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Abstract. Under a mild condition, we prove that the ac-
tion of the group of self-quasi-isogenies on the set of irreducible
components of a Rapoport-Zink space has finite orbits. Our
method allows both ramified and non-basic cases. As a conse-
quence, we obtain some finiteness results on the representation
obtained from the `-adic cohomology of a Rapoport-Zink tower.

1 Introduction

A Rapoport-Zink space, introduced in [43], is a moduli space of deformations by
quasi-isogenies of a fixed p-divisible group X over Fp with various additional struc-
tures. It is a formal schemeM locally formally of finite type over the ring of integers
OĔ of Ĕ, which is the completion of the maximal unramified extension of a finite
extension E (called the local reflex field) of Qp. Rapoport-Zink spaces are local ana-
logues of Shimura varieties of PEL type (cf. [21]), and are also related to Shimura
varieties themselves by the theory of p-adic uniformization (cf. [43, Chapter 6]).

One of the main reasons we are interested in Rapoport-Zink spaces is the conjec-
tural relation between the `-adic cohomology of the Rapoport-Zink tower and the
local Langlands correspondence (cf. [38, Conjecture 5.1]). Let us recall it briefly. We
write M for the rigid generic fiber ofM. By using level structures on the universal
p-divisible group over M , we can construct a projective system of étale coverings
{MK′} over M called the Rapoport-Zink tower. Here K ′ runs through compact
open subgroups of G′ = G′(Qp), where G′ is a certain inner form of the reductive
algebraic group G over Qp that is naturally attached to the linear-algebraic data
appearing in the definition of M. As in the case of Shimura varieties, G′ acts on
the tower by Hecke correspondences. On the other hand, the group J of self-quasi-
isogenies of X preserving additional structures naturally acts onM, and this action
lifts canonically to MK′ for each K ′ ⊂ G′. Let H i

c(M∞) be the compactly supported
`-adic étale cohomology of the tower {MK′}. This is naturally equipped with an
action of G′ × J ×WE, where WE is the Weil group of E. Roughly speaking, it is

Graduate School of Mathematical Sciences, The University of Tokyo, 3–8–1 Komaba, Meguro-ku,
Tokyo, 153–8914, Japan

E-mail address: mieda@ms.u-tokyo.ac.jp
2010 Mathematics Subject Classification. Primary: 14G35; Secondary: 11G18, 14L05.

1



Yoichi Mieda

expected that the representation H i
c(M∞) of G′ × J ×WE is described by means

of the local Langlands correspondence for G′ and J . There are many results in the
classical setting, namely when M is either the Lubin-Tate space or the Drinfeld
upper half space (cf. [4], [10], [13], [3], [7]). However, very little is known in other
cases.

In this paper, we will study the underlying reduced scheme M = Mred. There
already have been a lot of results on M in various particular cases; see [52], [53],
[54], [42] and [12] for example. In contrast to them, here we try to keepM as general
as possible. The main theorem of this paper is as follows.

Theorem 1.1 (Theorem 2.6) Assume that the isogeny class of the p-divisible
group X with additional structures comes from an abelian variety (for the precise
definition, see Definition 2.4). Then, the action of J on the set of irreducible com-
ponents of M has finite orbits.

As a consequence of this theorem, we can obtain the following finiteness result
on the cohomology H i

c(M∞).

Theorem 1.2 (Theorem 4.4) Assume the same condition as in Theorem 1.1.
Then, for every compact open subgroup K ′ of G′, the K ′-invariant part H i

c(M∞)K
′

of H i
c(M∞) is a finitely generated J-representation.

By combining Theorem 1.2 with the duality theorem proved in [24], [5] and
[49], we obtain the following finiteness result for the basic Rapoport-Zink tower for
GSp2n.

Theorem 1.3 (Theorem 4.14) Assume thatM is the basic Rapoport-Zink space
for GSp2n, in which case G′ = G = GSp2n(Qp) and J is a quaternion unitary simili-
tude group. For every integers i, r ≥ 0 and every irreducible smooth representation
ρ of J , the G-representation ExtrJ(H i

c(M∞), ρ)Dc-sm has finite length. In particular,
the G′-representation HomJ(H i

c(M∞), ρ)sm has finite length.

For the precise notation, see Section 4.2. To prove this theorem, we use Theorem 1.2
for two Rapoport-Zink towers: one is the basic Rapoport-Zink tower for GSp2n, and
the other is a Rapoport-Zink tower for a quaternion unitary similitude group. These
two towers are isomorphic at the infinite level, thanks to the duality isomorphism.

These finiteness results are very useful when we apply representation theory to
the study of H i

c(M∞). For example, in [31, §2–3], Theorem 1.2 for the Drinfeld
tower, which is well-known, enables the author to apply a result in [6] to investigate
H i
c(M∞) by using the Lefschetz trace formula. Further, by using Theorem 1.3 for

the Drinfeld tower ([31, Corollary 4.3]), we obtained a purely local and geometric
proof of the local Jacquet-Langlands correspondence in some cases (see [31, Theorem
6.10]). In [30], the author extends these arguments to the basic Rapoport-Zink space
for GSp4. For this purpose, Theorem 1.3 plays a crucial role. We also remark that
Theorem 1.1 and Theorem 1.3 are indispensable in the study of the relation between
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the Zelevinsky involution and the cohomology H i
c(M∞) (see [33]); in fact, Theorem

1.1 is the main condition for applying the general theory developed in [33], and
Theorem 1.3 is needed because the duality theory in [47] behaves well only for
representations of finite length.

Note that the same results as Theorem 1.1 and Theorem 1.2 have been obtained
by Fargues ([8, Théorème 2.4.13, Proposition 4.4.13]) under the condition that the
data defining M is unramified. However, there are many interesting ramified set-
tings, such as the quaternion unitary case appearing in the proof of Theorem 1.3.
Usually the geometry of M attached to a ramified data is much more complicated
than that in the unramified case. For example, in the unramified caseM is formally
smooth over OĔ, while in the ramified case M is sometimes not even flat over OĔ.

We would like to say a few words on the condition on X in Theorem 1.1. First,
the problem to find an abelian variety with additional structures which has the
prescribed p-divisible group up to isogeny can be seen as a generalization of Manin’s
problem, and is studied by many people mainly under the unramified setting (see
Remark 2.7). As an example of ramified cases, we will prove that any X comes from
an abelian variety when G is a quaternion unitary similitude group; see Proposition
2.9. By these results, it is natural for the author to expect that this condition always
holds, at least if the isogeny class of X is admissible in the sense of [43, Definition
1.18]. Second, this condition is obviously satisfied if M is related to a Shimura
variety of PEL type by the theory of p-adic uniformization. At present, the most
successful way to study H i

c(M∞) is relating it with the cohomology of a suitable
Shimura variety and applying a global automorphic method. Rapoport-Zink spaces
to which this technique is applicable automatically satisfy our condition. The author
hopes that these two points guarantee the condition in Theorem 1.1 to be harmless
in practice.

To explain the strategy of our proof of Theorem 1.1, first let us assume that
the isocrystal with additional structures b associated with X is basic (cf. [20, §5.1]).
In this case, by the p-adic uniformization theorem of Rapoport-Zink [43, Theorem
6.30], M uniformizes some moduli space of PEL type X, whose generic fiber is
often a disjoint union of Shimura varieties, along an open and closed subscheme
Z of the basic stratum X(b) of the special fiber X = X ⊗ Fp. More precisely,
there exist finitely many torsion-free discrete cocompact subgroups Γ1, . . . ,Γm of J
such that the formal completion X/Z of X along Z is isomorphic to

∐m
i=1 Γi\M.

Since X is a scheme of finite type over Fp, Z has only finitely many irreducible
components. Hence the number of irreducible components of Γ1\M is also finite,
and thus in particular the number of J-orbits in the set of irreducible components
of M is finite. However, if b is not basic, the p-adic uniformization theorem [43,
Theorem 6.23] becomes more complicated; it involves the formal completion of X
along a possibly infinite set of closed subschemes of X. For this reason, we cannot
extend the method above to the non-basic case. To overcome this problem, we will
invoke results by Oort [36] and Mantovan [27], [28]. Roughly speaking, they proved
that the Newton polygon stratum X(b) is almost equal to the product of M with
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an appropriate Igusa variety (cf. [28, §4]). We will generalize it to the ramified
case. Combining this generalization with the fact that X(b) is of finite type, we
can conclude Theorem 1.1. The author thinks that this method itself has some
importance, because it is a first step to a generalization of Mantovan’s formula (the
main theorem of [28]) to the ramified case. Recall that Mantovan’s formula is a
natural extension of the method in [13], and is one of the most powerful tools to
investigate the `-adic cohomology of Shimura varieties. It is also useful to study
the cohomology H i

c(M∞) of Rapoport-Zink towers (cf. [46]). We plan to pursue this
problem in our future work.

The outline of this paper is as follows. In Section 2, we recall the definition of
Rapoport-Zink spaces and explain the precise statement of the main theorem. We
also observe that the condition on X in Theorem 1.1 holds in the quaternion unitary
case. Section 3 is devoted to the proof of the main theorem. In Section 4, we will
give some applications of the main theorem, including Theorem 1.2 and Theorem
1.3.

Notation For a field k, we denote its algebraic closure by k. For a scheme X and
a point x in X, we write κ(x) for the residue field at x.

2 Rapoport-Zink spaces

2.1 Statement of the main theorem

Here we briefly recall the definition of Rapoport-Zink spaces. The main reference is
[43, Chapter 3]. Fix a prime number p > 2. A Rapoport-Zink space of PEL type is
associated with a tuple (B,OB, ∗, V, 〈 , 〉,L , b, µ) consisting of the following objects
(cf. [43, Definition 3.18]):

– B is a finite-dimensional semisimple algebra over Qp.

– OB is a maximal order of B.

– ∗ is an involution on B under which OB is stable.

– V is a finite faithful B-module.

– 〈 , 〉 : V × V −→ Qp is a non-degenerate alternating bilinear pairing satisfying
〈av, w〉 = 〈v, a∗w〉 for every a ∈ B and v, w ∈ V .

– L is a self-dual multi-chain of OB-lattices in V (cf. [43, Definition 3.1, Defini-
tion 3.13]).

To explain the remaining objects, we denote by G the algebraic group over Qp

consisting of B-linear automorphisms of V which preserve 〈 , 〉 up to a scalar multiple
(cf. [43, 1.38]).

– b is an element of G(K0), where K0 denotes the fraction field of W (Fp).
– µ is a cocharacter Gm −→ G defined over a finite extension K of K0.

We impose the following conditions:
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(a) The isocrystal (Nb,Φb) = (V ⊗Qp K0, bσ) has slopes in the interval [0, 1], where
σ is the Frobenius isomorphism on K0.

(b) We have sim(b) = p, where sim: G −→ Gm denotes the similitude character.

(c) The weight decomposition of V ⊗Qp K with respect to µ has only the weight 0
and 1 parts: V ⊗Qp K = V0 ⊕ V1.

We call such a tuple a Rapoport-Zink datum.
Before proceeding, it is convenient to introduce notion of polarized B-isocrystals

(cf. [45, Example 4.9]).

Definition 2.1 A polarized B-isocrystal is a quadruple (N,Φ, 〈 , 〉, c) consisting of

– an isocrystal (N,Φ) endowed with a B-action,

– a non-degenerate alternating bilinear pairing 〈 , 〉 : N ×N −→ K0,

– and an element c ∈ K×0
such that 〈ax, y〉 = 〈x, a∗y〉 and 〈Φx,Φy〉 = cσ(〈x, y〉) for each a ∈ B and x, y ∈
N . We also refer to (N,Φ, 〈 , 〉, c) as a c-polarized B-isocrystal (N,Φ, 〈 , 〉). A
morphism between two polarized B-isocrystals (N,Φ, 〈 , 〉, c) and (N ′,Φ′, 〈 , 〉′, c′)
is a morphism f : N −→ N ′ of isocrystals compatible with B-action such that there
exists a ∈ K×0 satisfying 〈f(x), f(y)〉′ = a〈x, y〉 for every x, y ∈ N . If N 6= 0, such
an element a satisfies ac = c′σ(a). In particular, if c = c′, then a lies in Q×p .

Consider a triple (X,λ, ι) consisting of a p-divisible group X over Fp, a quasi-
polarization λ : X −→ X∨ (namely, a quasi-isogeny satisfying λ∨ = −λ) and a
homomorphism ι : B −→ End(X) ⊗Zp Qp satisfying λ ◦ ι(a∗) = ι(a)∨ ◦ λ for every
a ∈ B. Then the rational Dieudonné module D(X)Q is naturally endowed with a
structure of a p-polarized B-isocrystal. We denote it by D(X,λ, ι)Q, or simply by
D(X)Q.

An element b ∈ G(K0) gives rise to a polarized B-isocrystal

(Nb,Φb, 〈 , 〉, sim(b)).

We call it the polarized B-isocrystal attached to b and simply write Nb for it. Let J
be the algebraic group over Qp of automorphisms of Nb; for a Qp-algebra R, J(R)
consists of h ∈ AutR(Nb ⊗Qp R) such that

– h ◦ (Φb ⊗ id) = (Φb ⊗ id) ◦ h,

– and h preserves the pairing 〈 , 〉 on Nb ⊗Qp R up to R×-multiplication.

For the representability of J, see [43, Proposition 1.12]. Moreover, if we denote by
ν : D −→ G ⊗Qp K0 the slope homomorphism attached to b (cf. [20, §4.2]) and by
Gν the centralizer of the image of ν in G ⊗Qp K0, then we have an isomorphism

J ⊗Qp K0

∼=−−→ Gν ⊗K0 K0 (see [22, §3.3, §A.2]). In particular, J is reductive. On

the other hand, J is not connected in general.
The conditions (a) and (b) ensure the existence of a p-divisible group X over Fp

whose rational Dieudonné module D(X)Q is isomorphic to (Nb,Φb). We fix such an
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X. Then, the pairing 〈 , 〉 : Nb × Nb −→ K0 induces an isomorphism of isocrystals

D(X)Q
∼=−−→ D(X∨)Q. As the Dieudonné functor D(−) is fully faithful, we obtain

a quasi-isogeny λ0 : X −→ X∨, which is easily checked to be a quasi-polarization.
Similarly, we have a homomorphism ι0 : B −→ End((Nb,Φb)) ∼= End(D(X)Q) ∼=
End(X) ⊗Zp Qp, which satisfies λ ◦ ι(a∗) = ι(a)∨ ◦ λ for every a ∈ B. In this way,
we find a triple (X, λ0, ι0) as in Definition 2.1 such that D(X, λ0, ι0)Q is isomorphic
to Nb as a polarized B-isocrystal. Again by the fully faithfulness of the Dieudonné
functor, the group J = J(Qp) can be identified with the group of self-quasi-isogenies
of X compatible with ι0 and preserving λ0 up to Q×p -multiplication.

Let E be the field of definition of the cocharacter µ. It is the subfield of K
generated by {Tr(a;V0) | a ∈ B} over Qp. In particular it is a finite extension of

Qp. We denote by Ĕ the composite field of E and K0 inside K. We write NilpOĔ
for the category of OĔ-schemes on which p is locally nilpotent. For an object S in
NilpOĔ , we put S = S ⊗OĔ OĔ/pOĔ. We denote the category of sets by Set.

Now we can give the definition of the Rapoport-Zink space (see also [43, Defini-
tion 3.21, 3.23 c), d)]):

Definition 2.2 Consider the functor M : NilpOĔ −→ Set that associates S with

the set of isomorphism classes of {(XL, ιL, ρL)}L∈L where

– XL is a p-divisible group over S,

– ιL : OB −→ End(XL) is a homomorphism,

– and ρL : X⊗Fp S −→ XL ×S S is a quasi-isogeny compatible with OB-actions,

such that the following conditions are satisfied.

(a) For L,L′ ∈ L with L ⊂ L′, the quasi-isogeny ρL′ ◦ ρ−1
L : XL ×S S −→ XL′ ×S

S lifts to an isogeny XL −→ XL′ with height logp #(L′/L). Such a lift is
automatically unique and OB-equivariant. We denote it by ρ̃L′,L.

(b) For a ∈ B× which normalizes OB and L ∈ L , the quasi-isogeny ρaL ◦ ι0(a) ◦
ρ−1
L : Xa

L ×S S −→ XaL ×S S lifts to an isomorphism Xa
L −→ XaL. Here Xa

L

denotes the p-divisible group XL with the OB-action given by ιaL : OB −→
End(XL); x 7−→ ιL(a−1xa).

(c) Locally on S, there exists a constant c ∈ Q×p such that for every L ∈ L , we can
find an isomorphism pL : XL −→ (XL∨)∨ which makes the following diagram
commute:

X⊗Fp S

cλ0⊗id
��

ρL
// XL ×S S

pL×id∼=
��

X∨ ⊗Fp S (XL∨)∨ ×S S.
ρ∨
L∨oo

(d) For each L ∈ L , we have the following equality of polynomial functions on
a ∈ OB:

detOS(a; LieXL) = detK(a;V0).
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This equation is called the determinant condition. For a precise formulation,
see [43, 3.23 a)].

The functorM is represented by a formal scheme (denoted by the same symbolM)
which is locally formally of finite type over SpfOĔ (see [43, Theorem 3.25]). We
write M for the underlying reduced scheme Mred of M. It is a scheme locally of
finite type over Fp, which is often not quasi-compact. Each irreducible component
of M is known to be projective over Fp (see [43, Proposition 2.32]).

The group J = J(Qp) acts naturally on the functor M on the left; the ele-
ment h ∈ J , regarded as a self-quasi-isogeny on X, carries {(XL, ιL, ρL)}L∈L to
{(XL, ιL, ρL ◦h−1)}L∈L . Hence J also acts on the formal schemeM and the scheme
M.

Remark 2.3 In the definition of M, we fixed a triple (X, λ0, ι0). However, we can
check that the formal scheme M with the action of J is essentially independent of
this choice. See the remark after [43, Definition 3.21].

For a scheme X locally of finite type over Fp, we write Irr(X) for the set of irre-
ducible components. We investigate the action of J on Irr(M) under the following
condition:

Definition 2.4 We say that b comes from an abelian variety if there exist

– a Q-subalgebra B̃ which is stable under ∗ and satisfies B̃ ⊗Q Qp = B,

– an abelian variety A0 over Fp,
– a polarization λ0 : A0 −→ A∨0 ,

– and a homomorphism ι0 : B̃ −→ End(A0)⊗ZQ satisfying λ0◦ι0(a∗) = ι0(a)∨◦λ0

for every a ∈ B̃
such that the polarized B-isocrystal D(A0[p∞])Q is isomorphic to Nb.

Note that in this case B̃ is a finite-dimensional semisimple algebra over Q, ∗
is a positive involution on B̃, and ι0 is an injective homomorphism (recall that we
assume V to be a faithful B-module).

Remark 2.5 The problem of finding (A0, λ0, ι0) as in Definition 2.4 for a fixed B̃
can be regarded as a generalization of Manin’s problem. In fact, the case where
(B, ∗, B̃) = (Qp, id,Q) is exactly the original problem ([26, Chapter IV, §5, Conjec-
ture 1, Conjecture 2]), which has been solved in [50] and [35]. In the next subsection,
by using a similar method as in [50], we prove that any b comes from an abelian

variety if B̃ is a quaternion division algebra over Q which ramifies exactly at p and
another finite place.

This problem is studied by many people in the context of non-emptiness of
Newton strata of Shimura varieties; see [51], [55], [48], [23] for example. Let us
assume that there exists

– a semisimple Q-algebra B̃,

– an order OB̃ of B̃,
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– a positive involution ∗̃ on B̃ under which OB̃ is stable,

– a finite faithful B̃-module Ṽ ,

– and a non-degenerate alternating bilinear pairing 〈 , 〉∼ : Ṽ ×Ṽ −→ Q satisfying

〈av, w〉∼ = 〈v, a∗̃w〉∼ for every a ∈ B̃ and v, w ∈ Ṽ
such that the localization of (B̃, ∗̃, Ṽ , 〈 , 〉∼) at p is isomorphic to (B, ∗, V, 〈 , 〉).
We write G̃ for the algebraic group over Q consisting of B̃-linear automorphisms of
Ṽ which preserve 〈 , 〉∼ up to a scalar multiple. We fix an isomorphism C ∼= K0

and assume further that

– there exists a Shimura datum (G̃, h) (in particular G̃ is connected) such that the

associated Hodge cocharacter µh : Gm,C −→ G̃C is identified with µ : Gm,K0
−→

GK0

∼= G̃K0
under the fixed isomorphism C ∼= K0.

Finally, we assume that (µ, b) is admissible in the sense of [43, Definition 1.18].
This condition is usually included in the definition of Rapoport-Zink data (see [43,
Definition 3.18]). In this situation, every b comes from an abelian variety if the
datum (B,OB, ∗, V, 〈 , 〉) is unramified, namely, B is a product of matrix algebras
over unramified extensions of Qp and there exists a Zp-lattice of V which is self-dual
for 〈 , 〉 and preserved by OB. See [55, Theorem 10.1].

The main theorem of this paper is the following:

Theorem 2.6 Assume that b comes from an abelian variety. Then, Irr(M) has
finitely many J-orbits.

Remark 2.7 i) If the datum (B,OB, ∗, V, 〈 , 〉) is unramified, the corresponding
result is obtained in [8, Théorème 2.4.13]. Together with Remark 2.5, the
theorem above gives an alternative proof of Fargues’ result.

ii) In some concrete cases, there are more precise results on irreducible components
of M. See [52], [53], [54], [42] and [12] for instance.

Remark 2.8 In this paper, we only work on Rapoport-Zink spaces of PEL type.
However, it will be possible to apply the same technique to Rapoport-Zink spaces
of EL type.

2.2 Example: quaternion unitary case

In this subsection, we will give an example of (B, ∗, V, 〈 , 〉) such that every b as
in the previous subsection comes from an abelian variety. Let D be a quaternion
division algebra over Qp. Recall that D can be written as Qp2 [Π], where Qp2 is the
unramified quadratic extension of Qp, and Π is an element satisfying Π2 = p and
Πa = σ(a)Π for every a ∈ Qp2 and the unique non-trivial element σ of Gal(Qp2/Qp).
Let ∗ be an involution of D defined by Π∗ = Π and a∗ = σ(a) for every a ∈ Qp2 .
Note that we have d∗ = ε(Trd(d) − d)ε−1 for any ε ∈ Q×p2 with σ(ε) = −ε, where
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Trd denotes the reduced trace. We fix an integer n ≥ 1 and a non-degenerate
alternating bilinear pairing 〈 , 〉 : Dn × Dn −→ Qp satisfying 〈dx, y〉 = 〈x, d∗y〉
for every d ∈ D and x, y ∈ Dn. An example of such a pairing 〈 , 〉 is given by
〈(di), (d′i)〉 =

∑n
i=1 Trd(εd∗i d

′
i), where ε ∈ Q×p2 is an element satisfying σ(ε) = −ε.

For the quadruple (D, ∗, Dn, 〈 , 〉), the algebraic group G introduced in the previous
subsection is called the quaternion unitary similitude group.

In this subsection, we prove the following proposition.

Proposition 2.9 Let b be an element of G(K0) satisfying the following conditions:

– the isocrystal (Nb,Φb) has slopes in the interval [0, 1],

– and sim(b) = p.

Then, b comes from an abelian variety.

We begin with describing polarized D-isocrystals.

Lemma 2.10 i) For a Qp2-algebra R, the following two categories are equivalent:

– The category of pairs (N, 〈 , 〉) consisting of an R-module N endowed with
an action of D and a non-degenerate alternating bilinear pairing 〈 , 〉 : N ×
N −→ R satisfying 〈dx, y〉 = 〈x, d∗y〉 for every d ∈ D and x, y ∈ N . The
morphisms are R-homomorphisms preserving the D-actions and the R×-
homothety classes of the pairings.

– The category of pairs (N0, 〈 , 〉0) consisting of an R-module N0 and a non-
degenerate alternating bilinear pairing 〈 , 〉0 : N0 × N0 −→ R. The mor-
phisms are R-homomorphisms preserving the R×-homothety classes of the
pairings.

ii) The following two categories are equivalent:

– The category of polarized D-isocrystals.
– The category of polarized Qp-isocrystals, where we consider the identity as

an involution on Qp.

Proof. This lemma is essentially obtained in [43, 1.42], but we include the proof here
in order to fix notation.

We prove i). Let (N, 〈 , 〉) be an object of the first category. For i = 0, 1, we

denote by Ni the R-submodule of N on which Qp2 ⊂ D acts by Qp2
σi−−→ Qp2 −→ R.

Then we have N = N0⊕N1. Note that the action of Π ∈ D induces an isomorphism
between N0 and N1, hence N ∼= N0 ⊕N0. We can easily check that N0 and N1 are
totally isotropic with respect to 〈 , 〉.

Let 〈 , 〉0 : N0 × N0 −→ R be the pairing given by 〈x, y〉0 = 〈x,Πy〉. It is
non-degenerate and alternating. Therefore we obtain the functor (N, 〈 , 〉) 7−→
(N0, 〈 , 〉0) from the first category to the second. Note also that we have 〈x +
Πx′, y + Πy′〉 = 〈x, y′〉0 + 〈x′, y〉0 for x, x′, y, y′ ∈ N0.

We shall construct a quasi-inverse functor. Let (N0, 〈 , 〉0) be an object of the
second category. We define an action of D on N0 ⊕ N0 by Π · (x, y) = (py, x) and
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a · (x, y) = (ax, σ(a)y) for a ∈ Qp2 . Let 〈 , 〉 : (N0 ⊕ N0) × (N0 ⊕ N0) −→ R be a
pairing defined by 〈(x0, x1), (y0, y1)〉 = 〈x0, y1〉0 + 〈x1, y0〉0 for x0, x1, y0, y1 ∈ N0. It
is easy to observe that the functor (N0, 〈 , 〉0) 7−→ (N0⊕N0, 〈 , 〉) is a quasi-inverse
of (N, 〈 , 〉) 7−→ (N0, 〈 , 〉0). This concludes i).

Next we consider ii). Let (N,Φ, 〈 , 〉, c) be a polarized D-isocrystal. Then Φ
maps N0 to N1, hence Π−1Φ: N0 −→ N0 makes N0 an isocrystal. Since

〈Π−1Φx,Π−1Φy〉0 = 〈Π−1Φx,Φy〉 = cσ(〈Π−1x, y〉) = cσ(〈x,Π−1y〉) = p−1cσ(〈x, y〉0)

for x, y ∈ N0, (N0,Π
−1Φ, 〈 , 〉0, p−1c) is a polarized Qp-isocrystal.

Conversely, let (N0,Φ0, 〈 , 〉0, c0) be a polarized Qp-isocrystal. Let 〈 , 〉 : (N0 ⊕
N0)× (N0⊕N0) −→ K0 be the pairing constructed in i). We define Φ: N0⊕N0 −→
N0 ⊕ N0 by (x, y) 7−→ (pΦ0y,Φ0x). Then (N0 ⊕ N0,Φ, 〈 , 〉, pc0) is a polarized
D-isocrystal, and (N0,Φ0, 〈 , 〉0, c0) 7−→ (N0⊕N0,Φ, 〈 , 〉, pc0) gives a quasi-inverse
of the functor (N,Φ, 〈 , 〉, c) 7−→ (N0,Π

−1Φ, 〈 , 〉0, p−1c). This concludes ii).

Remark 2.11 i) Set R = K0 in Lemma 2.10 i). For an integer d ≥ 1, all ob-
jects (N0, 〈 , 〉0) in the second category of Lemma 2.10 i) with dimK0 N0 =
2d are isomorphic. Therefore, all objects (N, 〈 , 〉) in the first category of
Lemma 2.10 i) with dimK0 N = 4d are isomorphic. This implies that each
polarized D-isocrystal (N,Φ, 〈 , 〉, c) with dimK0 N = 4n is isomorphic to
(Nb,Φb, 〈 , 〉, sim(b)) for some b ∈ G(K0).

ii) Lemma 2.10 i) gives an inner twist G⊗Qp Qp2

∼=−−→ GSp2n⊗QpQp2 .

Definition 2.12 The Newton polygon of a polarized D-isocrystal (N,Φ, 〈 , 〉, c) is
defined to be the Newton polygon of the isocrystal (N0,Π

−1Φ).

Remark 2.13 Let (N,Φ, 〈 , 〉, c) be a polarized D-isocrystal, and
∑r

i=0 mi[λi] its
Newton polygon. Here λ0 < · · · < λr denote the slopes, and mi denotes the multi-
plicity of the slope λi part. Then we have λr−i = ordp(c)− 1−λi and mr−i = mi for
every 0 ≤ i ≤ r, where ordp denotes the p-adic order. Further, the Newton polygon
of the isocrystal (N,Φ) is given by

∑r
i=0m

′
i[λi + 1/2], where m′i = 2mi if λi and

λi + 1/2 have the same denominator, and m′i = mi otherwise. In particular, the
slopes of (N,Φ) lie in the interval [0, 1] if and only if −1/2 ≤ λi ≤ 1/2 for every i.

Lemma 2.14 Two polarized D-isocrystals are isomorphic if and only if the corre-
sponding Newton polygons are the same.

Proof. We write B(G) for the set of σ-conjugacy classes of G(K0). As in [22, §4.2],

the inner twist G ⊗Qp Qp2

∼=−−→ GSp2n⊗QpQp2 in Remark 2.11 ii) determines the

Newton map νG : B(G) −→ Rn. As the derived group of G is simply connected, νG
is known to be injective (see [22, §4.13]).

By Remark 2.11 i), the map sending b to (Nb,Φb, 〈 , 〉, sim(b)) gives a bijection
between B(G) and the set of isomorphism classes of polarized D-isocrystals whose

10
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dimensions as K0-vector spaces are 4n. By definition, for b ∈ B(G), the Newton
polygon of the polarized D-isocrystal (Nb,Φb, 〈 , 〉, sim(b)) has essentially the same
information as νG(b). Hence the injectivity of νG provides the desired claim.

Definition 2.15 For integers m ≥ 0, k > 0 with (m, k) = 1, let Nm,k denote a
p-polarized D-isocrystal whose Newton polygon equals [−m/k] + [m/k]. Such an
Nm,k exists by Lemma 2.10 ii), and it is unique up to isomorphism by Lemma 2.14.
We call Nm,k the simple polarized D-isocrystal of type (m, k).

Lemma 2.16 Every p-polarized D-isocrystal is isomorphic to a direct sum of simple
polarized D-isocrystals of various types.

Proof. Let N be a p-polarized D-isocrystal. By Remark 2.13, it is easy to find
simple polarized D-isocrystals Nm1,k1 , . . . , Nms,ks such that the Newton polygon of
Nm1,k1 ⊕ · · · ⊕Nms,ks is equal to that of N . By Lemma 2.14, we conclude that N is
isomorphic to Nm1,k1 ⊕ · · · ⊕Nms,ks .

We fix a prime number q different from p. Let D̃ be the quaternion algebra over
Q ramified exactly at p and q.

Lemma 2.17 There exists an embedding D̃ ↪−→ D such that D̃ is stable under ∗
and the restriction of ∗ to D̃ is a positive involution.

Proof. We can find an element ε ∈ D̃× such that ε2 ∈ Q× and Q(ε) is an imaginary
quadratic field which is non-split and unramified at p. By the Skolem-Noether

theorem, there exists an isomorphism D̃ ⊗Q Qp

∼=−−→ D which maps ε to an element

of Qp2 . We regard D̃ as a Q-subalgebra of D by this isomorphism. As ε ∈ Q×p2

satisfies σ(ε) = −ε, we have d∗ = ε(Trd(d) − d)ε−1. This implies that D̃ is stable

under ∗. Since ε2 < 0, the restriction of ∗ to D̃ is a positive involution (see [34, §21,
Theorem 2]).

We fix an embedding D̃ ↪−→ D as in the previous lemma. Thanks to Lemma
2.16 and Remark 2.13, Proposition 2.9 is reduced to the following proposition:

Proposition 2.18 For integers m ≥ 0, n > 0 such that (m,n) = 1 and 0 ≤ 2m ≤ n,
there exists

– a 2n-dimensional abelian variety A0 over Fp,
– a polarization λ0 : A0 −→ A∨0 ,

– and a homomorphism ι0 : D̃ −→ End(A0)⊗ZQ satisfying λ0◦ι0(a∗) = ι0(a)∨◦λ0

for every a ∈ D̃
such that the p-polarized D-isocrystal D(A0[p∞])Q is isomorphic to Nm,n.

11
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Proof. We follow the method in [50, §1, Un exemple spécial].

First we assume that n is odd and greater than 1. Note that in this case m ≥ 1.
We choose an integer u such that p - u and x2 + pn−2mx+ p2nu is irreducible in Fq.
Let π ∈ Q be a root of the equation x2 + pn−2mx + p2nu = 0 and A0 the abelian
variety over Fp2n corresponding to π under the bijection in [50, Théorème 1 (i)]. We
put F = Q(π). It is an imaginary quadratic field in which p splits into two places
v, v such that v(π) = n − 2m and v(π) = n + 2m. By the choice of u, F does not
split at q. By [50, Théorème 1 (ii)], the endomorphism algebra End(A0) ⊗Z Q is a
central simple algebra over F whose invariants are given by

invw(End(A0)⊗Z Q) =


0 w - p,
n−2m

2n
w = v,

n+2m
2n

w = v,

where w is a place of F . In particular we have dimF (End(A0) ⊗Z Q) = (2n)2 and

dimA0 = 2n. We can observe that invw(End(A0)⊗ZQ)− invw(D̃⊗Q F ) is killed by

n for every place w of F ; note that if w | q, then D̃ ⊗Q F splits at w since F does

not split at q. Therefore, there exists an embedding D̃ ⊗Q F ↪−→ End(A0) ⊗Z Q.

Let ι0 be the composite of D̃ ↪−→ D̃ ⊗Q F ↪−→ End(A0) ⊗Z Q. By [21, Lemma
9.2], there exists a polarization λ0 : A0 −→ A∨0 satisfying λ0 ◦ ι0(a∗) = ι0(a)∨ ◦λ0 for

every a ∈ D̃. By construction, the Newton polygons of D((A0 ⊗Fp2n Fp)[p∞])Q and
Nm,n regarded as isocrystals are the same. By Remark 2.13, the Newton polygons
of D((A0 ⊗Fp2n Fp)[p∞])Q and Nm,n regarded as polarized D-isocrystals are also
the same. Hence, by Lemma 2.14 we conclude that the p-polarized D-isocrystal
D((A0 ⊗Fp2n Fp)[p∞])Q is isomorphic to Nm,n.

Next we assume that n is even. Let π ∈ Q be a root of the equation x2 +
p
n
2
−mx + pn = 0 and A1 the abelian variety over Fpn corresponding to π. We put

A0 = A1 × A1. Then, by the same argument as above, we have dimA0 = 2n and
we can find a homomorphism ι0 : D̃ −→ End(A0)⊗Z Q = M2(End(A1)⊗Z Q) and a
polarization λ0 : A0 −→ A∨0 . We can observe that D((A0 ⊗Fpn Fp)[p∞])Q ∼= Nm,n by
comparing their Newton polygons.

Finally we consider the case n = 1. Note that m = 0. Let E0 be a supersingular
elliptic curve over Fp and put A0 = E0 × E0. Then End(E0) ⊗Z Q is a quater-
nion algebra over Q which ramifies exactly at ∞ and p, and End(A0) ⊗Z Q equals
M2(End(E0) ⊗Z Q). We can immediately check that there exists a homomorphism

ι0 : D̃ ↪−→ End(A0)⊗Z Q. By using it, we can repeat the argument above.

Now the proof of Proposition 2.9 is complete.

12
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3 Proof of the main theorem

3.1 First reduction

In the first step of our proof of Theorem 2.6, we will replace M with a simpler
moduli space N . We fix a lattice L ∈ L such that L ⊂ L∨.

Definition 3.1 Let N : NilpW (Fp) −→ Set be the functor that associates S with
the set of isomorphism classes of (X, ι, ρ) where

– X is a p-divisible group over S,

– ι : OB −→ End(X) is a homomorphism,

– and ρ : X⊗Fp S −→ X ×S S is a quasi-isogeny compatible with OB-actions,

such that the following condition is satisfied.

– Locally on S, there exist a constant c ∈ Q×p and an isogeny λ : X −→ X∨ with
heightλ = logp #(L∨/L) such that the following diagram is commutative:

X⊗Fp S

cλ0⊗id
��

ρ
// X ×S S

λ×id

��

X∨ ⊗Fp S X∨ ×S S.
ρ∨

oo

By a similar method as in the proof of [43, Theorem 3.25], we can prove that N is
represented by a formal scheme (denoted by the same symbol N ) which is locally
formally of finite type over Spf W (Fp). We write N for the underlying reduced
scheme N red of N .

The group J acts naturally on N on the left; an element h ∈ J carries (X, ι, ρ)
to (X, ι, ρ ◦ h−1).

Lemma 3.2 There exists a proper morphism of formal schemes M −→ N com-
patible with J-actions.

Proof. It suffices to construct a proper morphism M −→ N ⊗W (Fp) OĔ. Let S
be an object of NilpOĔ and {(XL′ , ιL′ , ρL′)}L′∈L an element of M(S). We will

show that (XL, ιL, ρL) gives an element of N (S). We need to verify the condition
on quasi-polarizations. By the condition (c) in Definition 2.2, locally on S there
exist c ∈ Q×p and an isomorphism pL : XL −→ (XL∨)∨. Let λ be the composite

XL
pL−−→∼= (XL∨)∨

(ρ̃L∨,L)∨

−−−−−→ X∨L . Then, we have

heightλ = height ρ̃L∨,L = logp #(L∨/L),

cλ0 ⊗ id = ρ∨L∨ ◦ (pL × id) ◦ ρL = ρ∨L ◦ (λ× id) ◦ ρL,

as desired. Hence we obtain a morphism M −→ N ⊗W (Fp) OĔ of formal schemes,
which we denote by ψ. Clearly ψ is J-equivariant.

13
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Next we prove that ψ is proper. We denote the universal object overN⊗W (Fp)OĔ
by (X̃, ι̃, ρ̃). We want to classify {(XL′ , ιL′ , ρL′)}L′∈L as in Definition 2.2 such that

(XL, ιL, ρL) = (X̃, ι̃, ρ̃). By the condition (b) in Definition 2.2, such an object is
determined by {(XL′ , ιL′ , ρL′)}L′∈L ,L⊂L′(p−1L up to isomorphism. Furthermore, for
each L′ ∈ L with L ⊂ L′ ( p−1L, (XL′ , ιL′ , ρL′) is determined by Ker ρ̃L′,L, which
is a finite flat subgroup scheme of XL[p] with degree #(L′/L). Clearly such a finite
flat subgroup scheme is classified by a formal scheme ML′ which is proper over
N ⊗W (Fp) OĔ. Let M′ be the fiber product over N ⊗W (Fp) OĔ of ML′ for L′ ∈ L

with L ⊂ L′ ( p−1L. By [43, Proposition 2.9], it is easy to observe that the natural
morphismM−→M′ is a closed immersion (strictly speaking, we use the fact that
[43, Proposition 2.9] is valid for α ∈ Hom(X, Y ) ⊗Zp Qp which is not necessary a
quasi-isogeny). This concludes the proof.

Corollary 3.3 If the action of J on Irr(N ) has finite orbits, then so does the action
of J on Irr(M).

Proof. Take finitely many α1, . . . , αm ∈ Irr(N ) such that Irr(N ) =
⋃m
i=1 Jαi. By

Lemma 3.2, for each i, only finitely many components β1, . . . , βki ∈ Irr(M) are
mapped into αi by the morphism M −→ N . It is easy to observe that Irr(M) =⋃m
i=1

⋃ki
j=1 Jβj.

By this corollary, we may consider N in place of M.

Remark 3.4 The determinant condition (see Definition 2.2 (d)) plays an important
role when we relate the moduli space M with Shimura varieties. If we remove it
from the conditions defining the functor M, we obtain a bigger moduli space M′

containing M as a closed formal subscheme. It is (at least a priori) nothing to
do with any Shimura variety, but still useful for our purpose since Irr(M′) gives
an “upper bound” of Irr(M) in some sense. Our new moduli space N is a slight
modification of M′.

3.2 A moduli space of PEL type

So far, we considered an arbitrary triple (X, λ0, ι0) as in Section 2. Now we take
(A0, λ0, ι0) as in Definition 2.4 and consider the triple (X, λ0, ι0) attached to it;
namely, we put X = A0[p∞] and denote the induced quasi-polarization X −→ X∨
and homomorphism B −→ End(X)⊗Zp Qp by the same symbols λ0 and ι0.

Lemma 3.5 Assume that N (Fp) 6= ∅. Then we can replace (A0, λ0, ι0) so that the
following conditions are satisfied:

– X = A0[p∞] is completely slope divisible (cf. [57, Definition 10]).

– ordp deg λ0 = logp #(L∨/L).

– there exists an order Õ of B̃ which is contained in ι−1
0 (End(A0)), stable under

∗ and satisfies Õ ⊗Z Zp = OB.

14
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Proof. First we prove that N (Fp) contains an element (X, ι, ρ) such that X is com-
pletely slope divisible. Take an arbitrary element (X, ι, ρ) in N (Fp). By [57, Corol-
lary 13], there exists a unique slope filtration 0 = X0 ⊂ X1 ⊂ · · · ⊂ Xs = X. Put
X ′ =

⊕s
i=1Xi/Xi−1. Let us observe that X ′ is completely slope divisible. Since

A0 and X are defined over a finite field, so is X. Therefore, by [57, Corollary 13],
Xi is also defined over a finite field. Hence [37, Corollary 1.5] tells us that X ′ is
completely slope divisible. As the category of isocrystals over Fp is semisimple, the
rational Dieudonné modules D(X)Q and D(X ′)Q are canonically isomorphic. Thus a
quasi-isogeny f : X −→ X ′ is naturally induced. It is characterized by the property

that the composite Xi ↪−→ X
f−−→ X ′

pri−−→ Xi/Xi−1 is the canonical surjection for

each i.
The OB-action ι on X induces an OB-action ι′ on X ′, and the quasi-isogeny f

is OB-equivariant. Put ρ′ = f ◦ ρ. We prove that (X ′, ι′, ρ′) belongs to N (Fp). It
suffices to see the last condition in Definition 3.1. Since (X, ι, ρ) lies inN (Fp), we can
find an element c ∈ Q×p and an isogeny λ : X −→ X∨ with heightλ = logp #(L∨/L)
such that cλ0 = ρ∨ ◦ λ ◦ ρ. The isogeny λ : X −→ X∨ should be compatible with
the slope filtrations on X and X∨, and thus it induces the isogeny λ′ : X ′ −→ X ′∨.
By the Dieudonné theory, we can easily see that λ = f∨ ◦ λ′ ◦ f and heightλ′ =
heightλ = logp #(L∨/L). Hence we have cλ0 = ρ∨ ◦ λ ◦ ρ = ρ′∨ ◦ λ′ ◦ ρ′, and thus

conclude that (X ′, ι′, ρ′) ∈ N (Fp).
Now, fix (X, ι, ρ) ∈ N (Fp) where X is completely slope divisible. Then, there

exist an abelian variety A′0 over Fp and a p-quasi-isogeny φ : A0 −→ A′0 such that
φ[p∞] : A0[p∞] −→ A′0[p∞] can be identified with ρ : X −→ X. By the last condition
in Definition 3.1, there exists an integer m such that (ρ∨)−1 ◦ pmλ0 ◦ ρ−1 gives
an isogeny X −→ X∨ of height logp #(L∨/L). Consider the quasi-isogeny λ′0 =
(φ∨)−1◦pmλ0◦φ−1 : A′0 −→ A′∨0 . Passing to p-divisible groups, we can easily observe
that it is a polarization on A′0. By construction we have ordp deg λ0 = logp #(L∨/L).

As φ induces End(A0) ⊗Z Q
∼=−−→ End(A′0) ⊗Z Q, ι0 induces a homomorphism

ι′0 : B̃ −→ End(A′0) ⊗Z Q. Let Õ′ be the inverse image of End(A′0) under ι′0. It

is an order of B̃, for ι′0 is injective. We will show that Õ′ ⊗Z Zp = OB. For

a ∈ B̃ ∩OB, consider ι′0(a) ∈ End(A′0)⊗Z Q. Since the induced element ι′0(a)[p∞] ∈
End(A′0[p∞])⊗ZpQp can be identified with ι(a) ∈ End(X), it belongs to End(A′0[p∞]).

Therefore we conclude that ι′0(a) ∈ End(A′0)⊗ZZ(p), and thus a ∈ Õ′⊗ZZ(p). Hence

we have (B̃ ∩ OB) ⊗Z(p)
Zp ⊂ Õ′ ⊗Z Zp. On the other hand, [39, Theorem 5.2] for

R = Z(p) tells us that (B̃ ∩OB)⊗Z(p)
Zp = OB. As OB is a maximal order of B, we

conclude that Õ′ ⊗Z Zp = OB.

Take a Z-basis e1, . . . , er of Õ′. Since Õ′ ⊗Z Zp = OB, we can find an integer

N > 0 which is prime to p such that Ne∗i ∈ Õ′ for every 1 ≤ i ≤ r (recall that

OB is stable under ∗). Let Õ be the Z-subalgebra of Õ′ generated by Nei and Ne∗i
for 1 ≤ i ≤ r. Then Õ is an order of B̃ which is contained in Õ′ = ι′−1

0 (End(A′0)),

stable under ∗ and satisfies Õ ⊗Z Zp = OB.
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By construction the polarized B-isocrystal associated to (A′0, λ
′
0, ι
′
0) is isomorphic

to Nb; indeed the homomorphism D(A0[p∞])Q −→ D(A′0[p∞])Q induced by φ is
an isomorphism of polarized B-isocrystals. Hence we may replace (A0, λ0, ι0) by
(A′0, λ

′
0, ι
′
0).

If N (Fp) = ∅, then N = ∅ and Theorem 2.6 is clear. In the sequel, we will

assume that N (Fp) 6= ∅, and take (A0, λ0, ι0) and Õ as in Lemma 3.5. Put g =
dimA0 and d = deg λ0.

Definition 3.6 For an integer δ, let N (δ) be the open and closed formal subscheme
of N consisting of (X, ι, ρ) with g−1 · height ρ = δ. Note that the left hand side is
always an integer. Indeed, by the definition of N , at least locally, there exist c ∈ Q×p
and an isogeny λ : X −→ X∨ with heightλ = logp #(L∨/L) such that height(cλ0) =
height ρ + heightλ + height ρ∨. Since heightλ0 = logp #(L∨/L) = heightλ and
height ρ∨ = height ρ, we have height ρ = g ordp(c). Hence g−1 · height ρ = ordp(c) is
an integer.

The formal scheme N is decomposed into the disjoint union
∐

δ∈ZN (δ). Put

N (δ) = (N (δ))red.

By the argument in the definition above, we can also prove the following:

Lemma 3.7 Let δ be an integer. For S ∈ NilpW (Fp) and (X, ι, ρ) ∈ N (δ)(S), there
exists a unique isogeny λ : X −→ X∨ with heightλ = logp #(L∨/L) such that the
following diagram is commutative:

X⊗Fp S

pδλ0⊗id
��

ρ
// X ×S S

λ×id

��

X∨ ⊗Fp S X∨ ×S S.
ρ∨

oo

Proof. We have only to check that the quasi-isogeny λ : X −→ X∨ lifting (ρ∨)−1 ◦
(pδλ0⊗ id)◦ρ−1 is an isogeny. This is a local problem on S, and thus we may assume
that there exist c ∈ Q×p and an isogeny λ′ : X −→ X∨ with heightλ′ = logp #(L∨/L)
such that the following diagram is commutative:

X⊗Fp S

cλ0⊗id
��

ρ
// X ×S S

λ′×id

��

X∨ ⊗Fp S X∨ ×S S.
ρ∨

oo

By the argument in Definition 3.6, we have ordp(c) = δ. Therefore c′ = pδc−1 lies in
Z×p . On the other hand, we have λ = c′λ′, as they coincide over S. Hence λ is an
isogeny, as desired.
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Next we will construct a moduli space of abelian varieties with some additional
structures.

Definition 3.8 Fix an integer n ≥ 3 which is prime to p. Let X be the functor
from the category of Zp-schemes to Set that associates S to the set of isomorphism
classes of (A, λ, α, ι) where

– A is a g-dimensional abelian scheme over S,

– λ : A −→ A∨ is a polarization of A with deg λ = d,

– α : (Z/nZ)2g
∼=−−→ A[n] is an isomorphism of group schemes over S (an n-level

structure on A),

– and ι : Õ −→ End(A) is a homomorphism such that λ ◦ ι(a∗) = ι(a)∨ ◦ λ for

every a ∈ Õ.

An isomorphism between two quadruples (A, λ, α, ι), (A′, λ′, α′, ι′) is an isomorphism
f : A −→ A′ such that λ = f∨ ◦ λ′ ◦ f , α′ = f ◦ α, and ι′(a) ◦ f = f ◦ ι(a) for every

a ∈ Õ.

Note that, unlike in the definition of Shimura varieties of PEL type, we impose
no compatibility condition on α and ι. This is to avoid an auxiliary choice of linear-
algebraic data outside p.

Proposition 3.9 The functor X is represented by a quasi-projective scheme over
Zp.

Proof. By [29, Theorem 7.9], the moduli space of (A, λ, α) is represented by a quasi-
projective scheme Ag,d,n over Zp. Furthermore, [25, Proposition 1.3.3.7] tells us that
X is represented by a scheme which is finite over Ag,d,n. This concludes the proof.

In the proof of Theorem 2.6, we focus on the geometric special fiber X = X⊗ZpFp
of X. For x ∈ X and a geometric point x lying over x, the corresponding quadruple
(Ax, λx, αx, ιx) gives a p-polarized B-isocrystal D(Ax[p

∞])Q over κ(x). The condition
that D(Ax[p

∞])Q is isomorphic to Nb⊗K0 FracW (κ(x)) is independent of the choice
of x. Indeed, the following lemma holds:

Lemma 3.10 Let k be an algebraically closed field of characteristic p and k′ an
algebraically closed extension field of k. For p-polarized B-isocrystals N , N ′ over k,
N ∼= N ′ if and only if N ⊗FracW (k) FracW (k′) ∼= N ′ ⊗FracW (k) FracW (k′).

Proof. Assume that there exists an isomorphism of polarized B-isocrystals

f : N ⊗FracW (k) FracW (k′)
∼=−−→ N ′ ⊗FracW (k) FracW (k′).

By [41, Lemma 3.9], there exists an isomorphism f ′ : N
∼=−−→ N ′ of isocrystals (with-

out any additional structure) such that f = f ′ ⊗ id. Further, by [41, Lemma 3.9]
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we can observe that f ′ is compatible with B-actions and polarizations (here we
use the fact that f carries the pairing on N ⊗FracW (k) FracW (k′) to a Q×p -multiple
of the pairing on N ′ ⊗FracW (k) FracW (k′); see Definition 2.1). Hence f ′ gives an
isomorphism of polarized B-isocrystals.

We write X(b) for the set of x ∈ X satisfying D(Ax[p
∞])Q ∼= Nb ⊗K0 FracW (κ(x)).

The next lemma ensures that X(b) is a locally closed subset of X.

Lemma 3.11 Let S be a locally noetherian scheme of characteristic p and M an
F -isocrystal over S (cf. [19, §2.1], [41, §3.1]) endowed with a B-action and a non-
degenerate alternating bilinear pairing 〈 , 〉 : M × M −→ 1(−1), where 1(−1)
denotes the dual of the Tate object, satisfying the following conditions:

– 〈bx, y〉 = 〈x, b∗y〉 for every b ∈ B and x, y ∈M ,

– and the induced map M ⊗M −→ 1(−1) is a morphism of F -isocrystals.

Then, the set S(b) consisting of s ∈ S such that Ms
∼= Nb ⊗K0 FracW (κ(s)) as

polarized B-isocrystals is locally closed in S.

Proof. If G is connected, this lemma is due to Rapoport-Richartz [41, Proposition
2.4 (iii), Theorem 3.6 (ii), Theorem 3.8]. We will adapt their argument to our case.

First, by Grothendieck’s specialization theorem [19, Theorem 2.3.1], the set con-
sisting of s ∈ S such that Ms

∼= Nb ⊗K0 FracW (κ(s)) as isocrystals (without any
additional structure) is locally closed in S. Therefore, by replacing S with this sub-
set endowed with the induced reduced scheme structure, we may assume that the
Newton polygons of the isocrystals Ms for s ∈ S are constant. Further, we may
also assume that S is connected. In this case, we shall prove that S(b) is either S or
empty. As in the proof of [41, Theorem 3.8], it suffices to show the following:

Assume that S = Spec k[[t]], where k is an algebraically closed field of
characteristic p. We denote by s1 (resp. s0) the generic (resp. closed) point
of S. Then we have an isomorphism Ms1

∼= Ms0 ⊗K0 FracW (κ(s1)) of
polarized B-isocrystals.

Following [41], we write R for the perfect closure of k[[t]] and a for the composite
SpecR −→ Spec k

s0−−→ S. By [19, Theorem 2.7.4] and [41, Lemma 3.9], there exists

a unique isomorphism f : MR

∼=−−→ a∗(M) of F -isocrystals over SpecR which induces

the identity over s0. We shall observe that f is compatible with the B-actions
and the polarizations on MR and a∗(M). For b ∈ B, f ◦ ιMR

(b) and ιa∗(M)(b) ◦ f
are elements of Hom(MR, a

∗(M)), whose images in Hom(Ms0 ,Ms0) are both equal
to ιMs0

(b). On the other hand, [41, Lemma 3.9] tells us that the pull-back map
Hom(MR, a

∗(M)) −→ Hom(Ms0 ,Ms0) is bijective (note that MR is constant, for it
is isomorphic to a∗(M)). Thus f is compatible with B-actions. The same method
can be used to compare polarizations. Hence, by taking the fiber of f at s1, we obtain

an isomorphism fs1 : Ms1

∼=−−→Ms0⊗K0 FracW (κ(s1)) compatible with B-actions and

polarizations. This concludes the proof.
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We endow X(b) with the reduced scheme structure induced from X. By definition,
the fixed (A0, λ0, ι0) and an arbitrary n-level structure α0 on A0 give an Fp-valued
point of X(b). In the following we fix α0.

3.3 Oort’s leaf

Here we follow the construction in [36], [27] and [28].

Definition 3.12 Let C be the subset of X(b) consisting of x = (Ax, λx, αx, ιx) sat-
isfying the following condition:

– for some algebraically closed field extension k of κ(x), there exists an isomor-

phism X⊗Fp k
∼=−−→ Ax[p

∞]⊗κ(x) k which carries λ0 to a Z×p -multiple of λx and

ι0 to ιx.

By definition, (A0, λ0, α0, ι0) lies in C. In particular C is non-empty. The goal
of this subsection is to prove the following theorem, which is a generalization of [36,
Theorem 2.2].

Theorem 3.13 The subset C is closed in X(b).

The idea of our proof of Theorem 3.13 is to use the theory of Igusa towers
developed in [27].

Definition 3.14 Let Cnaive be the subset of X(b) consisting of x = (Ax, λx, αx, ιx)
satisfying the following condition:

– for some algebraically closed field extension k of κ(x), there exists an isomor-
phism X⊗Fpk

∼= Ax[p
∞]⊗κ(x)k as p-divisible groups (we impose no compatibility

on quasi-polarizations and OB-actions).

By [36, Theorem 2.2], Cnaive is a closed subset of X(b). We endow it with the induced
reduced scheme structure. Let C∼naive be the normalization of Cnaive.

Let (A, λ̃, α̃, ι̃) be the universal object over X and put G = A[p∞]. We sometimes
denote the pull-back of A and G to various schemes by the same symbols A and G.

Lemma 3.15 The p-divisible group G over C∼naive is completely slope divisible in
the sense of [37, Definition 1.2].

Proof. Recall that X is completely slope divisible (cf. Lemma 3.5). Consider a
minimal point η of C∼naive. By the definition of Cnaive, there exists an algebraically
closed extension field k of κ(η) such that X⊗Fpk

∼= Gη⊗κ(η)k. Therefore [37, Remark
in p. 186] tells us that Gη is completely slope divisible. Hence, by [37, Proposition
2.3], we conclude that G over C∼naive is completely slope divisible.
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By the lemma above, we have a (unique) slope filtration 0 = G0 ⊂ G1 ⊂ · · · ⊂
Gs = G. Put Gi = Gi/Gi−1. The action of OB on G induces that on Gi. The quasi-

polarization λ̃ : G −→ G∨ induced from the universal polarization gives a morphism
λ̃i : Gi −→ (Gi′)∨, where i′ is the integer such that slopeGi + slopeGi′ = 1. Note

that λ̃ : G −→ G∨ is an isogeny, hence so is λ̃i.
We can also consider 0 = X0 ⊂ X1 ⊂ · · · ⊂ Xs = X, Xi = Xi/Xi−1, the OB-action

on Xi and λ0,i : Xi −→ (Xi′)∨. They appear as the fibers of the previous objects at
a point of C∼naive lying over (A0, λ0, α0, ι0) ∈ Cnaive. In particular, λ0,i is an isogeny.

Definition 3.16 For an integer m ≥ 0, let C∼naive,m be the functor from the cat-
egory of C∼naive-schemes to Set that associates S to the set of {jm,i}1≤i≤s where

jm,i : Xi[pm]⊗Fp S
∼=−−→ Gi[pm]×C∼naive

S is an isomorphism of group schemes over S.

This functor is represented by a scheme of finite type over C∼naive. We denote the
universal isomorphisms over C∼naive,m by juniv

m,i .
Let C∼′naive,m be the intersection of the scheme-theoretic images of C∼naive,m′ −→

C∼naive,m for m′ ≥ m and put Ig∼naive,m = (C∼′naive,m)red. We also denote the restriction
of juniv

m,i to Ig∼naive,m by the same symbol juniv
m,i .

The following proposition is due to Harris-Taylor and Mantovan:

Proposition 3.17 For each m ≥ 0, the morphism Ig∼naive,m+1 −→ Ig∼naive,m is finite
étale and surjective.

Proof. This is essentially proved in [27, Proposition 3.3], but we should be careful
since [27, Proposition 3.3] is stated in the case of unitary Shimura varieties. Recall
that its proof is a combination of [13, Proposition II.1.7] and [27, Lemma 3.4]. The
former is valid for any reduced excellent scheme over Fp. The latter requires the fact
that the completed local ring O∧C∼naive,x

is a normal integral domain for each closed

point x ∈ C∼naive. This is true because C∼naive is normal and excellent (cf. [9, IV, 7.8.3
(v)]).

Definition 3.18 For m ≥ 0 and a C∼naive-scheme S, let C∼m(S) ⊂ Ig∼naive,m(S) be the
subset consisting of {jm,i} ∈ Ig∼naive,m(S) satisfying the following two conditions:

– The isomorphisms {jm,i} preserve the (Z/pmZ)×-homothety classes of the quasi-
polarizations. More precisely, for each i, the following diagram commutes up
to multiplication by (Z/pmZ)×:

Xi[pm]⊗Fp S ∼=

jm,i
//

λ0,i

��

Gi[pm]×C∼naive
S

λ̃i
��

(Xi′)∨[pm]⊗Fp S (Gi′)∨[pm]×C∼naive
S.∼=

(jm,i′ )
∨

oo

Here i′ is the integer such that slopeGi + slopeGi′ = slopeXi + slopeXi′ = 1.
Recall that λ̃i : Gi −→ (Gi′)∨ and λ0,i : Xi −→ (Xi′)∨ are isogenies (see the
explanation before Definition 3.16), so that the vertical arrows are induced.
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– For each i, the isomorphism jm,i : Xi[pm] ⊗Fp S
∼=−−→ Gi[pm] ×C∼naive

S preserves

the OB-actions explained before Definition 3.16.

Clearly S 7−→ C∼m(S) is a functor represented by a closed subscheme of Ig∼naive,m.
Moreover, let C∼′m be the intersection of the scheme-theoretic images of C∼m′ −→ C∼m
for m′ ≥ m. Put Ig∼m = (C∼′m )red and C∼ = Ig∼0 .

Corollary 3.19 For each m ≥ 0, the morphism Ig∼m+1 −→ Ig∼m is finite and surjec-
tive.

Proof. Since Ig∼m (resp. Ig∼m+1) is a closed subscheme of Ig∼naive,m (resp. Ig∼naive,m+1),
the finiteness follows from Proposition 3.17. To show the surjectivity, note that
there exists an integer m′ ≥ m + 1 such that C∼′m+1 coincides with the scheme-
theoretic image of C∼m′ −→ C∼m+1, for C∼m+1 is a noetherian scheme. Take x ∈ C∼′m .
As C∼m′ −→ C∼m is finite by Proposition 3.17, x lies in the set-theoretic image of
this map. Hence we can find x′ in C∼m′ which is mapped to x. The image of x′ in
C∼m+1 lies in C∼′m+1, and is mapped to x. Therefore Ig∼m+1 = C∼′m+1 −→ C∼′m = Ig∼m is
surjective, as desired.

The scheme C∼ is a closed subscheme of C∼naive. Therefore, to prove Theorem
3.13, it suffices to show the following proposition.

Proposition 3.20 The image of C∼ under the finite morphism C∼naive −→ Cnaive

coincides with C.

Proof. Take x ∈ C∼naive. First assume that the image of x in Cnaive lies in C.
Then there exist an algebraically closed extension field k of κ(x) and an isomor-

phism j : X⊗Fp k
∼=−−→ Gx ⊗κ(x) k preserving the Z×p -homothety classes of the quasi-

polarizations and the OB-actions. It induces an isomorphism jm,i : Xi[pm]⊗Fp k
∼=−−→

Gix[pm] ⊗κ(x) k for each m ≥ 0 and 1 ≤ i ≤ s. Therefore we obtain a system of
maps {Spec k −→ C∼naive,m}m≥0 compatible with projections. It is easy to check that
the morphism Spec k −→ C∼naive,m factors through Ig∼m. In particular, the image of
Spec k −→ C∼naive, which is nothing but x, lies in C∼.

Conversely assume that x lies in C∼. By Corollary 3.19, we can take a system of
points {xm ∈ Ig∼m}m≥0 compatible with projections such that x0 = x. Let k be an
algebraic closure of lim−→m

κ(xm). Then, for each m we have a collection of isomor-

phisms {jm,i : Xi[pm] ⊗Fp k
∼=−−→ Gix[pm] ⊗κ(x) k}1≤i≤s compatible with the change of

m. By [57, Corollary 11], the slope filtrations on X and Gx ⊗κ(x) k split canonically.
Namely, we have isomorphisms X ∼=

⊕s
i=1 Xi and Gx ⊗κ(x) k ∼=

⊕s
i=1 Gix ⊗κ(x) k

which are compatible with the quasi-polarizations and the OB-actions. Hence,

{jm,i}1≤i≤s induces an isomorphism jm : X[pm] ⊗Fp k
∼=−−→ Gx[pm] ⊗κ(x) k compati-

ble with the (Z/pmZ)×-homothety classes of the quasi-polarizations, the OB-actions
and the change of m. By taking inductive limit with respect to m, we obtain an
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isomorphism j : X ⊗Fp k
∼=−−→ Gx ⊗κ(x) k compatible with the OB-actions. Since the

projective limit of a projective system consisting of finite sets is non-empty, j pre-
serves the Z×p -homothety classes of the quasi-polarizations. This means that the
image of x in Cnaive belongs to C.

Noting that C∼naive −→ Cnaive is surjective, we conclude the proof.

Now the proof of Theorem 3.13 is complete. We endow the closed subset C ⊂ X(b)

with the induced reduced scheme structure.

Proposition 3.21 The scheme C is smooth over Fp.

Proof. It can be proved in the same way as [36, Theorem 3.13 (i)].

By this proposition, we can apply the same construction as in Definition 3.16
and Definition 3.18 to G/C. Hence we first obtain the naive Igusa tower {Ignaive,m},
and after modifying it, the Igusa tower {Igm}. The following proposition can be
proved in the same way as Corollary 3.19 and Proposition 3.20.

Proposition 3.22 i) The transition maps of {Igm} are finite and surjective.

ii) We have Ig0 = C.

3.4 Almost product structure

In this subsection, an element (X, ι, ρ) of N (S) for S ∈ NilpW (Fp) will be denoted
by (X, ρ). For integers r, m with m ≥ 0, let N r,m be the closed formal subscheme
of N consisting of (X, ρ) such that prρ is an isogeny and Ker(prρ) is killed by pm.
We put N r,m = (N r,m)red. It is a scheme of finite type over Fp (cf. [43, Corollary
2.31]).

As in [36], [27] and [28], we will construct a morphism

Igm×FpN
r,m −→ X(b).

Recall that we denote by (A, λ̃, α̃, ι̃) the universal object over Igm. For an integer
N ≥ 0, let A(pN ) be the pull-back of A by the Nth power of the absolute Frobenius
morphism Fr: Igm −→ Igm. By [27, Lemma 4.1], there exists an integer δm ≥ 0
depending on m such that for N ≥ δm we have a canonical isomorphism

A(pN )[pm] = G(pN )[pm] ∼=
s⊕
i=1

(Gi)(pN )[pm].

Then, the universal Igusa structure {juniv
m,i } over Igm gives an isomorphism

A(pN )[pm] ∼=
s⊕
i=1

(Gi)(pN )[pm]

⊕
i j

univ
m,i←−−−−−∼=

s⊕
i=1

(Xi)(pN )[pm]⊗Fp Igm
∼= X(pN )[pm]⊗Fp Igm,
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where (Xi)(pN ) and X(pN ) are the pull-back of Xi and X by the Nth power of the
absolute Frobenius morphism on SpecFp. It preserves the (Z/pmZ)×-homothety
classes of the quasi-polarizations and the OB-actions.

On the other hand, over N r,m we have the universal p-divisible group X̃ with
an OB-action and the universal OB-quasi-isogeny ρ̃ : X ⊗Fp N

r,m −→ X̃. By the

definition of N r,m, prρ̃ is an isogeny and its kernel Ker(prρ̃) is contained in X[pm]⊗Fp

N r,m. Hence Ker(prρ̃)(pN ) is a finite flat subgroup scheme of X(pN )[pm]⊗Fp N
r,m.

Now consider the abelian scheme pr∗1A(pN ) on Igm×FpN
r,m. Under the isomor-

phism pr∗1A(pN )[pm] ∼= X(pN )[pm]⊗Fp (Igm×FpN
r,m), pr∗2 Ker(prρ̃)(pN ) corresponds to

a finite flat group scheme H of pr∗1A(pN )[pm]. We put A′ = (pr∗1A(pN ))/H. It is an
abelian scheme over Igm×FpN

r,m endowed with a p-isogeny φ : pr∗1A(pN ) −→ A′. We

will find additional structures on A′ so that they give an element of X(Igm×FpN
r,m).

The Õ-action on pr∗1A(pN ) induced from ι̃ gives an Õ-action ι′ onA′ by the isogeny φ.

Indeed, it suffices to observe that H is stable under the Õ-action, which follows from
the fact that Ker(prρ̃) is stable under the OB-action. As n is assumed to be prime to
p, the quasi-isogeny p−rφ induces an isomorphism pr∗1A(pN )[n] −→ A′[n] on n-torsion
points. Let α′ be the level structure on A′ induced from α̃ by this isomorphism.
We shall construct a polarization λ′ on A′. Recall that we have a decomposition
N =

∐
δ∈ZN (δ) into open and closed subschemes. Put N (δ),r,m = N (δ) ∩ N r,m. It

suffices to construct λ′ over Igm×FpN
(δ),r,m for each δ ∈ Z. By Lemma 3.7, on

N (δ),r,m there exists an isogeny λX̃ : X̃ −→ X̃∨ with height logp #(L∨/L) such that
the following diagram is commutative:

X⊗Fp N
r,m

pδλ0⊗id
��

ρ̃
// X̃

λ
X̃

��

X∨ ⊗Fp N
r,m X̃∨.

ρ̃∨
oo

Put λ′ = (φ∨)−1 ◦ pδ+2r pr∗1 λ̃
(pN ) ◦ φ−1. Let us observe that the quasi-isogeny

λ′[p∞] : A′[p∞] −→ A′∨[p∞] induced by λ′ is an isogeny with height logp #(L∨/L).

As Igm×FpN
r,m is reduced, by [43, Proposition 2.9], it suffices to show that, for each

point z = (x, y) in (Igm×FpN
r,m)(Fp), the quasi-isogeny λ′z[p

∞] is an isogeny with

height logp #(L∨/L). By [57, Corollary 11], we have an isomorphism A(pN )
x [p∞] =

G(pN )
x

∼=
⊕s

i=1(Gix)(pN ). Hence, Proposition 3.22 i) ensures that the isomorphism

A(pN )
x [pm] ∼= X(pN )[pm], the specialization at x of the isomorphism used above, can

be extended to an isomorphism A(pN )
x [p∞] ∼= X(pN ) between p-divisible groups which

preserves the Z×p -homothety classes of the quasi-polarizations and the OB-actions
(cf. the proof of Proposition 3.20). Under this isomorphism, A′z[p∞] is identified

with X̃
(pN )
y , and λ′z[p

∞] fits into the following diagram, which is commutative up to

23



Yoichi Mieda

Z×p -multiplication:

X(pN )
φz [p∞]=pr ρ̃

(N)
y

//

pδ+2rλ
(pN )
0

��

X̃
(pN )
y

λ′z [p∞]

��

(X∨)(pN ) (X̃∨y )(pN ).
φ∨z [p∞]=pr(ρ̃∨y )(N)

oo

Hence λ′z[p
∞] is identified with a Z×p -multiple of λ

(pN )

X̃,y
, which is an isogeny with

height logp #(L∨/L). As deg φ is a power of p, we conclude that λ′ is an isogeny
with degree d. Thus it gives a desired polarization on A′. Obviously the quadruple
(A′, λ′, α′, ι′) belongs to X(Igm×FpN

r,m).

Definition 3.23 Let πN : Igm×FpN
r,m −→ X be the morphism determined by the

quadruple (A′, λ′, α′, ι′). This morphism factors through X(b) (note that the Nth
power of the relative Frobenius morphism gives an isogeny between X and X(pN )).

The following lemma, which is an analogue of [27, Proposition 4.3], is easily
verified.

Lemma 3.24 i) For an integer N ≥ δm, we have πN+1 = Frobp ◦πN , where
Frobp : X −→ X is the pth power Frobenius morphism over Fp (namely, the
base change to Fp of the absolute Frobenius morphism on X⊗Zp Fp).

ii) For an integer N ≥ max{δm, δm+1}, the following diagram is commutative:

Igm+1×FpN
r,m ⊂

//

��

Igm+1×FpN
r,m+1 πN // X(b)

Igm×FpN
r,m πN // X(b).

Let k be an algebraically closed field containing Fp. At the level of k-valued
points, we can define a variant Π: Igm(k) × N r,m(k) −→ X(b)(k) of πN . Let
x = (A, λ, α, ι, {jm,i}1≤i≤s) be an element of Igm(k) and y = (X, ρ) be an ele-
ment of N r,m(k). In this case, by [57, Corollary 11], we have a canonical iso-
morphism A[p∞] = Gx ∼=

⊕s
i=1 Gix. Hence {jm,i}1≤i≤s induces an isomorphism

A[pm] ∼= X[pm] ⊗Fp k preserving the (Z/pmZ)×-homothety classes of the quasi-
polarizations and the OB-actions (in this argument, we need no restriction on
m ≥ 0). By this isomorphism, the finite subgroup scheme Ker(prρ) of X[pm] ⊗Fp k
corresponds to a subgroup scheme H of A[pm]. Put A′ = A/H. In the same way
as in the definition of πN , we can find a polarization λ′, a level structure α′ and
an Õ-action ι′ on A′ induced from λ, α and ι respectively, so that (A′, λ′, α′, ι′)
belongs to the set X(b)(k). We define the map Π: Igm(k)×N r,m(k) −→ X(b)(k) by
Π(x, y) = (A′, λ′, α′, ι′). The following lemma is clear.
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Lemma 3.25 i) Π: Igm(k)×N r,m(k) −→ X(b)(k) is compatible with the change
of m.

ii) πN = FrobNp ◦Π.

Lemma 3.26 Let k be an algebraically closed field containing Fp. For every point
x = (A, λ, α, ι) of X(b)(k), there exists an integer m ≥ 0 such that x is contained in
the image of Π: Igm(k)×N 0,m(k) −→ X(b)(k).

Proof. As x lies in X(b), there is a quasi-isogeny ρ : X ⊗Fp k −→ A[p∞] which is

compatible with the OB-actions and preserves the quasi-polarizations up to Q×p -
multiplication. Replacing ρ by pνρ if necessary, we may assume that ρ is an isogeny.
Take an integer m ≥ 0 such that Ker ρ is killed by pm. Then, there exists an isogeny
ξ : A[p∞] −→ X ⊗Fp k with ξ ◦ ρ = pm. Put A′ = A/Ker ξ. Then A′[p∞] can be
identified with X ⊗Fp k, and there exists a p-isogeny φ : A′ −→ A corresponding
to ρ. As in the construction of πN , we can observe that the additional structures
λ, α, ι on A induce additional structures λ′, α′, ι′ on A′ by the isogeny φ so that
(A′, λ′, α′, ι′) gives an element of C(k). Let {jm,i}1≤i≤m be the Igusa structure on
A′[pm] that comes from the identification A′[p∞] = X ⊗Fp k, and y be the point
(A′, λ′, α′, ι′, {jm,i}) in Igm(k). Now it is easy to check that z = (A[p∞], ρ) lies in
N 0,m(k) and Π(y, z) = x.

Proposition 3.27 i) There exist integers m ≥ 0 and N ≥ δm such that the
morphism πN : Igm×FpN

0,m −→ X(b) is surjective.

ii) For m as in i) and an algebraically closed field k containing Fp, the map
Π: Igm(k)×N 0,m(k) −→ X(b)(k) is surjective.

Proof. For each m ≥ 0, take an integer Nm ≥ δm so that N0 < N1 < N2 < · · · , and
put Tm = (FrobNmp )−1πNm(Igm×FpN

0,m). By Lemma 3.24, we have

Tm ⊂ (FrobNm+1
p )−1πNm+1(Igm×FpN

0,m) = (FrobNm+1
p )−1πNm+1(Igm+1×FpN

0,m)

⊂ (FrobNm+1
p )−1πNm+1(Igm+1×FpN

0,m+1) = Tm+1.

Since X(b) is a scheme of finite type over Fp, its underlying topological space is
a spectral space in the sense of [11, §0]. As in [11, §2], we consider the patch
topology on X(b), under which X(b) becomes a compact space ([11, Theorem 1]).
As N 0,m is a scheme of finite type over Fp, Tm is a constructible subset of X(b).
In particular, it is an open set of X(b) with respect to the patch topology. On the
other hand, Lemma 3.25 ii) and Lemma 3.26 tell us that

⋃∞
m=0 Tm = X(b). Hence

there exists an integer m ≥ 0 such that Tm = X(b). As Frobp is surjective, we have
πNm(Igm×FpN

0,m) = X(b). This concludes the proof of i).
ii) follows from i), Lemma 3.25 ii) and the injectivity of Frobp at the level of

k-valued points.
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Proposition 3.28 Let m,m′ ≥ 0 be integers, and consider elements (x, y) ∈
Igm(Fp) × N 0,m(Fp) and (x′, y′) ∈ Igm′(Fp) × N 0,m′(Fp). If Π(x, y) = Π(x′, y′),
then there exists h ∈ J such that y′ = hy.

Proof. By Proposition 3.22 i), we may assume that m = m′. Let (A, λ, α, ι, {jm,i}),
(A′, λ′, α′, ι′, {j′m,i}), (X, ρ), (X ′, ρ′) be the objects corresponding to x, x′, y, y′,

respectively. Recall that {jm,i} induces an isomorphism jm : X[pm]
∼=−−→ A[pm]. Again

by Proposition 3.22 i), we can extend jm to an isomorphism j : X
∼=−−→ A[p∞] which

preserves the Z×p -homothety classes of the quasi-polarizations and the OB-actions

(cf. the proof of Proposition 3.20). Similarly we have isomorphisms j′m : X[pm]
∼=−−→

A′[pm] and j′ : X
∼=−−→ A′[p∞]. As Π(x, y) = Π(x′, y′), there exists an isomorphism

A/j(Ker ρ) ∼= A′/j′(Ker ρ′) compatible with the additional structures. On the other

hand, j (resp. j′) induces an isomorphism X ∼= X/Ker ρ
∼=−−→ (A/j(Ker ρ))[p∞]

(resp. X ′ ∼= X/Ker ρ′
∼=−−→ (A′/j′(Ker ρ′))[p∞]). Hence we obtain an isomorphism

f : X
∼=−−→ X ′, which is compatible with the OB-actions. Consider the quasi-isogeny

h = ρ′−1◦f◦ρ : X −→ X. It is straightforward to check that h in fact gives an element
of J (use the fact that the isogenies A −→ A/j(Ker ρ) and A′ −→ A′/j′(Ker ρ′)
preserve the polarizations up to multiplication by some powers of p). Now we
conclude that y′ = (X ′, ρ′) = (X, f−1 ◦ ρ′) = (X, ρ ◦ h−1) = hy, as desired.

Now we can give a proof of our main theorem.

Proof of Theorem 2.6. Take m ≥ 0 as in Proposition 3.27, and let S ⊂ Irr(N ) be
the subset consisting of irreducible components of N which intersect N 0,m. Let us
observe that S is a finite set. Take a quasi-compact open subset U of N containing
N 0,m. If α ∈ S, it intersects U and thus α ∩ U is an irreducible component of U .
Moreover the closure of α∩U in N coincides with α. Hence there exists an injection
S ↪−→ Irr(U). Since U is a scheme of finite type over Fp, Irr(U) is a finite set. Thus
S is also a finite set.

Therefore, it suffices to show that for every α ∈ Irr(N ) there exists h ∈ J such
that hα ∈ S. Fix y ∈ α(Fp). We can take integers r, m′ with m′ ≥ 0 such that y lies
in N r,m′(Fp). Then p−ry lies in N 0,m′(Fp). Let x be an arbitrary element of Igm′(Fp);
note that Igm′ 6= ∅, as C is non-empty and Igm′ −→ C is surjective. By Proposition
3.27 ii), there exists (x′, y′) ∈ Igm(Fp)×N 0,m(Fp) such that Π(x, p−ry) = Π(x′, y′).
By Proposition 3.28, there exists h′ ∈ J such that y′ = h′p−ry. Put h = h′p−r ∈ J .
Then, hα ∈ Irr(N ) intersects N 0,m at y′, and thus hα ∈ S. This completes the
proof.
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4 Applications

4.1 Finiteness of `-adic cohomology of general Rapoport-
Zink towers

Here we continue to use the notation introduced in Section 2.1. Let ZJ be the center
of J . First we will give a group-theoretic characterization of the quasi-compactness
of ZJ\M.

Theorem 4.1 Assume that b comes from an abelian variety and M is non-empty.
Then, the following are equivalent:

(a) The group J is compact-mod-center, namely, J/ZJ is compact.

(b) The quotient topological space ZJ\M is quasi-compact.

Proof of Theorem 4.1 (a) =⇒ (b). Take a compact open subgroup J1 of J . Since
J/ZJ is compact, the image of J1 in J/ZJ is a finite index subgroup of J/ZJ .
Therefore ZJJ

1 is a finite index subgroup of J . Take a system of representatives
h1, . . . , hk ∈ J of ZJJ

1\J .
By Theorem 2.6, we can choose α1, . . . , αm ∈ Irr(M) such that Irr(M) =⋃m

i=1 Jαi =
⋃m
i=1

⋃k
j=1 ZJJ

1hjαi. By [8, Proposition 2.3.11] and the compactness

of J1, J1hjαi consists of finitely many elements for each i and j. Therefore, ZJ\M
is covered by the images of finitely many irreducible components ofM. In particular,
ZJ\M is quasi-compact.

To show the converse (b) =⇒ (a), we use the subsequent lemma, which is similar
to [30, Lemma 5.1 iii)].

Lemma 4.2 Let T1 and T2 be quasi-compact subsets of M. Then, the subset
{h ∈ J | hT1 ∩ T2 6= ∅} of J is contained in a compact subset of J .

Proof. First note that Ti is contained in a finite union of irreducible components of
M. Indeed, take a quasi-compact open subscheme U ofM containing Ti; then, the
closure α of each α ∈ Irr(U) belongs to Irr(M), and Ti is contained in

⋃
α∈Irr(U) α.

Therefore, the closure T i of Ti in M is quasi-compact. Replacing T1, T2 by T 1, T 2,
we may assume that T1 and T2 are closed. For T = T1 ∪ T2, {h ∈ J | hT1 ∩ T2 6= ∅}
is contained in {h ∈ J | hT ∩ T 6= ∅}. Therefore, it suffices to consider the case
T = T1 = T2. By Lemma 3.2, we have a J-equivariant proper morphism f : M−→
N . As {h ∈ J | hT ∩ T 6= ∅} is contained in {h ∈ J | hf(T ) ∩ f(T ) 6= ∅}, we
may replaceM by N . Let NGL be the Rapoport-Zink space without any additional
structure associated with X, and JGL the group of self-quasi-isogenies of X. Then
we have a closed immersion N ↪−→ NGL compatible with the inclusion J ↪−→ JGL.
Hence we may replace N by NGL = (NGL)red and J by JGL. In this case, the claim
is essentially proved in the proof of [43, Proposition 2.34].
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Corollary 4.3 i) Let T be a non-empty quasi-compact subset of M. Then, the
subset {h ∈ J | hT = T} of J is open and compact.

ii) Let T be a finite union of irreducible components of M. Then, the subset
{h ∈ J | hT ∩ T 6= ∅} of J is open and compact.

Proof. i) It can be proved in the same way as in [30, Lemma 5.1 iv)].
We prove ii). The openness follows from i). Write T = α1 ∪ · · · ∪ αm, where

αi ∈ Irr(M). Consider the subset S of Irr(M) consisting of β satisfying β ∩T 6= ∅.
It is a finite set (see the proof of Theorem 2.6 in p. 26). Write S = {β1, . . . , βk}.
Then, we have {h ∈ J | hT ∩ T 6= ∅} =

⋃m
i=1

⋃k
j=1{h ∈ J | hαi = βj}. Hence

it suffices to show that {h ∈ J | hαi = βj} is compact for every i and j. We
may assume that there exists h0 ∈ J such that h0αi = βj. In this case, we have
{h ∈ J | hαi = βj} = h0Jαi , where Jαi = {h ∈ J | hαi = αi}. By i), Jαi is compact,
and thus h0Jαi is also compact. This concludes the proof.

Proof of Theorem 4.1 (b) =⇒ (a). Assume that ZJ\M is quasi-compact. Then,
there exist finitely many irreducible components α1, . . . , αm whose images α1, . . . , αm
cover ZJ\M. Put T = α1 ∪ · · · ∪ αm and KT = {h ∈ J | hT ∩ T 6= ∅}. Let us
observe that J = ZJKT . Take any element h ∈ J . Since ZJ\M is non-empty, we
can find x ∈ T . Then there exists z ∈ ZJ such that zhx ∈ T . Thus we have zh ∈ KT

and h ∈ ZJKT , as desired.
By Corollary 4.3 ii), KT is compact. Hence J/ZJ is also compact.

Next, we will prove a finiteness result on the `-adic cohomology of the Rapoport-
Zink tower. Before stating the result, we recall some definitions. For a precise
description, see [43, Chapter 5].

We denote the rigid generic fiber t(M)η ofM by M (note that in this paper all
rigid spaces are considered as adic spaces; cf. [14], [15]). The universal object on

M induces a system of étale p-divisible groups {X̃L}L∈L on M . Assume M is non-
empty, and fix a point x0 of M and a geometric point x0 lying over x0. Put V ′ =
VpX̃L,x0 , which is independent of L ∈ L . Then, the universal quasi-polarization

pL : X̃L −→ (X̃L∨)∨ (cf. the condition (c) in Definition 2.2), well-defined up to Q×p -
multiplication, induces an alternating bilinear pairing 〈 , 〉′ : V ′× V ′ −→ Qp, which
is well-defined up to Q×p -multiplication (here we choose an isomorphism Qp(1) ∼= Qp,
but the choice does not affect the Q×p -orbit of the pairing). Let G′ be the algebraic
group over Qp consisting of B-linear automorphisms of V ′ which preserve 〈 , 〉′
up to a scalar multiple. By the comparison theorem for p-divisible groups, there

exists a B ⊗Qp Bcrys-linear isomorphism V ⊗Qp Bcrys

∼=−−→ V ′ ⊗Qp Bcrys which maps

〈 , 〉 to a Q×p -multiple of 〈 , 〉′. Thus, there exists a B ⊗Qp Qp-linear isomorphism

V ⊗Qp Qp

∼=−−→ V ′ ⊗Qp Qp which maps 〈 , 〉 to a Q×p -multiple of 〈 , 〉′. Such a

pair (V ′, 〈 , 〉′) is classified by H1(Qp,G). Let ξ ∈ H1(Qp,G) be the element
corresponding to the isomorphism class of (V ′, 〈 , 〉′). Then, G′ is the inner form
of G corresponding to the image of ξ under the map H1(Qp,G) −→ H1(Qp,G

ad).
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If G is connected, there is a formula that describes ξ by means of b and µ; see [43,
Proposition 1.20] and [56, §4.5.2]. In particular, ξ is independent of the choice of x0

in this case.
For L ∈ L , we denote the OB-lattice TpX̃L,x0 ⊂ V ′ by L′. Then, L ′ = {L′ | L ∈

L } is a self-dual multi-chain of OB-lattices of V ′. We denote by K ′L ′ the subgroup
of G′ = G′(Qp) consisting of g with gL′ = L′ for every L′ ∈ L ′. It is compact and
open in G′. For an open subgroup K ′ of K ′L ′ , let MK′ be the rigid space over M

classifying K ′-level structures on {X̃L}L∈L . Namely, for a connected rigid space S
over M , a morphism S −→MK′ over M is functorially in bijection with a π1(S, x)-

invariant K ′-orbit of systems of OB-linear isomorphisms {ηL : L′
∼=−−→ TpX̃L,x}L∈L

such that

– ηL is compatible with respect to L,

– and ηL maps 〈 , 〉′ to a Q×p -multiple of the alternating bilinear pairing on VpX̃L,x

induced from the universal quasi-polarization.

Here x is a geometric point in S; the set of π1(S, x)-invariant K ′-orbits of {ηL}L∈L

is essentially independent of the choice of x. We can easily observe that MK′ is finite
étale over M . If G is connected, MK′ −→ M is surjective. The action of J on M
naturally lifts to an action on MK′ .

Varying K ′, we obtain a projective system {MK′}K′⊂K′
L ′

of étale coverings over

M . As usual, we can define a Hecke action of G′ on this tower; see [43, 5.34]. By
definition, the tower {MK′}K′ a priori depends on the point x0. However, in fact it
is known that {MK′}K′ depends only on the class ξ ∈ H1(Qp,G) (cf. [43, 5.39]).

Fix a prime number ` 6= p and consider the compactly supported `-adic coho-
mology:

H i
c(MK′) = H i

c(MK′ ⊗Ĕ Ĕ,Q`), H i
c(Mξ,∞) = lim−→

K′⊂K′
L ′

H i
c(MK′).

Then, H i
c(Mξ,∞) becomes a G′×J-representation. The action of G′ is clearly smooth.

By [8, Corollaire 4.4.7], the action of J is also smooth. In fact, it is also known that
the Weil group WE naturally acts on H i

c(Mξ,∞). These three actions are expected
to be closely related to the local Langlands correspondence (see [38]).

In the sequel, we will prove the following fundamental finiteness result on the
representation H i

c(Mξ,∞).

Theorem 4.4 Assume that b comes from an abelian variety. Then, for every integer
i ≥ 0 and every compact open subgroup K ′ of G′, the K ′-invariant part H i

c(Mξ,∞)K
′

is finitely generated as a J-representation.

In the unramified case, this theorem is proved in [8, Proposition 4.4.13]. The
strategy of our proof is similar. First we will show that M is locally algebraizable
in the sense of [32, Definition 3.19]. Fix B̃ and (A0, λ0, ι0) as in Definition 2.4.

Lemma 4.5 We can replace (A0, λ0, ι0) so that the following conditions are satis-
fied:
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– there exists an order Õ of B̃ which is contained in ι−1
0 (End(A0)), stable under

∗ and satisfies Õ ⊗Z Zp = OB.

– there exists a finite extension F of K0 = FracW (Fp) such that (A0, λ0, ι0) lifts

to an object (Ã0, λ̃0, ι̃0) over OF .

Proof. Take a finite extension F of Ĕ such that x0 ∈ M(F ). Then, the point

x0 corresponds to an object {(X̃L, ι̃L, ρ̃L)}L∈L over OF as in Definition 2.2. Let
{(XL, ιL, ρL)}L∈L be the element in M(Fp) that is obtained as the reduction of

{(X̃L, ι̃L, ρ̃L)}L∈L .
Fix L ∈ L such that L ⊂ L∨. There exist an abelian variety A′0 over Fp and a

p-quasi-isogeny φ : A0 −→ A′0 such that φ[p∞] : A0[p∞] −→ A′0[p∞] can be identified
with ρL : X −→ XL. By the conditions (a), (c) in Definition 2.2, there exists an
integer m such that (ρ∨L)−1 ◦ pmλ0 ◦ ρ−1

L gives an isogeny XL −→ X∨L of height
logp #(L∨/L). Consider the quasi-isogeny λ′0 = (φ∨)−1 ◦ pmλ0 ◦ φ−1 : A′0 −→ A′∨0 .
Passing to p-divisible groups, we can easily observe that it is a polarization on A′0.

On the other hand, let ι′0 be the composite of B̃
ι0−−→ End(A0)⊗ZQ

(∗)−−→ End(A′0)⊗ZQ,

where (∗) is the isomorphism induced by φ. Then, by the same way as in the proof of
Lemma 3.5, we can observe that (A′0, λ

′
0, ι
′
0) satisfies the first condition in the lemma.

By construction the polarized B-isocrystal associated to (A′0, λ
′
0, ι
′
0) is isomorphic to

Nb. Hence we may replace (A0, λ0, ι0) by (A′0, λ
′
0, ι
′
0).

Finally, by the Serre-Tate theorem we obtain a formal lifting (Ã0, λ̃0, ι̃0) to OF
corresponding to (X̃L, ι̃L). The existence of the polarization λ̃0 tells us that Ã0 is
algebraizable. This concludes the proof.

We take (A0, λ0, ι0) and Õ as in the lemma above, and fix a lift (Ã0, λ̃0, ι̃0) over

OF . Let I be the algebraic group over Q consisting of Õ-linear self-quasi-isogenies
of A0 preserving λ0 up to a scalar multiple. The functor of taking p-divisible groups
induces an injection I(Q) ↪−→ J(Qp).

We fix an embedding OF ↪−→ C and take the base change (Ã0,C, λ̃0,C, ι̃0,C) of

(Ã0, λ̃0, ι̃0) under this embedding. We put Λ = H1(Ã0,C,Z) and W = H1(Ã0,C,Q).

The Õ-action ι̃0,C on Ã0,C makes Λ (resp. W ) an Õ-module (resp. B̃-module). The

polarization λ̃0,C induces a ∗-Hermitian alternating bilinear pairing 〈 , 〉λ̃0,C
: Λ ×

Λ −→ Z. Clearly we have an isomorphism Λ⊗Z Ẑp ∼= lim←−(n,p)=1
A0[n](Fp) compatible

with additional structures, where we write Ẑp = lim←−(n,p)=1
Z/nZ.

We denote by H the algebraic group over Q consisting of B̃-linear automorphisms
of W which preserve 〈 , 〉λ̃0,C

up to a scalar multiple. We have a natural injection

I(Q) ↪−→ H(Ap
f ), where Ap

f = Ẑp ⊗Z Q.

Remark 4.6 If G is connected, we can also compare V ⊗QpK0 = D(A0[p∞])Q with
W ⊗Q K0. By the comparison result between de Rham and crystalline theories (cf.

[2]), we have a canonical isomorphism V ⊗Qp C ∼= H1(Ã0,C,Q) ⊗Q C. Therefore,
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by Steinberg’s theorem H1(K0,G) = 1, we have an isomorphism V ⊗Qp K0
∼=

H1(Ã0,C,Q) ⊗Q K0 compatible with various additional structures. However, we do
not need this result.

We will use the following moduli space, which is a slight variant of [43, Proposi-
tion 6.9].

Definition 4.7 For a compact open subgroup Kp of H(Ap
f ), let YKp be the functor

from the category of OĔ-schemes to Set that associates S to the set of isomorphism
classes of (A, λ, α) where

– A = {AL} is an L -set of Õ-abelian schemes over S (cf. [43, Definition 6.5];

recall that we are working on the category of Õ-abelian schemes up to isogeny
of order prime to p) such that for each L ∈ L the determinant condition

detOS(a; LieAL) = detK(a;V0) in a ∈ Õ holds,

– λ is a Q-homogeneous principal polarization of A (cf. [43, Definition 6.7]),

– and α is a Kp-level structure

α : H1(A,Ap
f )

∼=−−→ W ⊗Q Ap
f (mod Kp)

which is B̃ ⊗Q Ap
f -linear and preserves the pairings up to (Ap

f )
×-multiplication

(for the definition of H1(A,Ap
f ), see [43, 6.8]).

As in [43, p. 279], we can easily show that the functor YKp is represented by a
quasi-projective scheme over OĔ.

The difference between [43, Definition 6.9] and this definition is that in our case
L is a self-dual multi-chain of OB-lattices in V , not in W ⊗Q Qp. However, the
proof of [43, Theorem 6.23] can be applied to our case without any change, and we
obtain the following p-adic uniformization result.

Proposition 4.8 i) Let ŶKp be the p-adic completion of YKp . We have a mor-
phism of pro-formal schemes over OĔ:

Θ: M×H(Ap
f )/K

p −→ ŶKp .

ii) The group I(Q) is discrete in J(Qp)×H(Ap
f ).

iii) If Kp is small enough, the quotient I(Q)\M×H(Ap
f )/K

p is a formal scheme. It
is a countable disjoint union of spaces of the form Γ\M, where Γ is a subgroup
of J(Qp) of the form (J(Qp)×hKph−1)∩I(Q) with h ∈ H(Ap

f ). Such a subgroup
Γ is torsion-free and discrete in J(Qp).

iv) Let T be the set of closed subsets of YKp ⊗OĔ Fp which are the images of irre-
ducible components of M×H(Ap

f )/K
p under Θ. Then, each T ∈ T intersects

only finitely many members of T .
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v) The morphism Θ induces an isomorphism of formal schemes over OĔ:

Θ: I(Q)\M×H(Ap
f )/K

p ∼=−−→ (YKp)/T .

The target (YKp)/T is the formal completion of YKp along T ; see [43, 6.22] for
a precise definition.

The claim i) is proved in [43, Theorem 6.21] (under the setting therein). The re-
maining statements are found in [43, Theorem 6.23] and its proof.

By the same argument as in the proof of [8, Corollaire 3.1.4], we obtain the
following algebraization result.

Corollary 4.9 For every quasi-compact open formal subscheme U of M, we can
find a compact open subgroup Kp of H(Ap

f ) and a locally closed subscheme Z of

YKp ⊗OĔ Fp such that U is isomorphic to the formal completion of YKp along Z. In
particular, M is locally algebraizable in the sense of [32, Definition 3.19].

Next we consider level structures at p. We write YKp,η for the generic fiber

YKp ⊗OĔ Ĕ, and Ã = {ÃL} the universal L -set of Õ-abelian schemes over YKp,η.
For an open subgroup K ′ ⊂ K ′L ′ , consider a K ′-level structure

{L′
∼=−−→ TpÃL (modK ′)}L∈L

(the definition is similar as that in the definition of MK′). Let YK′Kp,η be the scheme
classifying such level structures, which is finite étale over YKp,η.

The following corollary follows directly from the proof of [8, Corollaire 3.1.4]:

Corollary 4.10 Let U be a quasi-compact open formal subscheme of M, and K ′

be an open subgroup of K ′L ′ . Put U = t(U)η and denote by UK′ the inverse image of
U under MK′ −→ M . The locally closed subscheme Z of YKp ⊗OĔ Fp in Corollary
4.9 can be taken so that we have the following cartesian diagram:

UK′ //

��

(YK′Kp,η)
ad

��

U
∼= // t((YKp)/Z)η

⊂
open

// (YKp,η)
ad.

Here (−)ad denotes the associated adic space, and (−)/Z the formal completion along
Z.

Corollary 4.11 Let the setting as in Corollary 4.10. Then, H i
c(UK′ ⊗Ĕ Ĕ,Q`) is a

finite-dimensional Q`-vector space.
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Proof. By Zariski’s main theorem, there exists a scheme YK′Kp finite over YKp that
contains YK′Kp,η as a dense open subscheme. Since YK′Kp,η is finite over YKp,η, we
conclude that the generic fiber of YK′Kp coincides with YK′Kp,η. We write Z ′ for
the inverse image of Z under YK′Kp −→ YKp . Then, by Corollary 4.10, we have
an isomorphism UK′ ∼= t((YK′Kp)/Z′)η. Thus the finiteness follows from [17, Lemma
3.13 i)], [16, Corollary 2.11] and [18, Lemma 3.3 (ii)].

Now we can give a proof of Theorem 4.4.

Proof of Theorem 4.4. The proof is similar as that of [8, Proposition 4.4.13] (see
also [30, §5]). We include it for the sake of completeness.

Recall that every J-submodule of a finitely generated smooth J-representation
is again finitely generated. If J is connected, this result is found in [1, Remarque
3.12]; the general case is immediately reduced to the connected case. In particular
we may assume that K ′ ⊂ K ′L . In this case, we have H i

c(Mξ,∞)K
′

= H i
c(MK′). We

will show that it is finitely generated as a J-representation.
For simplicity, write I = Irr(M). For α ∈ I, put Uα = M \

⋃
β∈I,α∩β=∅ β.

It is a quasi-compact open subscheme of M. Note that there exists only finitely
many β ∈ I with Uα ∩ Uβ 6= ∅ (cf. [30, Corollary 5.2]). Let Uα be the open formal
subscheme of M satisfying (Uα)red = Uα, and Uα the rigid generic fiber of Uα. The
inverse image Uα,K′ of Uα under MK′ −→ M gives an open covering {Uα,K′}α∈I of
MK′ . For h ∈ J , we have hUα,K′ = Uhα,K′ .

For a finite non-empty subset α = {α1, . . . , αm} of I, we put Uα,K′ =
⋂m
j=1 Uαj ,K′ .

By Corollary 4.11 for
⋂m
j=1 Uαj , H i

c(Uα,K′) = H i
c(Uα,K′⊗ĔĔ,Q`) is a finite-dimensional

Q`-vector space. Put Jα = {h ∈ J | hα = α}. By Corollary 4.3 i), Jα is a compact
open subgroup of J . It acts smoothly on H i

c(Uα,K′).
For an integer s ≥ 1, let Is be the set of subsets α ⊂ I such that #α = s

and Uα,K′ 6= ∅. Note that there exists an integer N such that Is = ∅ for s > N .
Indeed, by Theorem 2.6, we can take a finite system of representatives α1, . . . , αk of
J\ Irr(M); then we may take N as the maximum of #{β ∈ Irr(M) | Uαj ∩Uβ 6= ∅}
for 1 ≤ j ≤ k.

The group J naturally acts on Is. We will observe that this action has finite
orbits. Let I∼s be the subset of Is consisting of (α1, . . . , αs) such that α1, . . . , αs
are mutually disjoint and U{α1,...,αs},K′ 6= ∅. As we have a J-equivariant surjection
I∼s −→ Is; (α1, . . . , αs) 7−→ {α1, . . . , αs}, it suffices to show that the action of J
on I∼s has finite orbits. Consider the first projection I∼s −→ I, which is obviously
J-equivariant. The fiber of this map is finite, since for each α ∈ I there exist only
finitely many β ∈ I such that Uα,K′ ∩ Uβ,K′ 6= ∅. On the other hand, by Theorem
2.6, the action of J on I has finite orbits. Hence the action of J on I∼s also has finite
orbits, as desired. For each s ≥ 1, we fix a system of representatives αs,1, . . . , αs,ks
of J\Is.

Consider the Čech spectral sequence

E−s,t1 =
⊕
α∈Is+1

H t
c(Uα,K′) =⇒ H−s+tc (MK′)
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with respect to the covering {Uα,K′}α∈I . This spectral sequence is J-equivariant,

and we can easily see that E−s,t1
∼=

⊕ks
j=1 c-IndJJαs,j H

t
c(Uαs,j ,K′) as J-representations.

The right hand side is obviously finitely generated. Thus so are the E1-terms.
Hence, by the property of finitely generated smooth J-representations recalled at
the beginning of the proof, we may conclude that H i

c(MK′) is finitely generated as
a J-representation for every i.

4.2 Stronger finiteness of `-adic cohomology of the basic
Rapoport-Zink tower for GSp2n

As in Section 2.2, let D = Qp2 [Π] be a quaternion division algebra over Qp and ∗ an
involution on D defined by Π∗ = Π and a∗ = σ(a) for every a ∈ Qp2 . We write OD
for the maximal order of D.

Let us fix an integer n ≥ 1. We consider non-degenerate alternating bilinear
pairings

– 〈 , 〉 : Q2n
p ×Q2n

p −→ Qp; 〈(xi), (yi)〉 =
∑n

i=1(x2i−1y2i − x2iy2i−1), and

– 〈 , 〉D : Dn ×Dn −→ Qp; 〈(di), (d′i)〉D =
∑n

i=1 Trd(εd∗i d
′
i),

where ε is an element of Z×p2 satisfying σ(ε) = −ε. Note that the lattice Z2n
p is self-

dual with respect to 〈 , 〉, and the dual with respect to 〈 , 〉D of the lattice OnD ⊂ Dn

is equal to Π−1OnD. Let GSp2n denote the symplectic similitude group attached to
(Q2n

p , 〈 , 〉), and GU(n,D) denote the quaternion unitary similitude group attached
to (Dn, 〈 , 〉D). We fix an isomorphism between (Q2n

p ⊗Qp Qp2 , 〈 , 〉) and the object
attached to (Dn ⊗Qp Qp2 , 〈 , 〉D) by the equivalence in Lemma 2.10 i). It gives rise

to an inner twist ψ : GU(n,D)⊗Qp Qp2

∼=−−→ GSp2n ⊗Qp Qp2 (see Remark 2.11 ii)).

We consider the Rapoport-Zink datum

D = (Qp,Zp, id,Q2n
p , 〈 , 〉, {pmZ2n

p }m∈Z, b, µ),

where

– b is an element of GSp2n(K0) such that the polarized Qp-isocrystal Nb is iso-
morphic to D(E0[p∞]⊕n)Q, where E0 is a supersingular elliptic curve over Fp
endowed with the standard polarization,

– and µ : Gm −→ GSp2n is the cocharacter given by µ(z) = diag(z, 1, . . . , z, 1).

Under the equivalence in Lemma 2.10 ii), the p-polarized Qp-isocrystal Nb corre-
sponds to the p2-polarized D-isocrystal Np attached to a central element p ∈ K×0 ⊂
GU(n,D)(K0) (we can check it by using Remark 2.13 and Lemma 2.14). Hence the
algebraic group J in Section 2.1 is identified with GU(n,D). We also write GU(n,D)
for the group J(Qp) of Qp-valued points.

We denote by M the Rapoport-Zink space attached to D. As in the previ-
ous subsection, we can construct the Rapoport-Zink tower {MK}K , where K runs
through enough small compact open subgroups of GSp2n(Qp). We call it the basic
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Rapoport-Zink tower for GSp2n. Note that H1(Qp,GSp2n) = 1 implies that ξ = 1
and G′ = GSp2n. Therefore, the compactly supported `-adic cohomology

H i
c(M∞) = lim−→

K

H i
c(MK ⊗Q̆p Q̆p,Q`)

is endowed with a smooth action of GSp2n(Qp)×GU(n,D).
We also introduce another Rapoport-Zink tower, which is dual to {MK}K . Con-

sider the Rapoport-Zink datum

Ď = (D,OD, ∗, Dn, 〈 , 〉D, {ΠmOnD}m∈Z, b̌, µ̌),

where

– b̌ is an element of GU(n,D)(K0) such that the polarized D-isocrystal Nb̌ is
isomorphic to N⊕n0,1 , where N0,1 is the simple polarized D-isocrystal of type
(0, 1) introduced in Definition 2.15,

– and µ̌ : Gm −→ GU(n,D)⊗Qp K0 is the cocharacter given by the composite of

Gm
µ−−→ GSp2n⊗QpK0

ψ−1

−−→∼= GU(n,D)⊗Qp K0.

By Lemma 2.10 ii), the algebraic group J attached to this Rapoport-Zink datum is
identified with GSp2n.

We denote by M̌ the Rapoport-Zink space attached to Ď, and by {M̌H}H the
Rapoport-Zink tower lying over t(M̌)η. Here H runs through enough small compact
open subgroups of GU(n,D). Note that H1(Qp,GU(n,D)) = 1 implies that ξ =
1 and G′ = GU(n,D) in this case. Therefore, the compactly supported `-adic
cohomology

H i
c(M̌∞) = lim−→

H

H i
c(M̌H ⊗Q̆p Q̆p,Q`)

is endowed with a smooth action of GSp2n(Qp)×GU(n,D).
The following theorem is a consequence of the duality isomorphism proved in

[24], [5] and [49]:

Theorem 4.12 We have a GSp2n(Qp)×GU(n,D)-equivariant isomorphism

H i
c(M∞) ∼= H i

c(M̌∞).

Proof. For b′ ∈ GSp2n(K0) and a cocharacter µ′ : Gm −→ GSp2n,K0
, one can con-

struct a locally spatial diamond M(b′, µ′) over Cp (see [24, Definition 4.8.3], [5,
Theorem 3.3], [49, §23.1]). We briefly recall the construction of it. For a per-
fectoid Cp-algebra R with tilt R[, the Fargues-Fontaine curve XR[ and a Cartier
divisor DR ↪−→ XR[ are naturally attached. Each element b′′ ∈ GSp2n(K0) de-
termines a GSp2n-bundle Eb′′ on XR[ . The diamond M(b′, µ′) is the sheafification
of the functor that attaches a perfectoid affinoid Spa(R,R+) over Cp to the set
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of isomorphism classes of modifications Eb′ |X
R[
\DR

∼=−−→ E1|X
R[
\DR which are fiber-

wise bounded by µ′. It is equipped with an action of GSp2n(Qp) × Jb′(Qp), where
Jb′ denotes the algebraic group of automorphisms of the polarized Qp-isocrystal
Nb′ . If (b′, µ′) = (b, µ), M(b, µ) is known to be a perfectoid space, which is char-
acterized by the property M(b, µ) ∼ lim←−KMK ⊗Q̆p Cp (see [49, Corollary 24.3.5]).

Let φ be the cocharacter Gm −→ GSp2n; z 7−→ diag(z, . . . , z) and consider the
case (b′, µ′) = (p−1b, φ−1µ). By definition, it is easy to observe that there exists

a modification Eb|X
R[
\DR

∼=−−→ Ep−1b|X
R[
\DR with relative position φ. This gives an

isomorphism M(b, µ) ∼= M(p−1b, φ−1µ), which is GSp2n(Qp)×GU(n,D)-equivariant
under the identification GU(n,D) ∼= Jb = Jp−1b. Since φ−1µ is conjugate to µ−1, we
obtain an isomorphism M(b, µ) ∼= M(p−1b, µ−1). By similar construction, we also
have a perfectoid space M(b̌, µ̌) equipped with an action of GSp2n(Qp)×GU(n,D),
which is characterized by the property M(b̌, µ̌) ∼ lim←−H M̌H ⊗Q̆p Cp.

As in the proof of Lemma 2.14, for an algebraic group G over Qp, we write
B(G) for the set of σ-conjugacy classes in G(K0). For g ∈ G(K0), we write [g]
for the σ-conjugacy class of g. By Lemma 2.10 ii) and Remark 2.11 i), we have

a bijection B(GU(n,D))
∼=−−→ B(GSp2n) characterized by the following property:

an element [b1] ∈ B(GU(n,D)) is mapped to [b0] ∈ B(GSp2n) if the polarized D-
isocrystal Nb1 corresponds to the polarized Qp-isocrystal Nb0 under the equivalence
in Lemma 2.10 ii). We can easily check that it coincides with the bijection in [5,
§5.1] for (G, b) = (GU(n,D), b̌). Further, by using Remark 2.13 and Lemma 2.14,
we can observe that the image of [1] ∈ B(GU(n,D)) is equal to [p−1b] ∈ B(GSp2n).
Therefore, the duality isomorphism (see [24, Proposition 4.9.1], [5, §5.1] and [49,
Corollary 23.2.3]) tells us that there exists a GSp2n(Qp) × GU(n,D)-equivariant
isomorphism M(p−1b, µ−1) ∼= M(b̌, µ̌). Hence we have M(b, µ) ∼= M(b̌, µ̌). Together
with [44, Proposition 5.4 (iii)], we obtain

H i
c(M∞) ∼= H i

c(M(b, µ),Q`)
sm ∼= H i

c(M(b̌, µ̌),Q`)
sm ∼= H i

c(M̌∞),

where (−)sm denotes the GSp2n(Qp) × GU(n,D)-smooth part. This concludes the
proof.

Together with Theorem 4.4, we obtain the following corollary.

Corollary 4.13 For every i ≥ 0, the GSp2n(Qp)×GU(n,D)-representationH i
c(M∞)

satisfies the following:

i) For every compact open subgroup K of GSp2n(Qp), H
i
c(M∞)K is a finitely

generated GU(n,D)-representation.

ii) For every compact open subgroup H of GU(n,D), H i
c(M∞)H is a finitely gen-

erated GSp2n(Qp)-representation.

Proof. Note that b comes from an abelian variety by definition, and b̌ comes from an
abelian variety by Proposition 2.9. Therefore i) is a direct consequence of Theorem
4.4, and ii) follows from Theorem 4.4 and Theorem 4.12.
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We denote by Dc the convolution algebra of distributions on GSp2n(Qp) with
compact support. For a compact open subgroup K of GSp2n(Qp), the idempotent
eK of Dc is naturally attached. For a (left or right) Dc-module V , we put V Dc-sm =
lim−→K

eKV , where K runs through compact open subgroups of GSp2n(Qp). It is a
smooth representation of GSp2n(Qp).

Let i, r ≥ 0 be integers. For an irreducible smooth representation ρ of GU(n,D),
we consider the rth Ext group ExtrGU(n,D)(H

i
c(M∞), ρ) in the category of smooth

GU(n,D)-representations. Since a smooth representation of GSp2n(Qp) can be re-
garded as a left Dc-module, ExtrGU(n,D)(H

i
c(M∞), ρ) carries a right Dc-module struc-

ture. Hence we can consider ExtrGU(n,D)(H
i
c(M∞), ρ)Dc-sm, which is a smooth repre-

sentation of GSp2n(Qp). If r = 0, we can verify that HomGU(n,D)(H
i
c(M∞), ρ)Dc-sm =

HomGU(n,D)(H
i
c(M∞), ρ)sm, where (−)sm denotes the set of GSp2n(Qp)-smooth vec-

tors.
The main result of this subsection is the following:

Theorem 4.14 For every integers i, r ≥ 0 and every irreducible smooth representa-
tion ρ of GU(n,D), the GSp2n(Qp)-representation ExtrGU(n,D)(H

i
c(M∞), ρ)Dc-sm has

finite length. In particular, the GSp2n(Qp)-representation HomGU(n,D)(H
i
c(M∞), ρ)sm

has finite length.

We deduce Theorem 4.14 from Corollary 4.13 by using the theory of the Bern-
stein decomposition (cf. [1], [40, Chapitre VI]). To introduce some notation, let us
consider a general connected reductive group G over Qp. We put G = G(Qp). Let
Rep(G) be the category of smooth representations of G, Ω(G) the set of equivalence
classes of cuspidal data (cf. [40, Definition VI.5.2]), and B(G) the set of connected
components of Ω(G). For an element s ∈ B(G), the subcategory Rep(G)s of Rep(G)
is naturally attached and the category Rep(G) is decomposed into the direct product∏

s∈B(G) Rep(G)s.
Here we say that a compact open subgroup K of G is nice if it is a normal

subgroup of a special maximal compact subgroup and has the Iwahori decompo-
sition. Such subgroups form a system of fundamental neighborhoods of the unit
in G (see [40, Théorème V.5.2]). For a nice compact open subgroup K of G, we
denote by Rep(G)K the subcategory of Rep(G) consisting of smooth representa-
tions (π, V ) such that V is generated by V K . Then, the functor V 7−→ V K gives
an equivalence between Rep(G)K and the category of (unital) H(G,K)-modules,
where H(G,K) denotes the Hecke algebra consisting of bi-K-invariant compactly
supported functions on G (see [40, Proposition VI.10.6 (ii)]). Further, there exists
a finite subset B(G)K of B(G) such that Rep(G)K =

∏
s∈B(G)K

Rep(G)s (see [40,

Proposition VI.10.6 (i)]).
Let us begin a proof of Theorem 4.14. We put G = GSp2n(Qp), J = GU(n,D)

and V = H i
c(M∞) for simplicity. First we take a nice compact open subgroup H

of J such that ρH 6= 0. Then we have a decomposition Rep(J) = Rep(J)H ×∏
s∈B(J)\B(J)H

Rep(G)s. Let V = V0 ⊕ V1 be the corresponding decomposition.
Clearly the J-subrepresentation V0 ⊂ V is also stable under the action of G. As
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ρ ∈ Rep(J)H , we have ExtrJ(V, ρ) = ExtrJ(V0, ρ) = ExtrH(J,H)(V
H

0 , ρH). By Corollary

4.13, V H is a finitely generated G-module. Therefore, the direct factor V H
0 is also a

finitely generated G-module. Therefore we may take a nice compact open subgroup
K of G such that V H

0 ∈ Rep(G)K . We need the following lemma:

Lemma 4.15 Under the notation as above, ExtrJ(V, ρ)Dc-sm lies in the category
Rep(G)K .

Proof. For simplicity, we put R = H(J,H). The vector space V H
0 has commuting

actions of G and R. We will call such structure a (G,R)-module. First we will prove
that there exists a surjection P −� V H

0 of (G,R)-modules from a (G,R)-module P
which lies in Rep(G)K as a G-module and is projective as an R-module. Take an
arbitrary surjection of R-modules ϕ : Q −� V H

0 from a free R-module Q. Put Q′ =
H(G) ⊗C Q, where H(G) denotes the set of locally constant compactly supported
functions on G. It has a structure of a (G,R)-module; the G-action is given by
the left translation on H(G). Moreover, Q′ lies in Rep(G) as a G-module and is
projective as an R-module. Define a map Q′ −→ V H

0 by f ⊗ x 7−→
∫
G
f(g)gϕ(x)dg.

It is easy to see that this map is a surjection of (G,R)-modules. Let P be the
Rep(G)K-part of Q′. Obviously P is a direct factor of Q′ in the category of (G,R)-
modules, and therefore it is projective as an R-module. The map P −→ V H

0 induced
from Q′ −→ V H

0 gives a desired surjection.
As the kernel of this surjection is again a (G,R)-module belonging to Rep(G)K

as a G-module, we can repeat this construction and obtain a resolution P• −→ V H
0 .

Let K ′ be an arbitrary compact open subgroup of G. Since the functor W 7−→ eK′W
from the category of Dc-modules to the category of C-vector spaces is exact, we have

eK′ ExtrJ(V, ρ) = eK′ ExtrR(V H
0 , ρH) = eK′H

r(HomR(P•, ρ
H))

= Hr(eK′ HomR(P•, ρ
H)) = Hr(HomR(P•, ρ

H)K
′
).

By taking the inductive limit, we have ExtrJ(V, ρ)Dc-sm = Hr(HomR(P•, ρ
H)sm).

Therefore it suffices to show that HomR(Pj, ρ
H)sm lies in Rep(G)K for each j. Since

ρ is an admissible representation of J , as G-representations we have

HomR(Pj, ρ
H)sm ⊂ HomC(Pj, ρ

H)sm ∼= (P∨j )dimC ρ
H

,

where (−)∨ denotes the contragredient. By [40, Proposition VI.10.6 (iii)], P∨j lies in
Rep(G)K , hence HomR(Pj, ρ

H)sm also lies in Rep(G)K . This concludes the proof.

Now we can give a proof of Theorem 4.14. By a similar method as in the proof
of [31, Lemma 3.1], we can show that

(ExtrJ(V, ρ)Dc-sm)K
′
= eK′ ExtrJ(V, ρ) ∼= ExtrJ(V K′ , ρ)

is finite-dimensional for every compact open subgroup K ′ of G. This implies that
ExtrJ(V, ρ)Dc-sm is admissible. On the other hand, by Lemma 4.15, we know that
ExtrJ(V, ρ)Dc-sm is generated by ExtrJ(V K , ρ). In particular ExtrJ(V, ρ)Dc-sm is finitely
generated. Therefore, [40, Théorème VI.6.3] tells us that the G-representation
ExtrJ(V, ρ)Dc-sm has finite length. This completes the proof.
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Remark 4.16 The same argument works well if one switches the roles of GSp2n

and GU(n,D). Therefore, for an irreducible smooth representation π of GSp2n(Qp),
the GU(n,D)-representation ExtrGSp2n(Qp)(H

i
c(M∞), π)Dc-sm has finite length, where

in this case Dc denotes the convolution algebra of distributions on GU(n,D) with
compact support.
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