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Abstract. We determine the parity of the Langlands param-
eter of a conjugate self-dual supercuspidal representation of
GL(n) over a non-archimedean local field by means of the local
Jacquet-Langlands correspondence. It gives a partial general-
ization of a previous result on the self-dual case by Prasad and
Ramakrishnan.

1 Introduction

Let F be a p-adic field. By the local Langlands correspondence, irreducible smooth
representations of GLn(F ) are known to be parameterized by n-dimensional repre-
sentations ofWF×SL2(C), whereWF denotes the Weil group of F . For an irreducible
smooth representation π of GLn(F ), we write recF (π) for the attached parameter,
which is called the Langlands parameter of π.

Let us assume that π is self-dual, namely, π is isomorphic to its contragredient
π∨. Since recF is compatible with dual, recF (π) is again self-dual. Therefore we
can consider the problem whether recF (π) is symplectic or orthogonal, under the
condition that recF (π) is irreducible, in other words, π is a discrete series represen-
tation. In [PR12], Prasad and Ramakrishnan answered this question by means of
the local Jacquet-Langlands correspondence. Let D be a central division algebra of
rank n over F . Recall that the local Jacquet-Langlands correspondence ([Rog83],
[DKV84]) gives a bijection between isomorphism classes of irreducible discrete series
representations of GLn(F ) and those of irreducible smooth representations of D×.
We write JL(π) for the representation of D× attached to π by this correspondence.
The theorem of Prasad and Ramakrishnan is as follows:

Theorem 1.1 ([PR12, Theorem B]) Assume that π is self-dual. If n is odd,
recF (π) is always orthogonal (this part is clear). If n is even, then recF (π) is sym-
plectic (resp. orthogonal) if and only if JL(π) is orthogonal (resp. symplectic).
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The purpose of this paper is to extend this theorem to the conjugate self-dual
setting. Let F/F+ be a quadratic extension of p-adic fields and τ the generator of
Gal(F/F+). A smooth representation (π, V ) of GLn(F ) is said to be conjugate self-
dual if πτ ∼= π∨, where πτ denotes the representation GLn(F )

τ
−→ GLn(F )

π
−→ GL(V ).

If π is conjugate self-dual, its Langlands parameter recF (π) is also conjugate self-dual
in the following sense. Take c ∈ WF+ \WF . For a representation φ of WF × SL2(C),
define a new representation φc by φc(w) = φ(cwc−1); it is independent of the choice of
c up to isomorphism. A representation φ is said to be conjugate self-dual if φc ∼= φ∨

holds. For an irreducible conjugate self-dual representation φ of WF × SL2(C), we
can define its parity Cφ ∈ {±1} in the similar way as in the self-dual case (for the
detail, see [GGP12, §3], [Mok15, §2.2] and Section 2 of this paper). If Cφ = 1, φ is
said to be conjugate orthogonal, otherwise conjugate symplectic. For an irreducible
conjugate self-dual discrete series representation π, the parity of recF (π) knows
whether π comes from the standard base change lifting or the twisted base change
lifting from the quasi-split unitary group UF/F+(n) (see [Mok15, §2]).

In this paper, we determine the parity of recF (π) by means of JL(π), under the
conditions that

– F/F+ is at worst tamely ramified,

– the invariant of D is 1/n,

– and π is supercuspidal (in other words, recF (π) is trivial on the SL2(C)-factor).

Under the first two assumptions, we construct explicitly an automorphism τ : D× →
D× such that τ |F× coincides with τ ∈ Gal(F/F+), and t ∈ D× such that τ 2(d) =
tdt−1 for d ∈ D× (Definition 2.10). For such a pair (τ, t), we can define the conjugate
self-duality and the parity of an irreducible smooth representation ofD× (see Section
2). Our main theorem is summarized as follows:

Theorem 1.2 (Main theorem, Theorem 2.12) Assume that F/F+ is at worst
tamely ramified and the invariant of D is 1/n. Let π be an irreducible conjugate
self-dual supercuspidal representation of GLn(F ). Then, JL(π) is conjugate self-dual
with respect to (τ, t), and its parity CJL(π) satisfies

CrecF (π) = (−1)n−1CJL(π).

Theorems 1.1, 1.2 are useful in the study of recF (π), because the determination of
JL(π) is usually much easier than that of recF (π). In Section 4, we apply Theorems
1.1, 1.2 to compute the parity of recF (π) for conjugate (or usual) self-dual simple
supercuspidal representations of GLn(F ) (for simple supercuspidal representations,
see [GR10], [RY14], [KL15]). For example, we prove that the Langlands parameter
of a self-dual simple supercuspidal representation of GL2n(F ) is symplectic if and
only if its central character is trivial. This result plays a crucial role in the recent
study of Oi [Oi16a] on the endoscopic lifting of simple supercuspidal representations
of SO2n+1(F ) to GL2n(F ).

Let us explain the strategy of our proof of Theorem 1.2. We use a geometric
method. The non-abelian Lubin-Tate theory ([Car90], [Boy99], [HT01]) tells us
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that the correspondences recF and JL for supercuspidal representations appear in
the ℓ-adic étale cohomology of the Lubin-Tate tower, which is a projective system
of universal deformation spaces of a one-dimensional formal OF -module X of height
n with suitable level structures. By using the cup product of the cohomology and a
result in [Mie10], we can construct a perfect pairing

(JL(π)⊠ recF (π))× (JL(π∨)⊠ recF (π
∨)) → C

for an irreducible supercuspidal representation π of GLn(F ). It enables us to com-
pare the parity of recF (π) and that of JL(π), provided that π is self-dual. As in
the introduction of [PR12], this method had already been found by Fargues; he
announced the supercuspidal case of Theorem 1.1 in [Far06, §5] without proof. The
new point of this paper is to adapt the argument above to the conjugate self-dual
case. In the conjugate self-dual case, we need to make the pairing “Hermitian”. For
this purpose, we introduce a new operator on the Lubin-Tate tower, which we call
the twisting operator. In the definition of it, we need to fix an additional structure
on the fixed formal OF -module X. This extra structure naturally induces the pair
(τ, t) in Theorem 1.2, as D× can be identified with the group of self-OF -isogenies of
X.

Since our method is geometric, our theorem is also valid in the equal character-
istic case. On the other hand, we need to assume that the invariant of D is 1/n and
π is supercuspidal, because this is the only case in which recF (π) and JL(π) have
nice geometric descriptions. The author expects that Theorem 1.2 is true for any
conjugate self-dual discrete series representation π; in fact, we can easily verify it for
a character twist of the Steinberg representation (see Remark 2.13). It seems also
an interesting question to extend Theorem 1.2 to general division algebras. These
problems will be considered in our future works.

The outline of this paper is as follows. In Section 2, we give some basic definitions
on conjugate self-dual representations and their parity. We need a slightly general
framework than usual, in order to formulate Theorem 1.2. Section 3 is devoted to
a proof of the main theorem. After a brief review of the non-abelian Lubin-Tate
theory, we introduce and study the twisting operator, which is a key of our proof.
To describe the pair (τ, t) explicitly, we also need some explicit computations of
Dieudonné modules. In Section 4, we apply the main theorem to determine the
parity of conjugate self-dual simple supercuspidal representations of GLn(F ).

Acknowledgment This work was supported by JSPS KAKENHI Grant Number
15K13424.

Notation For a field L and an integer m ≥ 1, we write µm(L) for the set of mth
roots of unity in L. If L is a discrete valuation field, we denote the ring of integers
of L by OL, and the maximal ideal of OL by pL. Every representation is considered
over C.
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2 Parity of conjugate self-dual representations

2.1 Basic definitions and properties

Let G be a totally disconnected locally compact topological group. We fix a contin-
uous automorphism τ : G → G and an element t ∈ G satisfying

τ 2 = Int(t), τ(t) = t,

where Int(t) : G → G denotes the isomorphism g �→ tgt−1. For a smooth repre-
sentation (π, V ) of G, we write (πτ , V ) for the smooth representation defined by
πτ (g) = π(τ(g)). We say that π is conjugate self-dual with respect to τ if πτ is
isomorphic to the contragredient representation π∨. If π is conjugate self-dual with
respect to τ , we have π∨∨ ∼= (πτ )∨ = (π∨)τ ∼= (πτ )τ = πt ∼= π (the last isomorphism
is given by π(t)−1). Hence π is admissible.

Let π be a smooth representation of G which is conjugate self-dual with respect
to τ . Then, there exists a non-degenerate bilinear pairing 〈 , 〉 : V ×V → C satisfying
〈π(τ(g))x, π(g)y〉 = 〈x, y〉 for every g ∈ G and x, y ∈ V . If π is irreducible, such a
pairing is unique up to scalar by Schur’s lemma (recall that π is admissible).

Lemma 2.1 There exists Cπ ∈ {±1} such that 〈π(t)y, x〉 = Cπ〈x, y〉 for every
x, y ∈ V .

Proof. Put 〈x, y〉′ = 〈π(t)y, x〉. Let g ∈ G and x, y ∈ V be arbitrary elements, and
we put g′ = τ−1(g). Then we have

〈π(τ(g))x, π(g)y〉′ = 〈π(t)π(g)y, π(τ(g))x〉 = 〈π(τ(tg′))y, π(tg′t−1)x〉

= 〈y, π(t)−1x〉 = 〈π(t)y, x〉 = 〈x, y〉′.

Therefore there exists Cπ ∈ C× such that 〈x, y〉′ = Cπ〈x, y〉 for every x, y ∈ V .
For x, y ∈ V , we have

〈x, y〉 = 〈π(τ(t))x, π(t)y〉 = 〈π(t)x, π(t)y〉 = Cπ〈π(t)y, x〉 = C2
π〈x, y〉.

Hence we have C2
π = 1. This concludes the proof.

Remark 2.2 The sign Cπ depends not only on τ but also on t. Let t′ ∈ G be
another element satisfying τ 2 = Int(t′). Then z = t′t−1 lies in the center of G and
fixed by τ . It is immediate to see that Cπ for t′ equals ωπ(z)Cπ, where ωπ denotes
the central character of π.

We call Cπ the parity of π (with respect to (τ, t)). If Cπ = 1 (resp. Cπ = −1),
we say that π is conjugate orthogonal (resp. conjugate symplectic). If τ = id and
t = 1, this notion coincides with the standard one.

Remark 2.3 Consider the case where (π, V ) is finite-dimensional, and put m =
dimC V .
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(i) Assume thatm = 1, and identify V with C. Then, 〈 , 〉 : C×C → C; (x, y) �→ xy
gives a non-degenerate bilinear pairing satisfying 〈π(τ(g))x, π(g)y〉 = 〈x, y〉.
From this pairing we can deduce Cπ = π(t).

(ii) Let 〈 , 〉 : V × V → C be a non-degenerate bilinear pairing as in the definition
of the parity. Put (det π, detV ) = (

∧m
π,

∧m V ). Then, 〈 , 〉 induces a pairing
detV × detV → C by

〈x1 ∧ · · · ∧ xm, y1 ∧ · · · ∧ ym〉 =
∑

σ∈Sm

sgn(σ)〈x1, yσ(1)〉 · · · 〈xm, yσ(m)〉.

It is non-degenerate and satisfies

〈(det π)(τ(g))x, (det π)(g)y〉 = 〈x, y〉, 〈(det π)(t)y, x〉 = Cm
π 〈x, y〉

for x, y ∈ detV and g ∈ G. Hence we have Cdetπ = Cm
π .

In particular, if m is odd, the parity Cπ can be computed as follows:

Cπ = Cm
π = Cdetπ = det π(t).

In contrast, if m is even, the parity is a more subtle invariant.

We give two elementary lemmas.

Lemma 2.4 Assume that (G, τ, t) is decomposed into (G1 × G2, τ1 × τ2, (t1, t2)),
where Gi is a totally disconnected locally compact topological group, τi : Gi → Gi

a continuous automorphism and ti ∈ Gi satisfying τ 2i = Int(ti). For each i = 1, 2,
let (πi, Vi) be an irreducible smooth representation of Gi conjugate self-dual with
respect to τi. Then, (π1 ⊠ π2, V1 ⊗ V2) is an irreducible smooth representation of G
conjugate self-dual with respect to τ , and Cπ1⊠π2 is equal to Cπ1Cπ2 .

Proof. It is well-known that the exterior tensor product of irreducible admissible
representations is irreducible. The parity can be computed by using the pairing
〈x1 ⊗ x2, y1 ⊗ y2〉 = 〈x1, y1〉1〈x2, y2〉2, where 〈 , 〉i : Vi × Vi → C is an appropriate
pairing attached to πi.

Lemma 2.5 Take an element h ∈ G and put τ ′ = Int(h) ◦ τ , t′ = hτ(h)t. Then we
have τ ′2 = Int(t′). For an irreducible smooth representation π of G, π is conjugate
self-dual with respect to τ if and only if it is conjugate self-dual with respect to τ ′.
If π is conjugate self-dual with respect to τ and τ ′, its parity with respect to (τ, t)
coincides with that with respect to (τ ′, t′).

Proof. The claim τ ′2 = Int(t′) is immediate. We write V for the representation
space of π. Assume that π is conjugate self-dual with respect to τ , and take a
non-degenerate pairing 〈 , 〉 : V × V → C satisfying 〈π(τ(g))x, π(g)y〉 = 〈x, y〉.
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Let 〈 , 〉h : V × V → C be the pairing defined by 〈x, y〉h = 〈π(h)−1x, y〉. It is a
non-degenerate pairing and satisfies

〈π(τ ′(g))x, π(g)y〉h = 〈π(h)−1π(hτ(g)h−1)x, π(g)y〉 = 〈π(τ(g))π(h)−1x, π(g)y〉

= 〈π(h)−1x, y〉 = 〈x, y〉h.

Therefore πτ ′ ∼= π∨, that is, π is conjugate self-dual with respect to τ ′. Since
τ = Int(h−1) ◦ τ ′, the converse is also the case.

Let us denote by C (resp. C ′) the parity of π, which is assumed to be conjugate
self-dual, with respect to (τ, t) (resp. (τ ′, t′)). We use the pairing 〈 , 〉h to compute
C ′. For x, y ∈ V , we have

C ′〈x, y〉h = 〈π(t′)y, x〉h = 〈π(h−1t′)y, x〉 = 〈π(τ(h)t)y, x〉 = 〈π(t)y, π(h)−1x〉

= C〈π(h)−1x, y〉 = C〈x, y〉h.

Hence we conclude that C = C ′.

Let H be an open subgroup of G. Take a smooth character χ : H → C× such
that π = c-IndG

H χ is irreducible and admissible. Note that IndG
H χ−1 = c-IndG

H χ−1

in this case. Indeed, since π is irreducible and admissible, so is π∨ ∼= IndG
H χ−1. As

c-IndG
H χ−1 is a non-zero G-invariant subspace of IndG

H χ−1, it equals IndG
H χ−1.

We will consider when π is conjugate self-dual with respect to τ , and how to
compute the parity of π.

Proposition 2.6 Put Hτ = τ−1(H), and write χτ for the character Hτ → C×;
h �→ χ(τ(h)). Assume that there exists a ∈ G which intertwines (H,χ−1) and
(Hτ ,χτ ); namely, satisfies the following conditions:

aHa−1 = Hτ , χ(h)−1 = χτ (aha−1) for every h ∈ H.

Then, the representation π = c-IndG
H χ is conjugate self-dual with respect to τ .

Furthermore, an element z = τ(a)ta lies in H, and the parity Cπ of π is given by
χ(z).

Proof. For f ∈ c-IndG
H χ, let f τ : G → C be the function g �→ f(τ(g)). Then,

it is easy to see that f τ belongs to c-IndG
Hτ χτ , and f �→ f τ gives an isomor-

phism (c-IndG
H χ)τ

∼=
−→ c-IndG

Hτ χτ of G-representations. On the other hand, for
f ∈ c-IndG

Hτ χτ , let fa : G → C be the function g �→ f(ag). We can check that fa

belongs to c-IndG
H χ−1 and f �→ fa gives an isomorphism c-IndG

Hτ χτ
∼=
−→ c-IndG

H χ−1.
Hence we have πτ = (c-IndG

H χ)τ ∼= c-IndG
Hτ χτ ∼= c-IndG

H χ−1 = IndG
H χ−1 ∼= π∨. In

other words, π is conjugate self-dual with respect to τ .
Next we prove z ∈ H. First we will see that z normalizes (H,χ). Since Hτ =

aHa−1, we have H = τ(a)τ 2(Hτ )τ(a)−1 = τ(a)tHτ t−1τ(a)−1 = zHz−1. Therefore z
normalizes H. Moreover, for h ∈ H we have

χ(z−1hz) = χτ (az−1hza−1)−1 = χτ (t−1τ(a)−1hτ(a)t)−1 = χ(a−1t−1τ(h)ta)−1

= χτ (t−1τ(h)t) = χ(h).
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Thus z fixes χ.
Recall that we are assuming that π = c-IndG

H χ is irreducible. Therefore,

HomG(π, π) = HomH(χ, (c-Ind
G
H χ)|H) ∼= HomH

(
χ,

⊕

g∈H\G/H

c-IndH
H∩g−1Hg χ

g
)

is one-dimensional (here χg denotes the character h′ �→ χ(gh′g−1) on H ∩ g−1Hg).
Since c-IndH

H∩z−1Hz χ
z = χ, z must lie in H; otherwise the direct sum above contains

χ⊕ χ.
Finally we compute the parity of π. Define a pairing 〈 , 〉 : c-IndG

H χ×c-IndG
H χ →

C by

〈f1, f2〉 =
∑

g∈H\G

(f τ
1 )

a(g)f2(g),

where the sum is essentially finite since the support of f2 is compact modulo H.

This pairing is the composite of (c-IndG
H χ)τ ×c-IndG

H χ
(1)
−→
∼=

c-IndG
H χ−1×c-IndG

H χ =

IndG
H χ−1×c-IndG

H χ
(2)
−→ C, where (1) denotes the isomorphism (f1, f2) �→ ((f τ

1 )
a, f2)

and (2) the canonical pairing. Hence 〈 , 〉 is a non-degenerate pairing satisfying
〈π(τ(g))f1, π(g)f2〉 = 〈f1, f2〉 for every g ∈ G and f1, f2 ∈ c-IndG

H χ.
By definition we can compute as follows:

〈π(t)f2, f1〉 =
∑

g∈H\G

(f τ
2 )

a(gt)f1(g) =
∑

g∈H\G

f2(τ(agt))f1(g)

(∗)
=

∑

g′∈H\G

f2(g
′)f1(a

−1t−1τ(g′)) =
∑

g′∈H\G

f1(z
−1τ(ag′))f2(g

′)

=
∑

g′∈H\G

χ(z)−1f1(τ(ag
′))f2(g

′) = χ(z)−1〈f1, f2〉.

At the equality (∗), we put g′ = τ(agt). As τ(aHgt) = τ(aHa−1)τ(agt) = Hτ(agt),
this replacement is well-defined. Hence the parity Cπ = C−1

π of π equals χ(z). This
completes the proof.

Proposition 2.6 will be used in Section 4, in which case G is a p-adic reductive
group. Suppose that G is a p-adic reductive group. Then, every irreducible smooth
representation of G is known to be admissible. Therefore, to apply Proposition 2.6,
we have only to check the irreducibility of π.

2.2 Division algebra setting

Let F+ be a non-archimedean local field and F a separable extension of F+ such
that [F : F+] ≤ 2. Denote by τ the generator of Gal(F/F+). Let q (resp. q′) denote
the cardinality of the residue field of OF (resp. OF+). We denote the characteristic
of Fq by p.

The extension F/F+ provides two well-known examples of (G, τ, t) in the previ-
ous subsection.

7



Yoichi Mieda

Example 2.7 For an integer n ≥ 1, put G = GLn(F ). Let τ : G → G be an
automorphism induced by τ ∈ Gal(F/F+). Then we have τ 2 = id, and we can set
t = 1.

Example 2.8 Let G be the Weil group WF of F . Fix an element c ∈ WF+ whose
image in WF+/WF is a generator, and let τ : G → G be Int(c). Then c2 lies in WF ,
and we can set t = c2. The conjugate self-duality and the parity are independent
of the choice of c. Indeed, another choice of c is of the form wc with w ∈ WF . Use
Lemma 2.5 to τ ′ = Int(wc) = Int(w) ◦ τ and t′ = (wc)2 = w(cwc−1)c2 = wτ(w)t.

The conjugate self-duality and the parity in this case coincides with those in
[GGP12, §3] and [Mok15, §2.2].

The parity under the setting in Example 2.8 is interesting because of the following
theorem:

Theorem 2.9 Let π be an irreducible supercuspidal representation of GLn(F ) and
recF (π) the corresponding n-dimensional irreducible smooth representation of WF

under the local Langlands correspondence.

(i) The representation π is conjugate self-dual under the setting in Example 2.7 if
and only if recF (π) is conjugate self-dual under the setting in Example 2.8.

(ii) Assume that F �= F+ and the characteristic of F is 0. The representation π

belongs to the image of the standard (resp. twisted) base change lift from the
quasi-split unitary group UF/F+(n) if and only if the parity CrecF (π) is equal to
(−1)n−1 (resp. (−1)n). For the notion of the base change lift, see [Mok15, §2].

In the following, we introduce another setting. Fix a separable closure F and a
uniformizer ̟ of F . For an integer n ≥ 1, we denote by Fn (resp. F+

n ) the unramified
extension of degree n of F (resp. F+) contained in F , and by σ ∈ Gal(Fn/F ) the
arithmetic Frobenius lift. Let D be the central division algebra over F with invariant
1/n. Recall that D can be written as Fn[Π], where Π is an element satisfying
Π

n = ̟ and Πa = σ(a)Π for every a ∈ Fn. Assuming the tameness of F/F+, we
will explicitly construct an isomorphism τ : D → D whose restriction to the center
F coincides with τ ∈ Gal(F/F+).

Definition 2.10 Assume that F/F+ is at worst tamely ramified.

(i) Suppose that F/F+ is an unramified quadratic extension. Then, τ ∈ Gal(F/F+)
is canonically extended to the arithmetic Frobenius lift in Gal(Fn/F

+), that is
also denoted by τ . It satisfies σ = τ 2. In this case, we take ̟ in F+ and define
τ : D → D by a �→ τ(a) (a ∈ Fn) and Π �→ Π. We put t = Π.

(ii) Suppose that F/F+ is a ramified quadratic extension (thus p �= 2). Then, the
restriction map Gal(Fn/F

+
n ) → Gal(F/F+) is an isomorphism. We also write

τ for the generator of Gal(Fn/F
+
n ). It commutes with σ ∈ Gal(Fn/F ).

In this case, we can (and do) take ̟ so that τ(̟) = −̟. Fix an element β ∈ F
such that βqn−1 = −1 and put α = βq−1. Since αqn−1 = (−1)q−1 = 1, α belongs
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to µqn−1(F ) = µqn−1(F
+
n ) and NrFn/F (α) = α1+q+···+qn−1

= βqn−1 = −1. We
define τ : D → D by a �→ τ(a) (a ∈ Fn) and Π �→ αΠ. Note that (αΠ)n =
NrFn/F (α)Π

n = −̟ = τ(̟) and (αΠ)τ(a) = ασ(τ(a))Π = τ(σ(a))(αΠ), which
ensure the well-definedness of τ . We put t = β−2 ∈ µqn−1(F ) = µqn−1(F

+
n ).

(iii) If F = F+, then we define τ : D → D to be the identity map. We put t = 1.

In each case we can check that τ 2(d) = tdt−1 holds for every d ∈ D. Therefore,
the triple (D×, τ, t) gives an example of the setting in Section 2.1.

Remark 2.11 (i) In the second case, the conjugate self-duality and the parity are
independent of the choice of β. Indeed, let β′ ∈ F be another element such that
β′qn−1 = −1. Then γ = β/β′ lies in µqn−1(F ) = µqn−1(F

+
n ). We put α′ = β′q−1

and write τ ′, t′ for τ , t attached to β′, respectively. Since α′
Π = γ(αΠ)γ−1, we

have τ ′ = Int(γ) ◦ τ and t′ = β′−2 = γ2t = γτ(γ)t. Hence the independence
follows from Lemma 2.5.

(ii) In the second case, assume that n is odd. Take ε ∈ F×
q \ (F×

q )
2 and η ∈ Fq2 such

that η2 = ε−1. We have ηq−1 = −1.
Then, the unique lifting β ∈ µq2−1(OF2) of η satisfies βqn−1 = (−1)1+q+···+qn−1

=
−1. Under this choice of β, we have α = βq−1 = −1. Moreover, the element
t = β−2 is the unique element of µq−1(OF ) lifting ε.

Our main theorem is as follows:

Theorem 2.12 Assume that F/F+ is at worst tamely ramified. Let π be an irre-
ducible supercuspidal representation of GLn(F ) which is conjugate self-dual under
the setting in Example 2.7. We write JL(π) for the irreducible smooth representation
of D× attached to π under the local Jacquet-Langlands correspondence.

Then, JL(π) is conjugate self-dual with respect to τ : D× → D× introduced in
Definition 2.10. Moreover, we have

CrecF (π) = (−1)n−1CJL(π).

Remark 2.13 (i) The case where F = F+ and the characteristic of F is 0 has
been obtained in [PR12], in which a discrete series representation π is also
treated. The same statement for the case F = F+ is also announced in [Far06,
§5] without proof.

(ii) It is natural to expect that Theorem 2.12 remains true for conjugate self-dual
discrete series representations of GLn(F ). For example, let us consider a twist of
the Steinberg representation π = St⊗(χ◦det), where χ : F× → C× is a smooth
character. Since Stτ ∼= St ∼= St∨, the representation π is conjugate self-dual if
and only if χτ = χ−1. The Langlands parameter recF (π) is given by (χ◦Art−1

F )⊠

Symn−1Std : WF × SL2(C) → GLn(C), where ArtF : F
×

∼=
−→ W ab

F denotes the
isomorphism of the local class field theory, and Std the standard representation
of SL2(C). The parity of Symn−1Std equals (−1)n−1. By Remark 2.3 (i),

9
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the parity of χ ◦ Art−1
F is given by χ(Art−1

F (c2)) = χ(Art−1
F+(c)) (recall that

the image of c under the transfer map W ab
F+ → W ab

F is c2). Hence we obtain
CrecF (π) = (−1)n−1χ(Art−1

F+(c)). On the other hand, we have JL(π) = χ ◦ Nrd,
where Nrd denotes the reduced norm of D. Its parity Cχ◦Nrd equals χ(Nrd(t)).
By definition, both Art−1

F+(c) and Nrd(t) lie in (F+)× \ NrF/F+(F×). Since
χ|(F+)× factors through (F+)×/NrF/F+(F×), we conclude that χ(Art−1

F+(c)) =
χ(Nrd(t)) and CrecF (π) = (−1)n−1CJL(π).

3 Proof of the main theorem

3.1 Review of the non-abelian Lubin-Tate theory

To prove Theorem 2.12, we use the non-abelian Lubin-Tate theory, which is a ge-
ometric realization of the local Langlands correspondence for GLn. Here we recall
it briefly. Let F be a non-archimedean local field and ̟ its uniformizer. Take an
integer n ≥ 1. We write F ur for the maximal unramified extension of F inside the
fixed separable closure F , and F̆ for the completion of F ur.

Let Nilp be the category of schemes over OF̆ on which ̟ is locally nilpotent.
For an object S of Nilp, we denote the structure morphism S → SpecOF̆ by φS.
Put S = S ⊗O

F̆
OF̆/pF̆ . Recall that a formal OF -module over S is a formal group

X over S endowed with an OF -action ι : OF → End(X) such that the following two
actions of OF on the Lie algebra Lie(X) coincide:

– the action induced by ι, and

– that induced by the OS-module structure of Lie(X) and the structure homo-
morphism OF → OF̆ → OS.

Fix a one-dimensional formal OF -module X of OF -height n over Fq = OF̆/pF̆ .
Such X is unique up to isomorphism. Put D = EndOF

(X)⊗Z Q, which is known to
be a central division algebra over F with invariant 1/n.

LetM : Nilp → Set be the functor that sends S to the set of isomorphism classes
of pairs (X, ρ), where X is a formal OF -module over S and ρ : φ∗

S
X → X ×S S is

an OF -quasi-isogeny. It is known that M is represented by a formal scheme over
OF̆ , which is non-canonically isomorphic to the disjoint union of countable copies
of SpfOF̆ [[T1, . . . , Tn−1]] (see [LT66], [Dri74], [RZ96]). The group of self-isogenies
QIsogOF

(X) = D× naturally acts on M on the right; h ∈ D× sends (X, ρ) to
(X, ρ ◦ φ∗

S
h). The formal scheme M is endowed with another structure, called a

Weil descent datum. It is an isomorphism α : M → M that makes the following
diagram commute:

M
α

��

��

M

��

Spf OF̆
σ∗

�� Spf OF̆ .

Here σ : OF̆ → OF̆ is induced from the unique element σ ∈ Gal(F ur/F ) lifting the

10
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arithmetic Frobenius automorphism σ : Fq → Fq, as in Section 2.2. In order to
describe this isomorphism, it suffices to construct a bijection α : M(S) → M(Sσ)

for each S ∈ Nilp compatibly, where Sσ denotes the object S
φS−→ SpecOF̆

σ∗

−→
SpecOF̆ of Nilp. For (X, ρ) ∈ M(S), we define α(X, ρ) = (X, ρ ◦ φ∗

S
Frob−1

X ),
where FrobX : X → (σ∗)∗X denotes the qth power Frobenius morphism, which is an
OF -isogeny of OF -height 1.

Next we consider level structures. For m ≥ 0, let Mm : Nilp → Set be the
functor that sends S to the set of isomorphism classes of triples (X, ρ, η), where
(X, ρ) ∈ M(S) and η is a Drinfeld m-level structure on X (for its definition, see
[Dri74, §4] and [HT01, §II.2]). It is represented by a formal scheme finite and
flat over M, and {Mm}m≥0 form a projective system called the Lubin-Tate tower.
The action of D× and the Weil descent datum on M naturally extend to Mm,
and they are compatible with the transition morphisms of the tower. Further, the
group GLn(F ) acts on {Mm}m≥0 on the right as a pro-object (see [Str08, §2.2] for
the definition). This action is called the Hecke action. The principal congruence
subgroup Km = Ker(GLn(OF ) → GLn(OF/p

m
F )) of GLn(F ) acts trivially on Mm.

By taking the rigid generic fiber, we obtain a projective system {Mm}m≥0 of rigid
spaces, whose transition maps are finite and étale. Each Mm is an n−1-dimensional
smooth rigid space over F̆ . For a compact open subgroup K of GLn(OF ), we can
define the rigid space MK as the quotient of Mm by K/Km, where m ≥ 0 is an
integer satisfying Km ⊂ K. It is independent of the choice of m, and MKm

coincides
with Mm. These rigid spaces form a projective system {MK}K⊂GLn(OF ) with finite
étale transition maps. The actions of D× and GLn(F ), and the Weil descent datum
naturally extend to it.

For a discrete torsion-free cocompact subgroup Γ of F× (e.g., ̟dZ for an integer
d ≥ 1), we may consider the quotient towers {Mm/Γ}m and {MK/Γ}K , where Γ is
regarded as a discrete subgroup of D× by F× ⊂ D×. It is known that the actions
of GLn(F ) on these towers are trivial on Γ ⊂ F× ⊂ GLn(F ) (see [RZ96, Lemma
5.36]).

Now we take a prime number ℓ �= p and consider the ℓ-adic étale cohomology of
the Lubin-Tate tower

H i
LT/Γ,c = lim

−→
K

H i
c

(
(MK/Γ)⊗F̆ F̂ ,Qℓ

)
, H i

LT/Γ = lim
−→
K

H i
(
(MK/Γ)⊗F̆ F̂ ,Qℓ

)
,

where F̂ denotes the completion of F . The groups GLn(F ) and D× act on H i
LT/Γ,c

and H i
LT/Γ. The actions of GLn(F ) on both spaces are obviously smooth, and

moreover admissible. The action of D× on H i
LT/Γ,c is also known to be smooth (see

[Str08, Lemma 2.5.1]). Furthermore, by using the Weil descent datum α, we can
define the actions of WF on H i

LT/Γ,c and H i
LT/Γ as follows. For w ∈ WF , let ν(w)

11
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denote the integer satisfying w|Fur = σν(w). By taking the fiber product of diagrams

Spa(F̂ ,ÔF
) w∗

��

��

Spa(F̂ ,ÔF
)

��

Spa(F̆ ,OF̆ )
(σ∗)ν(w)

�� Spa(F̆ ,OF̆ ),

MK/Γ
αν(w)

��

��

MK/Γ

��

Spa(F̆ ,OF̆ )
(σ∗)ν(w)

�� Spa(F̆ ,OF̆ ),

we obtain an isomorphism αw : (MK/Γ)⊗F̆ F̂ → (MK/Γ)⊗F̆ F̂ of adic spaces. The
action of w is defined to be α∗

w. By these constructions, we obtain two representa-
tions H i

LT/Γ,c and H i
LT/Γ of GLn(F )×D× ×WF .

Recall that any admissible representation V of GLn(F )/Γ is decomposed canon-
ically into V = (

⊕
π Vπ)⊕ Vnon-cusp, where

– π runs through irreducible supercuspidal representations of GLn(F ) whose cen-
tral characters are trivial on Γ,

– Vπ is a direct sum of finitely many copies of π,

– and Vnon-cusp has no supercuspidal subquotient

(see [Ber84, 1.11, Variantes c)]). We call Vπ the π-isotypic component of V . By
definition we have (Vπ)

∨ = (V ∨)π∨ and (Vnon-cusp)
∨ = (V ∨)non-cusp.

We fix an isomorphism Qℓ
∼= C and identify them. Here is a form of the non-

abelian Lubin-Tate theory.

Theorem 3.1 ([HT01], [Boy99], [Mie10]) For an irreducible supercuspidal rep-
resentation π of GLn(F ) whose central character is trivial on Γ, we have

Hn−1
LT/Γ,c,π(

n−1
2
) = π ⊠ JL(π)∨ ⊠ recF (π)

∨

as representations of GLn(F ) × D× × WF . Here (n−1
2
) denotes the twist by the

character WF → C×;w �→ q
n−1
2

ν(w), and JL(π) denotes the irreducible smooth rep-
resentation of D× attached to π under the local Jacquet-Langlands correspondence.
Unless i = n− 1, we have H i

LT/Γ,c,π = 0.

The following theorem was obtained in [Mie10], in the course of the proof of the
latter part of Theorem 3.1.

Theorem 3.2 For every integer i, the kernel and cokernel of the natural map
H i

LT/Γ,c → H i
LT/Γ have no supercuspidal subquotient as representations of GLn(F ).

In particular, for every irreducible supercuspidal representation π of GLn(F ) whose
central character is trivial on Γ, the induced map H i

LT/Γ,c,π → H i
LT/Γ,π is an isomor-

phism.

Definition 3.3 For a compact open subgroupK of GLn(OF ), put TrK = (GLn(OF ) :

K)−1 TrMK
, where TrMK

denotes the trace map H
2(n−1)
c ((MK/Γ)⊗F̆ F̂ ,Qℓ)(n−1) →

Qℓ. It is easy to see that TrK is compatible with the change of K. We write Tr for

the homomorphism H
2(n−1)
LT/Γ,c (n− 1) → Qℓ induced from {TrK}K .

12
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Proposition 3.4 Let π be an irreducible supercuspidal representation of GLn(F )
whose central character is trivial on Γ. Then, the cup product pairing

Tr(− ∪−) : Hn−1
LT/Γ,c(

n−1
2
)×Hn−1

LT/Γ,c(
n−1
2
) → Qℓ

induces aD××WF -invariant pairingH
n−1
LT/Γ,c,π∨(

n−1
2
)×Hn−1

LT/Γ,c,π(
n−1
2
) → Qℓ satisfying

the following condition:

for every compact open subgroup K of GLn(F ), the restriction of it to
(Hn−1

LT/Γ,c,π∨)K(
n−1
2
)× (Hn−1

LT/Γ,c,π)
K(n−1

2
) is a perfect pairing.

Proof. First, by the Poincaré duality for MK/Γ, we know that the cup product
pairing (Hn−1

LT/Γ,c)
K(n−1

2
) × (Hn−1

LT/Γ)
K(n−1

2
) → Qℓ is perfect for every compact open

subgroup K of GLn(OF ). This tells us that the induced map

Hn−1
LT/Γ(

n−1
2
) → (Hn−1

LT/Γ,c(
n−1
2
))∨

is an isomorphism. By taking π-isotypic parts and composing with the isomorphism
in Theorem 3.2, we obtain an isomorphism

Hn−1
LT/Γ,c,π(

n−1
2
)

∼=
−→ Hn−1

LT/Γ,π(
n−1
2
)

∼=
−→ (Hn−1

LT/Γ,c,π∨(
n−1
2
))∨.

Therefore, for every compact open subgroup K of GLn(F ), we have an isomorphism

(Hn−1
LT/Γ,c,π)

K(n−1
2
)

∼=
−→ ((Hn−1

LT/Γ,c,π∨)
K(n−1

2
))∨.

It is easy to see that this isomorphism is induced from the restriction of the cup prod-
uct pairing to (Hn−1

LT/Γ,c,π∨)K(
n−1
2
)× (Hn−1

LT/Γ,c,π)
K(n−1

2
). This concludes the proof.

3.2 Twisting operator

Here we use the notation introduced in the beginning of Section 2.2. We will con-
struct the twisting operator θ : Mm → Mm.

First we consider the case where F/F+ is an unramified quadratic extension. In
this case we have F ur = (F+)ur. We write τ for the unique element of Gal(F ur/F+)
lifting the q′th power Frobenius automorphism τ on Fq = Fq′ . It extends τ ∈
Gal(F/F+), and satisfies τ 2 = σ. For an object S of Nilp, we write Sτ for the

object S → SpecOF̆

τ∗

−→ SpecOF̆ of Nilp.
We write τ ∗X for the pull-back of the formal OF -module X by τ ∗ : SpecFq →

SpecFq. On the other hand, we denote by Xτ the formal group X endowed with the

OF -action twisted by τ (that is, OF
τ
−→ OF → End(X)). It is easy to see that τ ∗X

and Xτ are one-dimensional formal OF -modules of OF -height n over (SpecFq)
τ ∈

Nilp. Hence these are isomorphic as formal OF -modules. We fix an isomorphism

ι : τ ∗X
∼=
−→ Xτ between them. This isomorphism induces an automorphism on D:

13
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Definition 3.5 (i) An element h ∈ D = EndOF
(X) ⊗Z Q determines an element

τ(h) = ι ◦ τ ∗h ◦ ι−1 ∈ EndOF
(Xτ )⊗Z Q = EndOF

(X)⊗Z Q = D. This gives an
isomorphism τ : D → D such that τ |F = τ ∈ Gal(F/F+).

(ii) We denote the composite of OF -isogenies

X
FrobX−−−→ σ∗X = τ 2∗X

τ∗ι−→ τ ∗X
τ ι
−→ X

by t. It is an element of D×.

Lemma 3.6 The element t ∈ D× satisfies τ 2 = Int(t) and τ(t) = t.

Proof. For h ∈ D, we have

τ 2(h) = ι ◦ τ ∗(ι ◦ τ ∗h ◦ ι−1) ◦ ι−1 = (ι ◦ τ ∗ι) ◦ σ∗h ◦ (ι ◦ τ ∗ι)
−1

= (t ◦ Frob−1
X ) ◦ σ∗h ◦ (t ◦ Frob−1

X )−1

= t ◦ (Frob−1
X ◦σ∗h ◦ FrobX) ◦ t

−1.

By the functoriality of the relative Frobenius morphisms, the following diagram is
commutative:

X
FrobX

��

h

��

σ∗X

σ∗h
��

X
FrobX

�� σ∗X.

Hence we have τ 2(h) = t ◦ h ◦ t−1, as desired.
Next consider τ(t). We have

τ(t) = ι ◦ τ ∗(ι ◦ τ ∗ι ◦ FrobX) ◦ ι
−1 = ι ◦ τ ∗ι ◦ σ∗ι ◦ τ ∗ FrobX ◦ι

−1

= ι ◦ τ ∗ι ◦ σ∗ι ◦ Frobτ∗X ◦ι
−1 (∗)

= ι ◦ τ ∗ι ◦ FrobX = t.

The equality (∗) follows from the functoriality of the relative Frobenius morphisms
with respect to ι : τ ∗X → X. This completes the proof.

Now we construct an isomorphism θ : Mm → Mm that makes the following
diagram commute:

Mm
θ

��

��

Mm

��

Spf OF̆
τ∗

�� Spf OF̆ .

Definition 3.7 Let S be an object of Nilp. For (X, ρ, η) ∈ Mm(S), we put
θ(X, ρ, η) = (Xτ , ρ ◦ φ∗

S
ι, ητ ) ∈ Mm(S

τ ), where

– Xτ is the formal group X over S endowed with the OF -action twisted by τ ,

– ρ ◦ φ∗

S
ι is the OF -quasi-isogeny φ∗

SτX = φ∗

S
(τ ∗X)

φ∗

S
ι

−−→ φ∗

S
Xτ ρ

−→ Xτ ×S S,

14
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– and ητ is the composite of (OF/p
m
F )

n τ
−→ (OF/p

m
F )

n and η.

This gives a bijection θ : Mm(S)
∼=
−→ Mm(S

τ ), and an isomorphism θ : Mm

∼=
−→ Mm

which covers τ ∗ : Spf OF̆ → SpfOF̆ .
The isomorphism θ is compatible with the transition maps of the tower {Mm}.

Hence it induces automorphisms of the towers {Mm} and {Mm}.

Lemma 3.8 (i) For g ∈ GLn(F ), we have g ◦ θ = θ ◦ τ(g), where τ : GLn(F ) →
GLn(F ) is the isomorphism in Example 2.7.

(ii) For h ∈ D×, we have h ◦ θ = θ ◦ τ(h), where τ : D× → D× is the isomorphism
in Definition 3.5 (i).

(iii) We have θ2 = α ◦ t and α ◦ θ = θ ◦ α.

Proof. The claim (i) is clear from the definition of θ.
As for (ii), take (X, ρ, η) ∈ Mm(S). Then we have

(h ◦ θ)(X, ρ, η) = (Xτ , ρ ◦ φ∗

S
ι ◦ φ∗

Sτh, η
τ ).

Since φ∗

S
ι ◦ φ∗

Sτh = φ∗

S
(ι ◦ τ ∗h) = φ∗

S
(τ(h) ◦ ι) = φ∗

S
(τ(h)) ◦ φ∗

S
ι, we have

(h ◦ θ)(X, ρ, η) = (Xτ , ρ ◦ φ∗

S
(τ(h)) ◦ φ∗

S
ι, ητ ) = (θ ◦ τ(h))(X, ρ, η).

Thus h ◦ θ = θ ◦ τ(h), as desired.
We prove (iii). For (X, ρ, η) ∈ Mm(S), θ

2(X, ρ, η) equals (X, ρ ◦ φ∗

S
ι ◦ φ∗

Sτ ι, η).

Since φ∗

S
ι ◦ φ∗

Sτ ι = φ∗

S
(ι ◦ τ ∗ι) = φ∗

S
(t ◦ Frob−1

X ) = φ∗

S
(t) ◦ φ∗

S
Frob−1

X , we have
θ2(X, ρ, η) = α(t(X, ρ, η)). Hence θ2 = α ◦ t. Finally, by (ii) and Lemma 3.6 we
conclude that

α ◦ θ = θ2 ◦ t−1 ◦ θ = θ3 ◦ τ(t)−1 = θ3 ◦ t−1 = θ ◦ α.

We fix c ∈ WF+ such that c|Fur = τ . Assume that the subgroup Γ ⊂ F× is
stable under τ . Then, θ : Mm/Γ → Mm/Γ is induced. By taking the fiber product
of diagrams

Spa(F̂ ,ÔF
) c∗

��

��

Spa(F̂ ,ÔF
)

��

Spa(F̆ ,OF̆ )
τ∗

�� Spa(F̆ ,OF̆ ),

Mm/Γ
θ

��

��

Mm/Γ

��

Spa(F̆ ,OF̆ )
τ∗

�� Spa(F̆ ,OF̆ ),

we obtain an isomorphism θc : (Mm/Γ) ⊗F̆ F̂ → (Mm/Γ) ⊗F̆ F̂ of adic spaces. It
induces an automorphism θ∗c on the cohomology H i

LT/Γ,c, for which we simply write
θ.

Corollary 3.9 The following equalities of automorphisms on H i
LT/Γ,c hold.
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(i) For g ∈ GLn(F ), we have θ ◦ g = τ(g) ◦ θ, where τ : GLn(F ) → GLn(F ) is the
isomorphism in Example 2.7.

(ii) For h ∈ D×, we have θ ◦ h = τ(h) ◦ θ, where τ : D× → D× is the isomorphism
in Definition 3.5 (i).

(iii) We have θ2 = t ◦ c2 and θ ◦ w = cwc−1 ◦ θ for every w ∈ WF .

Proof. The claims (i) and (ii) follow from Lemma 3.8 (i), (ii), respectively. For (iii),
it suffices to show θ2c = αc2 ◦ t and αw ◦ θc = θc ◦ αcwc−1 . These are consequences of
Lemma 3.8 (iii), the definitions of αw and θc, and the equality ν(cwc−1) = ν(w).

Next we consider the case where F/F+ is a ramified quadratic extension (here
we do not need the tameness assumption). We also write τ for the unique non-trivial
element of Gal(F ur/(F+)ur). It gives an extension of the original τ ∈ Gal(F/F+).
Note that τ 2 = 1 and τ = 1, where τ denotes the automorphism of the residue field
Fq of OFur induced by τ . Further, we have σ ◦ τ = τ ◦ σ as automorphisms of F ur.

For an object S of Nilp, we write Sτ for the object S → SpecOF̆

τ∗

−→ SpecOF̆ of
Nilp.

As in the unramified case, we fix an isomorphism ι : X
∼=
−→ Xτ between formal

OF -modules over (SpecFq)
τ = SpecFq ∈ Nilp.

Definition 3.10 (i) An element h ∈ D = EndOF
(X)⊗Z Q determines an element

τ(h) = ι ◦ h ◦ ι−1 ∈ EndOF
(Xτ ) ⊗Z Q = EndOF

(X) ⊗Z Q = D. This gives an
isomorphism τ : D → D such that τ |F = τ ∈ Gal(F/F+).

(ii) We denote the composite X
ι
−→ Xτ ι

−→ X by t. It is an element of D×.

Lemma 3.11 The element t ∈ D× satisfies τ 2 = Int(t) and τ(t) = t.

Proof. Clear from definition.

Exactly in the same way, we can construct an isomorphism θ : Mm → Mm that
makes the following diagram commute:

Mm
θ

��

��

Mm

��

Spf OF̆
τ∗

�� Spf OF̆ .

It induces automorphisms of the towers {Mm} and {Mm}.

Lemma 3.12 (i) For g ∈ GLn(F ), we have g ◦ θ = θ ◦ τ(g), where τ : GLn(F ) →
GLn(F ) is the isomorphism in Example 2.7.

(ii) For h ∈ D×, we have h ◦ θ = θ ◦ τ(h), where τ : D× → D× is the isomorphism
in Definition 3.10 (i).

(iii) We have θ2 = t and α ◦ θ = θ ◦ α.
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Proof. As in the proof of Lemma 3.8, it suffices to show θ2 = t. For an object S of
Nilp and (X, ρ, η) ∈ Mm(S), we have

θ2(X, ρ, η) = (X, ρ ◦ φ∗

S
ι ◦ φ∗

S
ι, η) = (X, ρ ◦ φ∗

S
t, η) = t(X, ρ, η),

as desired (note that Sτ = S).

We fix c ∈ WF+ such that c|Fur = τ . Assume that Γ ⊂ F× is stable under τ . As

in the unramified case, we obtain an isomorphism θc : (Mm/Γ)⊗F̆ F̂ → (Mm/Γ)⊗F̆ F̂
of adic spaces. It induces an automorphism θ∗c on the cohomology H i

LT/Γ,c, for which
we simply write θ.

Corollary 3.13 The following equalities of automorphisms on H i
LT/Γ,c hold.

(i) For g ∈ GLn(F ), we have θ ◦ g = τ(g) ◦ θ, where τ : GLn(F ) → GLn(F ) is the
isomorphism in Example 2.7.

(ii) For h ∈ D×, we have θ ◦ h = τ(h) ◦ θ, where τ : D× → D× is the isomorphism
in Definition 3.10 (i).

(iii) We have θ2 = t ◦ c2 and θ ◦ w = cwc−1 ◦ θ for every w ∈ WF .

Proof. Similar as Corollary 3.9.

Finally, consider the case F = F+.

Definition 3.14 We put τ = idD× , t = 1 ∈ D×, c = 1 ∈ WF+ and θ = id on
H i

LT/Γ,c. Then the same statements as in Corollaries 3.9, 3.13 obviously hold.

Now we return to a general separable extension F/F+ with [F : F+] ≤ 2.

Lemma 3.15 Assume that Γ ⊂ F× is stable under τ . The cup product pairing

Tr(− ∪−) : HLT/Γ,c(
n−1
2
)×HLT/Γ,c(

n−1
2
) → Qℓ

in Proposition 3.4 satisfies Tr(θx, θy) = q−
n−1
2

ν(c2) Tr(x ∪ y).

Proof. Recall that the isomorphism θc : (Mm/Γ) ⊗F̆ F̂ → (Mm/Γ) ⊗F̆ F̂ covers

c∗ : Spa(F̂ ,ÔF
) → Spa(F̂ ,ÔF

).

If F/F+ is an unramified quadratic extension, c induces the q′th power map on

µℓk(F̂ ) = µℓk(F̆
+). Therefore we have Tr(θx, θy) = q′−(n−1)Tr(x ∪ y). Since q = q′2

and ν(c2) = 1, this equals q−
n−1
2

ν(c2) Tr(x ∪ y).

Otherwise c acts trivially on µℓk(F̂ ) = µℓk(F̆
+), and ν(c2) = 0. Hence we have

Tr(θx, θy) = Tr(x ∪ y) = q−
n−1
2

ν(c2) Tr(x ∪ y).

17



Yoichi Mieda

Theorem 3.16 Here we consider (τ, t) as in Definitions 3.5, 3.10, 3.14. Let π be
an irreducible supercuspidal representation of GLn(F ) which is conjugate self-dual
under the setting in Example 2.7. Then, JL(π) is conjugate self-dual with respect
to τ . Moreover, we have

CrecF (π) = (−1)n−1CJL(π),

where CJL(π) denotes the parity of JL(π) with respect to (τ, t).

Proof. Since π is conjugate self-dual, its central character ωπ satisfies ωπ(τ(z)) =
ωπ(z)

−1 for every z ∈ F× ⊂ GLn(F ). Hence, for a uniformizer ̟′ of F+, we have
ωπ(̟

′2) = 1. Put Γ = ̟′2Z ⊂ (F+)× ⊂ F×. It is a τ -stable discrete cocompact
subgroup of F× on which ωπ is trivial.

Let τ : GLn(F ) → GLn(F ) be as in Example 2.7, τ = Int(c) : WF → WF as in
Example 2.8, and τ = (τ, τ, τ) : GLn(F )×D× ×WF → GLn(F )×D× ×WF . Then,

Corollaries 3.9, 3.13 tell us that θ gives an isomorphism Hn−1
LT/Γ,c

∼=
−→ (Hn−1

LT/Γ,c)
τ . Since

the character WF → C×; w �→ q
n−1
2

ν(w) is τ -invariant, we have Hn−1
LT/Γ,c(

n−1
2
)

∼=
−→

(Hn−1
LT/Γ,c(

n−1
2
))τ by twisting. By taking π∨-isotypic parts and using πτ = π∨, we

obtain an isomorphism θ : Hn−1
LT/Γ,c,π∨(

n−1
2
)

∼=
−→ (Hn−1

LT/Γ,c,π(
n−1
2
))τ of representations of

GLn(F )×D× ×WF .

Take a τ -stable compact open subgroup K of GLn(F ). Then, θ induces an

isomorphism (Hn−1
LT/Γ,c,π∨(

n−1
2
))K

∼=
−→ ((Hn−1

LT/Γ,c,π(
n−1
2
))K)τ of representations of D× ×

WF . Consider the pairing

〈 , 〉 : (Hn−1
LT/Γ,c,π(

n−1
2
))K × (Hn−1

LT/Γ,c,π(
n−1
2
))K

θ−1×id
−−−−→

∼=
(Hn−1

LT/Γ,c,π∨(
n−1
2
))K × (Hn−1

LT/Γ,c,π(
n−1
2
))K

Tr(−∪−)
−−−−−→ Qℓ.

It satisfies 〈(τ(h), τ(w))x, (h, w)y〉 = 〈x, y〉 for every h ∈ D× and w ∈ WF . More-
over, Proposition 3.4 tells us that it is a perfect pairing. We have

〈y, x〉 = Tr(θ−1(y) ∪ x) = (−1)n−1 Tr(x ∪ θ−1(y))
(1)
= (−1)n−1q

n−1
2

ν(c2) Tr(θ(x) ∪ y)

= (−1)n−1q
n−1
2

ν(c2)〈θ2(x), y〉
(2)
= (−1)n−1q

n−1
2

ν(c2)〈q−
n−1
2

ν(c2)(t, c2)(x), y〉

= (−1)n−1〈(t, c2)x, y〉.

Here (1) follows from Lemma 3.15, and (2) from the identity θ2 = t ◦ c2 on Hn−1
LT/Γ,c,π

(Corollary 3.9 (iii) and Corollary 3.13 (iii)); the factor q−
n−1
2

ν(c2) arises from the
twist (n−1

2
).

Now we specify K. Since π is supercuspidal, it is generic. Hence by [JPSS81, §5,
Théorème], there exists an integer m ≥ 0 such that dim πK1(m) = 1. Here K1(m)
is the subgroup of GLn(OF ) consisting of matrices (gij) with gn,1, . . . , gn,n−1 ∈ pmF
and gn,n ∈ 1 + pmF . Clearly K1(m) is τ -stable. We take K as K1(m). Then,
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Theorem 3.1 tells us that (Hn−1
LT/Γ,c,π(

n−1
2
))K ∼= JL(π)∨ ⊠ recF (π)

∨ as representa-

tions of D× × WF . Since (π∨)K = (πK)∨ is also one-dimensional, the existence of

θ : (Hn−1
LT/Γ,c,π∨(

n−1
2
))K

∼=
−→ ((Hn−1

LT/Γ,c,π(
n−1
2
))K)τ tells us that

JL(π)⊠ recF (π) = JL(π∨)∨ ⊠ recF (π
∨)∨ ∼= JL(π)∨τ ⊠ recF (π)

∨τ .

Thus JL(π) is conjugate self-dual with respect to τ . Finally, by the existence of the
pairing 〈 , 〉, we conclude that the parity of the irreducible representation JL(π)∨ ⊠
recF (π)

∨ of D× ×WF with respect to (τ × τ, (t, c2)) is equal to (−1)n−1. Replacing
π by π∨, we get the same result for JL(π) ⊠ recF (π). Therefore, by Lemma 2.4 we
have CJL(π)CrecF (π) = (−1)n−1, and CrecF (π) = (−1)n−1CJL(π). This completes the
proof.

3.3 Formal OF -module over Fq and division algebra

Our remaining task for proving Theorem 2.12 is to describe (τ, t) in Definitions 3.5
and 3.10 explicitly, under the assumption that F/F+ is at worst tamely ramified
and quadratic.

First we consider the easier case where F has equal characteristic. In this case,
we have F = Fq((̟)). We can take a one-dimensional formal OF -module X over Fq

as follows:

X = Ĝa as a formal group, [a]X(X) = aX (a ∈ Fq), [̟]X(X) = Xqn .

Any element a ∈ Fqn gives an endomorphism X �→ aX of X. On the other hand, we
write Π for the endomorphism X �→ Xq of X. Note that Πa = aqΠ for a ∈ Fqn and
Π

n = ̟ in EndOF
(X). These elements are known to generate EndOF

(X), and we
have EndOF

(X) = Fqn [Π] = OFn
[Π], which is a maximal order of the central division

algebra over F with invariant 1/n.
Assume that F/F+ is an unramified quadratic extension. We may assume that

F+ = Fq′((̟)). Then, τ ∗X and Xτ are described explicitly as follows:

[a]τ∗X(X) = τ(aX) = aq
′

X (a ∈ Fq), [̟]τ∗X(X) = τ(Xqn) = Xqn ,

[a]Xτ (X) = [τ(a)]X(X) = aq
′

X (a ∈ Fq), [̟]Xτ (X) = Xqn .

Hence we may take ι = idX : τ ∗X
∼=
−→ Xτ . The following lemma is immediate.

Proposition 3.17 The pair (τ, t) constructed from ι = idX as in Definition 3.5
coincides with that in Definition 2.10 (i).

Next assume that p �= 2 and F/F+ is a ramified quadratic extension. We may
assume that F+ = Fq((̟

2)). Then Xτ is described as follows:

[a]Xτ (X) = aX (a ∈ Fq), [̟]Xτ (X) = [−̟]X(X) = −Xqn .

Take β ∈ Fq such that βqn−1 = −1, and put α = βq−1. Then, we may take an

isomorphism ι : X
∼=
−→ Xτ ; X �→ β−1X.
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Proposition 3.18 The pair (τ, t) constructed from ι : X �→ β−1X as in Definition
3.10 coincides with that in Definition 2.10 (ii).

Proof. For a ∈ Fqn ⊂ OFn
[Π], we have τ(a) : X �→ β−1aβX = aX; that is, τ(a) = a.

On the other hand, we have τ(Π) : X �→ β−1(βX)q = αXq, and thus τ(Π) = αΠ.
Clearly we have t = β−2. Hence the pair (τ, t) coincides with that in Definition 2.10
(ii).

Now we consider the case where F is a p-adic field. We regard formalOF -modules
over Fq as ̟-divisible OF -modules. We use the Dieudonné theory for ̟-divisible
OF -modules over Fq developed in [Far08, Chapitre I, §B.8]. Here we identify OF̆

with WOF
(Fq) = OF ⊗W (Fq) W (Fq). Let D = On

F̆
be a free OF̆ -module of rank n.

We define a σ-linear map F : D → D and a σ−1-linear map V : D → D by

F (ei) =

{
̟ei+1 i �= n,

e1 i = n,
V (ei) =

{
ei−1 i �= 1,

̟en i = 1,

where (e1, . . . , en) denotes the standard basis of D. Then, by [Far08, Chapitre I,
Proposition B.8.2], we can find a ̟-divisible OF -module X of OF -height n over Fq

satisfying DOF
(X) ∼= (D, F, V ). Since V is topologically nilpotent and dimFq

D/V D =
1, X is a one-dimensional formal OF -module.

Let D = Fn[Π] be the central division algebra over F with invariant 1/n as in
Section 2.2, and OD = OFn

[Π] its maximal order. We will construct a homomor-
phism OD → EndOF

(X). First, any a ∈ OFn
defines an OF̆ -linear endomorphism

on D by ei �→ σi(a)ei. Since it commutes with F and V , it gives an element of
EndOF

(X). Let Π be the OF̆ -linear endomorphism on D such that

Π(ei) =

{
ei−1 i �= 1,

̟en i = 1.

It also commutes with F and V , and gives an element of EndOF
(X). It is imme-

diate to observe that Πa = σ(a)Π for a ∈ OFn
and Π

n = ̟ as endomorphisms
of D. Therefore we obtain a homomorphism OD = OFn

[Π] → EndOF
(X), which is

in fact an isomorphism. In the following, we identify OD and EndOF
(X) by this

isomorphism.
We assume that F/F+ is an unramified quadratic extension, and take ̟ in F+.

Recall that in this case τ also denotes the unique element of Gal(F ur/F+) lifting
the q′th power Frobenius automorphism τ on Fq = Fq′ . We describe τ ∗X and Xτ by
means of the Dieudonné module as follows.

Proposition 3.19 Let τW : W (Fq) → W (Fq) denote the homomorphism induced

from Fq
τ
−→ Fq. We also write τW for the composite W (Fq) → W (Fq)

τW−−→ W (Fq).
Note that the Dieudonné module of a formal OF -module over (SpecFq)

τ ∈ Nilp is a
free OF ⊗W (Fq),τW W (Fq)-module endowed with F and V . We identify OF ⊗W (Fq),τW

W (Fq) with OF̆ by the isomorphism OF ⊗W (Fq),τW W (Fq)
τ⊗id
−−→

∼=
OF ⊗W (Fq) W (Fq) =

OF̆ .
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(i) For a formal OF -module Y over Fq, we have DOF
(τ ∗Y) = τ∗DOF

(Y) and
DOF

(Yτ ) = DOF
(Y), where τ∗ denotes the base change by τ : OF̆ → OF̆ .

(ii) For X introduced above, we have DOF
(τ ∗X) ∼= DOF

(X).

Proof. We prove (i). By functoriality we have DOF
(τ ∗Y) = (id⊗τW )∗DOF

(Y). Un-
der the identification OF ⊗W (Fq),τW W (Fq) = OF̆ , this equals

(τ ⊗ id)∗(id⊗τW )∗DOF
(Y) = τ∗DOF

(Y).

On the other hand, we have DOF
(Yτ ) = (τ−1⊗id)∗DOF

(Y). Under the identification,
this clearly corresponds to the OF̆ -module DOF

(Y).
The assertion (ii) is clear from the definition of X and the identification

τ∗D ∼= D; (x1, . . . , xn) �→ (τ(x1), . . . , τ(xn)),

as τ(̟) = ̟.

Proposition 3.20 Let ι : τ ∗X
∼=
−→ Xτ be the isomorphism that induces the isomor-

phism in Proposition 3.19 (ii) on the Dieudonné modules. The pair (τ, t) constructed
from this ι as in Definition 3.10 coincides with that in Definition 2.10 (i).

Proof. The claim on τ is clear from the definition. We will prove ι◦τ ∗ι◦FrobX = Π.
Recall that FrobX : X → σ∗X induces V : DOF

(X) → σ∗DOF
(X) = DOF

(σ∗X). On the

other hand, the composite σ∗D = DOF
(σ∗X)

D(τ∗ι)
−−−→ DOF

(τ ∗X
τ )

D(ι)
−−→ DOF

(X) = D

is equal to (x1, . . . , xn) �→ (σ(x1), . . . , σ(xn)). Since Π(ei) = V (ei) for every i, we
conclude that ι ◦ τ ∗ι ◦ FrobX = Π.

Next we assume that p �= 2 and F/F+ is a ramified quadratic extension, and
take ̟ so that τ(̟) = −̟. Recall that in this case τ also denotes the unique
non-trivial element of Gal(F ur/(F+)ur).

Proposition 3.21 (i) For a formal OF -module Y over Fq, we have DOF
(Yτ ) =

τ−1
∗ DOF

(Y), where τ−1
∗ denotes the base change by τ−1 : OF̆ → OF̆ . For ev-

ery OF -homomorphism h : Y → Y′ between formal OF -modules over Fq, the
homomorphism DOF

(Yτ ) → DOF
(Y′τ ) induced by h : Yτ → Y′τ coincides with

τ−1
∗ D(h).

(ii) For X introduced above, we have DOF
(Xτ ) = (D, F ′, V ′), where F ′ and V ′ are

determined by

F ′(ei) =

{
−̟ei+1 i �= n,

e1 i = n,
V ′(ei) =

{
ei−1 i �= 1,

−̟en i = 1.

(iii) For an element h ∈ EndOF
(X), regard D(h) : D → D as a matrix (hij) ∈

Mn(OF̆ ). Then, the homomorphism D = DOF
(Xτ ) → DOF

(Xτ ) = D induced
by h : Xτ → Xτ is given by the matrix (τ−1(hij)).
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Proof. The first assertion is clear from functoriality. The second is obvious from the
definition of X and the identification

D ∼= τ−1
∗ D; (x1, . . . , xn) �→ (τ(x1), . . . , τ(xn)),

as τ(̟) = −̟. Let h and (hij) be as in (iii). Under the identification D ∼= τ−1
∗ D

above, τ−1
∗ D(h) corresponds to (τ−1(hij)). The third assertion immediately follows

from this.

Proposition 3.22 As in Definition 2.10 (ii), we take β ∈ OF̆ such that βqn−1 = −1

and put α = βq−1. Let ι : X
∼=
−→ Xτ be the isomorphism such that the induced

homomorphism D = DOF
(X) → DOF

(Xτ ) = D is given by ei �→ σi(β)−1ei.
Then, the pair (τ, t) constructed from this ι as in Definition 3.10 coincides with

that in Definition 2.10 (ii).

Proof. For a ∈ OFn
⊂ OD, the composite D = DOF

(Xτ )
D(ι◦a◦ι−1)
−−−−−−→ DOF

(Xτ ) = D

maps ei to σi(a)ei. Hence, by Proposition 3.21 (iii), ι ◦ a ◦ ι−1 ∈ EndOF
(Xτ )

corresponds to τ(a) ∈ OFn
⊂ EndOF

(X) under the identification EndOF
(X) =

EndOF
(Xτ ). Similarly, the composite D = DOF

(Xτ )
D(ι◦Π◦ι−1)
−−−−−−→ DOF

(Xτ ) = D maps
ei to {

σi(β)
σi−1(β)

ei−1 i �= 1,
σ(β)
σn(β)

̟en i = 1.

Since β ∈ µ2(qn−1)(OF̆ ), we have σ(β)/β = βq−1 = α. Hence σi(β)/σi−1(β) equals
σi−1(α). Similarly, we have σ(β)/σn(β) = βq/βqn = βq/(−β) = −βq−1 = −α.
Noting that α ∈ µqn−1(OF̆ ) ⊂ OF+

n
is fixed by τ , we can conclude that ι ◦Π ◦ ι−1 ∈

EndOF
(Xτ ) corresponds to αΠ ∈ EndOF

(X) under the identification EndOF
(X) =

EndOF
(Xτ ).

We can observe that the composite X
ι
−→ Xτ ι

−→ X equals β−2 in the same way,
by using the fact that β ∈ µ2(qn−1)(OF̆ ) ⊂ O(F+)ur is fixed by τ .

By Theorem 3.16 and Propositions 3.17, 3.18, 3.20, 3.22, we complete the proof
of Theorem 2.12.

4 The case of simple supercuspidal representa-

tions

4.1 Conjugate self-dual simple supercuspidal representations

Here we apply our main theorem to simple supercuspidal representations. Let the
notation be as in Section 2.2. We briefly recall the notion of simple supercuspidal
representations of GLn(F ) and D×. See [GR10], [RY14], [KL15] and [IT14] for
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detail. Throughout this section, we fix a non-trivial additive character ψ : Fq → C×

which factors through TrFq/Fp
: Fq → Fp.

First consider the case of GLn(F ). Let us denote by Iw the standard Iwahori
subgroup of GLn(F ), namely, the subgroup of GLn(OF ) consisting of matrices whose
image in GLn(Fq) is upper triangular. We write Iw+ for the pro-p unipotent radical
of Iw; it consists of matrices in Iw whose diagonal entries lie in 1+pF . Each element
ζ ∈ F×

q gives rise to a character

ψζ : Iw+ → C×; (aij) �→ ψ(a12 + a23 + . . .+ an−1,n + ζ−1̟−1an1).

Here we denote the image of a ∈ OF in Fq by a.
Let ϕζ denote the matrix




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
0 0 0 · · · 1

ζ̟̃ 0 0 · · · 0




,

where ζ̃ denotes the unique element of µq−1(F ) lifting ζ. It normalizes Iw+. Put
Hζ = O×

Fϕ
Z
ζ Iw+. It is an open compact-mod-center subgroup of GLn(F ) (note

that it contains the center F×, since ϕn
ζ = ζ̟̃). We write (F×

q )
∨ for the set of

characters F×
q → C×. For a triple (ζ,χ, c) ∈ F×

q × (F×
q )

∨ × C×, define the character
Λζ,χ,c : Hζ → C× by

Λζ,χ,c(x) = χ(x) (x ∈ O×
F ), Λζ,χ,c(ϕζ) = c, Λζ,χ,c|Iw+ = ψζ .

We put πζ,χ,c = c-Ind
GLn(F )
Hζ

Λζ,χ,c, which turns out to be an irreducible supercuspidal

representation of GLn(F ). A representation obtained in this way is called a simple
supercuspidal representation of GLn(F ). For another triple (ζ ′,χ′, c′) ∈ F×

q ×(F×
q )

∨×
C×, one can prove that πζ,χ,c

∼= πζ′,χ′,c′ if and only if (ζ,χ, c) = (ζ ′,χ′, c′) (see
[IT14, Proposition 1.2]). Thus simple supercuspidal representations of GLn(F ) are
parameterized by the set F×

q × (F×
q )

∨ × C×.

Remark 4.1 Note that πζ,χ,c implicitly depends on the choice of the uniformizer ̟
of F . Later we take it as in Definition 2.10.

The contragredient of πζ,χ,c can be computed as follows:

Proposition 4.2 For (ζ,χ, c) ∈ F×
q ×(F×

q )
∨×C×, we have π∨

ζ,χ,c
∼= π(−1)nζ,χ−1,χ(−1)c−1 .

Proof. For a = diag(1,−1, . . . , (−1)n−1), we have aϕζa
−1 = −ϕ(−1)nζ . As a nor-

malizes O×
F Iw+, we obtain aHζa

−1 = H(−1)nζ . Moreover, we can directly check
that Λζ,χ,c(h)

−1 = Λ(−1)nζ,χ−1,χ(−1)c−1(aha−1) for h ∈ Hζ . Therefore a intertwines
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(Hζ ,Λ
−1
ζ,χ,c) and (H(−1)nζ ,Λ(−1)nζ,χ−1,χ(−1)c−1). By the same way as in the proof of

Proposition 2.6, we conclude that

π(−1)nζ,χ−1,χ(−1)c−1 = c-Ind
GLn(F )
H(−1)nζ

Λ(−1)nζ,χ−1,χ(−1)c−1
∼= c-Ind

GLn(F )
Hζ

Λ
−1
ζ,χ,c

∼= π∨
ζ,χ,c.

Corollary 4.3 Let (ζ,χ, c) be an element of F×
q × (F×

q )
∨ × C×.

(i) If F/F+ is an unramified quadratic extension and ̟ ∈ F+, then πζ,χ,c is con-
jugate self-dual with respect to τ if and only if τ(ζ) = (−1)nζ, χτ = χ−1 and
c2 = χ(−1), where τ denotes the q′th power Frobenius automorphism on Fq.

(ii) If p �= 2, F/F+ is a ramified quadratic extension and ̟ satisfies τ(̟) = −̟,
then πζ,χ,c is conjugate self-dual with respect to τ if and only if n is odd, χ2 = 1
and c2 = χ(−1).

(iii) If F = F+, then πζ,χ,c is conjugate self-dual with respect to τ = id (that is,
self-dual) if and only if n is even, χ2 = 1 and c2 = χ(−1).

Proof. In the proof of Proposition 2.6, we obtained an isomorphism (c-IndG
H χ)τ ∼=

c-IndG
Hτ χτ . We can use it to determine (πζ,χ,c)

τ in each case as follows:

(i) (πζ,χ,c)
τ ∼= πτ−1(ζ),χτ ,c = πτ(ζ),χτ ,c (note that ψ(τ(x)) = ψ(x) for x ∈ Fq).

(ii) (πζ,χ,c)
τ ∼= π−ζ,χ,c.

(iii) (πζ,χ,c)
τ = πζ,χ,c.

Together with Proposition 4.2, we conclude the proof.

Next we consider the case of D×. Let (ζ,χ, c) be an element of F×
q × (F×

q )
∨×C×.

Take ξ ∈ F×
qn such that NrFqn/Fq

(ξ) = ζ, and write b for the unique element of

µqn−1(OFn
) lifting ζ. Note that (bΠ)n = NrFn/F (b)Π

n = ζ̟̃.

Put HD
ξ = O×

F (bΠ)
Z(1 + ΠOD). It is an open compact-mod-center subgroup of

D×. We define the character ΛD
ξ,χ,c : H

D
ξ → C× by

Λ
D
ξ,χ,c(x) = χ(x) (x ∈ O×

F ), Λ
D
ξ,χ,c(bΠ) = c, ΛD

ξ,χ,c(1+bΠd) = ψ(TrFqn/Fq
(d)) (d ∈ OD).

Here, d denotes the image of d under OD ։ OD/ΠOD

∼=
← OFn

/pFn
= Fqn . We

put πD
ζ,χ,c = c-IndD×

HD
ξ
Λ

D
ξ,χ,c, which turns out to be an irreducible smooth representa-

tion of D× whose isomorphism class depends only on (ζ,χ, c). A representation of
D×, which is automatically supercuspidal, obtained in this way is called a simple
supercuspidal representation of D×.

The following theorem is proved in [IT14, Theorem 3.5].

Theorem 4.4 For (ζ,χ, c) ∈ F×
q × (F×

q )
∨ × C×, we have JL(πζ,χ,c) = πD

ζ,χ,(−1)n−1c.
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4.2 Computation of parity

Here we compute the parity of recF (πζ,χ,c) for a conjugate self-dual simple super-
cuspidal representation πζ,χ,c. We use Proposition 2.6 to compute the parity of
πD
ζ,χ,(−1)n−1c.

Proposition 4.5 Let (ζ,χ, c) be an element of F×
q × (F×

q )
∨ ×C× such that πζ,χ,c is

conjugate self-dual with respect to τ under the setting in Example 2.7.

(i) Suppose that F/F+ is an unramified quadratic extension and ̟ ∈ F+. Let ε
be an element of F×

q satisfying εq
′−1 = −1. Then the parity of πD

ζ,χ,(−1)n−1c is

equal to (−1)n−1χ(ε)c.

(ii) Suppose that p �= 2, F/F+ is a ramified quadratic extension and τ(̟) = −̟.
Then the parity of πD

ζ,χ,(−1)n−1c is equal to

{
1 if χ is trivial,

−1 if χ is non-trivial.

(iii) Suppose that F = F+. Then, the parity of πD
ζ,χ,(−1)n−1c is equal to

{
1 if χ is trivial,

−1 if χ is non-trivial.

Proof. For simplicity, we put c′ = (−1)n−1c and Ψ = Λ
D
ζ,χ,(−1)n−1c. In each case we

will find a ∈ µqn−1(OFn
) ⊂ D× which intertwines (HD

ξ ,Ψ−1) and ((HD
ξ )τ ,Ψτ ).

Consider the case (i). Corollary 4.3 tells us that ζq
′−1 = (−1)n, χτ = χ−1

and c2 = χ(−1). Therefore we have (εξ)(1+q+···+qn−1)(q′−1) = (−1)1+q+···+qn−1
ζq

′−1 =
(−1)n · (−1)n = 1. Hence there exists η ∈ F×

qn satisfying ηq
′+1 = εξ. Let a0 be

the unique element of µqn−1(OFn
) lifting η and put a = τ−1(a0). Since η1−qξq

′

=
(εξ)1−q′ξq

′

= −ξ, we have a1−q
0 bq

′

= −b. Thus a0τ(bΠ)a
−1
0 = a0b

q′a−q
0 Π = −bΠ and

a(bΠ)a−1 = −τ−1(bΠ). In particular we have aHD
ξ a−1 = (HD

ξ )τ .
Let us prove that Ψ(h)−1 = Ψ

τ (aha−1) for every h ∈ HD
ξ . If h ∈ O×

F , we

have Ψ(h)−1 = χ(h)−1 = χτ (h) = Ψ
τ (aha−1), as χτ = χ−1. If h = bΠ, we have

Ψ(h)−1 = c′−1 and Ψ
τ (aha−1) = Ψ(−bΠ) = χ(−1)c′. These are equal since c′2 =

c2 = χ(−1). If h = 1 + bΠd ∈ 1 + ΠOD, we have Ψ(h)−1 = ψ(TrFqn/Fq
(d))−1 and

Ψ
τ (aha−1) = Ψ

τ (1 + a(bΠ)a−1 · ada−1) = Ψ(1− bΠa0τ(d)a
−1
0 ) = ψ(TrFqn/Fq

(dq
′

))−1.
Since ψ factors through TrFq/Fq′

, they are equal.

Therefore a intertwines (HD
ξ ,Ψ−1) and ((HD

ξ )τ ,Ψτ ). In this case, the element z

in Proposition 2.6 becomes a0Πτ
−1(a0) = (aq

′+1
0 b−1) · (bΠ). Note that the reduction

of aq
′+1

0 b−1 ∈ µqn−1(OFn
) is equal to ηq

′+1ξ−1 = ε ∈ F×
q , and thus aq

′+1
0 b−1 lies in

O×
F . Therefore, by Proposition 2.6 the parity of πD

ζ,χ,c′ is equal to

Ψ(a0Πτ
−1(a0)) = Ψ(aq

′+1
0 b−1)Ψ(bΠ) = χ(ε)c′ = (−1)n−1χ(ε)c,
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as desired.

Consider the case (ii). Corollary 4.3 tells us that n is odd, χ2 = 1 and c2 = χ(−1).
Fix ε ∈ F×

q \ (F×
q )

2. As in Remark 2.11 (ii), we can take τ : D → D so that τ(Π) =
−Π, and t as the unique element of µq−1(OF ) lifting ε. Since b ∈ µqn−1(OFn

) ⊂ F+
n ,

we have τ(bΠ) = −bΠ, and thus HD
ξ = (HD

ξ )τ . By the similar computation as in
(i), we can observe that Ψ(h)−1 = Ψ

τ (h) for every h ∈ HD
ξ . Therefore 1 intertwines

(HD
ξ ,Ψ−1) and ((HD

ξ )τ ,Ψτ ), and z = t. By Proposition 2.6 the parity of πD
ζ,χ,c′ is

equal to Ψ(t) = χ(ε) ∈ {±1}. Since χ2 = 1, χ(ε) = 1 if and only if χ is trivial.

Finally consider the case (iii). Corollary 4.3 tells us that n is even, χ2 = 1
and c2 = χ(−1). Take ε ∈ F×

q2 such that εq−1 = −1, and let a be the unique
element of µq2−1(OF2) lifting ε. Since n is even, a belongs to µqn−1(OFn

). We have
a(bΠ)a−1 = a1−qbΠ = −bΠ. Therefore a normalizesHD

ξ . By the similar computation
as in (i), we can observe that Ψ(h)−1 = Ψ(aha−1) for every h ∈ HD

ξ . Therefore a
intertwines (HD

ξ ,Ψ−1) and (HD
ξ ,Ψ), and z = a2 ∈ µqn−1(OFn

). Since (ε2)q−1 = 1,
the reduction ε2 of z lies in F×

q , and thus z lies in µq−1(OF ). Hence, by Proposition
2.6 the parity of πD

ζ,χ,c′ is equal to Ψ(z) = χ(ε2). As ε2 ∈ F×
q \ (F×

q )
2 and χ2 = 1,

χ(ε2) = 1 if and only if χ is trivial. This completes the proof.

Corollary 4.6 Let (ζ,χ, c) be as in Proposition 4.5.

(i) Suppose that F/F+ is an unramified quadratic extension and ̟ ∈ F+. Let ε
be an element of F×

q satisfying εq
′−1 = −1. Then the parity of recF (πζ,χ,c) is

equal to χ(ε)c.

(ii) Suppose that p �= 2, F/F+ is a ramified quadratic extension and τ(̟) = −̟.
Then the parity of recF (πζ,χ,c) is equal to

{
1 if χ is trivial,

−1 if χ is non-trivial.

(iii) Suppose that F = F+. Then the parity of recF (πζ,χ,c) is equal to

{
−1 if χ is trivial,

1 if χ is non-trivial.

Proof. Clear from Theorem 2.12, Theorem 4.4 and Proposition 4.5. Recall that in
the case (ii) (resp. (iii)), n is odd (resp. even).

Remark 4.7 By Corollary 4.6 (iii), if a simple supercuspidal representation π of
GL2n(F ) is self-dual and has trivial central character, recF (π) is symplectic and π

comes from SO(2n + 1) by the endoscopic lifting. It is a starting point of a recent
work of Oi [Oi16a].

On the other hand, if F has characteristic 0 and p �= 2, Corollary 4.6 (i) has
been obtained in [Oi16b] by using the endoscopic character relation.
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