
Introduction to p-adic uniformization of Shimura

curves

Yoichi Mieda

Abstract. This is a rough note of my talks in the study group
of the Shimura curves at the University of Tokyo.

1 What is p-adic uniformization?

Here we will introduce the general theory of p-adic uniformization. First we begin
with Tate’s uniformization of elliptic curves over local fields, which is the starting
point of the theory of p-adic uniformization. Next we treat uniformizations by the
Drinfeld upper half space, which are developed by Mumford, Mustafin and Kurihara.

Throughout this section, let K be a p-adic field, i.e., a finite extension of Qp.
We denote its p-adic absolute value by |·| : K −→ R, its ring of integers by OK , and
its residue field by k. For a scheme X which is (separated) of finite type over K,
denote the associated rigid analytic space by Xan. (Nowadays there exist several
formulations of rigid geometry. However, the results in this article hardly depends
on the choice of the formulation. The author regards rigid spaces as adic spaces in
his mind.)

1.1 Tate’s uniformization

Theorem 1.1 (Tate) For q ∈ K× with |q| < 1, there exists an elliptic curve Eq

over K such that Gan
m /qZ ∼= Ean

q as rigid analytic spaces over K. The elliptic curve
Eq is given by the following explicit Weierstrass equation:

y2 + xy = x3 + a4(q)x + a6(q),

where we put

sk(q) =
∞∑

n=1

nkqn

1− qn
, a4(q) = −5s3(q), a6(q) = −5s3(q) + 7s5(q)
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Set theoretically, the isomorphism Gan
m /qZ

∼=−−→ Ean
q is given by a GK = Gal(K/K)-

equivariant map

K
×
/qZ

∼=−−→ Eq(K); u 7−→
(
X(u, q), Y (u, q)

)
,

where we put

X(u, q) =
∑
n∈Z

qnu

(1− qnu)2
− 2s1(q), Y (u, q) =

∑
n∈Z

(qnu)2

(1− qnu)3
+ s1(q).

For a proof of this theorem, see [Si] for example. Note that the isomorphism

Gan
m /qZ

∼=−−→ Ean
q is given by p-adically convergent power series, not polynomials.

That is one of the reason why we should pass to the category of rigid analytic
spaces.

Let us compare with a uniformization of an elliptic curve over C. Recall that
every elliptic curve E over C is the quotient of C by some lattice Λ = Z⊕ Zτ with
Im τ > 0. Then E is the quotient of C/Z by the subgroup generated by the image
of τ . On the other hand, z 7−→ exp(2πiz) gives an isomorphism C/Z ∼= C×. Hence
we get an isomorphism E ∼= C/Λ ∼= C×/qZ with q = exp 2πiτ .

By this, it is obvious that the element q in the theorem is a p-adic analogue of
the q appearing in the theory of elliptic modular functions. In fact, the discriminant
of Eq is given by q

∏∞
n=1(1− qn)24 and the j-invariant of Eq is given by q−1 + 744 +

196884q + · · · , which are similar to the case over C.

Definition 1.2 Let E be an elliptic curve over K. If there exists an element q ∈ K×

with |q| < 1 such that E ∼= Eq, we say that E has a p-adic uniformization by Gm.

Later we will give a criterion whether E has a p-adic uniformization or not.

1.2 Uniformization by the Drinfeld upper half space

Let d be an integer which is greater than 1.

Definition 1.3 Let Ωd
K be the space obtained by deleting all the K-rational hyper-

planes from Pd−1
K . This has a natural structure of d − 1-dimensional rigid analytic

space over K such that the natural action of PGLd(K) on Ωd
K is rigid-analytic.

Example 1.4 We have Ω2
K(Cp) = P1(Cp) \ P1(K), where Cp is the completion of

an algebraic closure of Qp. Compare with H± = P1(C) \ P1(R)!

Now we will give a short explanation on the rigid analytic structure of Ω2
K . Let

D1 be a (open) unit disk {[z : 1] | |z| ≤ 1}. Since D1 and its translation by

(
0 1
1 0

)
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covers P1, it suffices to give a rigid analytic structure on D1∩Ω2
K . For a non-negative

integer n, put

Un(Cp) =
{
z ∈ D1(Cp) = OCp

∣∣ |z − a| ≥ |πn| for every a ∈ OK

}
,

where π is a uniformizer of K and q is the cardinality of k, the residue field of K.
Then Ω2

K(Cp) is the increasing union of Un(Cp).
Take a system of representatives {a1, . . . , aqn+1} of OK/πn+1OK . Then it is easy

to see
Un(Cp) =

{
z ∈ D1(Cp) = OCp

∣∣ |z − ai| ≥ |πn| for every i}.

This is the underlying set of a rational subset of D1, which is a typical example of
rigid analytic spaces. Hence Un comes to equip a rigid analytic structure, and by
glueing, so does Ω2

K .

Theorem 1.5 (Mumford (d = 2) [Mum], Mustafin [Mus], Kurihara [Ku])
Let Γ be a discrete, cocompact and torsion-free subgroup of PGLd(K). Then there
exists a projective smooth scheme over K such that Γ\Ωd

K
∼= Xan

Γ .

Definition 1.6 Let X be a projective smooth scheme over K. If there exists a
discrete, cocompact and torsion-free subgroup Γ of PGLd(K) such that X ∼= XΓ,
then we say that X has a p-adic uniformization by Ωd

K .

Remark 1.7 Let Γ, Γ′ be discrete, cocompact and torsion-free subgroups of PGLd(K).
If XΓ

∼= XΓ′ , then Γ and Γ′ are conjugate. Thus a p-adic uniformization of the given
scheme X is essentially unique, if it exists.

Remark 1.8 If we consider a local field with positive characteristic, the Drinfeld
modular varieties are also uniformized by Ωd

K ([Dr2]). This should be the first
motivation of introducing Ωd

K by Drinfeld. Note that the Drinfeld modular varieties
are not proper. Thus this uniformization differs from that in the above theorem.

2 Applications of p-adic uniformization

What is good if we have a p-adic uniformization? In this section, we will give 2
answers for this question:

i) We may calculate the (ℓ-adic) cohomology of uniformized varieties with Galois
action.

ii) We may have a “good” integral models of uniformized varieties (in fact, the
integral model whose existence is ensured does not have a good reduction but
has a semistable reduction).

2.1 Cohomology

Here let ℓ be a prime number which is invertible in OK .
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2.1.1 Tate’s uniformization

First we will consider the case of Tate’s uniformization. Take q ∈ K× with |q| < 1
and consider the elliptic curve Eq. Let us calculate the action of GK on the Tate
module TℓEq = H1

ét((Eq)K , Zℓ(1)). Using the isomorphism Gan
m /qZ ∼= Ean

q , it is easy
to compute Eq[ℓ

n] explicitly:

Eq[ℓ
n] = {x ∈ K

×
/qZ | xℓn

= 0} =
{
ζ i
ℓn(q1/ℓn

)j
∣∣ 0 ≤ i, j ≤ ℓn − 1

}
,

where ζℓn is a primitive ℓn-th root of unity and q1/ℓn
is a fixed ℓn-th root of q. As

we know, this is isomorphic to (Z/ℓn)2 as modules. Moreover, the subgroup µℓn

generated by ζℓn is stable under GK . It is easy to see that GK acts trivially on the
quotient Eq[ℓ

n]/µn. Taking the inverse limit, we have the following:

Proposition 2.1 As GK-module, TℓEq is an extension of Zℓ (with trivial GK-
action) by Zℓ(1) = lim←−n

µℓn .

Let IK be the inertia subgroup of GK , that is, the subgroup of GK consisting
of elements which act trivially on k, the residue field of K. As IK-module, we can
deduce more precise structure of TℓEq. Let us fix a system ξ = (ξn) of elements in

K
×

satisfying ξ0 = q and ξℓ
i+1 = ξi. Then, for σ ∈ IK , there exists a unique element

tℓ(σ) of Zℓ(1) such that σ(ξ) = tℓ(σ)ξ. It is easy to see that tℓ(σ) is independent of
the choice of ξ (this is the reason why we restrict ourselves to consider IK) and that
tℓ : IK −→ Zℓ(1) gives a homomorphism. This tℓ is called the ℓ-adic tame character.

Now we can prove the following result easily:

Proposition 2.2 Let ε be a topological generator of Zℓ(1). Then ε and ξ gives
a Zℓ-basis of TℓEq. Under this basis, the action of σ ∈ IK is given by the matrix(

1 tℓ(σ)
0 1

)
.

Note that this proposition is an easy case of the Picard-Lefschetz theorem.

2.1.2 Uniformization by Ωd
K

Next we pass to the case of uniformizations by Ωd
K , which is more complicated and

interesting. There is a calculation of H i
ét((Ω

d
K)K , Qℓ) with GK-action:

Theorem 2.3 (Schneider-Stuhler, dual form [Sc-St], [Da]) We have an iso-
morphism

H i
ét,c

(
(Ωd

K)K , Qℓ

) ∼= π{1,...,i}(−i)

as GLd(K)×GK-modules.

Here π{1,...,i} is the unique irreducible quotient of Ind
GLd(K)
P{1,...,i}

1, where P{1,...,i} is

the parabolic subgroup {(ajk) | ajk = 0 if j > k and j > i} of GLd(K). Note that if
i = 0 then π{1,...,i} = St, the Steinberg representation of GLd(K).
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Combining with the Hochschild-Serre spectral sequence and the comparison re-
sult, we have the following corollary:

Corollary 2.4 For a discrete cocompact and torsion-free subgroup Γ of PGLd(K),
we have

H i
ét

(
(XΓ)K , Qℓ

) ∼= {
Qℓ(− i

2
) (i: even, 0 ≤ i ≤ 2(d− 1), i ̸= d− 1),

0 (i: odd, i ̸= d− 1).

Moreover, we have a filtration

Hd−1
ét

(
(XΓ)K , Qℓ

)
= V = F 0V ⊃ F 1V ⊃ · · · ⊃ F d−1V ⊃ F dV = 0

such that

F rV/F r+1V ∼=

{
Qℓ(r − d + 1)µ(Γ) (0 ≤ r ≤ d− 1, r ̸= d−1

2
),

Qℓ(−d−1
2

)µ(Γ)+1 (r = d−1
2

).

Here µ(Γ) is the multiplicity of St in Ind
PGLd(K)
Γ 1.

2.2 Existence of a good integral model

2.2.1 Raynaud generic fiber

In order to explain the results on the existence of good integral models of uniformized
varieties, we will recall the functor associating formal schemes with rigid analytic
spaces. Basic references are [Ra] and [BL]. Let X be a formal scheme (separated)
locally of finite type over SpfOK . Then we may associate X with the rigid analytic
space Xrig over K called the Raynaud generic fiber of X. We list the properties of
X 7−→ Xrig:

i) For a finite extension L of K, the set Xrig(L) is equal to the set consisting of
morphisms SpfOL −→ X of formal schemes over SpfOK .

ii) For a scheme X over OK , we denote by X∧ the completion of X along its special
fiber and by XK its generic fiber. If X is proper, then we have an isomorphism
(X∧)rig ∼= Xan

K .

By i), we can define the map spX : Xrig −→ X called the specialization map. In-
deed, for x ∈ Xrig, we define spX(x) as the image of the unique point of SpfOL under
the morphism SpfOL −→ X corresponding to x. Unless we use the formulation by
Berkovich, the map spX is continuous.

Note that the property ii) is a consequence of i) and the valuative criterion for
properness. Indeed, every K-morphism Spec L −→ XK automatically extends to an
OK-morphism SpfOL −→ X∧.

Example 2.5 Let OK⟨T ⟩ be the ring consisting of convergent power series with
OK-coefficients. Then for a finite extension L of K, we have Xrig(L) = OL. Thus
Xrig is nothing but D1. Note that X is the completion of A1

OK
along its special fiber.

Therefore the property ii) above is not true for non-proper X.
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Definition 2.6 For a rigid analytic space X over K, a formal scheme X locally of
finite type over SpfOK satisfying Xrig ∼= X is called a formal model of X.

Remark 2.7 Every quasi-compact rigid analytic space has a formal model.

2.2.2 Tate’s uniformization

Here we will construct a “good” formal model X of Gan
m and see that we may take

the quotient (as a formal scheme) of X by qZ. Then X/qZ should give a formal model
of Ean

q , and we can get an integral model of Eq by algebraizing X/qZ.
Let us begin with the blow-up Y of A1

OK
at 0 ∈ A1

k. The special fiber of Y is the
union of A1 and P1, which intersect transversally at one point. Put Y = Y ∧. Then,
since Y −→ A1

OK
is proper, we have Yrig = D1

K . Let us consider the specialization
map spY : D1

K(Cp) −→ Yk. The scheme Yk is decomposed into three parts: the node
P , A1 \ {P} and P1 \ {P}. The inverse images of these subspaces are the following:

sp−1
Y (P ) =

{
z ∈ Cp

∣∣ |π| < |z| < 1
}
, sp−1

Y

(
A1 \ {P}

)
=

{
z ∈ Cp

∣∣ |z| = 1
}
,

sp−1
Y

(
P1 \ {P}

)
=

{
z ∈ Cp

∣∣ |z| ≤ |π|}.

Moreover, under a suitable coordinate of Y , the restriction of spY on sp−1
Y (A1 \{P})

(resp. on sp−1
Y (P1 \ {P})) is given by z 7−→ z mod π (resp. z 7−→ z/π mod π). In

particular, the inverse image of Q = spY(0) by spY is equal to {z ∈ Cp | |z| < |π|}.
Thus if we remove Q and get a formal scheme Y′, then (Y′)rig(Cp) is equal to
{z ∈ D1(Cp) | |π| ≤ |z| ≤ 1}. In other words, (Y′)rig is an annulus over K whose
inner (resp. outer) radius is |π| (resp. 1).

On the other hand, Gan
m is a union of infinitely many annuli:

Gan
m (Cp) = C×

p =
∪
n∈Z

{
z ∈ Cp

∣∣ |πn+1| ≤ |z| ≤ |πn|
}
.

Therefore we may have a formal model X of Gan
m by glueing infinitely many Y′. The

picture of its special fiber is as follows (all the irreducible components are P1):

· · · · · ·· · · · · ·

Moreover, an element q of K× acts on X and maps the i-th irreducible component
to (i + vK(q))-th irreducible component. If |q| < 1, this action is obviously free and
we may take the quotient X/qZ as a formal scheme. The Raynaud generic fiber of
X/qZ is isomorphic to Ean

q . The formal scheme X/qZ is semistable over OK , since X

is (strictly) semistable over OK . Moreover, (X/qZ)red is a projective curve over k.
Therefore, by a usual technique, we may prove that X/qZ is algebraizable, that is,
there exists a projective scheme X over OK such that X∧ ∼= X/qZ. This X gives a
semistable integral model of Eq.

Corollary 2.8 The elliptic curve Eq has a split multiplicative reduction.

Remark 2.9 Conversely, if an elliptic curve E over K has a split multiplicative
reduction, then E ∼= Eq for some q ∈ K× with |q| < 1.
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2.2.3 Uniformization by Ωd
K

This case is similar to the case of Tate’s uniformization. There exists a (strictly)

semistable formal model Ω̂d
K of Ωd

K , discovered by Deligne, such that PGLd(K) acts

on Ω̂d
K and this action induces the natural action on Ωd

K . Here we skip the definition

of Ω̂d
K and only list basic properties of it. (Later we will see a moduli interpretation

of Ω̂d
K . Thus we may consider that interpretation as a definition. All the following

properties can be derived by the moduli interpretation.)

– The formal scheme Ω̂d
K is strictly semistable over OK .

– The configuration of the irreducible components of (Ω̂d
K)red is given by the

Bruhat-Tits building of PGLd(K).

– Each irreducible component of (Ω̂d
K)red is given as follows. Put B0 = Pd−1

k . Let
B1 be the blow-up along all k-rational points of B0 = Pd−1

k . Let B2 be the blow-
up along the strict transform of all k-rational lines of Pd−1

k by B1 −→ Pd−1
k . We

define B3, . . . , Bd−1 inductively (Bi+1 is the blow-up along the strict transform
of all k-rational i-dimensional linear subspaces of Pd−1

k by Bi −→ Pd−1
k ). Every

irreducible component is isomorphic to Bd−1. In particular, it is projective over
k and rational.

For a discrete cocompact and torsion-free subgroup Γ of PGLd(K), we may take

the quotient Γ\Ω̂d
K . The obtained formal scheme is in fact algebraizable (we may

prove that the relative dualizing sheaf is ample; thus XΓ is a variety of general type).
Therefore we have a semistable integral model of XΓ as in the previous case.

Corollary 2.10 If a projective smooth scheme X over K admits a p-adic uni-
formization by Ωd

K , then there exist a semistable model X of X, a strictly semistable
scheme X ′ over OK such that every irreducible component of X ′

k is isomorphic to
Bd−1, and a finite étale OK-morphism X ′ −→ X .

Remark 2.11 For the case d = 2, we have the following result of converse direction,
due to Mumford. Let X is a proper smooth curve over K whose genus is greater
than or equal to 2. If X has a strictly semistable model X over OK such that every
irreducible component of Xk is P1, then X has a p-adic uniformization by Ω2

K .

3 Statement of the main theorem

3.1 Weil descent datum

Let K be a p-adic field as above, and denote by K̂ur the completion of the maximal
unramified extension of K. Let σ ∈ Gal(K̂ur/K) be the (arithmetic) Frobenius
element, namely, the element that induces the q-th power map on the residue field
k (here we put q = #k).
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Definition 3.1 Let X be a formal scheme over OK̂ur . A Weil descent datum for X
is a morphism of formal schemes α : X −→ X which makes the following diagram
commutative:

X
α //

��

X

��
SpfOK̂ur

σ∗
// SpfOK̂ur

(equivalently, a morphism α : X −→ σ∗X = X⊗̂O
K̂ur ,σOK̂ur over OK̂ur). There is

a natural functor from the category of formal schemes over OK to the category of
pairs (X, α) where X is a formal scheme over OK̂ur and α is a Weil descent datum
for X:

Y 7−→ (Y ⊗̂OK
OK̂ur , idY ⊗σ∗).

It is easy to see that this functor is fully faithful. If a pair (X, α) is contained in the
essential image of this functor, the Weil descent datum α is said to be effective.

If α is a Weil descent datum over K, then αr is a Weil descent datum over the
degree r unramified extension of K. The following lemma is an easy consequence of
étale descent.

Lemma 3.2 If αr is effective, then so is α.

Definition 3.3 Put M̆Dr,d = (Ω̂d
K⊗̂OK

OK̂ur) × Z. This is a formal scheme over

OK̂ur . Let α be the Weil descent datum for M̆Dr,d defined as follows:

– On the first factor, α is the canonical one (Ω̂d
K⊗̂OK

OK̂ur comes from OK).

– On the second factor, α is the map +1.

We also denote (M̆Dr,d, α) by M̆Dr,d. The group GLd(K) acts on M̆Dr,d: on the

first factor g ∈ GLd(K) acts in the same way as Ω̂d
K , and on the second factor

g ∈ GLd(K) acts as −vK(det g).

3.2 Statement of p-adic uniformization of Shimura curves
over Q

In this subsection, K does not denote a local field. Let B be an indefinite quaternion
division algebra over Q which ramifies at p. We take a maximal order OB of B and
put OBp = OB⊗Zp. This is the maximal order of Bp. Let K ⊂ (OB⊗Ẑ)× ⊂ B×(Af )
be a compact open subgroup. Assume that K is decomposed into a product K =
K0

p ·Kp, where K0
p = O×

Bp
⊂ B×(Qp) and Kp is a compact open subgroup of B×(Ap

f )

(Ap
f denotes the finite adèle ring without p-th component).
Let us consider the Shimura curve SK associated with B× and its integral model

SK over Zp. The integral model SK is given by the moduli functor associating a
scheme S over Zp to the set of triples (A, ι, ν) such that:

– A is an abelian surface over S.
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– ι : OB −→ End(A) is a ring homomorphism satisfying the Kottwitz (or deter-
minant) condition. Recall that this condition is equivalent to the following:

Consider the action of Zp2 ⊂ OBp on Lie(A). If S is a Zp2-scheme, then
there is a canonical decomposition Lie(A) ∼= Lie0(A) ⊕ Lie1(A) such
that the action of Zp2 on Lie0(A) factors through the structure map

Zp2 −→ OS and that on Lie1(A) factors through Zp2
σ−−→ Zp2 −→ OS.

The condition is that Lie0(A) and Lie1(A) are projective OS-modules of
rank one.

– ν is a Kp-equivalence class of isomorphisms ν : T p
f A :=

∏
ℓ ̸=p TℓA

∼=−−→ OB ⊗ Ẑp

of OB-modules. If we take a positive integer N prime to p such that K(N) :=

Ker((OB ⊗ Ẑ)× −→ (OB ⊗ Z/NZ)×) ⊂ K, then to give ν is equivalent to

give a K/K(N)-equivalence class of isomorphisms A[N ]
∼=−−→ OB ⊗ Z/NZ of

OB-modules.

If Kp is enough small, this functor is represented by a projective scheme SK over
Zp.

Let B be the quaternion algebra over Q satisfying ram B = ram B \ {p} ∪ {∞}.
Note that if (A, ι) is a pair as above, then EndOB

(A)⊗Q ∼= B. Fix an isomorphism

B×(Ap
f )
∼= B

×
(Ap

f ) and identify them. Now we can state our main theorem.

Theorem 3.4 (p-adic uniformization of Shimura curves over Q) If Kp is small,
then we have an isomorphism of formal schemes over OK̂ur with Weil descent data:

S∧
K
∼= B

×
(Q)\M̆Dr,2 ×B×(Ap

f )/K
p.

The action of B
×
(Q) on M̆Dr,2 is induced from the action of GL2(Qp) on M̆Dr,2

by the map B
×
(Q) ↪−→ B

×
(Qp) = GL2(Qp). The action of B

×
(Q) on B×(Ap

f ) =

B
×
(Ap

f ) is given by the multiplication from the left. The group Kp acts on M̆Dr,2

trivially, and acts on B×(Ap
f ) by the multiplication from the right.

First this theorem was proved by Čerednik ([Če]). After that, Drinfeld discovered
more natural proof. In this article, we will follow the proof by Drinfeld.

Remark 3.5 Compare with the uniformization of SK over C:

SK(C) ∼= B×(Q)\(C \ R)×B×(Af )/K.

Remark 3.6 We have the following isomorphism:

B
×
(Q)\M̆Dr,2 ×B×(Ap

f )/K
p ∼= B

×
(Qp)\M̆Dr,2 ×

(
Kp\B×(Af )/B

×
(Q)

)
;

(x, g) 7−→
(
x, (1, g−1)

)
,

(
g−1

p x, (gp)−1
)
←−7

(
x, (gp, g

p)
)
.

Actually we will prove an isomorphism S∧
K
∼= GL2(Qp)\M̆Dr,2×(Kp\B×(Af )/B

×
(Q)).
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We put ZK = Kp\B×(Af )/B
×
(Q). The orbit of the action of GL2(Qp) on ZK

is finite, and for every x ∈ ZK , the stabilizer Γx of x is given by x−1Kpx ∩ B
×
(Q).

This is a discrete cocompact subgroup of GL2(Qp) and is torsion-free if Kp is small.
Therefore we have an isomorphism

S∧
K
∼=

⨿
x∈GL2(Qp)\ZK

Γx\M̆Dr,2.

For every x, there exists a positive integer n such that

(
pn 0
0 pn

)
∈ Γx. If we

denote by α′ the induced Weil descent datum for Γx\M̆Dr,2, then (α′)2n is clearly
effective. By Lemma 3.2, α′ is also effective. Therefore we may regard Γx\M̆Dr,2 as
a formal scheme over Zp. It is easy to see that (Γx\M̆Dr,2)⊗Zp Zp2n is a quotient of

(Ω̂2
Qp
⊗̂ZpZp2n)×Z/2nZ (this is a direct consequence of the proof of effectivity of α′).

By the remark above, we have the following corollary:

Corollary 3.7 For a compact open subgroup K = K0
p ·Kp of B×(Af ), the scheme

SK is semistable over Zp as long as SK is representable.

4 Moduli interpretation of M̆Dr,d — Drinfeld’s the-

orem

In his paper [Dr1], Drinfeld discovered a moduli interpretation of the formal scheme
M̆Dr,d. The goal of this section is to explain his result.

In this section, again K denotes a p-adic field, not a compact open subgroup.
Needless to say, the formal scheme M̆Dr,d is the one constructed from Ω̂d

K . We fix a
uniformizer π of K. Let D be the central division algebra over K whose invariant
is equal to 1/d. Denote the maximal order of D by OD.

Recall an explicit construction of D and OD. Let Kd be the degree d unrami-
fied extension of K and OKd

[Π] be the OD-module generated freely by 1, Π, Π2, . . ..
By the relation Πa = σ(a)Π for a ∈ OKd

(here σ ∈ Gal(Kd/K) be the Frobe-
nius element), OKd

[Π] comes to equip a structure of OK-algebra. Then OD =
OKd

[Π]/(Πd − π). Similarly, D = Kd[Π]/(Πd − π).

Put E = K̂ur and denote by k the residue field of E.

Definition 4.1 Let S be a scheme over OE. A special formal OD-module over S
is a pair (X, ι) consisting of a formal group X over S and a ring homomorphism
ι : OD −→ End(X) satisfying the following conditions.

– The action of OK on Lie X induced by ι coincides with that induced by OK ↪−→
OE −→ OS (note that Lie X is an OS-module). Namely, the pair (X, ι|OK

) is
a formal OK-module over S.

10
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– Using the action of OKd
⊂ OD on Lie X by ι, we can find a natural decompo-

sition of Lie X as an OS-module: Lie X =
⊕

i∈Z/dZ Liei X. Here Liei X is the
maximal OS-submodule of Lie X where the action of OKd

coincides with that

induced by OKd

σi

−−→ OKd
↪−→ OE −→ OS. We require that each Liei X should

be a locally free OS-module of rank 1 (the Kottwitz condition).

Note that every formal OD-module is d-dimensional.

Proposition 4.2 i) For every special formal OS-module over S, the OK-height
of X is a multiple of d2. Recall that for a formal OK-module X, the OK-height
of X is the integer h such that the degree of the map [π] : X −→ X is equal to
qh.

ii) A special formal OD-module of OK-height d2 over k is unique up to OD-isogeny.
We take and fix one X of them.

iii) EndOD
(X)⊗Q ∼= Md(K).

Although this proposition is an easy consequence of the Dieudonné (or Cartier)
theory, we will skip the proof.

Definition 4.3 Let NilpOE
be the category of OE-schemes such that π is locally

nilpotent on them. Let G be the functor from NilpOE
to the category of sets which

maps S to the set of pairs (X, ρ) such that:

– X is a special formal OD-module over S whose OK-height is d2,

– ρ : X×Spec k S −→ X ×S S is an OD-quasi-isogeny. Here we put S = S ⊗OE
k.

Recall that a quasi-isogeny X −→ X ′ between formal groups over S is a global
section f of the sheaf HomS(X,X ′) ⊗ Q such that Zariski locally there exists
an integer n such that pnf is an isogeny.

Theorem 4.4 (Drinfeld, [Dr1]) The functor G is represented by M̆Dr,d. Further-
more, we may describe the action of GLd(K) on M̆Dr,d, a natural map M̆Dr,d −→ Z,
and the Weil descent datum of M̆Dr,d in terms of G as follows:

– for g ∈ GLd(K), we have g(X, ρ) = (X, ρ ◦ g−1),

– the morphism M̆Dr,d(S) −→ Z maps (X, ρ) to deg ρ,

– the Weil descent datum α : M̆Dr,d(S) −→ M̆Dr,d(σS) is given by (X, ρ) 7−→
(X, ρ◦Frob−1). Here σS is an OE-scheme such that it is equal to S as a scheme

and the structure map is given by S −→ SpecOE
σ∗
−−→ SpecOE. The quasi-

isogeny ρ ◦ Frob−1 is a composite of

X×Spec k↙σ∗ S = (σ∗)∗X×Spec k S
Frob−1 × id−−−−−−→ X×Spec k S

ρ−−→ X ×S S.

For the case d = 2, a detailed exposition on the proof of this theorem is given in
[Bo-Ca]. See also [Ra-Zi].

Here we will not give a comment on a proof of this theorem. We only mention
that it is not so difficult to prove:

11
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i) the functor G is represented by some formal schemeM′,

ii) the formal schemeM′ gives a formal model of (Ωd
K)E × Z.

The part i) is essentially given in [Ra-Zi]. The part ii) is also contained in
[Ra-Zi]. I will give a rough explanation about that, by the Dieudonné theory, we
may describe the map (M′)rig(L) =M′(OL) −→ Pd−1(L) for a finite extension L of
K.

Let us recall the Dieudonné theory briefly. Formal OK-modules (more generally,
π-divisible OK-modules) over OL is classified by the following two data.

– The Dieudonné module D(X) of X. This is a free WOK
(k) ∼= OE-module with

two semi-linear operators F (called Frobenius) and V (called Verschiebung)
satisfying FV = V F = π. The OE-rank of D(X) is equal to the OK-height of
X.

– The Hodge filtration Fil ⊂ D(X) ⊗OE
OL. This is a free OL-submodule such

that (D(X) ⊗OE
OL)/Fil ∼= Lie X. In particular, the corank of Fil is equal to

the dimension of X.

Moreover, we have a canonical isomorphism D(X) ∼= D(Xk) (crystalline nature of
the Dieudonné module).

Let (X, ρ) be an element ofM′(OL). Then ρ induces an isomorphism ρ∗ : D(X)Q
∼=−−→

D(Xk)Q of d2-dimensional E-vector spaces. Therefore we have an isomorphism

D(X)Q ⊗E L
∼=−−→ D(Xk)Q ⊗E L. By the isomorphism D(Xk)Q ⊗E L ∼= D(X)Q ⊗E L,

the subspace FilQ ⊂ D(X)Q⊗E L can be regarded as an L-subspace of D(Xk)Q⊗E L
whose codimension is d.

Now let us remind the action of OD. Then, as in the second condition of Defini-
tion 4.3, everything decomposes compatibly; we have

D(X)i
Q ⊗E L

ρ∗−−→∼= D(Xk)
i
Q ⊗E L ⊃ FiliQ

for every i ∈ Z/dZ. Therefore we get an L-subspace ρ−1
∗ (Fil0Q) of D(X)0

Q⊗E L whose
codimension is 1. This subspace gives an L-valued point of P(D(X)0

Q).

On the other hand, we have an isomorphism (D(X)0
Q)

V −1Π ⊗K E ∼= D(X)0
Q (this

is obtained in the course of the proof of Proposition 4.2). Thus P(D(X)0
Q) is the

base extension of P((D(X)0
Q)

V −1Π) from K to E, and we get an L-valued point of

P((D(X)0
Q)

V −1Π). Since P((D(X)0
Q)

V −1Π) is isomorphic to Pd−1
K over K, we have done.

Remark 4.5 i) By this description, we can explain why the obtained L-valued
point lies in Ωd

K . This has a relation to the Fontaine theory on p-adic Galois
representations. Roughly speaking, Ωd

K is the set consisting of “weakly admis-
sible points” of Pd−1. The Dieudonné module of X is the image of Fontaine’s
functor Dcris, thus (weakly) admissible. (If K = Qp, then the Tate module TpX
of X is mapped to D(X)Q. In the general case, we require more argument.) A
precise statement can be seen in [Ra-Zi].
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ii) The surjectivity of the morphism (M′)rig −→ Ωd
K can be seen as a consequence

of the theorem of Colmez-Fontaine [Co-Fo] which says that weakly admissible
means admissible. (However the theorem of Drinfeld is older than that of
Colmez-Fontaine.)

iii) We may also determine the fiber of the map (M′)rig −→ Ωd
K using the descrip-

tion above.

Remark 4.6 We may define Ω̂d
K as the formal scheme representing the functor

G′ : S 7−→
{
(X, ρ) ∈ G(S)

∣∣ deg ρ = 0
}
.

The theory of local models due to Rapoport-Zink enables us to study its local
structure (for example, semistablity) from this moduli interpretation.

5 Proof of the main theorem

In this section, we use the notation introduced in 3.2. In particular, K = K0
p ·Kp

denotes a compact open subgroup of B×(Af ).

5.1 Interpretation of ZK = Kp\B×
(Af)/B

×
(Q)

Definition 5.1 Let X be a special formal OBp-module of height 4 over S ∈ NilpOE
.

An algebraization of X is a pair (A, ε) consisting of:

– an abelian surface A over S with an OB-action,

– an OB-isomorphism ε : Â
∼=−−→ X (Â denotes the formal group associated with

A).

We will denote the set of algebraizations of X by Alg(X).

Remark 5.2 If (A, ε) ∈ Alg(X), then the action of OB on A automatically satisfies
the Kottwitz condition (see 3.2).

Proposition 5.3 We have a bijection{
(A, ε, ν)

∣∣ (A, ε) ∈ Alg(X), ν: a K-level structure of A
}

/∼=
∼= Kp\B×

(Af )/B
×
(Q).

Proof. The case “Kp = 1”, that is, the isomorphy{
(A, ε, ν)

∣∣ (A, ε) ∈ Alg(X), ν : T p
f A

∼=−−→ OB ⊗ Ẑp
}

/∼=
∼= B

×
(Af )/B

×
(Q)

is essential. It is easy to see that the left hand side is isomorphic to the set Z ′ of
isomorphism classes of triples (A, ε, ν) consisting of:

– an abelian surface A over Fp with an OB-action,

– an OB-quasi-isogeny ε : Â −→ X,

13
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– and an OB-isomorphism ν : V p
f A := T p

f A⊗Q
∼=−−→ B×(Ap

f ).

We may define the action of g = (gp, g
p) ∈ B

×
(Af ) on the set Z ′ by g(A, ε, ν) =

(A, gp ◦ ε,Rgp ◦ ν). Here Rgp denotes the map B
×
(Ap

f ) −→ B
×
(Ap

f ); h 7−→ hgp.

Let us prove that Z ′ is isomorphic to B
×
(Af )/B

×
(Q) as B

×
(Af )-sets. First note

that Z ′ is non-empty, since for every (A, ι) ∈ SK(Fp), Â is a special formal OBp-

module of height 4, and thus there exists anOBp-quasi-isogeny Â −→ X (Proposition
4.2 ii)). Furthermore, by the subsequent proposition, it is easy to see that the

action of B
×
(Af ) on Z ′ is transitive. Finally, we may prove that the stabilizer

of this action is isomorphic to B
×
(Q). This is a consequence of the isomorphism

EndOB
(A)⊗Q ∼= B(Q).

In the proof above, we used the following proposition, which is an easy conse-
quence of the Honda-Tate theory.

Proposition 5.4 Let A and A′ be abelian schemes with OB-actions. Assume that
each action satisfies the Kottwitz condition. Then they are OB-isogenous.

Remark 5.5 In fact, such A is isogenous to the product of two supersingular elliptic
curves.

5.2 Construction of the isomorphism over Fp

Definition 5.6 We define a map Θ: (M̆Dr,2)Fp
× ZK −→ (SK)Fp

as follows. Let S

be an Fp-scheme. By Proposition 5.3, the set of S-valued points of (M̆Dr,2)Fp
× ZK

consists of 5-ples (X, ρ,A, ε, ν). From this data, we can construct canonically an
algebraization (A′, ε′) of X and a p-quasi-isogeny h : A⊗Fp

S −→ A′ which make the
following diagram commutative:

Â⊗Fp
S

ε
∼=

//

ĥ
��

X⊗Fp
S

ρ

��
Â′ ε′

∼=
// X.

If ρ : X⊗Fp
S −→ X is an isogeny, then A′ is the quotient of A⊗Fp

S by the inverse
image of Ker ρ under ε.

The level structure ν naturally induces a K-level structure ν ′ on A′. Therefore
we have a pair (A′, ν ′) ∈ SK(S). We define Θ as (X, ρ,A, ε, ν) 7−→ (A′, ν ′).

It is easy to see that Θ induces a morphism Θ: GL2(Qp)\(M̆Dr,2)Fp
× ZK −→

(SK)Fp
.

Proposition 5.7 The morphism Θ is an isomorphism.
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Proof. First we will prove that Θ induces a bijection on the sets of Fp-valued points.
The injectivity is easy from the definition. The surjectivity is a consequence of
Proposition 4.2 ii).

Next we will prove that Θ is étale. We have only to prove that Θ induces an
isomorphism on deformations, which is ensured by the Serre-Tate theorem.

5.3 From “over Fp” to “over OE”

Proposition 5.8 The isomorphism Θ extends canonically to an isomorphism

Θ: GL2(Qp)\M̆Dr,2 × ZK

∼=−−→ S∧
K .

Proof. We use the Serre-Tate theorem again. For S ∈ NilpOE
, let (X, ρ, A, ε, ν) be

an S-valued point of M̆Dr,2×ZK . By taking base change to S, we get (X, ρ, A, ε, ν).

By the construction in Definition 5.6, we have an algebraization (A
′
, ε′) of X and a

K-level structure ν
′
of A

′
. Then, pulling back X by the isomorphism ε′, we have a

deformation of (A
′
)∧ over S. Now by the Serre-Tate theorem, we have a deformation

A′ of A
′
over S. Since OB acts on X, this abelian surface A′ comes to equip the

action of OB. Since the level structure ν
′
obviously extends to A′, we get an S-

valued point (A′, ν ′) of SK(S). The map (X, ρ,A, ε, ν) 7−→ (A′, ν ′) gives a desired
extension Θ.

By the Serre-Tate theorem, it is not difficult to prove that Θ is an isomorphism.

By this proposition, our proof of Theorem 3.4 is finished.

5.4 Miscellaneous remarks

Remark 5.9 It is natural to hope that we might consider more general level struc-
tures. There is the following result due to Drinfeld. Let K = Km

p ·Kp be a compact
open subgroup of B×(Af ) where Km

p = 1 + ΠmOBp ⊂ B×(Qp) for m ≥ 1. Then San
K

can be uniformized by Σ2
m, a Galois étale covering of Ω2

Qp
. For an integer d and m,

the covering Σd
m is obtained as Xuniv[Πm]\Xuniv[Πm−1], where Xuniv is the universal

special formal OBp-module over Ωd
Qp

. Its Galois group is isomorphic to (OBp/Π
m)×.

Note that we have neither a good formal model of Σd
m nor a uniformization result

of SK at the level of formal schemes.
The ℓ-adic cohomology of Σd

m is very interesting; it has a relation to the local
Langlands correspondence (for GLd) and to the local Jacquet-Langlands correspon-
dence (for GLd and D×). This is compatible with the fact that the ℓ-adic cohomology
of SK has a relation to the global Langlands correspondence.

Remark 5.10 We have a similar result for Shimura curves over a totally real field
which is not equal to Q. It was also proved by Čerednik [Če]. Boutot and Zink
([Bo-Zi]) gave another proof by generalizing Drinfeld’s method explained here. First
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they gave a p-adic uniformization for unitary Shimura varieties using the general
theory developed in [Ra-Zi] and next reduced the case of Shimura curves to the
unitary case.
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