
Note on weight-monodromy conjecture for

p-adically uniformized varieties

Yoichi Mieda

Abstract. We prove the weight-monodromy conjecture for
varieties which are p-adically uniformized by a product of the
Drinfeld upper half spaces. It is an easy consequence of Dat’s
work on the cohomology complex of the Drinfeld upper half
space.

1 Introduction

Let X be a proper smooth variety over a p-adic field F . For a prime number
` 6= p and an integer i, the absolute Galois group Gal(F/F ) acts on the ith `-
adic étale cohomology H i(X ⊗F F ,Q`). This action determines two filtrations on
the cohomology; the weight filtration and the monodromy filtration. The weight-
monodromy conjecture predicts that these two filtrations coincide up to shift by i.
This conjecture, due to Deligne [Del71], is widely open. It is known in the following
cases:

(i) X has good reduction over OF ([Del74], [Del80]).

(ii) X is an abelian variety ([SGA7, Exposé IX]).

(iii) i ≤ 2 ([RZ82], [dJ96]).

(iv) X is uniformized by the covering of the Drinfeld upper half space ([Ito05],
[Dat06], [Dat07]).

(v) X is a set-theoretic complete intersection in a projective smooth toric variety
([Sch12]).

In this short note, we will slightly generalize the case (iv); we will consider a variety
X which is uniformized by a product of the Drinfeld upper half spaces. Interesting
examples of such varieties are given by some unitary Shimura varieties (see [RZ96,
Theorem 6.50]). By using our result, we can compute the `-adic cohomology and
the local Hasse-Weil zeta functions of such Shimura varieties without any effort.

Our setting is as follows. Let F , F ′ be p-adic fields and F ′′ a p-adic field con-
taining F and F ′. Fix integers d, d′ ≥ 1 and put G = PGLd(F ), G′ = PGLd(F

′),
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respectively. Let ΩF = Ωd−1
F (resp. ΩF ′ = Ωd′−1

F ′ ) denote the d−1-dimensional (resp.
d′ − 1-dimensional) Drinfeld upper half space. To simplify the notation, we write
ΩF ×F ′′ ΩF ′ = (ΩF ⊗F F ′′)×F ′′ (ΩF ′ ⊗F ′ F ′′). For a discrete torsion-free cocompact
subgroup Γ ⊂ G × G′, the quotient ΩF ×F ′′ ΩF ′/Γ becomes a projective smooth
variety over F ′′. Such a variety is said to be uniformized by ΩF ×F ′′ ΩF ′ .

The main theorem of this article is the following:

Theorem 1.1 Let X be a projective smooth variety over F ′′ which is uniformized
by ΩF ×F ′′ ΩF ′ . Then, the weight-monodromy conjecture holds for X.

Our strategy is the same as that in [Dat06]. First we determine the monodromy
operator on the cohomology complex RΓc((ΩF ×F ′′ ΩF ′) ⊗F ′′ F ′′,Q`), which is an
object of the derived category of smooth G×G′-representations. Using this result,
one can easily compute the cohomology of X, from which the weight monodromy
conjecture is deduced.

Although Theorem 1.1 is stated for the product of two Drinfeld upper half spaces,
our argument also works for the product of more than two Drinfeld upper half spaces.
Further, as in [Dat07], we may replace the Drinfeld upper half space by its covering
introduced by Drinfeld [Dri76]. See Theorem 2.5.

The structure of this paper is as follows. In Section 2, we give a proof of Theorem
1.1. A short remark on applications to some unitary Shimura varieties are included
in the end of this section. In Appendix A, we prove an equivariant version of the
Künneth formula, which is needed in Section 2.

Acknowledgment This work was supported by JSPS KAKENHI Grant Numbers
24740019, 15H03605.

2 Proof of the main theorem

In this section, we continue to use the notation in Introduction. We fix an isomor-
phism Q`

∼= C and identify them. All representations are considered over this field.
In the notation of `-adic étale cohomology, we omit the coefficient Q` and the base
change to a separable closure. For example, H i(X ⊗F F ,Q`) is written as H i(X).

For a subset I of {1, . . . , d− 1}, an irreducible smooth representation πI of G is
naturally attached (see [Dat06, 2.1.3]). For example, π∅ is the Steinberg represen-
tation Std and π{1,...,d−1} the trivial representation 1. For 0 ≤ i ≤ d − 1, we write
π≤i for π{1,...,i}. Similarly, for J ⊂ {1, . . . , d′ − 1}, consider an irreducible smooth
representation π′J of G′.

Lemma 2.1 (i) For I1, I2 ⊂ {1, . . . , d− 1} and J1, J2 ⊂ {1, . . . , d′ − 1}, we have

ExtiG×G′(πI1 � π′J1 , πI2 � π′J2) =

{
Q` if i = δ(I1, I2) + δ(J1, J2),

0 otherwise.

Here δ(I1, I2) = #(I1 ∪ I2)−#(I1 ∩ I2).
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(ii) Let I1, I2, I3 be subsets of {1, . . . , d−1} satisfying δ(I1, I2)+δ(I2, I3) = δ(I1, I3).

Take a non-zero element β ∈ Ext
δ(I1,I2)
G (πI1 , πI2). For J1, J2 ⊂ {1, . . . , d′ − 1},

the homomorphism

Ext
δ(I2,I3)+δ(J1,J2)
G×G′ (πI2 � π′J1 , πI3 � π′J2)

(β∪−)�id−−−−−→ Ext
δ(I1,I3)+δ(J1,J2)
G×G′ (πI1 � π′J1 , πI3 � π′J2)

is an isomorphism.

(iii) Let π� π′ be an irreducible smooth representation of G×G′. If it is not of the
form πI0 � π′J0 with I0 ⊂ {1, . . . , d− 1} and J0 ⊂ {1, . . . , d′ − 1}, then we have
ExtiG×G′(πI � π′J , π � π′) = 0 for every I ⊂ {1, . . . , d − 1}, J ⊂ {1, . . . , d′ − 1}
and i.

Proof. For (i) and (ii), apply [Dat06, Théorème 1.3] to the semisimple group G×G′.
The claim (iii) follows from [Vig97, Theorem 6.1], since the cuspidal supports of
πI � π′J and π � π′ are different.

Now we recall a result of Dat, which is crucial for our work. In [Dat06], he
studied the cohomology complex RΓc(ΩF ) = RΓc(ΩF ⊗F F ,Q`), which is an object
of the bounded derived category of smooth representations of G (see Definition A.2
and Proposition A.3 (ii)). The Weil group WF of F acts on RΓc(ΩF ).

Theorem 2.2 ([Dat06]) Fix a Frobenius lift ϕ ∈ WF .

(i) ([Dat06, Proposition 4.2.2]) There exists an isomorphism

α : RΓc(ΩF )
∼=−→

d−1⊕
i=0

π≤i(−i)[−d+ 1− i]

compatible with the actions of ϕ. In the following, we fix such an α. It induces
an isomorphism

End
(
RΓc(ΩF )

) ∼= ⊕
0≤i<j≤d−1

Extj−iG (π≤j, π≤i)(j − i).

(ii) ([Dat06, Lemme 4.2.1]) The monodromy operator N ∈ End(RΓc(ΩF ))(−1) on
RΓc(ΩF ) is naturally determined. The image of N under the isomorphism α in
(i) belongs to

⊕
0≤i≤d−2 Ext1

G(π≤i+1, π≤i). We denote it by (βi)i.

(iii) ([Dat06, Proposition 4.2.7]) For each i with 0 ≤ i ≤ d− 2, βi 6= 0.

The following theorem is an analogue of [Dat06, Théorème 1.1].

Theorem 2.3 For subsets I ⊂ {1, . . . , d − 1} and J ⊂ {1, . . . , d′ − 1}, we have an
isomorphism of Weil-Deligne representations of F ′′:

H∗
(
RHom

(
RΓc(ΩF ×F ′′ ΩF ′), πI �π′J

)) ∼= recF (πI)(
d−1

2
)|WF ′′ ⊗ recF ′(π′J)(d

′−1
2

)|WF ′′ ,
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where recF (resp. recF ′) denotes the local Langlands correspondence for F (resp.
F ′). The functor H∗ from Db(Q`) to the category of Z-graded Q`-vector spaces is
given by L• 7→

⊕
i∈ZH

i(L•).
If an irreducible smooth representation π�π′ of G×G′ is not of the form πI�π′J ,

then RHom(RΓc(ΩF ×F ′′ ΩF ′), π � π′) = 0.

Proof. For simplicity, we only consider the cases (I, J) = (∅,∅), (∅, {1, . . . , d′−1}).
Other cases can be treated similarly.

First consider the case (I, J) = (∅,∅). By Theorem 2.2 (i) and the Künneth
formula (See Theorem A.5), we have

RΓc(ΩF ×F ′′ ΩF ′)
∼=−→

d−1⊕
i=0

d′−1⊕
j=0

(π≤i � π′≤j)(−i− j)[−d− d′ + 2− i− j].

By Lemma 2.1 (i), we have

RHom
(
RΓc(ΩF ×F ′′ ΩF ′), π∅ � π′∅

) ∼= d−1⊕
i=0

d′−1⊕
j=0

Exti+jG×G′(π≤i � π′≤j, π∅ � π′∅)(i+ j),

where Exti+jG×G′(π≤i� π′≤j, π∅ � π′∅) is a one-dimensional vector space for each i and

j. Let e0,0 ∈ HomG×G′(π∅�π′∅, π∅�π
′
∅) be the identity. Define ei,j ∈ Exti+jG×G′(π≤i�

π′≤j, π∅ � π′∅) as the image of e0,0 under the map

(βi−1 ∪ · · · ∪ β0 ∪ −) � (β′j−1 ∪ · · · ∪ β′0 ∪ −).

Here, (β′j) ∈
⊕

0≤j≤d′−2 Ext1
G′(π′j+1, π

′
j) denotes the image ofN ∈ End(RΓc(ΩF ′))(−1).

By Lemma 2.1 (ii) and Theorem 2.2 (iii), ei,j is a basis of Exti+jG×G′(π≤i�π′≤j, π∅�π
′
∅).

Now the monodromy operator on RHom(RΓc(ΩF×F ′′ΩF ′), π∅�π′∅) can be described
explicitly:

Nei,j = ei+1,j + ei,j+1.

Therefore we conclude that

H∗
(
RHom(RΓc(ΩF ×F ′′ ΩF ′), π∅ � π′∅)

) ∼= Spd(
d−1

2
)⊗ Spd′(

d′−1
2

)

= recF (π∅)(d−1
2

)|WF ′′ ⊗ recF ′(π′∅)(d
′−1
2

)|WF ′′ .

We note that the right hand side concentrates in the degree −d− d′ + 2.
Next assume that I = ∅ and J = {1, . . . , d′ − 1}. Then, Lemma 2.1 (i) tells us

that

RHom
(
RΓc(ΩF ×F ′′ ΩF ′), π∅ � π′≤d′−1

)
∼=

d−1⊕
i=0

d′−1⊕
j=0

Exti+d
′−1−j

G×G′ (π≤i � π′≤j, π∅ � π′≤d′−1)(i+ j).
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The (i, j)-component on the right hand side has degree −d + 1 − 2j. Note that
id�(β′j ∪ −) induces the zero map on the right hand side. On the other hand,
(βi ∪ −) � id gives an isomorphism

Exti+d
′−1−j

G×G′ (π≤i � π′≤j, π∅ � π′≤d′−1)→ Exti+d
′−j

G×G′ (π≤i+1 � π′≤j, π∅ � π′≤d′−1).

Therefore, H∗(RHom(RΓc(ΩF ×F ′′ ΩF ′), π∅ � π′≤d′−1)) is isomorphic to

Spd(
d−1

2
)⊗

(
Q` ⊕Q`(1)⊕ · · · ⊕Q`(d

′ − 1)
)

= recF (π∅)(d−1
2

)|WF ′′ ⊗ recF ′(π′≤d′−1)(d
′−1
2

)|WF ′′ .

Finally, if π � π′ is not of the form πI � π′J ,

RHom
(
RΓc(ΩF ×F ′′ ΩF ′), π � π′

)
=

d−1⊕
i=0

d′−1⊕
j=0

RHom(π≤i � π′≤j, π � π′)(i+ j)[d+ d′ − 2 + i+ j] = 0

by Lemma 2.1 (iii).

Corollary 2.4 Let Γ be a discrete torsion-free cocompact subgroup of G×G′. Let
m1,0 (resp. m0,1, resp. m1,1) be the multiplicity of Std � 1 (resp. 1 � Std′ , resp.
Std � Std′) in the representation C∞(G×G′/Γ) of G×G′. Then, we have a WF ′′-
equivariant isomorphism

RΓ(ΩF ×F ′′ ΩF ′/Γ) ∼=
( d−1⊕
i=0

d′−1⊕
j=0

Q`(−i− j)[−2i− 2j]
)

⊕
(

Spd(
1−d

2
)[1− d]⊗

(d′−1⊕
j=0

Q`(−j)[−2j]
))m1,0

⊕
(( d−1⊕

i=0

Q`(−i)[−2i]
)
⊗ Spd′(

1−d′
2

)[1− d′]
)m0,1

⊕ (Spd⊗Spd′)
m1,1(2−d−d′

2
)[2− d− d′]

preserving monodromy operators. Moreover, the weight-monodromy conjecture
holds for ΩF ×F ′′ ΩF ′/Γ.

Proof. The proof is the same as [Dat06, Corollaire 4.5.1]. By the fixed isomorphism
Q`
∼= C, we regard C∞(G×G′/Γ) as a representation over C. Then, it is a unitary

representation, and decomposes into the direct sum of irreducible smooth unitary
representations of G × G′ with finite multiplicities. Assume that πI � π′J appears
in C∞(G × G′/Γ). Then it is unitary, and thus πI and π′J are unitary. Hence we
conclude that I (resp. J) is either ∅ or {1, . . . , d− 1} (resp. {1, . . . , d′ − 1}). Note
that the multiplicity of the trivial representation 1 � 1 in C∞(G×G′/Γ) equals 1.
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As in the proof of [Dat06, Corollaire 4.5.1], we have

RΓ(ΩF ×F ′′ ΩF ′/Γ)∨ ∼=
(
RΓc(ΩF ×F ′′ ΩF ′)

L
⊗Q`[Γ] Q`

)∨
∼= RHom

(
RΓc(ΩF ×F ′′ ΩF ′), C∞(G×G′/Γ)

)
= RHom

(
RΓc(ΩF ×F ′′ ΩF ′), (1 � 1)⊕ (Std � 1)m1,0

⊕ (1 � Std′)
m0,1 ⊕ (Std � Std′)

m1,1
)
.

By using Theorem 2.3 and taking dual, we obtain the desired description ofRΓ(ΩF×F ′′

ΩF ′/Γ).
For the weight-monodromy conjecture, we note that

Spd⊗Spd′
∼=

⊕
|d−d′|+1≤j≤d+d′−1,
j≡d+d′−1 mod 2

Spj

(see [Del80, (1.6.11.2)]; note that Sd in [Del80, (1.6.11)] is d + 1-dimensional).
Therefore, for every integer m ≥ 0, Hm(ΩF ×F ′′ ΩF ′/Γ) is the direct sum of WF ′′-
representations of the following forms:

– Q`(−m
2

) if m is even,

– Spd(−m
2

) if m+ 1− d is even,

– Spd′(−m
2

) if m+ 1− d′ is even,

– and Spj(−m
2

) for some j ≥ 1 if m = d+ d′ − 2.

As mentioned in [TY07, p. 471], all of these representations are pure of weight m
(note that Spj = recF ′′(Stj) here is equal to Spj(

1−j
2

) in [TY07, p. 471]). Therefore,
Hm(ΩF ×F ′′ ΩF ′/Γ) is also pure of weight m. That is to say, the weight monodromy
conjecture holds for ΩF ×F ′′ ΩF ′/Γ.

The argument above applies to the product of more than two Drinfeld upper
half spaces without any difficulty. Furthermore, it is also valid even if we replace
the Drinfeld upper half spaces by its coverings introduced in [Dri76]. Namely, the
following theorem holds.

Theorem 2.5 Let D (resp. D′) be the central division algebra over F (resp. F ′)
with invariant 1/d (resp. 1/d′). We denote M = {Mn} (resp. M′ = {M′

n′}) the
Drinfeld tower on which D× (resp. D′×) acts.

(i) Fix irreducible smooth representations ρ, ρ′ of D×, D′×, respectively. Let π
(resp. π′) be an irreducible smooth representation of GLn(F ) (resp. GLn(F ′))
with the same central character as ρ (resp. ρ′).

(a) If ρ = LJd(π) and ρ′ = LJd′(π
′) (for the definition of LJ, see [Dat07, §2]),

then we have

H∗
(
RHom(RΓc(M×F ′′M′)[ρ� ρ′]), π � π′

)
∼= recF (π)(d−1

2
)|WF ′′ ⊕ recF ′(π′)(d

′−1
2

)|WF ′′ .
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(b) Otherwise RHom(RΓc(M×F ′′M′)[ρ� ρ′]), π � π′) = 0.

(See also [Dat07, Lemme 4.4.1].)

(ii) Let Γ be a discrete torsion-free cocompact subgroup of GLd(F ) × GLd′(F
′),

and n, n′ ≥ 0 integers. Then, RΓ(Mn ×F ′′ M′
n′/Γ) can be computed as in

[Dat07, p. 139–140]. In particular, the weight-monodromy conjecture holds for
Mn ×F ′′M′

n′/Γ.

Proof. Use the result in [Dat07] in place of Theorem 2.2.

We may apply Theorem 2.5 to the unitary Shimura varieties appearing in [RZ96,
Theorem 6.50]. By the same method as in [She16, §3], one can compute the `-adic
cohomology of them using Theorem 2.5 (i). This considerably simplifies the proof
of the main result of [She16]; the study on test functions in [She16, §4–7] is no
longer needed. The local Hasse-Weil zeta functions of such Shimura varieties can be
computed directly. The result is the same as in [She16, Corollary 7.4] (but we do
not need the assumption r = 1).

A Künneth formula

In this appendix, we will prove the Künneth formula used in the proof of Theo-
rem 2.3. Here let k be an algebraically closed non-archimedean field with residue
characteristic p and ` a prime number different from p.

We shall use the notation in [Mie14b, §3.3]. Let G be a locally pro-p group.
For a ring Λ, we write RepΛ(G) (resp. Mod(Λ)) for the category of smooth G-
representations over Λ (resp. Λ-modules). Let X be an adic space locally of finite
type over Spa(k, k+) equipped with a continuous G-action. For an integer m ≥ 1,

we write Z/`mZ-X̃ét/G for the category of smooth G-equivariant Z/`mZ-sheaves on
Xét.

Lemma A.1 (i) Let Y be an adic space locally of finite type over Spa(k, k+) and
f : Y → X a G-equivariant morphism over Spa(k, k+). Then, for every object

F of Z/`mZ-X̃ét/G, the pull-back f ∗F belongs to the category Z/`mZ-Ỹét/G.

(ii) Let G′ be another locally pro-p group and X ′ an adic space locally of finite
type over Spa(k, k+) equipped with a continuous G′-action. We write pr1 (resp.
pr2) for the first (resp. second) projection X ×k X ′ → X (resp. X ×k X ′ →
X ′). Then, for every objects F of Z/`mZ-X̃ét/G and G of Z/`mZ-X̃ ′ét/G

′,
the exterior tensor product F � G = pr∗1F ⊗ pr∗2 G belongs to the category
Z/`mZ-(X ×X ′)∼ét/(G×G′).

Proof. First we consider (i). We can directly observe that the pull-back of F as a
presheaf is a smooth G-equivariant presheaf on Yét. As the sheafification preserves
smoothness (see [Far08, Lemme IV.8.4]), we conclude that f ∗F is a smooth G-
equivariant sheaf on Yét.
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Next we prove (ii). By (i), pr∗1F and pr∗2 G are smooth G×G′-equivariant sheaves
on (X×kX ′)ét. By using [Far08, Lemme IV.8.4], we can easily verify that the tensor
product of them is also a smooth G×G′-equivariant sheaf.

Let Z`-X̃ét/G be the category of projective systems (Fm)m≥1 where Fm is an

object of Z/`mZ-X̃ét/G and the transition maps are G-equivariant.
In the following, we assume that X is partially proper over Spa(k, k+). The

following definition is due to [Dat06, §B.2.4].

Definition A.2 We define the functor Γc,G-eq(X,−) : Z`-X̃ét/G→ RepZ`
(G) by

Γc,G-eq(X, (Fm)) = Γc(X, lim←−
m

Fm)sm,

where (−)sm denotes the G-smooth part. We write RΓc,G-eq(X,−) for the right de-
rived functor of Γc,G-eq(X,−), andH i

c,G-eq(X,−) for the ith cohomology ofRΓc,G-eq(X,−).
We setRΓc,G-eq(X,Z`) = RΓc,G-eq(X, (Z/`mZ)m≥1), RΓc,G-eq(X,Q`) = RΓc,G-eq(X,Z`)⊗Z`

Q` and RΓc,G-eq(X,Q`) = RΓc,G-eq(X,Q`)⊗Q`
Q`, as usual.

The following proposition has been obtained in [Dat06, Proposition B.2.5].

Proposition A.3 (i) For an object F = (Fm) of Z`-X̃ét/G, we haveH i
c,G-eq(X,F) ∼=

H i
c(X,F)sm.

(ii) Assume that X is locally algebraic (it is satisfied when X is smooth over
Spa(k, k+)). Then, the image of RΓc,G-eq(X,Z`) under the forgetful functor
D+(RepZ`

(G))→ D+(Mod(Z`)) is isomorphic to RΓc(X,Z`).

The following lemma is a key to construct the cup product.

Lemma A.4 For each m ≥ 1, let 0→ Z/`mZ→ C•(Z/`mZ) be the Godement reso-
lution constructed in [Mie14b, §3.3.3]. Then, for each i ≥ 0, Ci(Z`) = (Ci(Z/`mZ))m≥1

is an object of Z`-X̃ét/G. Further, it is acyclic with respect to RΓc(X,−) and
RΓc,G-eq(X,−). In particular, we have RΓc,G-eq(X,Z`) = Γc,G-eq(X, C•(Z`)).

Proof. By Proposition A.3 (i), we have only to show that Hj
c (X, Ci(Z`)) = 0 for

j ≥ 1. We will write Z`-X̃ét for Z`-X̃ét/{1}. For a closed subset Z of X, let

Hj
Z(X,−) be the jth derived functor of the functor Z`-X̃ét → Mod(Z`); (Fm) 7→

ΓZ(X, lim←−mFm) = lim←−m ΓZ(X,Fm). Then, as in the proof of [Mie14b, Proposition

3.39], we can prove that Hj
c (X, (Fm)) = lim−→Z

Hj
Z(X, (Fm)), where Z ⊂ X runs

through quasi-compact closed subsets of the form V \W with quasi-compact open
subsets V , W of X. Since Hj

Z(X, (Fm)) = Hj
V \W (V, (Fm)), it suffices to prove that

Hj
V \W (V, Ci(Z`)) = 0 for every j ≥ 1 and every quasi-compact open subsets V , W

of X. As in [Jan88, (3.7)], we have an exact sequence

Hj
V \W (V, Ci(Z`))→ Hj(V, Ci(Z`))→ Hj(V ∩W, Ci(Z`)).
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Therefore, it suffices to prove that Hj(V, Ci(Z`)) = 0 for every j ≥ 1 and every
quasi-compact open subset V . As in [Jan88, (3.1)], we have an exact sequence

0→ lim←−
1

m

Hj−1(V, Ci(Z/`mZ))→ Hj(V, Ci(Z`))→ lim←−
m

Hj(V, Ci(Z/`mZ))→ 0.

By [Mie14b, Proposition 3.44], Ci(Z/`mZ) is an injective object of Z`-X̃ét/G. Hence
Hj(V, Ci(Z/`mZ)) = 0 for j ≥ 1 by [Mie14b, Proposition 3.29]. Further, by the
same method as in [Mie14b, Proposition 3.44], we can observe that the sequence

0→ Ci(Z/`Z)
×`m−−→ Ci(Z/`m+1Z)→ Ci(Z/`mZ)→ 0

is exact. Therefore the map H0(V, Ci(Z/`m+1Z))→ H0(V, Ci(Z/`mZ)) is surjective,
and hence lim←−

1

m
H0(V, Ci(Z/`mZ)) = 0. Now we conclude that Hj(V, Ci(Z`)) = 0 for

j ≥ 1, as desired.

Let G and X be as before, and let G′ and X ′ be as in Lemma A.1 (ii) such that
X ′ is partially proper over Spa(k, k+). By the definition of Γc,G-eq(X,−), we have
natural morphisms

Tot(Γc,G-eq(X, C•(Z`))⊗ Γc,G′-eq(X ′, C•(Z`)))
→ Γc,G×G′-eq(X ×k X ′,Tot(C•(Z`) � C•(Z`)))
→ RΓc,G×G′-eq(X ×k X ′,Tot(C•(Z`) � C•(Z`)))
(∗)∼= RΓc,G×G′-eq(X ×k X ′,Z`),

where the isomorphism (∗) comes from the fact that Tot(C•(Z`) � C•(Z`)) gives
a resolution of (Z/`mZ)m≥1 in Z`-(X ×k X ′)∼ét/(G×G′) (see Lemma A.1 (ii) and
[Mie14b, Proposition 3.44]). On the other hand, Lemma A.4 gives us an isomorphism

Tot(Γc,G-eq(X, C•(Z`))⊗Γc,G′-eq(X ′, C•(Z`)))⊗Z`
Q`
∼= RΓc,G-eq(X,Q`)⊗RΓc,G′-eq(X ′,Q`)

in D+(RepQ`
(G × G′)). Therefore, by tensoring Q` to the morphism above, we

obtain a morphism

RΓc,G-eq(X,Q`)⊗RΓc,G′-eq(X ′,Q`)→ RΓc,G×G′-eq(X ×k X ′,Q`)

in D+(RepQ`
(G×G′)), which we call the cup product.

Now we can state the main result in this appendix.

Theorem A.5 Assume that X and X ′ are locally algebraic. Then, the cup product

RΓc,G-eq(X,Q`)⊗RΓc,G′-eq(X ′,Q`)→ RΓc,G×G′-eq(X ×k X ′,Q`)

constructed above is an isomorphism. By tensoring Q`, we also obtain a similar
isomorphism for Q`-coefficients.

9
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Proof. By using Lemma A.4, we can easily check that the cup product above is
mapped to the usual cup product

RΓc(X,Q`)⊗RΓc(X
′,Q`)→ RΓc(X ×k X ′,Q`)

under the forgetful functor D+(RepQ`
(G × G′)) → D+(Mod(Q`)). Therefore, it

suffices to prove that the usual cup product is an isomorphism. Let U (resp. U′)
be the set consisting of all quasi-compact open subsets of X (resp. X ′). Then, we
have H i

c(X,Q`) = lim−→U∈UH
i
c(U,Q`), H

i
c(X

′,Q`) = lim−→U ′∈U′ H
i
c(U

′,Q`) and H i
c(X ×k

X ′,Q`) = lim−→(U,U ′)∈U×U′ H
i
c(U ×k U ′,Q`) by [Hub98, Proposition 2.1 (iv)]. Since the

cup product is compatible with open immersions, we may suppose that X and X ′

are quasi-compact. Exactly as in the scheme case (for example, see [Eke90]), the
Künneth formula in this case is a consequence of the following two properties for
torsion coefficients:

– RΓc(X,Z/`m+1Z)
L
⊗Z/`m+1Z Z/`mZ ∼= RΓc(X,Z/`mZ),

– RΓc(X,Z/`mZ)
L
⊗Z/`mZ RΓc(X

′,Z/`mZ)
∼=−→ RΓc(X ×k X ′,Z/`mZ).

These are proved in [Mie14a, Lemma 3.2, Proposition 3.6].
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