ShKp′Kp′ ↪→ Shmin
Kp′K

p′ denotes

the minimal compactification of ShKp′Kp′ . Then, as in the previous remark, it is

easy to see that the kernel and the cokernel of the canonical homomorphism

H i
c(Sh∞,Kp′ ,Ev

,Lξ)→ IH i(Sh∞,Kp′ ,Ev
,Lξ)

are non-cuspidal. Therefore, by Theorem 6.1, we have an isomorphism

H i
c(Shpg

∞,Kp′ ,Ev
,Lad

ξ )[π] ∼= IH i(Sh∞,Kp′ ,Ev
,Lξ)[π]

for an irreducible supercuspidal representation π of G(Qp′).

Corollary 6.4 We put

H i
c(Sh∞,Ev ,Lξ) = lim−→

Kp′

H i
c(Sh∞,Kp′ ,Ev

,Lξ), H i
c(Shpg

∞,Ev
,Lad

ξ ) = lim−→
Kp′

H i
c(Shpg

∞,Kp′ ,Ev
,Lad

ξ ).

These are admissible/continuous G(A∞)×Gal(Ev/Ev)-representations.
Let Π be an irreducible admissible representation of G(A∞). Assume that there

exists a prime p′ such that Πp′ is a supercuspidal representation of G(Qp′). Then,
Π does not appear as a subquotient of the kernel or the cokernel of the canoni-
cal homomorphism H i

c(Shpg

∞,Ev
,Lad

ξ ) → H i
c(Sh∞,Ev ,Lξ). In particular, we have an

isomorphism of Gal(Ev/Ev)-representations

H i
c(Shpg

∞,Ev
,Lad

ξ )[Π] ∼= H i
c(Sh∞,Ev ,Lξ)[Π].

Proof. We take a compact open subgroup Kp′ ⊂ G(Ẑp′) such that ΠKp′ 6= 0. If
Π appears as a subquotient of the kernel or the cokernel of H i

c(Shpg

∞,Ev
,Lad

ξ ) →
H i
c(Sh∞,Ev ,Lξ), then Πp′ appears as a subquotient of the kernel or the cokernel of

H i
c(Shpg

∞,Kp′ ,Ev
,Lad

ξ ) → H i
c(Sh∞,Kp′ ,Ev

,Lξ) (cf. Lemma 6.6 in the next subsection).

This contradicts Theorem 6.1.

35



Naoki Imai and Yoichi Mieda

6.2 Proof of Theorem 6.1

Let K be a compact open subgroup of G(A∞). We regard C[P ] for [P ] ∈ PG(K) as
a pseudo-adic space (cf. [Hub96, §1.10]). See [Hub98c, Proposition 2.6 (i)] for the
definition of the compactly supported `-adic cohomology of pseudo-adic spaces.

Proposition 6.5 Let [P ] be an element of PG(K).

(i) For a constructible `-adic sheaf F = (Fn)⊗Q` on ShK,Ev , H
i
c(C[P ],Ev

,Fad) is a

finite-dimensional Q`-vector space.

(ii) For a constructible Z/`nZ-sheaf F on ShK,Ev , H
i
c(C[P ],Ev

,Fad) is a finitely gen-
erated Z/`nZ-module.

Before proving this proposition, we note the following general lemmas.

Lemma 6.6 Let k be an algebraically closed non-archimedean field, and X an
adic space locally of finite type, separated and taut over k. Let L be a locally closed
constructible subset of X, which is regarded as a pseudo-adic space. Let π : X ′ → X
be a finite étale Galois covering with Galois group H. We put L′ = π−1(L). For an
`-adic sheaf F = (Fn)⊗Q` on X, the natural map

H i
c(L,F)→ H i

c(L
′, π∗F)H

is an isomorphism.

Proof. This lemma might be well-known, but we include its proof for reader’s con-
venience. We put F ′n = π∗π

∗Fn and F ′ = (F ′n)⊗Q`. The group H acts on F ′n, and
we have (F ′n)H = Fn. Consider the map ψ =

∑
h∈H h : F ′n → Fn. The composite

Fn ↪→ F ′n
ψ−→ Fn equals the multiplication by #H. By taking the cohomology, we

have a commutative diagram

H i
c

(
L, (Fn)n

)
⊗Q`

//

π∗

**

H i
c

(
L, (F ′n)n

)
⊗Q`

Hi
c(ψ)

// H i
c

(
L, (Fn)n

)
⊗Q`

π∗

��

H i
c

(
L′, (π∗Fn)n

)
⊗Q`

∑
h∈H h
// H i

c

(
L′, (π∗Fn)n

)
⊗Q`.

The composite of two upper horizontal arrows is the multiplication by #H, which is
an isomorphism. Therefore π∗ is injective and H i

c(ψ) is surjective. The surjectivity
of H i

c(ψ) implies that the image of π∗ is equal to that of
∑

h∈H h, that is, the

H-invariant part of H i
c(L
′, (π∗Fn)n)⊗Q`.

Remark 6.7 By the same method, we can also prove that the natural map

lim←−
n

H i
c(L,Fn)⊗Q` →

(
lim←−
n

H i
c(L
′, π∗Fn)⊗Q`

)H
is an isomorphism.
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Lemma 6.8 Let k be an algebraically closed non-archimedean field. Let X be an
adic space locally of finite type, separated and taut over k, and U a constructible
open subset of X. Set Z = X \U , which is regarded as a pseudo-adic space. For an
`-adic sheaf F = (Fn)⊗Q` over X, we have a long exact sequence

· · · → H i
c(U,F)→ H i

c(X,F)→ H i
c(Z,F)→ H i+1

c (U,F)→ · · · .

Proof. Since the open immersion j : U ↪→ X is quasi-compact, we have H i
c(U,F) =

H i
c(X, j!j

∗F) by the definition of the compactly supported cohomology. Therefore,
the claim follows from [Hub98c, Proposition 2.6 (i)].

Proof of Proposition 6.5. We consider (i). Note that Corollary 5.29 and Lemma 6.6
enable us to shrink K arbitrarily.

First we consider the Hodge type case. Take an embedding (G,X) ↪→ (GSp2n, X2n)
into a Siegel Shimura datum. We have a constructible open subset Ur,K for each
0 ≤ r ≤ n by Lemma 5.30. By the long exact sequence

· · · → H i
c(Ur−1,K,Ev

,F)→ H i
c(Ur,K,Ev ,F)→ H i

c(Ur,K,Ev \ Ur−1,K,Ev
,F)

→ H i+1
c (Ur−1,K,Ev

,F)→ · · ·

(see Lemma 6.8) and Lemma 5.30, it suffices to show that H i
c(Ur,K,Ev ,F) is finite-

dimensional for each 0 ≤ r ≤ n.

Take a compact open subgroup K̃ of G(A∞) so that we have a natural embedding

ShK(G,X) ↪→ ShK̃(GSp2n, X2n)E. By shrinking K, we may assume that K̃ = K̃pK̃
p

with K̃p ⊂ GSp2n(Zp). Let S nor
K̃

be the normalization of S tor
K̃p

in ShK̃(GSp2n, X2n)Qp ,

and S nor
K̃,≤r,Fp

the inverse image of S tor
K̃p,≤r,Fp

in S nor
K̃

. We write Y for the closure of

ShK(G,X)Ev in S nor
K̃,Ev

and put Z = Y \ ShK(G,X)Ev . Let V denote the inverse

image of S nor
K̃,≤r,Fp

under the composite

Y ad ↪→ (S nor
K̃

)ad
Ev → (S nor

K̃
)ad
Qp = (S nor

K̃
)∧rig sp−→ S nor

K̃,Fp
,

which is a quasi-compact open subset of Y ad. Note that V \ (V ∩ Zad) = Ur,K by
Remark 5.31. Therefore, [Hub98c, Theorem 3.3 (i)] tells us that H i

c(Ur,K,Ev ,F) is
finite-dimensional. This completes the proof in the Hodge type case.

Next we consider the preabelian type case. We choose a compact open sub-
group of K ′′ of Gad(A∞) in such a way as in Proposition 5.10 (iii), and use the
notation in Lemma 4.4. Then, for [P ] ∈ PK(G), the inverse image of C[P ad] under
π : ShK(G,X) → ShK′′(G

ad, Xad) is equal to C[P ]. Therefore, by pushing forward
sheaves by π, we may assume that G = G′ad (note that (π∗Fn)ad = πad

∗ Fad
n by

[Hub96, Theorem 3.7.2]). Since the Hecke action is transitive on the connected
components of ShK(G,X)Ev , we may work on a connected component ShK(G,X)0

Ev

of ShK(G,X)Ev which is a quotient of a connected component ShK′(G
′, X ′)0

Ev
of
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ShK′(G
′, X ′)Ev by a free action of a finite group H for some K ′. By Corollary 5.29,

the inverse image of C[P ],Ev
∩ ShK(G,X)0,ad

Ev
for [P ] ∈ PK(G) under

f : ShK′(G
′, X ′)0,ad

Ev
→ ShK(G,X)0,ad

Ev

equals ∐
[P ′]∈PK′ (G′),[P ′] 7→[P ]

C[P ′],Ev
∩ ShK′(G

′, X ′)0,ad

Ev
.

Since H i
c(C[P ′],Ev

, f ∗F) is finite-dimensional, so is

H i
c

(
f−1(C[P ],Ev

∩ ShK(G,X)0,ad

Ev
), f ∗F

)
.

By Lemma 6.6, H i
c(C[P ],Ev

∩ ShK(G,X)0,ad

Ev
,F) is equal to the H-invariant part of

the above, hence finite-dimensional. This concludes the proof of (i).
The assertion (ii) can be proved in the same way, by using the Hochschild-Serre

spectral sequence in place of Lemma 6.6 when taking a quotient.

Remark 6.9 By the same method and Remark 6.7, we can also prove that the nat-
ural map H i

c(C[P ],Ev
,Fad)→ lim←−nH

i
c(C[P ],Ev

,Fad
n )⊗Q` is an isomorphism. However,

we do not need this fact.

Now let Kp′ be as in Section 6.1, Kp′ a compact open subgroup of G(Qp′), and
K = Kp′K

p′ . Take a Shimura datum (G′, X ′) of Hodge type such that (Gad, Xad) ∼=
(G′ad, X ′ad), and an embedding i : (G′, X ′) ↪→ (GSp2n, X2n) into a Siegel Shimura
datum. Then, as in Lemma 5.28 and Lemma 5.30, we obtain an increasing sequence

{[G]} = PG(K)≤0 ⊂ PG(K)≤1 ⊂ · · · ⊂ PG(K)≤n = PG(K)

of subsets of PG(K). Note that PG(K)r = PG(K)≤r \PG(K)≤r−1 is a union of fibers
of the natural map PG(K)→ PG,A∞ . Therefore, by refining the sequence above, we
can find an increasing sequence

{[G]} = S0 ( S1 ( · · · ( Sm = PG(K)

of subsets of PG(K) satisfying the following conditions:

– For every 0 ≤ r ≤ n, there exists 0 ≤ j ≤ m such that Sj = PG(K)≤r.

– For [P1], [P2] ∈ PG(K), P1 and P2 are conjugate by G(Qp′) if and only if
[P1], [P2] ∈ Sj \ Sj−1 for some 0 ≤ j ≤ m (here we put S−1 = ∅).

For 0 ≤ j ≤ m, we put Tj,K =
⋃

[P ]∈Sj C[P ]. By Lemma 5.30, it is a constructible

open subset of Shad
K,Ev . Further, we put Zj,K = Tj,K \ Tj−1,K (T−1,K is regarded as

∅). Lemma 5.30 tells us that Zj,K =
∐

[P ]∈Sj\Sj−1
C[P ] as topological spaces. For a

compact open subgroup K ′p′ ⊂ Kp′ , we put K ′ = K ′p′K
p′ , and let S ′j be the inverse

image of Sj under the natural map PG(K ′) → PG(K). The sequence {S ′j}0≤j≤m
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satisfies the same conditions as {Sj}0≤j≤m does. Therefore, we can define Tj,K′ and
Zj,K′ in the same way as Tj,K and Zj,K . Note that Tj,K′ (resp. Zj,K′) is the inverse
image of Tj,K (resp. Zj,K) under Shad

K′,Ev → Shad
K,Ev . We put

V i
≤j = lim−→

K′
p′

H i
c(Tj,K′,Ev ,L

ad
ξ ), V i

j = lim−→
K′
p′

H i
c(Zj,K′,Ev ,L

ad
ξ ),

where K ′p′ runs through compact open subgroups of Kp′ .

Lemma 6.10 (i) The group G(Qp′) naturally acts on V i
≤j and V i

j , and these are
admissible G(Qp′)-representations.

(ii) We have the following long exact sequence of G(Qp′)-modules:

· · · → V i
≤j−1 → V i

≤j → V i
j → V i+1

≤j−1 → · · · .

Proof. First, by Corollary 5.29, the group G(Qp′) acts on V i
≤j and V i

j . By Lemma
6.8, we have a long exact sequence as in (ii), which is obviously G(Qp′)-equivariant.

Let us prove (i). Clearly V i
≤j and V i

j are smooth G(Qp′)-representations. We will
show the admissibility of them. Take a compact open subgroup Kp′ of G(Qp′) and
its open normal subgroup K ′p′ , and put K = Kp′K

p′ , K ′ = K ′p′K
p′ . Then, we have

H i
c(Zj,K′,Ev ,L

ad
ξ )Kp′ = H i

c(Zj,K,Ev ,L
ad
ξ )

by Lemma 6.6. Taking the inductive limit with respect to K ′p′ , we have

(V i
j )Kp′ = H i

c(Zj,K,Ev ,L
ad
ξ ) =

⊕
[P ]∈Sj\Sj−1

H i
c(C[P ],Ev

,Lad
ξ ).

By Proposition 6.5 (i), it is a finite-dimensional Q`-vector space. Therefore we
conclude that V i

j is an admissible representation of G(Qp′). By the long exact
sequence in (ii) and the obvious identity V i

0 = V i
≤0, we can see the admissibility of

V i
≤j inductively.

Proposition 6.11 We take a representative Pj of an element of Sj \ Sj−1. For a
compact open subgroup K ′p′ ⊂ Kp′ , let [Pj]K′ denote the class of Pj in PG(K ′).

We put W i
j = lim−→K′

p′
H i
c(C[Pj ]K′ ,Ev

,Lad
ξ ), where K ′p′ runs through compact open sub-

groups of Kp′ .

(i) We have a natural smooth action of Pj(Qp′) on W i
j .

(ii) We have a natural G(Qp′)-equivariant isomorphism V i
j
∼= Ind

G(Qp′ )
Pj(Qp′ )

W i
j .

(iii) The G(Qp′)-representation V i
j is non-cuspidal.

Proof. The claim (i) is clear from Corollary 5.29. Let us prove (ii). We follow
the proof of [IM10, Proposition 5.20]. By the Frobenius reciprocity, we have a

homomorphism of G(Qp′)-modules Ind
G(Qp′ )
Pj(Qp′ )

W i
j → V i

j . We shall observe that this
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is bijective. We take a special maximal compact subgroup K0
p′ of G(Qp′). For a

compact open subgroup K ′p′ ⊂ Kp′ which is normal in K0
p′ , we have

H i
c(Zj,K′,Ev ,L

ad
ξ )

(1)
=

⊕
[P ]∈S′j\S′j−1

H i
c(C[P ],Ev

,Lad
ξ )

(2)
=

⊕
g∈K′

p′\G(Qp′ )/Pj(Qp′ )

H i
c(C[gPjg−1]K′ ,Ev

,Lad
ξ )

(3)
=

⊕
g∈K′

p′\K
0
p′/Pj(Qp′ )∩K

0
p′

H i
c(C[gPjg−1]K′ ,Ev

,Lad
ξ )

(4)∼= Ind
K0
p′/K

′
p′

(Pj(Qp′ )∩K0
p′ )/(Pj(Qp′ )∩K

′
p′ )
H i
c(C[Pj ]K′ ,Ev

,Lad
ξ ).

Here (1) follows from Zj,K′ =
∐

[P ]∈S′j\S′j−1
C[P ] mentioned before, (2) from the defi-

nitions of S ′j and Pj, and (3) from the Iwasawa decomposition G(Qp′) = Pj(Qp′)K
0
p′ .

The isomorphism (4) is a consequence of Corollary 5.29 and [Boy99, Lemme 13.2].
By taking the inductive limit, we obtain K0

p′-isomorphisms

V i
j
∼= Ind

K0
p′

Pj(Qp′ )∩K0
p′
W i
j

∼=←− Ind
G(Qp′ )
Pj(Qp′ )

W i
j

(the second map is an isomorphism by the Iwasawa decomposition). By the proof of
[Boy99, Lemme 13.2], it is easy to see that the first isomorphism above is nothing but
the K0

p′-homomorphism obtained by the Frobenius reciprocity for Pj(Qp′) ∩ K0
p′ ⊂

K0
p′ . Therefore the composite of the two isomorphisms above coincides with the

G(Qp′)-homomorphism introduced at the beginning of our proof of (ii). Thus we
conclude the proof of (ii).

Finally consider (iii). By (ii), we have only to prove that the unipotent radical
of Pj(Qp′) acts trivially on W i

j . By [Boy99, Lemme 13.2.3], it suffices to prove that
W i
j is an admissible Pj(Qp′)-representation. For any compact open subgroup K ′p′ of

K0
p′ , the vector space (W i

j )
Pj(Qp′ )∩K′p′ is a subspace of (Ind

G(Qp′ )
Pj(Qp′ )

W i
j )
K′
p′ . By (ii) and

Lemma 6.10 (i), (Ind
G(Qp′ )
Pj(Qp′ )

W i
j )
K′
p′ ∼= (V i

j )
K′
p′ is a finite-dimensional Q`-vector space.

Hence W i
j is an admissible Pj(Qp′)-representation, as desired.

Proof of Theorem 6.1. The claim follows from Lemma 6.10 (ii) and Proposition 6.11
(iii), because V i

≤0 = H i
c(Shpg

∞,Kp′ ,Ev
,Lad

ξ ) and V i
≤m = H i

c(Sh∞,Kp′ ,Ev
,Lξ).

6.3 Torsion coefficients

Since our method of proving Theorem 6.1 is totally geometric, we may also obtain
an analogous result for `-torsion coefficients. For simplicity, we will only consider a

40



Potentially good reduction loci of Shimura varieties

constant coefficient F`. We assume that p′ 6= `, and put

H i
c(Sh∞,Kp′ ,Ev

,F`) = lim−→
Kp′

H i
c(ShKp′Kp′ ,Ev

,F`),

H i
c(Shpg

∞,Kp′ ,Ev
,F`) = lim−→

Kp′

H i
c(Shpg

Kp′K
p′ ,Ev

,F`).

They are naturally endowed with actions of G(Qp′)×Gal(Ev/Ev). They are admis-
sible/continuous G(Qp′)×Gal(Ev/Ev)-representations; note that we have

H i
c(Sh∞,Kp′ ,Ev

,F`)Kp′ = H i
c(ShKp′Kp′ ,Ev

,F`),

H i
c(Shpg

∞,Kp′ ,Ev
,F`)Kp′ = H i

c(Shpg

Kp′K
p′ ,Ev

,F`),

if Kp′ is a pro-p′ group (cf. [Mie10, Proposition 2.5]).

The following theorem can be proved in exactly the same way as Theorem 6.1
(we use Proposition 6.5 (ii) in place of Proposition 6.5 (i)).

Theorem 6.12 We assume that p′ 6= `. The kernel and the cokernel of the canonical
homomorphism

H i
c(Shpg

∞,Kp′ ,Ev
,F`)→ H i

c(Sh∞,Kp′ ,Ev
,F`)

have no supercuspidal subquotient of G(Qp′). For the definition of supercuspidal
representations over F`, see [Vig96, II.2.5].

7 PEL type case

7.1 Notation for Shimura varieties of PEL type

In this section, we are interested in Shimura varieties of PEL type considered in
[Kot92b, §5] (see also [Lan13, §1.4]). We recall it briefly. Fix a prime p. Consider a
6-tuple (B,OB, ∗, V, L, 〈 , 〉), where

– B is a finite-dimensional simple Q-algebra such that B ⊗Q Qp is a product of
matrix algebras over unramified extensions of Qp,

– OB is an order of B whose p-adic completion is a maximal order of B ⊗Q Qp,

– ∗ is a positive involution of B (namely, an involution such that Tr(bb∗) > 0 for
every non-zero b ∈ B) which preserves OB,

– V is a non-zero finite B-module,

– L is a Z-lattice of V preserved by OB, and

– 〈 , 〉 : V × V → Q is a non-degenerate alternating ∗-Hermitian pairing with
respect to the B-action such that 〈x, y〉 ∈ Z for every x, y ∈ L, and that
Lp = L⊗Z Zp is a self-dual lattice of Vp = V ⊗Q Qp.
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From (B, V, 〈 , 〉), we define a simple Q-algebra C = EndB(V ) with a unique invo-
lution # satisfying 〈cv, w〉 = 〈v, c#w〉 for every c ∈ C and v, w ∈ V . Moreover we
define an algebraic group G over Q by

G(R) = {g ∈ (C ⊗Q R)× | gg# ∈ R×}

for every Q-algebra R. The condition gg# ∈ R× is equivalent to the existence of
c(g) ∈ R× such that 〈gv, gw〉 = c(g)〈v, w〉 for every v, w ∈ V ⊗QR. By the presence
of the lattice L, G can be naturally extended to a group scheme over Z, which is
also denoted by the same symbol G.

Consider an R-algebra homomorphism h : C → C ⊗Q R preserving involutions
(on C, we consider the complex conjugation) such that the symmetric real-valued
bilinear form (v, w) 7→ 〈v, h(i)w〉 on V ⊗Q R is positive definite. Such a 7-tuple
(B,OB, ∗, V, L, 〈 , 〉, h) is said to be an unramified integral PEL datum. Note that
the map h induces a homomorphism ResC/R Gm → GR of algebraic groups over R,
which is also denoted by h.

Let F be the center of B and F+ the subfield of F consisting of elements fixed
by ∗. The existence of h tells us that N = [F : F+](dimF C)1/2/2 is an integer. An
unramified integral PEL datum falls into the following three types:

type (A) [F : F+] = 2.

type (C) [F : F+] = 1 and C ⊗Q R is isomorphic to a product of M2N(R).

type (D) [F : F+] = 1 and C ⊗Q R is isomorphic to a product of MN(H).

For simplicity, we will exclude the type (D) case.
Using h : C→ C⊗QR ↪→ C⊗QC, we can decompose the B⊗QC-module V ⊗QC

as V ⊗Q C = V1 ⊕ V2, where V1 (resp. V2) is the subspace of V ⊗Q C on which
h(z) acts by z (resp. z) for every z ∈ C. We denote by E the field of definition of
the isomorphism class of the B ⊗Q C-module V1, and call it the reflex field. It is a
subfield of C which is finite over Q.

In the sequel, we fix an unramified integral PEL datum (B,OB, ∗, V, L, 〈 , 〉, h).

For a compact open subgroup Kp of G(Ẑp), consider the functor SKp from the
category of OE,(p)-schemes to the category of sets, that associates S to the set of
isomorphism classes of quadruples (A, i, λ, ηp), where

– A is an abelian scheme over S,

– λ : A→ A∨ is a prime-to-p polarization,

– i : OB → EndS(A) is an algebra homomorphism such that λ ◦ i(b) = i(b∗)∨ ◦ λ
for every b ∈ OB,

– ηp is a level-Kp structure of (A, i, λ) of type (L ⊗Z Ẑp, 〈 , 〉) in the sense of
[Lan13, Definition 1.3.7.6],

satisfying the equality of polynomials detOS(b; LieA) = detE(b;V1) in the sense of
[Kot92b, §5]. Recall that two quadruples (A, i, λ, ηp) and (A′, i′, λ′, η′p) are said to
be isomorphic if there exists an isomorphism f : A → A′ of abelian schemes such
that
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– λ = f∨ ◦ λ′ ◦ f ,

– f ◦ i(b) = i′(b) ◦ f for every b ∈ OB,

– and f ◦ ηp = η′p in the sense of [Lan13, Definition 1.4.1.4].

If Kp is neat (cf. [Lan13, Definition 1.4.1.8]), the functor SKp is represented by a
quasi-projective smooth OE,(p)-scheme (see [Lan13, Corollary 7.2.3.9]), which is also
denoted by SKp . Here we will call it a Shimura variety of PEL type. The group
G(A∞,p) naturally acts on the tower of schemes (SKp)Kp⊂G(Ẑp) as Hecke correspon-
dences.

Let ` be a prime number different from p. For an algebraic representation ξ of
G on a finite-dimensional Q`-vector space, we can define a Q`-sheaf Lξ on ShK (see
[Mil90, III, §6]). It is equivariant with respect to the Hecke action.

Remark 7.1 (i) Our definition of SKp , due to [Lan13], is slightly different from
that in [Kot92b], but they give the same moduli space. See [Lan13, Proposition
1.4.3.4].

(ii) Let us recall the relation between SKp and Shimura varieties in Section 4.
See [Kot92b, §8] for detail. Let X denote the G(R)-orbit of the homomor-
phism h : ResC/R Gm → GR. Then, the pair (G,X) forms a Shimura da-
tum, and SKp,E is isomorphic to a disjoint union of # ker1(Q, G) copies of
ShG(Zp)Kp(G,X). In the cases of type (C) or type (A) with N even, it is known
that ker1(Q, G) = 1.

So far in this section, we have only considered level structures which are prime
to p. Now we add pm-level structures on the universal abelian scheme of the generic
fiber SKp,E. Let Sm,Kp,E be the scheme over SKp,E classifying principal level-m
structures (cf. [Lan13, Definition 1.3.6.2]) of the universal object (A, iuniv, λuniv) over
SKp,E. We denote the structure morphism Sm,Kp,E → SKp,E by prm, which is finite
and étale. We write Lξ,m or Lξ for the inverse image of Lξ by prm.

Let Kp,m be the compact open subgroup of G(Qp) defined as the kernel of
G(Zp)→ G(Z/pmZ). Then Sm,Kp,E coincides with a disjoint union of the Shimura
variety ShKp,mKp(G,X), where we use the notation in Remark 7.1 (ii).

7.2 Compactly supported cohomology and nearby cycle co-
homology

Fix a place v of E over p. We write Ev for the completion of E at v, Ov for the
ring of integers of Ev, and κv the residue field of Ov. We put SKp,η = SKp,Ev ,
SKp,η = SKp,Ev

, SKp,v = SKp,κv and SKp,v = SKp,κv . Further, for m ≥ 0 we set

Sm,Kp,η = Sm,Kp,E ⊗E Ev and Sm,Kp,η = Sm,Kp,E ⊗E Ev.

Let p′ be a prime number, and Kp′ ⊂ G(Ẑp′) a compact open subgroup. If p′ 6= p,
we assume that Kp′ = Kp,m0K

p′,p for some m0 ≥ 0 and compact open subgroup Kp′,p
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of G(Ẑp′,p). We put

H i
c(S∞,Kp′ ,η,Lξ) =

{
lim−→m

H i
c(Sm,Kp,η,Lξ) if p′ = p,

lim−→Kp′
H i
c(Sm0,Kp′K

p′,p,η,Lξ) if p′ 6= p,

which is an admissible/continuous G(Qp′)×Gal(Ev/Ev)-representation. We are also
interested in the nearby cycle cohomology defined as follows:

H i
c(S∞,Kp′ ,v, RψLξ) =

{
lim−→m

H i
c

(
SKp,v, Rψ(prm∗ Lξ)

)
if p′ = p,

lim−→Kp′
H i
c

(
SKp′K

p′,p,v, Rψ(prm0∗ Lξ)
)

if p′ 6= p.

Obviously the group Gal(Ev/Ev) acts on it. The following lemma gives an action
of G(Qp′) on H i

c(S∞,Kp′ ,v, RψLξ).

Lemma 7.2 We have a natural action ofG(Qp′) onH i
c(S∞,Kp′ ,v, RψLξ). By this ac-

tion, H i
c(S∞,Kp′ ,v, RψLξ) becomes an admissible/continuous G(Qp′)×Gal(Ev/Ev)-

representation.

Proof. We show the claim in the case p′ = p. The other cases are easier. To ease
notation, we omit the subscript Kp.

As in [Man05, §6], we can construct a tower (Sm)m≥0 of schemes over Ov with
finite transition maps such that Sm gives an integral model of Sm,η and S0 = S .
In this situation, we have

H i
c

(
Sv, Rψ(prm∗ Lξ)

)
= H i

c(Sm,v, RψLξ),

where Sm,v = Sm ⊗Ov κv.
We put G+(Qp) = {g ∈ G(Qp) | g−1Lp ⊂ Lp}. For g ∈ G+(Qp), let e(g) be the

minimal non-negative integer such that gLp ⊂ p−e(g)Lp. Then we can construct a
tower (Sm,g)m≥e(g) of schemes over Ov and two morphisms

pr : Sm,g → Sm, [g] : Sm,g → Sm−e(g)

which are compatible with the transition maps. It is known that these are proper
morphisms, pr induces an isomorphism on the generic fibers, and [g] induces the
Hecke action of g on the generic fibers (see [Man05, Proposition 16, Proposition
17]). In particular, we have a canonical cohomological correspondence (cf. [SGA5,
Exposé III], [Fuj97])

cg : [g]∗ηLξ,m−e(g)
∼=−→ pr∗η Lξ,m = R pr!

η Lξ,m.

Let

Rψ(cg) : [g]∗vRψLξ,m−e(g) → R pr!
v RψLξ,m
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be the specialization of cg (cf. [Fuj97, §1.5], [IM10, §6]). Since [g]v is proper, this
induces a homomorphism

H i
c(Sm−e(g),v, RψLξ)

Hi
c(Rψ(cg))−−−−−−→ H i

c(Sm,v, RψLξ).

Taking the inductive limit, we get

γg : H i
c(S∞,Kp,v, RψLξ)→ H i

c(S∞,Kp,v, RψLξ).

From an obvious relation cgg′ = cg ◦g∗cg′ for g, g′ ∈ G+(Qp), we deduce γgg′ = γg ◦γg′
(cf. [IM10, Corollary 6.3]). On the other hand, by [Man05, Proposition 16 (3),
Proposition 17 (3)], γp−1 is the identity. Since G(Qp) is generated by G+(Qp) and p
as a monoid, we can extend γg to the whole G(Qp). By [Man05, Proposition 16 (4)],
the restriction of this action to Kp,0 = G(Zp) coincides with the inductive limit of
the natural action of Kp,0 on H i

c(Sm,v, RψLξ). In particular, it is a smooth action.
Furthermore, for integers m′ ≥ m ≥ 1, we have

H i
c(Sm′,v, RψLξ)Kp,m/Kp,m′ = H i

c(Sm,v, RψLξ)

(see [Mie10, Proposition 2.5]). Taking inductive limit, we obtain

H i
c(S∞,Kp,v, RψLξ)Kp,m = H i

c(Sm,v, RψLξ).

This implies that H i
c(S∞,Kp,v, RψLξ) is an admissible/continuous representation of

G(Qp)×Gal(Ev/Ev).

Corollary 7.3 The kernel and the cokernel of the canonical homomorphism

H i
c(S∞,Kp′ ,v, RψLξ)→ H i

c(S∞,Kp′ ,η,Lξ)

(cf. [SGA7, Exposé XIII, (2.1.7.3)]) are non-cuspidal. In particular, for an irre-
ducible supercuspidal representation π of G(Qp′), we have an isomorphism

H i
c(S∞,Kp′ ,η,Lξ)[π] ∼= H i

c(S∞,Kp′ ,v, RψLξ)[π].

Similar results hold for the coefficient F` for a prime number ` 6= p, p′.

Proof. Analogues of Theorem 5.17 and Theorem 6.1 are also valid in the PEL type
case in this section by Remark 7.1 (ii). Let S pg

Kp,Ev
be the potentially good reduction

locus of S ad
Kp,Ev

. As in the Siegel case, S pg
Kp,Ev

coincides with the rigid generic fiber
of the completion of SKp,Ov along the special fiber. Hence, we have an isomorphism

H i
c(S

pg

Kp,Ev
, prm∗ Lad

ξ ) ∼= H i
c(SKp,v, Rψ(prm∗ Lξ))

for any non-negative integer m by [Hub96, Theorem 3.7.2, Theorem 5.7.6] and
[Hub98c, Theorem 3.1]. Taking inductive limits, we have an isomorphism

H i
c(S

pg

∞,Kp′ ,Ev
,Lad

ξ ) ∼= H i
c(S∞,Kp′ ,v, RψLξ).

Hence the claim follows from the analogue of Theorem 6.1.
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Remark 7.4 (i) The case where p′ 6= p in Corollary 7.3 was previously obtained
by Tetsushi Ito and the second author. In that case, we can use minimal
compactifications over Ov to show the claim.

(ii) In [LS15], Lan and Stroh obtained a stronger result that the canonical homo-
morphism in Corollary 7.3 is in fact an isomorphism. Their method is totally
different from ours.

7.3 Example

In this subsection, we give a very simple application of Corollary 7.3. Proofs in this
subsection are rather sketchy, since the technique is more or less well-known.

Here we consider the Shimura variety for GU (1, n − 1) over Q. Let F be an
imaginary quadratic extension of Q and SplF/Q the set of rational primes over which
F/Q splits. We fix a field embedding F ↪→ C and regard F as a subfield of C.
For an integer n ≥ 2, consider the integral PEL datum (B,OB, ∗, V, L, 〈 , 〉, h) as
follows:

– B = F , OB = OF and ∗ is the unique non-trivial element of Gal(F/Q).

– V = F n and L = OnF .

– 〈 , 〉 : V × V → Q is an alternating pairing satisfying the following conditions:

• 〈x, y〉 ∈ Z for every x, y ∈ L,
• 〈bx, y〉 = 〈x, b∗y〉 for every x, y ∈ V and b ∈ F , and
• GR ∼= GU (1, n− 1) (for the definition of G, see Section 7.1).

– h : C → EndF (V ) ⊗Q R ∼= Mn(C) is given by z 7→
(
z 0
0 zIn−1

)
, where the last

isomorphism is induced by the fixed embedding F ↪→ C.

In this case, the reflex field E is equal to F . To a neat compact open subgroup K
of G(Ẑ), we can attach the Shimura variety ShK of PEL type, which is not proper
over SpecF .

Put Σ = {p ∈ SplF/Q | Lp = L⊥p }. Then our integral Shimura datum is unrami-
fied at every p ∈ Σ. Moreover, for such p, GQp is isomorphic to GLn(Qp)×GL1(Qp)

(cf. [Far04, §1.2.3]). If K = Kp,0K
p for some compact open subgroup Kp of G(Ẑp),

we have ShK = SKp⊗OF,(p) F , where SKp is the moduli space introduced in Section
7.1.

Let us fix a prime number `. We put

H i
c(Sh,Q`) = lim−→

K

H i
c(ShK ⊗FF ,Q`).

It is an admissible/continuous G(A∞)×Gal(F/F )-representation over Q`.

Theorem 7.5 Let Π be an irreducible admissible representation of G(A∞) over Q`.
Assume that there exists a prime p ∈ Σ such that Πp is a supercuspidal representa-
tion of G(Qp). Then H i

c(Sh,Q`)[Π] = 0 unless i = n− 1.
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Remark 7.6 For proper Shimura varieties, an analogous result is known ([Clo91],
[HT01, Corollary IV.2.7]). It would be possible to give an “automorphic” proof of
Theorem 7.5 by using results in [Mor10]. However, the authors think that our proof,
consisting of purely local arguments, is simpler and has some importance.

Proof. Let `′ be another prime number and fix an isomorphism of fields ι : Q`
∼= Q`′ .

Then ι induces an isomorphism H i
c(Sh,Q`)[Π] ∼= H i

c(Sh,Q`′)[ιΠ], where ιΠ is the
representation of G(A∞) over Q`′ induced by Π and ι. It is easy to observe that Πp

is supercuspidal if and only if (ιΠ)p is supercuspidal. Therefore, we can change our
` freely, and thus we can assume that there exists a prime p ∈ Σ \ {`} such that
Πp is supercuspidal. Fix such p and take a place v of F lying over p. Then, for an

integer m ≥ 0 and a neat compact open subgroup Kp of G(Ẑp), ShKp,mKp ⊗FFv is
isomorphic to Sm,Kp,η introduced in Section 7.2. Therefore we have an isomorphism

H i
c(Sh,Q`) ∼= lim−→

m,Kp

H i
c(Sm,Kp,η,Q`) = lim−→

Kp

H i
c(S∞,Kp,η,Q`).

Thus it suffices to show that H i
c(S∞,Kp,η,Q`)[π] = 0 for a supercuspidal representa-

tion π of G(Qp), a neat compact open subgroup Kp, and an integer i 6= n − 1. By
Corollary 7.3, it is equivalent to showing that H i

c(S∞,Kp,v, RψQ`)[π] = 0.

For an integer h ≥ 0, let S [h]
Kp,v be the reduced closed subscheme of SKp,v con-

sisting of points x such that the étale rank of Ax[v∞] is less than or equal to h
(cf. [HT01, p. 111]), where A denotes the universal abelian scheme over SKp . Put

S (h)
Kp,v = S [h]

Kp,v \S [h−1]
Kp,v . Our proof of the theorem is divided into the subsequent

two lemmas.

Lemma 7.7 For every supercuspidal representation π of G(Qp), we have

H i
c(S∞,Kp,v, RψQ`)[π] =

(
lim−→
m

H i
c

(
S [0]
Kp,v, (Rψ prm∗Q`)|S [0]

Kp,v

))
[π].

Proof. First recall that Sm,Kp,η has a good integral model over Ov. For an integer
m ≥ 0, consider the functor from the category of Ov-schemes to the category of sets,
that associates S to the set of isomorphism classes of 6-tuples (A, i, λ, ηp, ηv, ηp,0),
where

– [(A, i, λ, ηp)] ∈ SKp(S),

– ηv : L ⊗Z (v−mOv/Ov) → A[vm] is a Drinfeld vm-level structure (cf. [HT01,
II.2]), and

– ηp,0 : p−mZ/Z→ µpm,S is a Drinfeld pm-level structure.

Then it is easy to see that this functor is represented by a scheme Sm,Kp which is
finite over SKp . Moreover the generic fiber of Sm,Kp can be naturally identified
with Sm,Kp,η (cf. the moduli problem X′U introduced in [HT01, p. 92]). As in
[HT01, III.4], we can extend the Hecke action of G(Qp) on (Sm,Kp,η)m≥0 to the
tower (Sm,Kp)m≥0. We have a G(Qp)-equivariant isomorphism

H i
c(S∞,Kp,v, RψQ`) ∼= lim−→

m

H i
c(Sm,Kp,v, RψQ`).
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Let us denote by S [h]
m,Kp,v (resp. S (h)

m,Kp,v) the inverse image of S [h]
Kp,v (resp. S (h)

Kp,v)
under Sm,Kp → SKp . For an integer h ≥ 0, it is easy to observe that

lim−→
m

H i
c

(
S [h]
Kp,v, (Rψ prm∗Q`)|S [h]

Kp,v

) ∼= lim−→
m

H i
c

(
S [h]
m,Kp,v, (RψQ`)|S [h]

m,Kp,v

)
,

lim−→
m

H i
c

(
S (h)
Kp,v, (Rψ prm∗Q`)|S (h)

Kp,v

) ∼= lim−→
m

H i
c

(
S (h)
m,Kp,v, (RψQ`)|S (h)

m,Kp,v

)
and that they are admissible G(Qp)-representations. Moreover, by considering the

kernel of the universal Drinfeld vm-level structure ηuniv
v , we can decompose S (h)

m,Kp,v

into finitely many open and closed subsets indexed by the set consisting of direct
summands of L ⊗Z (v−mOv/Ov) with rank n − h (cf. [Boy99, Définition 10.4.1,
Proposition 10.4.2] and [IM10, Definition 5.1, Lemma 5.3]). Using this partition,
when h > 0, we can prove that the G(Qp)-representation

lim−→
m

H i
c

(
S (h)
m,Kp,v, (RψQ`)|S (h)

m,Kp,v

)
is parabolically induced from a proper parabolic subgroup of G(Qp). Therefore, by
the same argument as in the proof of Theorem 6.1, we can conclude that the kernel
and the cokernel of

lim−→
m

H i
c(Sm,Kp,v, RψQ`)→ lim−→

m

H i
c

(
S [0]
m,Kp,v, (RψQ`)|S [0]

m,Kp,v

)
are non-cuspidal. This completes the proof of the lemma.

Lemma 7.8 Let π be a supercuspidal representation of G(Qp). If i 6= n − 1, we
have (

lim−→
m

H i
c

(
S [0]
Kp,v, (Rψ prm∗Q`)|S [0]

Kp,v

))
[π] = 0.

Proof. Let µh : Gm,C → GC be the homomorphism of algebraic groups over C defined
as the composite of

Gm,C
z 7→(z,1)−−−−→ Gm,C ×Gm,C

(∗)∼= (ResC/RGm,C)⊗R C hC−→ GC,

where (∗) is given by C ⊗R C
∼=−→ C × C; a ⊗ b 7→ (ab, ab). Fix an isomorphism of

fields C ∼= Qp and denote by µ : Gm,Qp → GQp the induced cocharacter of GQp . Let

b be a unique basic element of B(GQp , µ) (for the definition of B(G, µ), we refer to
[Far04, §2.1.1]), and denote by M the Rapoport-Zink space associated to the local
unramified PEL datum (F ⊗QQp,OF ⊗ZZp, ∗, Vp, Lp, 〈 , 〉, b, µ) (cf. [Far04, §2.3.5]).
The Rapoport-Zink spaceM is equipped with an action of the group J(Qp), where
J denotes the algebraic group over Qp associated to b (cf. [RZ96, Proposition 1.12]).
By [Far04, §2.3.7.1], M is isomorphic to MLT ×Q×p /Z×p , where MLT is the Lubin-
Tate space for GLn(Qp). Furthermore, J(Qp) is isomorphic to D× × Q×p , where D
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denotes the central division algebra over Qp with invariant 1/n. The action of J(Qp)
on M is identified with the well-known action of D× ×Q×p on MLT ×Q×p /Z×p .

By the p-adic uniformization theorem of Rapoport-Zink ([RZ96, Theorem 6.30],
[Far04, Corollaire 3.1.9]), we have an isomorphism∐

ker1(Q,G)

I(Q)\M×G(A∞,p)/Kp ∼= S ∧
Kp ,

where I is an algebraic group over Q satisfying I(A∞) ∼= J(Qp) × G(A∞,p) and

S ∧
Kp denotes the formal completion of SKp ⊗Ov W (Fp) along S [0]

Kp,v, the basic locus

of SKp,v. By this isomorphism, we know that S [0]
Kp,v, which coincides with S ∧

Kp

as topological spaces, consists of finitely many closed points; indeed, the left hand
side of the isomorphism above is a finite disjoint union of formal schemes of the
form Γ\M, where Γ ⊂ J(Qp) is a discrete cocompact subgroup (cf. [Far04, Lemme
3.1.7]). Therefore, by [Ber96, Theorem 3.1], we have an isomorphism

H i
c

(
S [0]
Kp,v, (Rψ prm∗Q`)|S [0]

Kp,v

)
= H i

(
S [0]
Kp,v, (Rψ prm∗Q`)|S [0]

Kp,v

)
∼= H i

(
Sm,Kp,η(b),Q`

)
,

where Sm,Kp,η(b) = pr−1
m (sp−1(S [0]

Kp,v)
◦)F v .

Now we use the Hochschild-Serre spectral sequence (see [Far04, Théorème 4.5.12])

Er,s
2 = lim−→

m

ExtrJ(Qp)-smooth

(
H2(n−1)−s
c (MKp,m ,Q`)(n− 1),A(I)K

p

1

)
⇒ lim−→

m

Hr+s
(
Sm,Kp,η(b),Q`

)
,

where MKp,m is the Rapoport-Zink space of level Kp,m, and A(I)1 is the space
of automorphic forms on I(A∞) (see [Far04, Définition 4.5.8] for detail). Since
J(Qp) = D××Q×p is anisotropic modulo center, it is easy to see that Er,s

2 = 0 unless
r = 0. If r = 0, we have

E0,s
2 = lim−→

m

HomJ(Qp)

(
H2(n−1)−s
c (M∞,Q`)(n− 1),A(I)K

p

1

)Kp,m
,

where we put H i
c(M∞,Q`) = lim−→m

H i
c(MKp,m ,Q`).

By [Mie10], the G(Qp)-representation H
2(n−1)−s
c (M∞,Q`)(n − 1) has non-zero

supercuspidal part only if s = n − 1. Indeed, for an irreducible supercuspidal
representation π = π1⊗χ of G(Qp) = GLn(Qp)×GL1(Qp), where π1 is an irreducible
supercuspidal representation of GLn(Qp) and χ is a character of GL1(Qp), we have

H i
c(M∞,Q`)[π] = H i

c(MLT,∞,Q`)[π1]⊗ χ,

as we see in [Far04, p. 168]. Therefore E0,s
2 has a supercuspidal subquotient only if

s = n− 1.
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Hence we conclude that

lim−→
m

H i
c

(
S [0]
Kp,v, (Rψ prm∗Q`)|S [0]

Kp,v

) ∼= lim−→
m

H i
(
Sm,Kp,η(b),Q`

)
has non-zero supercuspidal part only if i = n− 1.

We also have a similar result for the torsion coefficient case. For a neat compact
open subgroup Kp of G(Ẑp), we put

H i
c(ShKp ,F`) = lim−→

m

H i
c(ShKp,mKp ⊗FF ,F`).

It is an admissible/continuous G(Qp)×Gal(F/F )-representation over F`.

Theorem 7.9 Let p be a prime in Σ \ {`} and π an irreducible supercuspidal F`-
representation of G(Qp). Then, for every neat compact open subgroup Kp of G(Ẑp),
we have H i

c(ShKp ,F`)[π] = 0 unless i = n− 1.

Remark 7.10 (i) Theorem 7.9 for proper Shimura varieties is due to Shin [Shi15].
His method, using Mantovan’s formula, is slightly different from ours. The non-
proper cases are also covered in his paper using results in our paper.

(ii) Using the result in [Dat12], it is possible to describe the action of WQp on

Hn−1
c (ShKp ,F`)[π] by means of the mod-` local Langlands correspondence. Such

study has also been carried out by Shin when the Shimura variety is proper.

Proof. Almost all arguments in the proof of Theorem 7.5 work well. The only one
point which should be modified is about the vanishing of the supercuspidal part
of Er,s

2 for (r, s) 6= (0, n − 1) in the proof of Lemma 7.8; note that an irreducible
F`-representation of J(Qp), being supercuspidal, is not necessarily injective in the
category of smooth F`-representations of J(Qp) with the fixed central character.
For this point, we can use the same argument as that by Shin (see [Shi15, §3.2]), in
which he uses the vanishing of the supercuspidal part H i

c(MLT,∞,F`)sc for i 6= n− 1
(cf. [Dat12, proof of Proposition 3.1.1, Remarque 3.1.5]) and the projectivity of the
D×-representation Hn−1

c (MLT,∞,F`)sc (cf. [Dat12, §3.2.2, Remarque iii)]).
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[Del74] , Théorie de Hodge. III, Inst. Hautes Études Sci. Publ. Math.
(1974), no. 44, 5–77.

[Del79] , Variétés de Shimura: interprétation modulaire, et techniques de
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