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Abstract. In this paper, we investigate how the Zelevinsky
involution appears in the `-adic cohomology of the Rapoport-
Zink tower. We generalize the result of Fargues on the Drinfeld
tower to the Rapoport-Zink towers for symplectic similitude
groups.

1 Introduction

The non-abelian Lubin-Tate theory says that the local Langlands correspondence
for GL(n) is geometrically realized in the `-adic cohomology of the Lubin-Tate tower
and the Drinfeld tower (cf. [Car90], [Har97], [HT01]). It urges us to consider how
representation-theoretic operations are translated into geometry. In [Far06], Fargues
found a relation between the Zelevinsky involution and the Poincaré duality of the `-
adic cohomology of the Drinfeld tower. Furthermore, by using Faltings’ isomorphism
between the Lubin-Tate tower and the Drinfeld tower (cf. [Fal02], [FGL08]), he
obtained a similar result for the Lubin-Tate tower. This result is useful for study
of the `-adic cohomology itself. For example, it played a crucial role in Boyer’s
work [Boy09], which completely determined the `-adic cohomology of the Lubin-
Tate tower.

A Rapoport-Zink tower (cf. [RZ96]) is a natural generalization of the Lubin-
Tate tower and the Drinfeld tower. It is a projective system of étale coverings
of rigid spaces {MK} lying over the rigid generic fiber M of a formal scheme M.
The formal scheme M, called a Rapoport-Zink space, is defined as a moduli space
of deformations by quasi-isogenies of a p-divisible group over Fp with additional
structures. For a prime number ` 6= p, consider the compactly supported `-adic
cohomology H i

c(M∞) = lim−→K
H i
c(MK ,Q`). It is naturally endowed with an action

of G× J ×W , where G and J are p-adic reductive groups and W is the Weil group
of some p-adic field (a local analogue of a reflex field). The cohomology H i

c(M∞) is
expected to be described by the local Langlands correspondence for G and J (cf.
[Rap95]), but only few results are known.
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In this paper, we will give a generalization of Fargues’ result mentioned above
to Rapoport-Zink towers other than the Lubin-Tate tower and the Drinfeld tower.
Although our method should be valid for many Rapoport-Zink towers (see Remark
5.14), here we restrict ourselves to the case of GSp(2n) for the sake of simplicity. In
this case, the Rapoport-Zink tower is a local analogue of the Siegel modular variety,
and is also treated in [Mie12b]. The group G is equal to GSp2n(Qp), and J is an
inner form GU(n,D) of G, where D is the quaternion division algebra over Qp.

The main difference between Fargues’ case and ours is that the Rapoport-Zink
space M is a p-adic formal scheme in the former, while not in the latter. Owing to
this difference, we need to introduce a new kind of cohomology H i

CM(M∞). Contrary
to the compactly supported cohomology H i

c(M∞), this cohomology depends on the
formal model M of the base M of the Rapoport-Zink tower. Roughly speaking,
it is a cohomology with compact support in the direction of the formal model M
(for a precise definition, see Section 3.2 and Section 5.1). If M is a p-adic formal
scheme, it coincides with the compactly supported cohomology. By using these two
cohomology, our main theorem is stated as follows:

Theorem 1.1 (Theorem 5.6) Let K̃ be an open compact-mod-center subgroup

of G and τ an irreducible smooth representation of K̃. Denote by χ the central
character of τ∨. For a smooth G-representation V , put Vτ = HomK̃(τ, V ⊗H(ZG)χ

−1),
where H(ZG) is the Hecke algebra of the center ZG of G. Let s ∈ Iχ be a Bernstein
component of the category of smooth representations of J with central character χ.
An integer ι(s) is naturally attached to s; s is supercuspidal if and only if ι(s) = 0
(cf. Section 2).

Assume that the s-component Hq
c (M∞)τ,s of Hq

c (M∞)τ is a finite length J-
representation for every integer q. Then, for each integer i, we have an isomorphism
of J ×WQp-representations

H
2d+ι(s)−i
CM (M∞)τ∨,s∨(d) ∼= Zel

(
H i
c(M∞)∨τ,s

)
.

Here WQp denotes the Weil group of Qp, d = n(n + 1)/2 the dimension of M , and
Zel the Zelevinsky involution with respect to J (see Section 2).

By applying this theorem to the case where c-IndG
K̃
τ becomes supercuspidal, we

obtain the following consequence on the supercuspidal part of H i
c(M∞/p

Z) (here pZ

is regarded as a discrete subgroup of the center of J).

Corollary 1.2 (Corollary 5.11, Corollary 5.12) Let π be an irreducible super-
cuspidal representation of G, ρ an irreducible non-supercuspidal representation of J ,
and σ an irreducible `-adic representation of WQp . Under some technical assumption
(Assumption 5.8), the following hold.

i) The representation π⊗ρ does not appear as a subquotient ofHd−dimMred

c (M∞/p
Z).

In particular, if n = 2, π ⊗ ρ does not appear as a subquotient of H2
c (M∞/p

Z).

ii) If n = 2, π ⊗ ρ ⊗ σ appears as a subquotient of H3
c (M∞/p

Z) if and only if
π∨ ⊗ Zel(ρ∨)⊗ σ∨(−3) appears as a subquotient of H4

c (M∞/p
Z).
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The proof of ii) also requires a result of [IM10], which measures the difference be-
tween the two cohomology groups H i

c(M∞/p
Z) and H i

CM(M∞/p
Z). This corollary

will be very useful to investigate how non-supercuspidal representations of J con-
tribute to H i

c(M∞/p
Z) for each i.

The outline of this paper is as follows. In Section 2, we briefly recall the definition
and properties of the Zelevinsky involution. The main purpose of this section is to
fix notation, and most of the proofs are referred to [SS97] and [Far06]. Section
3 is devoted to give some preliminaries on algebraic and rigid geometry used in
this article. The cohomology appearing in Theorem 1.1 is defined in this section.
Because we prefer to use the theory of adic spaces (cf. [Hub94], [Hub96]) as a
framework of rigid geometry, we need to adopt the theory of smooth equivariant
sheaves for Berkovich spaces developed in [FGL08, §IV.9] to adic spaces. In fact
proofs become simpler; especially the compactly supported cohomology and the
Godement resolution can be easily treated. In Section 4, we prove a duality theorem
under a general setting. Finally in Section 5, after introducing the Rapoport-Zink
tower for GSp(2n), we deduce Theorem 1.1 from the duality theorem proved in
Section 4. We also give the applications announced in Corollary 1.2.

Acknowledgment This work was supported by JSPS KAKENHI Grant Number
24740019.

Notation For a field k, we denote its algebraic closure by k.

2 Zelevinsky involution

In this section, we recall briefly about the Zelevinsky involution. See [Far06, §1] for
details.

Let p be a prime number and G be a locally pro-p group; namely, G is a locally
compact group which has an open pro-p subgroup. Fix a 0-dimensional Gorenstein
local ring Λ in which p is invertible. We write RepΛ(G) for the category of smooth
representations of G over Λ. Denote by Gdisc the group G with the discrete topology.
We have a natural functor iG : RepΛ(G) −→ RepΛ(Gdisc), which has a right adjoint
functor ∞G : RepΛ(Gdisc) −→ RepΛ(G); V 7−→ lim−→K

V K . Here K runs through
compact open subgroups of G. The functor ∞G is not exact in general.

Let Dc(G) be the convolution algebra of compactly supported Λ-valued dis-
tributions on G. It contains the Hecke algebra H(G) of G consisting of com-
pactly supported distributions invariant under some compact open subgroup of
G. For each open pro-p subgroup K of G, an idempotent eK of H(G) is natu-
rally attached. We denote by Mod(Dc(G)) the category of Dc(G)-modules. We
have a natural functor iD : RepΛ(G) −→ Mod(Dc(G)). The right adjoint functor
∞D : Mod(Dc(G)) −→ RepΛ(G) of iD is given by M 7−→ lim−→K

eKM , where K runs
through compact open pro-p subgroups of G. Note that ∞D is an exact functor.

For a compact open subgroup K of G, we have a functor

c-Ind
Dc(G)
Dc(K) : Mod(Dc(K)) −→Mod(Dc(G)); M 7−→ Dc(G)⊗Dc(K) M.
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This functor is exact and the following diagrams are commutative:

RepΛ(K)
c-IndGK //

iD
��

RepΛ(G)

iD
��

Mod
(
Dc(K)

) c-Ind
Dc(G)
Dc(K)

//Mod
(
Dc(G)

)
,

Mod
(
Dc(K)

) c-Ind
Dc(G)
Dc(K)

//

∞D
��

Mod
(
Dc(G)

)
∞D
��

RepΛ(K)
c-IndGK //RepΛ(G).

Let us observe the commutativity of the right diagram, as it is not included in
[Far06]. Take a system of representatives {gi}i∈I of G/K. Then, as in [Far06, §1.4],
we have Dc(G) =

⊕
i∈I δg−1

i
∗ Dc(K), where δg−1

i
denotes the Dirac distribution at

g−1
i ∈ G. Therefore, for a Dc(K)-module M , an element x of c-Ind

Dc(G)
Dc(K) M can be

written uniquely in the form
∑

i∈I δg−1
i
⊗ xi with xi ∈ M . Put M∞ = iD∞DM .

It is the Dc(K)-submodule of M consisting of x ∈ M such that eK′x = x for
some open pro-p subgroup K ′ of G. By the left diagram and the fact that iD is
fully faithful, it suffices to prove that c-Ind

Dc(G)
Dc(K) M∞ = (c-Ind

Dc(G)
Dc(K) M)∞. First take

x =
∑

i∈I δg−1
i
⊗ xi in c-Ind

Dc(G)
Dc(K) M∞. For each i ∈ I with xi 6= 0, take an open

pro-p subgroup Ki of K such that eKixi = xi. We can find an open pro-p subgroup
K ′ of G such that giK

′g−1
i ⊂ Ki for every i ∈ I with xi 6= 0. Then, we have

eK′x =
∑

i∈I,xi 6=0 δg−1
i
⊗ egiK′g−1

i
xi = x, and thus x ∈ (c-Ind

Dc(G)
Dc(K) M)∞. Next, take

x =
∑

i∈I δg−1
i
⊗ xi in (c-Ind

Dc(G)
Dc(K) M)∞. Then, there exists an open pro-p subgroup

K ′ of G such that eK′x = x. We may shrink K ′ so that giK
′g′−1
i ⊂ K for every

i ∈ I with xi 6= 0. Then, we have x = eK′x =
∑

i∈I,xi 6=0 δg−1
i
⊗ egiK′g−1

i
xi. Hence

egiK′g−1
i
xi is equal to xi for every i ∈ I with xi 6= 0, which implies xi ∈ M∞. Thus

x ∈ c-Ind
Dc(G)
Dc(K) M∞. Now we conclude that c-Ind

Dc(G)
Dc(K) M∞ = (c-Ind

Dc(G)
Dc(K) M)∞.

Definition 2.1 For π ∈ RepΛ(G), consider HomG(π,H(G)), where H(G) is re-
garded as a smooth representation of G by the left translation. As H(G) has an-
other smooth G-action by the right translation, HomG(π,H(G)) has a structure
of a Dc(G)-module. Therefore we get a contravariant functor from RepΛ(G) to
Mod(Dc(G)), for which we write Dm. Composing with∞D, we obtain a contravari-
ant functor D =∞D ◦Dm : RepΛ(G) −→ RepΛ(G). We denote by RDm (resp. RD)
the right derived functor of Dm (resp. D). As∞D is exact, we have RD =∞D◦RDm.

Proposition 2.2 Let K be an open pro-p subgroup of G and ρ a smooth represen-
tation of K over Λ. Then there is a natural Dc(G)-linear injection

c-Ind
Dc(G)
Dc(K)(ρ

∗) ↪−→ Dm(c-IndGK ρ).

Here ρ∗ = HomK(ρ,Λ) denotes the algebraic dual, which is naturally equipped with
a structure of a Dc(K)-module. Applying ∞D to the injection above, we obtain a
G-equivariant injection

c-IndGK(ρ∨) ↪−→ D(c-IndGK ρ),
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where ρ∨ = ∞D(ρ∗) = ∞K(HomK(ρ,Λ)) denotes the contragredient representation
of ρ.

If moreover ρ is a finitely generated K-representation (in other words, ρ has finite
length as a Λ-module), then we have

RDm
(
c-IndGK(ρ)

)
= Dm

(
c-IndGK(ρ)

)
= c-Ind

Dc(G)
Dc(K)(ρ

∗),

RD
(
c-IndGK(ρ)

)
= D

(
c-IndGK(ρ)

)
= c-IndGK(ρ∨).

Proof. See [Far06, Lemme 1.10, Lemme 1.12, Lemme 1.13].

Corollary 2.3 Assume that Λ is a field, RepΛ(G) is noetherian and has finite
projective dimension.

i) Let Db
fg(RepΛ(G)) be the full subcategory of Db(RepΛ(G)) consisting of com-

plexes whose cohomology are finitely generated G-representations. Then the
contravariant functor RD maps Db

fg(RepΛ(G)) into itself.

ii) The contravariant functor

RD: Db
fg

(
RepΛ(G)

)
−→ Db

fg

(
RepΛ(G)

)
satisfies RD ◦RD ∼= id.

iii) For a field extension Λ′ of Λ, the following diagram is 2-commutative:

Db
fg

(
RepΛ(G)

) RD //

��

Db
fg

(
RepΛ(G)

)
��

Db
fg

(
RepΛ′(G)

) RD // Db
fg

(
RepΛ′(G)

)
.

Here the vertical arrows denote the base change functor.

Proof. For i) and ii), see [Far06, Proposition 1.18]. iii) follows immediately from

Proposition 2.2.

In the remaining part of this section, we assume that Λ = C. Let F be a p-
adic field and G a connected reductive group over F . Write G for G(F ). Fix a
discrete cocompact subgroup Γ of the center ZG = ZG(F ) and put G′ = G/Γ. We
simply write Rep(G′) for RepC(G′). Note that we have a natural decomposition of
a category

Rep(G′) =
∏

χ : ZG/Γ→C×
Repχ(G),

where χ runs through smooth characters of the compact group ZG/Γ, and Repχ(G)
denotes the category of smooth representations of G with central character χ. We
will apply the theory above to the group G′. In this case all the assumptions in
Corollary 2.3 are satisfied (cf. [Ber84, Remarque 3.12], [Vig90, Proposition 37]).
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Let IΓ be the set of inertially equivalence classes of cuspidal data (M, σ) such
that σ|Γ is trivial. We have the Bernstein decomposition (cf. [Ren10, Théorème
VI.7.2])

Rep(G′) =
∏
s∈IΓ

Rep(G′)s.

For V ∈ Rep(G′), we denote the corresponding decomposition by V =
⊕

s∈IΓ Vs.

Proposition 2.4 For s = [(M, σ)] ∈ IΓ, put s∨ = [(M, σ∨)] ∈ IΓ. Then, RD
induces a contravariant functor Db

fg(Rep(G′)s) −→ Db
fg(Rep(G′)s∨).

Proof. See [Far06, Remarque 1.5].

For s = [(M, σ)] ∈ IΓ, put ι(s) = rG− rM, where rG (resp. rM) denotes the split
semisimple rank of G (resp. M). The number ι(s) is 0 if and only if M = G.

Theorem 2.5 ([SS97, Theorem III.3.1]) Fix s ∈ IΓ. Let Rep(G′)fl
s be the full

subcategory of Rep(G′)s consisting of representations of finite length. For π ∈
Rep(G′)fl

s , we have RiD(π) = 0 if i 6= ι(s). Moreover, Rι(s)D(π) has finite length.

Definition 2.6 For s ∈ IΓ and π ∈ Rep(G′)fl
s , put Zel(π) = Rι(s)D(π∨). The

(covariant) functor Zel : Rep(G′)fl
s −→ Rep(G′)fl

s is called the Zelevinsky involution.
It is an exact categorical equivalence. In particular, it preserves irreducibility.

Proposition 2.7 For an irreducible smooth representation π of G′, we have an
isomorphism Zel(π∨) ∼= Zel(π)∨. In particular, Zel(Zel(π)) ∼= π.

Proof. It is an immediate consequence of [SS97, Proposition IV.5.4].

Let χ : ZG −→ C× be a smooth character, which is not necessarily unitary. We
can consider a variant of Zel on Repχ(G) as follows. Let Hχ(G) be the set of locally
constant C-valued functions f such that

– f(zg) = χ(z)−1f(g) for every z ∈ ZG and g ∈ G,

– and supp f is compact modulo ZG.

Let Dχ : Repχ(G) −→ Repχ−1(G) be the contravariant functor defined by

Dχ(π) = HomRepχ(G)

(
π,Hχ(G)

)
,

and RDχ be the derived functor of Dχ. As in Corollary 2.3 i), RDχ induces a
contravariant functor

RDχ : Db
fg

(
Repχ(G)

)
−→ Db

fg

(
Repχ−1(G)

)
.

Let Iχ be the set of inertially equivalence classes of cuspidal data (M, σ) such that
σ|ZG = χ. We have the Bernstein decomposition

Repχ(G) =
∏
s∈Iχ

Repχ(G)s.
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Let Repχ(G)fl
s be the full subcategory of Repχ(G)s consisting of representations of

finite length. By [SS97, Theorem III.3.1], for π ∈ Repχ(G)fl
s we have RiDχ(π) = 0 if

i 6= ι(s) and Rι(s)Dχ(π) has finite length. Hence we can give the following definition.

Definition 2.8 For s ∈ Iχ and π ∈ Repχ(G)fl
s , put Zelχ(π) = Rι(s)Dχ−1(π∨). It

induces an exact categorical equivalence Zelχ : Repχ(G)fl
s −→ Repχ(G)fl

s satisfying

Zel2χ
∼= id.

Lemma 2.9 i) For π ∈ Repχ(G)fl
s and a smooth character ω of G, we have

Zelχ⊗ω(π ⊗ ω) ∼= Zelχ(π)⊗ ω.

ii) Let Γ ⊂ ZG and G′ = G/Γ be as above. If χ is trivial on Γ, then for every
π ∈ Repχ(G)fl

s we have Zelχ(π) ∼= Zel(π). In the right hand side, π is regarded
as an object of Rep(G′)fl

s .

Proof. i) is clear from definition. For ii), note that H(G′) =
⊕

χ′Hχ′(G), where χ′

runs through smooth characters of ZG which are trivial on Γ. By the decomposition
Rep(G′) =

∏
χ′ Repχ′(G), we have

RD(π∨) = RHomRep(G′)

(
π∨,H(G)

)
= RHomRepχ−1 (G)

(
π∨,Hχ−1(G)

)
= RDχ−1(π∨).

Hence we have Zelχ(π) ∼= Zel(π), as desired.

By this lemma, we can simply write Zel for Zelχ without any confusion.

3 Preliminaries

3.1 Compactly supported cohomology for partially proper
schemes

In [Hub96, §5], Huber defined the compactly supported cohomology for adic spaces
which are partially proper over a field as the derived functor of Γc. This construction
is also applicable to schemes over a field.

Definition 3.1 Let f : X −→ Y be a morphism between schemes.

i) The morphism f is said to be specializing if for every x ∈ X and every special-
ization y′ of y = f(x), there exists a specialization x′ of x such that y′ = f(x′).
If an arbitrary base change of f is specializing, f is said to be universally
specializing.

ii) The morphism f is said to be partially proper if it is separated, locally of finite
type and universally specializing.

Proposition 3.2 i) A morphism of schemes is proper if and only if partially
proper and quasi-compact.
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ii) Partially properness can be checked by the valuative criterion.

iii) Let f : X −→ Y be a partially proper morphism between schemes. Assume
that Y is noetherian. Then, for every quasi-compact subset T of X, the closure
T of T is quasi-compact.

Proof. i) can be proved in the same way as [Hub96, Lemma 1.3.4]. ii) is straight-
forward and left to the reader. Let us prove iii). We may assume that T is open
in X. Moreover we may assume that T and Y are affine. Put T = SpecA and
Y = SpecB. Let B̃ be the integral closure of the image of B −→ A in A, and
consider the topological space Tv = Spa(A, B̃). Here we endow A with the discrete
topology. As a set, Tv can be identified with the set of pairs (x, Vx) where

– x ∈ T , and

– Vx is a valuation ring of the residue field κx at x such that the composite
Specκx −→ T −→ Y can be extended to SpecVx −→ Y .

Therefore, by ii), we can construct a map φ : Tv −→ X as follows. For (x, Vx) ∈ Tv,
the Y -morphism Specκx −→ T uniquely extends to a Y -morphism SpecVx −→ X.
We let φ(x, Vx) be the image of the closed point in SpecVx under this morphism.
Since X is quasi-separated locally spectral and T is quasi-compact open, each point
in T is a specialization of some point in T ([Hoc69, Corollary of Theorem 1]). Thus
T coincides with φ(Tv).

We will prove that φ is continuous. Fix (x, Vx) ∈ Tv and take an affine neighbor-
hood U = SpecC of y = φ(x, Vx). We can find u ∈ A such that T ′ = SpecA[1/u]
is an open neighborhood of x contained in U . On the other hand, as f is locally
of finite type, C is a finitely generated B-algebra. Take a system of generators
c1, . . . , cn ∈ C (n ≥ 1) and consider the images of them under the ring homomor-
phism C −→ A[1/u] that comes from the inclusion T ′ ↪−→ U . There exist integers
k1, . . . , kn and a1, . . . , an ∈ A such that the image of ai in A[1/u] coincides with the
image of ukici under C −→ A[1/u]. Let W be the open subset of Tv defined by the
condition v(ai) ≤ v(uki) 6= 0 (i = 1, . . . , n). Then it is easy to observe that (x, Vx)
belongs to W and φ(W ) is contained in U . This proves the continuity of φ.

By [Hub93, Theorem 3.5 (i)], Tv is quasi-compact. Therefore we conclude that

T = φ(Tv) is quasi-compact, as desired.

Corollary 3.3 Let X be a scheme which is partially proper over a noetherian
scheme. Then X is a locally finite union of quasi-compact closed subsets.

Proof. Let S be the set of minimal points in X. For η ∈ S, we denote by Zη the
closure of {η}. By Proposition 3.2 iii), Zη is quasi-compact. It is easy to observe
that {Zη} cover X. Take a quasi-compact open subset U of X. As U is noetherian,
it contains finitely many minimal points, thus U intersects finitely many Zη. This

concludes that the closed covering {Zη} is locally finite.

In the rest of this subsection, let k be a field and X a scheme which is partially
proper over k.
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Definition 3.4 i) For an (abelian étale) sheaf F on X, let Γc(X,F) be the subset
of Γ(X,F) consisting of s ∈ Γ(X,F) such that supp s is proper over k. As supp s
is closed in X, this condition is equivalent to saying that supp s is quasi-compact
(cf. Proposition 3.2 ii)).

ii) Let H i
c(X,−) be the ith derived functor of the left exact functor Γc(X,−).

Proposition 3.5 Let F be a sheaf on X.

i) We have H i
c(X,F) ∼= lim−→Y

H i
Y (X,F), where Y runs through quasi-compact

closed subsets of X.

ii) We have H i
c(X,F) ∼= lim−→U

H i
c(U,F|U), where U runs through quasi-compact

open subsets of X.

Proof. i) If i = 0, then the claim follows immediately from the definition of Γc. On
the other hand, if F is injective, then lim−→Y

H i
Y (X,F) = 0 for i > 0. Therefore we

have the desired isomorphism.
ii) By Proposition 3.2 iii), for each quasi-compact open subset U of X, we can

find a quasi-compact closed subset Y of X containing U . On the other hand, for
such a Y , we can find a quasi-compact open subset U ′ of X containing Y . Under
this situation, we have push-forward maps

H i
c(U,F|U) −→ H i

Y (X,F) −→ H i
c(U

′,F|U ′).

These induce an isomorphism lim−→U
H i
c(U,F|U) ∼= lim−→Y

H i
Y (X,F). Hence the claim

follows from i).

Corollary 3.6 The functor H i
c(X,−) commutes with filtered inductive limits.

Proof. For a quasi-compact open subset U of X, H i
c(U,−) commutes with filtered

inductive limits; indeed, for a compactification j : U ↪−→ U , we have H i
c(U,−) =

H i(U, j!(−)), and both j! and H i(U,−) commute with filtered inductive limits (for
the later, note that U is quasi-compact and quasi-separated). On the other hand,
the restriction functor to U also commutes with filtered inductive limits. Hence
Proposition 3.5 ii) tells us that H i

c(X,−) commutes with filtered inductive limits.

Corollary 3.7 For i ≥ 0, the functor H i
c(X,−) commutes with arbitrary direct

sums. Namely, for a set Λ and sheaves {Fλ}λ∈Λ on X indexed by Λ, we have an
isomorphism H i

c(X,
⊕

λ∈ΛFλ) ∼=
⊕

λ∈ΛH
i
c(X,Fλ).

Proof. For a finite subset Λ0 of Λ, put FΛ0 =
⊕

λ∈Λ0
Fλ. Then

⊕
λ∈ΛFλ can be

written as the filtered inductive limit lim−→Λ0⊂Λ
FΛ0 . As H i

c(X,−) commutes with

filtered inductive limits and finite direct sums, we obtain the desired result.

Remark 3.8 By exactly the same method as in [Hub98b], we can extend the defi-
nitions and properties above to `-adic coefficients.

9
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3.2 Formal schemes and adic spaces

Let R be a complete discrete valuation ring with separably closed residue field
κ, F the fraction field of R, and k a separable closure of F . We denote by k+

the valuation ring of k. For a locally noetherian formal scheme X over Spf R, we
can associate an adic space t(X ) over Spa(R,R) (cf. [Hub94, Proposition 4.1]).
Its open subset t(X )η = t(X ) ×Spa(R,R) Spa(F,R) is called the rigid generic fiber
of X . In the following, we assume that X is special in the sense of Berkovich
[Ber94, §1]. Then t(X )η is locally of finite type over Spa(F,R). Therefore, we can
make the fiber product t(X )η = t(X )η ×Spa(F,R) Spa(k, k+), which we call the rigid
geometric generic fiber of X . The morphism t(X ) −→ X of locally ringed spaces
induces a continuous map t(X )η −→ X = X red. We also have morphisms of sites
t(X )η,ét −→ t(X )η,ét −→ Xét

∼= (X red)ét.

Proposition 3.9 Assume that X red is partially proper over κ. Then t(X )η is par-
tially proper over Spa(F,R).

Proof. In [Mie10, Proposition 4.23], we have obtained the same result under the
assumption that X red is proper. In fact, the proof therein only uses the partially
properness of X red.

For simplicity, we putX = t(X )η. We denote the composite t(X )η −→ t(X )η −→
X red by sp. We also write sp for the morphism of étale sites Xét −→ (X red)ét. For
a closed subset Z of X , consider the interior sp−1(Z)◦ of sp−1(Z) in X. It is called
the tube of Z.

Proposition 3.10 i) Let Z be the formal completion of X along Z. Then the
natural morphism t(Z)η −→ t(X )η induces an isomorphism t(Z)η ∼= sp−1(Z)◦.

ii) If Z is quasi-compact, sp−1(Z)◦ is the union of countably many quasi-compact
open subsets of X.

iii) Assume that X red is partially proper over κ. Then sp−1(Z)◦ is partially proper
over Spa(k, k+).

iv) Assume that X is locally algebraizable (cf. [Mie10, Definition 3.19]) and Z
is quasi-compact. Then, for a noetherian torsion ring Λ whose characteristic
is invertible in R, H i(sp−1(Z)◦,Λ) and H i

c(sp
−1(Z)◦,Λ) are finitely generated

Λ-modules.

Proof. i) is proved in [Hub98a, Lemma 3.13 i)]. For ii), we may assume that X is
affine. Then, the claim has been obtained in the proof of [Hub98a, Lemma 3.13
i)]. By i), to prove iii) and iv), we may assume that Z = X red. Then iii) follows
from Proposition 3.9. As for iv), we have H i(X,Λ) = H i(X red, R sp∗ Λ). By [Ber96,
Theorem 3.1], R sp∗ Λ is a constructible complex on X red. Thus H i(X,Λ) is a finitely
generated Λ-module. On the other hand, by [Mie10, Proposition 3.21, Theorem

4.35], H i
c(X,Λ) is a finitely generated Λ-module.

10
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Definition 3.11 Assume that X red is partially proper over κ. We write Γc,X (X,−)
for the composite functor Γc(X red, sp∗(−)). Denote the derived functor of Γc,X (X,−)
by RΓc,X (X,−), and the ith cohomology of RΓc,X (X,−) by H i

c,X (X,−).

Remark 3.12 If X is a p-adic formal scheme, then for a quasi-compact closed
subset Z of X red, sp−1(Z) is quasi-compact. Hence we have Γc,X (X,−) = Γc(X,−),
RΓc,X (X,−) = RΓc(X,−) and H i

c,X (X,−) = H i
c(X,−) in this case.

The cohomology H i
c,X (X,−) will appear in our main result. We would like to

discuss functoriality of this cohomology with respect to X. For this purpose, we
give another interpretation of H i

c,X (X,−). Here, more generally, let X denote an
adic space which is locally of finite type and partially proper over Spa(k, k+).

Definition 3.13 A support set C of X is a set consisting of closed subsets of X
satisfying the following conditions:

– For Z,Z ′ ∈ C, we have Z ∪ Z ′ ∈ C.
– For Z ∈ C and a closed subset Z ′ of Z, we have Z ′ ∈ C.

For a support set C, we define ΓC(X,−) = lim−→Z∈C ΓZ(X,−). Let RΓC(X,−) be the

derived functor of ΓC(X,−), and H i
C(X,−) the ith cohomology of RΓC(X,−). It is

easy to see that H i
C(X,F) = lim−→Z∈C H

i
Z(X,F) for a sheaf F on X.

Definition 3.14 Let X and X ′ be adic spaces which are locally of finite type and
partially proper over Spa(k, k+).

i) For a support set C of X and a morphism of adic spaces f : X ′ −→ X, let
f−1C be the support set of X ′ consisting of closed subsets Z ′ ⊂ X ′ which are
contained in f−1(Z) for some Z ∈ C.

ii) Let C and C ′ be support sets of X and X ′, respectively. A morphism of pairs
f : (X ′, C ′) −→ (X, C) is a morphism f : X ′ −→ X satisfying f−1C ⊂ C ′. Such a
morphism induces a morphism f ∗ : RΓC(X,F) −→ RΓC′(X

′, f ∗F). If moreover
f is an isomorphism and f−1C = C ′, f is said to be an isomorphism of pairs.

A formal model naturally gives a support set of the rigid generic fiber.

Definition 3.15 Let X be as in the beginning of this subsection, and assume that
X red is partially proper over κ. We define a support set CX of X = t(X )η as follows:
a closed set of X belongs to CX if it is contained in sp−1(Z) for some quasi-compact
closed subset of X red.

Proposition 3.16 Let X be as in the previous definition. Then we have an iso-
morphism RΓc,X (X,−) ∼= RΓCX (X,−).

Proof. For a sheaf F on X, we have

Γc,X (X,F) = lim−→
Z⊂X red

ΓZ(X red, sp∗F) = lim−→
Z⊂X red

Γsp−1(Z)(X,F) = ΓCX (X,F),

where Z runs through quasi-compact closed subsets of X red. This concludes the
proof.

11
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Lemma 3.17 Let X and X ′ be special formal schemes over Spf R such that X red

and X ′red are partially proper over κ. Put X = t(X )η and X ′ = t(X ′)η, respectively.
Let f : X ′ −→ X be a morphism of finite type over Spf R and write fη for the induced
morphism X ′ −→ X. Then, we have f−1

η CX = CX ′ . In particular, if moreover fη is
an isomorphism, then fη induces an isomorphism of pairs (X ′, CX ′) −→ (X, CX ).

Proof. For a quasi-compact closed subset Z of X red, Z ′ = f−1(Z) is a quasi-compact
closed subset of X ′red. Therefore f−1

η (sp−1(Z)) = sp−1(Z ′) lies in CX ′ . This implies
that f−1CX is contained in CX ′ . Conversely, let Z ′ be a quasi-compact closed subset
of X ′red. As X red and X ′red are partially proper over κ and f is of finite type, the
induced morphism f : X ′red −→ X red is proper. Therefore Z = f(Z ′) is a quasi-
compact closed subset of X red. Hence, sp−1(Z ′), being contained in f−1

η (sp−1(Z)),

lies in f−1
η CX . Thus we have CX ′ ⊂ f−1

η CX .

3.3 Smooth equivariant sheaves on adic spaces

In [FGL08, §IV.9], the theory of smooth equivariant sheaves on Berkovich spaces is
developed. In this subsection, we will adapt it to the framework of adic spaces.

3.3.1 Basic definitions

Let k be a non-archimedean field and X an adic space locally of finite type over
Spa(k, k+). We denote by Xét the étale site of X, and Xqcét the full subcategory
consisting of étale morphisms f : Y −→ X where Y is quasi-compact. The category
Xqcét has a natural induced structure of a site and the associated topos X̃qcét can

be identified with the étale topos X̃ét for X.
We write p for the residue characteristic of k+. Fix a prime ` 6= p and a truncated

discrete valuation ring Λ with residue characteristic `. Namely, Λ can be written
as O/(λn), where O is a discrete valuation ring with residue characteristic `, λ is a
uniformizer of O and n ≥ 1 is an integer. Such a ring has the following property:

Lemma 3.18 For a Λ-module M , the following are equivalent:

i) M is an injective Λ-module.

ii) M is a flat Λ-module.

iii) M is a free Λ-module.

Proof. We write Λ = O/(λn) as above. For every 0 ≤ k ≤ n, we have an exact

sequence Λ
×λn−k−−−−→ Λ

×λk−−→ Λ −→ Λ/(λk) −→ 0. Thus we obtain

TorΛ
1

(
Λ/(λk),M

)
= Ker(M

×λk−−→M)/ Im(M
×λn−k−−−−→M) = Ext1

Λ

(
Λ/(λn−k),M

)
.

Therefore, if M is injective, then TorΛ
1 (Λ/(λ),M) = 0 and M is flat. Conversely, if

M is flat, then Ext1
Λ(Λ/(λk),M) = 0 for every 0 ≤ k ≤ n. Hence Baer’s criterion

on injectivity tells us that M is an injective Λ-module.
On the other hand, as Λ is an Artinian local ring, ii) and iii) are equivalent.

12
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We write Λ-X̃ét for the category of Λ-sheaves on Xét.
Let G be a locally pro-p group, and assume that X is equipped with a continuous

action of G in the following sense.

Definition 3.19 An action of G on X is said to be continuous if the following
conditions are satisfied:

For every affinoid open subspace U = Spa(A,A+) of X, f ∈ A and a ∈ k×,
there exists an open subgroup G′ ⊂ G such that each element g ∈ G′

satisfies gU = U and |(g∗f − f)(x)| ≤ |a(x)| for x ∈ U .

Under the continuity condition, we know the following result due to Berkovich:

Theorem 3.20 ([Ber94, Key Lemma 7.2]) For every object f : Y −→ X of
Xqcét, there exists a compact open subgroup KY of G such that the action of KY

on X lifts canonically and continuously to Y .

Definition 3.21 A G-equivariant sheaf F on Xét is said to be smooth if for every
object Y −→ X of Xqcét the action of KY on Γ(Y,F) is smooth. We write X̃ét/G for

the category of smooth G-equivariant sheaves on Xét, and Λ-X̃ét/G for the category
of smooth G-equivariant Λ-sheaves on Xét.

As X̃ét = X̃qcét, the definition above is a special case of [FGL08, Définition

IV.8.1]. In particular, X̃ét/G is a topos (cf. [FGL08, Proposition IV.8.12]). The

forgetful functor Λ-X̃ét/G −→ Λ-X̃ét is exact (cf. [FGL08, Corollaire IV.8.6]).

Definition 3.22 Let H be a closed subgroup of G.

i) A smooth G-equivariant Λ-sheaf on Xét can be obviously regarded as a smooth

H-equivariant Λ-sheaf onXét. Therefore we get a functor Λ-X̃ét/G −→ Λ-X̃ét/H,

which is denoted by Res
X/G
X/H .

ii) Let ΩH be a system of representatives of H\G. For a smooth H-equivariant Λ-
sheaf F on Xét, the Λ-sheaf

∏
g∈ΩH

g∗F has a natural G-equivariant structure.

We put Ind
X/G
X/H F = (

∏
g∈ΩH

g∗F)∞, where (−)∞ denotes the smoothification

functor (cf. [FGL08, §IV.8.3.3]). This gives a functor Ind
X/G
X/H : Λ-X̃ét/H −→

Λ-X̃ét/G.

iii) If H is an open subgroup of G, for F ∈ Λ-X̃ét/H we put

c-Ind
X/G
X/H F =

⊕
g∈ΩH

g∗F .

It can be naturally regarded as an object of Λ-X̃ét/G. This gives a functor

c-Ind
X/G
X/H : Λ-X̃ét/H −→ Λ-X̃ét/G.

The following proposition is obvious.

13
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Proposition 3.23 The functor Ind
X/G
X/H is the right adjoint of Res

X/G
X/H , and c-Ind

X/G
X/H

is the left adjoint of Res
X/G
X/H . The functors Res

X/G
X/H and c-Ind

X/G
X/H are exact, and

Ind
X/G
X/H is left exact.

Let f : U −→ X be an étale morphism. Assume that there exists a compact open
subgroup K of G whose action on X lifts to U continuously (if U is quasi-compact,
this is always the case). We fix such a compact open subgroup K.

Lemma 3.24 For F ∈ Λ-Ũét/K, the induced K-equivariant structure on f!F is
smooth.

Proof. Let G be the presheaf on Xqcét defined as follows: for an object Y −→ X of
Xqcét, we put

Γ(Y,G) =
⊕

φ∈HomX(Y,U)

Γ(Y
φ−−→ U,F).

We will prove that the action of K ∩ KY on Γ(Y,G) is smooth. Applying [Ber94,
Key Lemma 7.2] to φ ∈ HomX(Y, U), we obtain a compact open subgroup Kφ of

K ∩KY such that g ∈ Kφ satisfies g ◦ φ = φ ◦ g. Such Kφ acts on Γ(Y
φ−−→ U,F),

and by the smoothness of F , this action is smooth. This concludes the smoothness
of the action of K ∩KY on Γ(Y,G).

In other words, G is a smooth K-equivariant Λ-presheaf on Xqcét (cf. [FGL08,
Définition IV.8.1]). Hence [FGL08, Lemme IV.8.4] tells us that the sheafification

f!F of G is smooth.

Definition 3.25 i) Let Res
X/K
U/K : Λ-X̃ét/K −→ Λ-Ũét/K be the functor F 7−→

f ∗F . In fact, it is easy to see that the induced K-equivariant structure on
f ∗F is smooth. We put Res

X/G
U/K = Res

X/K
U/K ◦Res

X/G
X/K , which is a functor from

Λ-X̃ét/G to Λ-Ũét/K.

ii) Let Ind
X/K
U/K : Λ-Ũét/K −→ Λ-X̃ét/K be the functor F 7−→ (f∗F)∞; note that

f∗F carries a K-equivariant structure, but it is not necessarily smooth. We put
Ind

X/G
U/K = Ind

X/G
X/K ◦ Ind

X/K
U/K , which is a functor from Λ-Ũét/K to Λ-X̃ét/G.

iii) Let c-Ind
X/K
U/K : Λ-Ũét/K −→ Λ-X̃ét/K be the functor F 7−→ f!F ; (cf. the

lemma above). We put c-Ind
X/G
U/K = c-Ind

X/G
X/K ◦ c-Ind

X/K
U/K , which is a functor

from Λ-Ũét/K to Λ-X̃ét/G.

The following proposition is also immediate:

Proposition 3.26 The functor Ind
X/G
U/K is the right adjoint of Res

X/G
U/K , and c-Ind

X/G
U/K

is the left adjoint of Res
X/G
U/K . The functors Res

X/G
U/K and c-Ind

X/G
U/K are exact, and

Ind
X/G
U/K is left exact. In particular, Res

X/G
U/K and Ind

X/G
U/K preserve injective objects.
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Let U be an open subset of X which is stable under a compact open subgroup K
of G. If {gU}g∈G covers X, we can construct canonical resolutions of a smooth G-

equivariant Λ-sheaf by using the functors Res
X/G
U/K , Ind

X/G
U/K and c-Ind

X/G
U/K (cf. [FGL08,

Théorème IV.9.31]).

Proposition 3.27 Let U be an open subset of X which is stable under a compact
open subgroup K of G. Assume that X =

⋃
g∈G gU . For α = (g1, . . . , gs) ∈ (G/K)s,

we put Uα = g1U ∩ · · · ∩ gsU and Kα = g1Kg
−1
1 ∩ · · · ∩ gsKg−1

s . Let F be an object

of Λ-X̃ét/G.

i) We have a functorial resolution C•(F) −→ F in Λ-X̃ét/G where Cm(F) is given
by

Cm(F) =
⊕

α∈G\(G/K)−m+1

c-Ind
X/G
Uα/Kα

Res
X/G
Uα/Kα

F .

Here we abuse notation: Uα and Kα depends on the choice of a lift of α ∈
G\(G/K)−m+1 to (G/K)−m+1, but c-Ind

X/G
Uα/Kα

Res
X/G
Uα/Kα

F does not.

ii) Assume moreover that the covering {gU}g∈G/K is locally finite; namely, each
point x ∈ X has an open neighborhood which intersects only finitely many
of gU with g ∈ G/K. Then we have a functorial resolution F −→ D•(F) in

Λ-X̃ét/G where Dm(F) is given by

Dm(F) =
⊕

α∈G\(G/K)m+1

Ind
X/G
Uα/Kα

Res
X/G
Uα/Kα

F .

Proof. For λ ∈ (G/K)s, we write jλ for the natural open immersion Uλ ↪−→ X.
i) We have a well-known exact sequence

· · · −→
⊕

λ∈(G/K)2

jλ!j
∗
λF −→

⊕
λ∈G/K

jλ!j
∗
λF −→ F −→ 0

of Λ-sheaves over Xét. It is easy to see that
⊕

λ∈(G/K)−m+1 jλ!j
∗
λF coincides with the

underlying Λ-sheaf of
⊕

α∈G\(G/K)−m+1 c-Ind
X/G
Uα/Kα

Res
X/G
Uα/Kα

F , and each homomor-
phism in the complex above is G-equivariant. Hence we have a resolution⊕

α∈G\(G/K)−•+1

c-Ind
X/G
Uα/Kα

Res
X/G
Uα/Kα

F −→ F −→ 0.

ii) Consider the complex

0 −→ F −→
∏

λ∈G/K

jλ∗j
∗
λF −→

∏
λ∈(G/K)2

jλ∗j
∗
λF −→ · · · (∗)

of Λ-sheaves over Xét. Each term has a G-equivariant structure and each homomor-
phism is G-equivariant. For each g ∈ G and m ≥ 0, the map( ∏
λ∈(G/K)m+1

jλ∗j
∗
λF
)∣∣∣

gU
−→

( ∏
λ∈(G/K)m

jλ∗j
∗
λF
)∣∣∣

gU
; (sλ)λ∈(G/K)m+1 7−→ (s(g,λ))λ∈(G/K)m ,
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where sλ is a local section of (jλ∗j
∗
λF)|gU , is gKg−1-equivariant and gives a homo-

topy between id and 0 on the complex (∗) restricted on gU . In particular, the
smoothification

0 −→ F −→
( ∏
λ∈G/K

jλ∗j
∗
λF
)∞
−→

( ∏
λ∈(G/K)2

jλ∗j
∗
λF
)∞
−→ · · ·

of the complex (∗) is exact.
Now, by the assumption on the covering {gU}g∈G/K , we have∏

λ∈(G/K)m+1

jλ∗j
∗
λF =

⊕
α∈G\(G/K)m+1

∏
g∈G

g∗jα∗j
∗
αF .

Therefore the smoothification of the G-equivariant sheaf
∏

λ∈(G/K)m+1 jλ∗j
∗
λF coin-

cides with
⊕

α∈G\(G/K)m+1 Ind
X/G
Uα/Kα

Res
X/G
Uα/Kα

F . Hence we have a resolution

0 −→ F −→
⊕

α∈G\(G/K)•+1

Ind
X/G
Uα/Kα

Res
X/G
Uα/Kα

F .

Remark 3.28 In this paper, we only use the part i) of the proposition above. Later
we will consider a variant of ii) (see Lemma 4.4).

3.3.2 Acyclicity

In the following we will give several acyclicity results for injective objects in Λ-X̃ét/G.

Proposition 3.29 For an injective object F in Λ-X̃ét/G and an object Y −→ X
of Xét such that Y is quasi-compact and quasi-separated, we have H i(Y,F) = 0 for
i ≥ 1.

Proof. Let Xcohét be the full subcategory of Xét consisting of étale morphisms Y −→
X where Y is quasi-compact and quasi-separated. It is naturally equipped with a
structure of a site, and the natural morphism of sites Xét −→ Xcohét induces an
isomorphism of toposes X̃ét

∼= X̃cohét.
Let F be a G-equivariant sheaf on Xét such that for every object Y −→ X

in Xcohét the action of KY ⊂ G on Γ(Y,F) is smooth. Then F is a smooth G-
equivariant sheaf; note that every object Y −→ X in Xqcét can be covered by
finitely many objects (Yα −→ X)α in Xcohét, and then Γ(Y,F) −→

∏
α Γ(Yα,F) is

injective. Therefore we have an isomorphism of toposes

X̃ét/G = X̃qcét/G ∼= X̃cohét/G

(for the definition of X̃cohét/G, see [FGL08, Définition IV.8.2]).
We prove that fiber products exist in the category Xcohét. Let Y −→ X and

Zi −→ X (i = 1, 2) be objects in Xcohét, and assume that we are given morphisms
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Z1 −→ Y and Z2 −→ Y over X. Then, these morphisms are quasi-compact quasi-
separated, and so is Z1 ×Y Z2 −→ Z2. (In the case of schemes, see [EGA, IV,
§1.1, §1.2]. The arguments there can be applied to adic spaces.) Hence Z1 ×Y Z2 is
quasi-compact and quasi-separated, as desired.

Now we can apply [FGL08, Théorème IV.8.15] (or [FGL08, Théorème IV.8.17])

to conclude the proposition.

Proposition 3.30 Let Y −→ X be an object of Xqcét, and U a quasi-compact open

subset of Y . For an injective object F in Λ-X̃ét/G, the homomorphism Γ(Y,F) −→
Γ(U,F) is surjective.

Proof. Let K be a compact open subgroup of KY which stabilizes U . We write ΛY

(resp. ΛU) for the constant sheaf on Y (resp. U) with values in Λ. They can be
regarded as a smooth K-equivariant sheaves by the trivial K-actions. Therefore we
can form c-Ind

X/G
Y/K ΛY and c-Ind

X/G
U/K ΛU . By Proposition 3.26, we have

Hom(c-Ind
X/G
Y/K ΛY ,F) = Γ(Y,F)K , Hom(c-Ind

X/G
U/K ΛU ,F) = Γ(U,F)K .

If we denote by j the natural open immersion U ↪−→ Y , we have an injection
j!ΛU −→ ΛY . This gives an injection c-Ind

Y/K
U/K ΛU −→ ΛY in Λ-Ỹét/K, and thus an

injection c-Ind
X/G
U/K ΛU −→ c-Ind

X/G
Y/K ΛY in Λ-X̃ét/G. Since F is an injective object

of Λ-X̃ét/G, the induced homomorphism

Hom(c-Ind
X/G
Y/K ΛY ,F) −→ Hom(c-Ind

X/G
U/K ΛU ,F)

is surjective. Therefore the map Γ(Y,F)K −→ Γ(U,F)K is surjective.
As F is smooth, we have Γ(U,F) = lim−→K

Γ(U,F)K . Hence the homomorphism

Γ(Y,F) −→ Γ(U,F) is also surjective.

Corollary 3.31 Let U and V be quasi-compact quasi-separated open subsets of X
such that V ⊂ U . For an injective object F in Λ-X̃ét/G, we have H i

U\V (U,F) = 0
for i ≥ 1.

Proof. By Proposition 3.29 and Proposition 3.30, we have H i
U\V (U,F) = 0 for i ≥ 2,

and H1
U\V (U,F) = Coker(Γ(U,F)→ Γ(V,F)) = 0.

Proposition 3.32 Let Y −→ X be an étale morphism. Assume that Y is quasi-
separated, and is the union of countably many quasi-compact open subsets of Y .
Then, for an injective object F in Λ-X̃ét/G, we have H i(Y,F) = 0 for i ≥ 1.

Proof. By the assumption on Y , there exists an increasing series U1 ⊂ U2 ⊂ · · · of
quasi-compact open subsets of Y such that Y =

⋃∞
n=1 Un. For a Λ-sheaf G on Xét,

we will construct the following spectral sequence:

Ei,j
2 = lim←−

n

iHj(Un,G) −→ H i+j(Y,G).
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To show the existence of this spectral sequence, it suffices to show that for an
injective object I in Λ-X̃ét, the projective system (Γ(Un, I))n is an injective object
in the category of projective systems of Λ-modules. By [Jan88, Proposition 1.1], we
should prove the following two properties:

(a) Γ(Un, I) is an injective Λ-module for every n ≥ 1.

(b) The transition map Γ(Un+1, I) −→ Γ(Un, I) is a split surjection for every n.

(a) is easy. For (b), note the following exact sequence:

0 −→ ΓUn+1\Un(Un+1, I) −→ Γ(Un+1, I) −→ Γ(Un, I) −→ 0.

As ΓUn+1\Un(Un+1, I) is an injective Λ-module, the map Γ(Un+1, I) −→ Γ(Un, I) is
a split surjection, as desired.

As lim−→
i

n
= 0 for i ≥ 2, we obtain the following exact sequence:

0 −→ lim←−
n

1H i−1(Un,G) −→ H i(Y,G) −→ lim←−
n

H i(Un,G) −→ 0.

If i ≥ 1, Proposition 3.29 tells us that H i(Un,F) = 0 for every n. Therefore we
have H i(Y,F) = 0 for i ≥ 2, and H1(Y,F) = lim←−

1

n
Γ(Un,F). By Proposition

3.30, the map Γ(Un+1,F) −→ Γ(Un,F) is a surjection. Hence we have H1(Y,F) =

lim←−
1

n
Γ(Un,F) = 0. This completes the proof.

Corollary 3.33 Assume that X is quasi-separated. Let U be an open subset of X
which is the union of countably many quasi-compact open subsets of X. We write
j for the natural open immersion U ↪−→ X. Then, for an injective object F in
Λ-X̃ét/G, we have Rij∗j

∗F = 0 for i ≥ 1.

Proof. Note that Rij∗j
∗F is the sheafification of the presheaf

(Y −→ X) 7−→ H i(Y ×X U,F)

on Xét. Thus it suffices to show that H i(Y ×X U,F) = 0 for i ≥ 1 and an object
Y −→ X of Xcohét (cf. the proof of Proposition 3.29). Take an increasing series
U1 ⊂ U2 ⊂ · · · of quasi-compact open subsets of U such that U =

⋃∞
n=1 Un. Then,

as X is quasi-separated, Y ×X Un is a quasi-compact open subset of Y . Therefore,
Y ×X U is the union of countably many quasi-compact open subsets (Y ×X Un)n≥1.
Hence Proposition 3.32 tells us that H i(Y ×X U,F) = 0 for i ≥ 1. This concludes

the proof.

Recall the result in [Far06, Lemme 2.3]:

Lemma 3.34 Let U be an open subset of X which is stable under a compact open
subgroup K of G. For a smooth G-equivariant Λ-sheaf F , Γ(U,F) has a natural
structure of a Dc(K)-module.

18
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Proof. We have Γ(U,F) = lim←−V⊂U Γ(V,F), where V runs through quasi-compact

open subsets of U which are stable under K. As the action of K on Γ(V,F) is
smooth, Γ(V,F) has a structure of a Dc(K)-module, and the transition maps of
the projective system (Γ(V,F))V are compatible with the actions of Dc(K). Hence

Γ(U,F) has a structure of a Dc(K)-module.

Definition 3.35 Let U be an open subset of X which is stable under a compact
open subgroup K of G. By the lemma above, a left exact functor

Γ(U/K,−) : Λ-X̃ét/G −→Mod
(
Dc(K)

)
; F 7−→ Γ(U,F)

is induced. We denote by RΓ(U/K,−) the right derived functor of Γ(U/K,−), and
by H i(U/K,−) the ith cohomology of RΓ(U/K,−).

Remark 3.36 As the functors

iD : RepΛ(K) −→Mod
(
Dc(K)

)
, ∞D : Mod

(
Dc(K)

)
−→ RepΛ(K)

are exact, they induce functors between derived categories

iD : D+
(
RepΛ(K)

)
−→ D+

(
Mod(Dc(K))

)
,

∞D : D+
(
Mod(Dc(K))

)
−→ D+

(
RepΛ(K)

)
.

These two functors are adjoint to each other, and satisfy ∞D ◦ iD = id. Therefore
D+(RepΛ(K)) can be regarded as a full subcategory of D+(Mod(Dc(K))) by iD.

Under this setting, if U in the previous definition is quasi-compact, the image of
RΓ(U/K,−) lies in D+(RepΛ(K)).

Corollary 3.37 Let U and K be as in the definition above. Assume that U is
quasi-separated, and is the union of countably many quasi-compact open subsets.
Then the following diagram is 2-commutative:

D+(Λ-X̃ét/G)
RΓ(U/K,−)

//

��

D+
(
Mod(Dc(K))

)
��

D+(Λ-X̃ét)
RΓ(U,−)

// D+
(
Mod(Λ)

)
.

Here Mod(Λ) denotes the category of Λ-modules, and the vertical arrows denote
the forgetful functors.

Proof. Clear from Proposition 3.32.

Proposition 3.38 Let U be an open subset of X which is stable under a compact
open subgroup K of G. Let F be an object of Λ-X̃ét/G and i ≥ 0 an integer.
Assume the following conditions:
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– the base field k is separably closed.

– the characteristic of k is zero, or X is smooth over Spa(k, k+).

– U is quasi-separated, and is the union of countably many quasi-compact open
subsets of X.

– F is constructible as a Λ-sheaf.

– H i(U,F) is a finitely generated Λ-module.

Then the action of K on H i(U,F) is smooth and the Dc(K)-module structure on
H i(U/K,F) can be identified with that on iDH

i(U,F). In particular, we have
iD∞DH i(U/K,F) = H i(U/K,F).

Proof. We can take an increasing sequence U1 ⊂ U2 ⊂ · · · of quasi-compact open
subsets of X which are stable under K such that U =

⋃∞
n=1 Un. As in the proof of

Proposition 3.32, we have the following exact sequence:

0 −→ lim←−
n

1H i−1(Un,F) −→ H i(U,F) −→ lim←−
n

H i(Un,F) −→ 0.

As F is constructible, H i−1(Un,F) is a finitely generated Λ-module for every n by
[Hub98a, Proposition 3.1] (in the case where the characteristic of k is 0) or [Hub96,
Proposition 6.1.1, (1.7.7)] (in the case where X is smooth over Spa(k, k+)). There-
fore, as Λ is Artinian, the projective system (H i−1(Un,F))n satisfies the Mittag-
Leffler condition, and thus lim←−

1

n
H i−1(Un,F) = 0. Hence we have an isomorphism

H i(U,F)
∼=−−→ lim←−nH

i(Un,F).

On the other hand, by the assumption, H i(U,F) is an Artinian Λ-module. There-
fore the decreasing series of Λ-submodules (Ker(H i(U,F)→ H i(Un,F)))n is station-
ary. Hence, for a large enough n, the map H i(U,F) −→ H i(Un,F) is injective. By
Corollary 3.37 and Remark 3.36, the action of K on H i(Un,F) = H i(Un/K,F) is
smooth. Thus, the action of K on H i(U,F) is also smooth.

Consider aDc(K)-homomorphismH i(U/K,F) −→ H i(Un/K,F), which fits into
the following diagram by Corollary 3.37:

H i(U/K,F) // H i(Un/K,F)

H i(U,F) // H i(Un,F).

This map is injective if n is large enough. Hence H i(U/K,F) satisfies

∞DH i(U/K,F) = H i(U,F), iD∞DH i(U/K,F) = H i(U/K,F).

This concludes the proof.

Proposition 3.39 Let U be an open subspace of X which is partially proper over
Spa(k, k+). For an injective object F in Λ-X̃ét/G, we have H i

c(U,F) = 0 for i ≥ 1.
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Proof. By the same way as in the proof of Proposition 3.5 i), we can prove that
H i
c(U,F) ∼= lim−→Z⊂U H

i
Z(U,F), where Z runs through quasi-compact closed subsets

of U . Let C be the set consisting of closed subsets of U of the form V \W where V
and W are quasi-compact open subsets of U with W ⊂ V . We prove that this set
is cofinal in the set of all quasi-compact closed subsets of U . Let Z be an arbitrary
quasi-compact closed subset of U . We can take a quasi-compact open subset V of
U containing Z. As U is partially proper over Spa(k, k+), the closure V of V in
U is quasi-compact (cf. [Hub96, Lemma 1.3.13]). Since Z is closed, for each point
x ∈ V \ V , there exists a quasi-compact open neighborhood Wx of x in U such that
Wx∩Z = ∅. As V \V is quasi-compact, we can find finitely many x1, . . . , xn ∈ V \V
so that Wx1 , . . . ,Wxn cover V \V . Put W = V ∩ (Wx1 ∪· · ·∪Wxn), which is a quasi-
compact open subset of V . Since V \W = V \ (Wx1 ∪ · · · ∪Wxn) is closed in U , it
gives an element of C containing Z.

Therefore we have H i
c(U,F) ∼= lim−→Z∈C H

i
Z(U,F). On the other hand, Proposition

3.31 tells us that H i
Z(U,F) = 0 for Z ∈ C and i ≥ 1. This concludes the proof.

Lemma 3.40 Assume that X is partially proper over Spa(k, k+). For an object F
in Λ-X̃ét/G, the induced G-action on Γc(X,F) is smooth.

Proof. We have Γc(X,F) = lim−→V⊂X ΓV (X,F), where V runs through quasi-compact

open subsets of X and V denotes the closure of V (note that V is quasi-compact).
Therefore it suffices to show that the action of KV on ΓV (X,F) is smooth. As V is
quasi-compact, we can take a quasi-compact open subset U of X containing V . Put

K = KU ∩ KV . Then the homomorphisms ΓV (X,F)
∼=−−→ ΓV (U,F) ↪−→ Γ(U,F)

are K-equivariant. Since the action of K on Γ(U,F) is smooth, so is the action on

ΓV (X,F).

Definition 3.41 Assume that X is partially proper over Spa(k, k+). By the lemma
above, a left exact functor

Γc(X/G,−) : Λ-X̃ét/G −→ RepΛ(G); F 7−→ Γc(X,F)

is induced. We denote by RΓc(X/G,−) the right derived functor of Γc(X/G,−),
and by H i

c(X/G,−) the ith cohomology of RΓc(X/G,−).

Corollary 3.42 Assume that X is partially proper over Spa(k, k+). The following
diagram is 2-commutative:

D+(Λ-X̃ét/G)
RΓc(X/G,−)

//

��

D+
(
RepΛ(G)

)
��

D+(Λ-X̃ét)
RΓc(X,−)

// D+
(
Mod(Λ)

)
.

Here the vertical arrows denote the forgetful functors.

Proof. It follows immediately from Proposition 3.39.

21



Yoichi Mieda

3.3.3 The Godement resolution

Here we introduce the Godement resolution for a smooth G-equivariant sheaf.

Definition 3.43 For each x ∈ X, fix a geometric point ix : x −→ X lying over x.
For an arbitrary Λ-sheaf F on Xét, consider the smooth G-equivariant Λ-sheaf

C(F) = Ind
X/G
X/{1}

(∏
x∈X

ix∗Fx
)
.

If F is an object of Λ-X̃ét/G, the canonical morphism F −→
∏

x∈X ix∗Fx in Λ-X̃ét in-

duces a morphism F −→ C(F) in Λ-X̃ét/G. It is an injection; indeed, C(F) is a sub-
sheaf of

∏
g∈G

∏
x∈X g

∗ix∗Fx, and the natural morphism F −→
∏

g∈G
∏

x∈X g
∗ix∗Fx

is obviously injective.
By repeating this construction, we have the following functorial resolution

0 −→ F −→ C0(F) −→ C1(F) −→ · · · ,

which is called the Godement resolution of F .

Proposition 3.44 Let F be an object of Λ-X̃ét/G which is flat as a Λ-sheaf. For

every i ≥ 0, Ci(F) is flat and injective in the category Λ-X̃ét/G. Moreover, for the
maximal ideal m of Λ, we have Ci(F)⊗Λ Λ/m ∼= Ci(F ⊗Λ Λ/m).

Proof. By Lemma 3.18, Fx is an injective Λ-module. Therefore
∏

x∈X ix∗Fx is an

injective Λ-sheaf. As Ind
X/G
X/{1} preserves injective objects, C(F) is an injective object

in the category Λ-X̃ét/G.

Next we prove that C(F) is flat. For an object Y −→ X in X̃qcét, we have

Γ
(
Y, C(F)

)
= lim−→

K⊂KY

(∏
g∈G

∏
x∈X

Γ(Y, g∗ix∗Fx)
)K

= lim−→
K⊂KY

( ∏
g∈ΩK

∏
x∈X

Γ(Y, g∗ix∗Fx)
)
,

where K runs through compact open subgroups of KY and ΩK is a system of repre-
sentatives of G/K. As Γ(Y, g∗ix∗Fx) is a finite direct sum of Fx, it is a flat Λ-module.
Since flatness of Λ-modules is preserved by arbitrary direct products and filtered in-
ductive limits (cf. Lemma 3.18), we can conclude that Γ(Y, C(F)) is flat. Therefore
each stalk of C(F) is also flat.

By the description of Γ(Y, C(F)) above, the functor F 7−→ C(F) is exact. If we

take a generator λ of m, we have an exact sequence F ×λ−−→ F −→ F ⊗Λ Λ/m −→ 0.

Therefore the sequence C(F)
×λ−−→ C(F) −→ C(F ⊗Λ Λ/m) −→ 0 is exact, and we

obtain C(F)⊗Λ Λ/m ∼= C(F ⊗Λ Λ/m).
Put G = Coker(F → C(F)). For each x ∈ X, we have an exact sequence

0 −→ Fx −→ C(F)x −→ Gx −→ 0. As Fx and C(F)x are flat (= injective), so is Gx.
Thus G is flat. Moreover, we have G ⊗Λ Λ/m = Coker(F ⊗Λ Λ/m→ C(F ⊗Λ Λ/m)).

Now we can repeat the same argument.
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The following proposition is also needed in the next section (cf. [Far06, Lemme
2.7]).

Proposition 3.45 Assume that k is separably closed and X is d-dimensional. Let
F be an object in Λ-X̃ét/G which is flat as a Λ-sheaf, and 0 −→ F −→ C•(F) the
Godement resolution of F . Put G = Ker(C2d(F)→ C2d+1(F)).

Then, for every open subspace U of X which is partially proper over Spa(k, k+),
Γc(U, Cm(F)) and Γc(U,G) are free Λ-modules and H i

c(U,G) = 0 for i ≥ 1.

To prove this proposition, we use the following lemma.

Lemma 3.46 Assume that k is separably closed and X is finite-dimensional. Let
U be an open subspace of X which is partially proper over Spa(k, k+). Let F be a
flat Λ-sheaf on Xét satisfying H i

c(U,F) = 0 for every i ≥ 1. Then the following are
equivalent:

i) Γc(U,F) is a free Λ-module.

ii) H1
c (U,F ⊗Λ Λ/m) = 0, where m is the maximal ideal of Λ.

iii) H i
c(U,F ⊗Λ Λ/m) = 0 for every i ≥ 1.

Proof. As RΓc(U,−) is bounded, we have

RΓc(U,F)
L
⊗Λ Λ/m ∼= RΓc(U,F

L
⊗Λ Λ/m).

By the conditions on F , the left hand side is equal to Γc(U,F)
L
⊗Λ Λ/m, and the

right hand side is equal to RΓc(U,F ⊗Λ Λ/m). In particular we have

TorΛ
i

(
Λ/m,Γc(U,F)

) ∼= H i
c(U,F ⊗Λ Λ/m)

for every i. Therefore we have i) =⇒ iii) =⇒ ii) =⇒ i), as desired.

Proof of Proposition 3.45. First we prove that Γc(U, Cm(F)) is free. By Proposition

3.44, Cm(F⊗ΛΛ/m) is an injective object of (Λ/m)-X̃ét/G. Therefore, by Proposition
3.39 and Proposition 3.44 we have

H i
c

(
U, Cm(F)⊗Λ Λ/m

) ∼= H i
c

(
U, Cm(F ⊗Λ Λ/m)

)
= 0

for i ≥ 1. Hence Lemma 3.46 tells us that Γc(U, Cm(F)) is free.
Next we show that Γc(U,G) is free and H i

c(U,G) = 0 for i ≥ 1. For simplicity we
put Jm = Cm(F) for 0 ≤ m ≤ 2d− 1. We have an exact sequence

0 −→ F −→ J 0 −→ · · · −→ J 2d−1 −→ G −→ 0.

Thus, by Proposition 3.44 and Proposition 3.39 we have H i
c(U,G) ∼= H i+2d

c (U,F) = 0
for every i ≥ 1 (cf. [Hub96, Proposition 5.3.11]). On the other hand, by the proof
of Proposition 3.44, we know that G is a flat Λ-sheaf. Therefore we have an exact
sequence

0→ F ⊗Λ Λ/m→ J 0 ⊗Λ Λ/m→ · · · → J 2d−1 ⊗Λ Λ/m→ G ⊗Λ Λ/m→ 0.

In the beginning of the proof, we have proved that H i
c(U,Jm⊗Λ Λ/m) = 0 for i ≥ 1

and 0 ≤ m ≤ 2d−1. This implies that H1
c (U,G⊗ΛΛ/m) ∼= H1+2d

c (U,F⊗ΛΛ/m) = 0.

Thus Lemma 3.46 tells us that Γc(U,G) is a free Λ-module.
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4 Duality theorem

Let R, κ, F and k be as in Section 3.2. We denote the residue characteristic of R
by p. Fix a truncated discrete valuation ring Λ with residue characteristic 6= p and
a locally pro-p group G.

Theorem 4.1 Let X be a special formal scheme over Spf R equipped with a con-
tinuous action of G in the sense of [Far04, Définition 2.3.10]. Assume the following:

(a) The rigid geometric generic fiber X = t(X )η of X is purely d-dimensional and
smooth over Spa(k, k+).

(b) X is locally algebraizable (cf. [Mie10, Definition 3.19]).

(c) X red is partially proper over κ.

(d) There exists a quasi-compact open subset V of X red such that X red =
⋃
g∈G gV

and {g ∈ G | gV ∩ V 6= ∅} is compact.

Then, for each integer i, we have a G-equivariant isomorphism

H2d+i
c,X (X,Λ)(d)

∼=−−→ RiD
(
RΓc(X/G,Λ)

)
.

Note that the condition (c) ensures that X is partially proper over Spa(k, k+) (cf.
Proposition 3.9), and thus Corollary 3.42 and [Hub96, Proposition 5.3.11] imply
that RΓc(X/G,Λ) lies in the category Db(RepΛ(G)).

Fix V satisfying the condition (d) in the theorem above and put Z = V , U =
sp−1(Z)◦. Take a pro-p open subgroup K which stabilizes V . Then Z and U are
also stable under K. The condition (d) tells us that {gZ}g∈G/K is a locally finite
covering of X red. Note also that {gU}g∈G/K is a locally finite covering of X. By
Proposition 3.10 iii), U is partially proper over Spa(k, k+).

Let 0 −→ Λ −→ I• be the Godement resolution introduced in Definition 3.43
for the smooth G-equivariant constant sheaf Λ on Xét. By Proposition 3.44, this
is an injective resolution in the category Λ-X̃ét/G. Put J • = τ≤2dI•. For α =
(g1, . . . , gm) ∈ (G/K)m, let Uα and Kα be as in Proposition 3.27. We write jα for
the natural open immersion Uα ↪−→ X.

The following lemma gives a complex which computes RD(RΓc(X/G,Λ)).

Lemma 4.2 Let C•• denote the the double complex

C•• = Γc
(
X/G,C•(J •)

)
=

⊕
α∈G\(G/K)−•+1

c-IndGKα Γc(Uα,J •)

in RepΛ(G) (cf. Proposition 3.27 i)). Then we have an isomorphism

RΓc(X/G,Λ) ∼= TotC••

in D−(RepΛ(G)). Moreover, we have an isomorphism

RD
(
RΓc(X/G,Λ)

) ∼= D(TotC••)

in D+(RepΛ(G)).
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Proof. By Proposition 3.27 i), TotC•(J •) gives a resolution of Λ in Λ-X̃ét/G. By
Corollary 3.42 and Proposition 3.45, for integers i ≥ 1 and m,n ≥ 0 we have

H i
c

(
X/G,Cm(J n)

)
=

⊕
α∈G\(G/K)−m+1

c-IndGKα H
i
c(X, jα!j

∗
αJ n)

=
⊕

α∈G\(G/K)−m+1

c-IndGKα H
i
c(Uα,J n)

= 0.

Therefore, each component of the complex TotC•(J •) is acyclic with respect to
Γc(X/G,−). Hence we have

RΓc(X/G,Λ) ∼= Γc
(
X/G,TotC•(J •)

)
= Tot Γc

(
X/G,C•(J •)

)
= TotC••

in D−(RepΛ(G)).
Furthermore, Proposition 3.45 tells us that Γc(Uα,J n) is a projective object in

RepΛ(Kα). Therefore Cmn =
⊕

α∈G\(G/K)−m+1 c-IndGKα Γc(Uα,J n) is a projective

object in RepΛ(G). Hence we have RD(RΓc(X/G,Λ)) ∼= D(TotC••).

Lemma 4.3 For an injective object F of Λ-X̃ét/G, we have

RΓc,X (X, jα∗j
∗
αF) = Γ(Uα,F).

In particular, jα∗j
∗
αF is acyclic with respect to Γc,X (X,−).

Proof. For α = (g1, . . . , gm) ∈ (G/K)m, we set Zα = g1Z ∩· · ·∩gmZ. Then we have
Uα = sp−1(Zα)◦. Therefore Uα is the union of countably many quasi-compact open
subsets by Proposition 3.10 ii).

Note that Γc,X (X, jα∗(−)) = Γc(X red,−)◦sp∗ ◦jα∗ = Γ(X red,−)◦sp∗ ◦jα∗; indeed,
for a sheaf G on (Uα)ét, all elements of Γ(X red, sp∗ jα∗G) are supported on the quasi-
compact closed subset Zα ⊂ X red. On the other hand, by Proposition 3.32 and
Corollary 3.33, we have RΓ(Uα,F) = Γ(Uα,F) and Rjα∗j

∗
αF = jα∗j

∗
αF , respectively.

Hence we have

RΓc,X (X, jα∗j
∗
αF) = RΓc(X red, R sp∗ jα∗j

∗
αF) = RΓc(X red, R sp∗Rjα∗j

∗
αF)

= RΓ(X red, R sp∗Rjα∗j
∗
αF) = RΓ(Uα,F) = Γ(Uα,F),

as desired.

Lemma 4.4 For an object F of Λ-X̃ét/G, we have a functorial resolution F −→
D•(F) in Λ-X̃ét/G

disc where Dm(F) is given by

Dm(F) =
∏

α∈G\(G/K)m+1

∏
g∈Kα\G

g∗jα∗j
∗
αF .
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Recall that Gdisc denotes the group G with discrete topology.
Moreover, Γc,X (X,Dm(F)) is naturally equipped with a structure of a Dc(G)-

module under which

Γc,X
(
X,Dm(F)

)
=

⊕
α∈G\(G/K)m+1

c-Ind
Dc(G)
Dc(Kα) Γ(Uα,F)

and Γc,X (X,D•(F)) is a complex in Mod(Dc(G)).

Proof. Consider the complex

0 −→ F −→
∏

λ∈G/K

jλ∗j
∗
λF −→

∏
λ∈(G/K)2

jλ∗j
∗
λF −→ · · · (∗)

of Λ-sheaves over Xét. It is well-known that this complex is exact (cf. the proof of
Proposition 3.27 ii)). Each term has a G-equivariant structure and each homomor-
phism is G-equivariant. Clearly we have∏

λ∈(G/K)m+1

jλ∗j
∗
λF =

∏
α∈G\(G/K)m+1

∏
g∈Kα\G

g∗jα∗j
∗
αF .

Hence we have a desired resolution.
As {gZ}g∈G/K is a locally finite covering of Xred, we have

sp∗

( ∏
α∈G\(G/K)m+1

∏
g∈Kα\G

g∗jα∗j
∗
αF
)

=
∏

α∈G\(G/K)m+1

∏
g∈Kα\G

sp∗ g
∗jα∗j

∗
αF

=
⊕

α∈G\(G/K)m+1

⊕
g∈Kα\G

sp∗ g
∗jα∗j

∗
αF .

Therefore, by Corollary 3.7 and Lemma 4.3, we obtain

Γc,X
(
X,Dm(F)

)
= Γc

(
Xred, sp∗D

m(F)
)

=
⊕

α∈G\(G/K)m+1

⊕
g∈Kα\G

Γc(Xred, sp∗ g
∗jα∗j

∗
αF)

=
⊕

α∈G\(G/K)m+1

⊕
g∈Kα\G

Γ(g−1Uα,F).

By Lemma 3.34, Γ(Uα,F) has a natural structure of a Dc(Kα)-module and we have

Γc,X
(
X,Dm(F)

)
=

⊕
α∈G\(G/K)m+1

c-Ind
Dc(G)
Dc(Kα) Γ(Uα,F)

as G-modules. Hence Γc,X (X,Dm(F)) can be regarded as a Dc(G)-module.
It is easy to see that the homomorphism

Γc,X
(
X,Dm(F)

)
−→ Γc,X (X,Dm+1(F))

is Dc(G)-linear. Indeed, it follows from the following simple fact:
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for α = (g1, . . . , gm+2) ∈ (G/K)m+2 and β ∈ (G/K)m+1 which can be
obtained by removing one of the entries g1, . . . , gm+2 from α, the restriction
map Γ(Uβ,F) −→ Γ(Uα,F) is Dc(Kα)-linear.

This completes the proof.

By these lemmas, we can give a complex which represents RΓc,X (X,Λ).

Corollary 4.5 We write D••0 for the double complex

Γc,X
(
X,D•(I•)

)
=

⊕
α∈G\(G/K)•+1

c-Ind
Dc(G)
Dc(Kα) Γ(Uα, I•)

in Mod(Dc(G)). Then we have a G-equivariant isomorphism

RΓc,X (X,Λ) ∼= TotD••0

in D+(Mod(Λ)).

Proof. By Lemma 4.4, TotD•(I•) gives a resolution of Λ in Λ-X̃ét/G
disc. In the

same way as in the proof of Lemma 4.4, we can deduce from Lemma 4.3 that

RΓc,X
(
X,Dm(In)

)
=

⊕
α∈G\(G/K)m+1

c-Ind
Dc(G)
Dc(Kα) Γ(Uα, In)

(see also Corollary 3.7). Therefore, each component of TotD•(I•) is acyclic with
respect to Γc,X (X,−). Hence we have

RΓc,X (X,Λ) ∼= Γc,X
(
X,TotD•(I•)

)
= TotD••0

in D+(Mod(Λ)).

Lemma 4.6 We put D•• =∞DD••0 , which is a double complex in RepΛ(G). Then
we have a G-equivariant isomorphism

RΓc,X (X,Λ) ∼= TotD••

in D+(Mod(Λ)).

Proof. We need to prove that the natural homomorphism of complexes TotD•• −→
TotD••0 is a quasi-isomorphism. Consider the following morphism of spectral se-
quences:

Em,n
1 = Hn(Dm•) +3

��

Hm+n(TotD••)

��

Em,n
1 = Hn(Dm•

0 ) +3 Hm+n(TotD••0 ).
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It suffices to show that Hn(Dm•) −→ Hn(Dm•
0 ) is an isomorphism. By definition,

the ith cohomology of Γ(Uα, I•) is H i(Uα/Kα,Λ). Therefore we have

Hn(Dm•
0 ) =

⊕
α∈G\(G/K)m+1

c-Ind
Dc(G)
Dc(Kα) H

n(Uα/Kα,Λ),

Hn(Dm•) =
⊕

α∈G\(G/K)m+1

∞D
(
c-Ind

Dc(G)
Dc(Kα) H

n(Uα/Kα,Λ)
)

=
⊕

α∈G\(G/K)m+1

c-IndGKα
(
∞DHn(Uα/Kα,Λ)

)
=

⊕
α∈G\(G/K)m+1

c-Ind
Dc(G)
Dc(Kα)

(
iD∞DHn(Uα/Kα,Λ)

)
.

By Proposition 3.38 and Proposition 3.10 iv), we have iD∞DHn(Uα/Kα,Λ) =

Hn(Uα/Kα,Λ). This concludes the proof.

Lemma 4.7 Let C̃•• be the double complex in Mod(Dc(G)) given by⊕
α∈G\(G/K)•+1

c-Ind
Dc(G)
Dc(Kα) Γc(Uα,J •)∗.

Then there exists a natural morphism of double complexes C̃•• −→ Dm(C••) that

induces a quasi-isomorphism Tot C̃•• −→ Dm(TotC••).

Proof. By Proposition 2.2, we have a natural morphism C̃•• −→ Dm(C••). To

observe that Tot C̃•• −→ Dm(TotC••) is a quasi-isomorphism, it suffices to show

that the morphism C̃n• −→ Dm(C−n,•) is a quasi-isomorphism for each n. We have

H−i(C̃n•) =
⊕

α∈G\(G/K)n+1

c-Ind
Dc(G)
Dc(Kα) H

i
c(Uα,Λ)∗.

To compute the cohomology of Dm(C−n,•), note the following points:

– Since the set {g ∈ G/K | U ∩ gU 6= ∅} is finite, for a fixed n there exist only
finitely many α ∈ G\(G/K)n+1 such that Uα 6= ∅. Therefore the direct sum⊕

α∈G\(G/K)n+1 in C−n,• is finite and commutes with Dm.

– By Proposition 3.45, we have

Dm
(
c-IndGKα Γc(Uα,J •)

)
= RDm

(
c-IndGKα Γc(Uα,J •)

)
.

– By Proposition 3.10 iv), H i
c(Uα,Λ) is a finitely generated Λ-module. Therefore,

by Proposition 2.2, c-IndGKα H
i
c(Uα,Λ) is acyclic with respect to Dm.

Therefore we have

H−i
(
Dm(C−n,•)

)
=

⊕
α∈G\(G/K)n+1

R−iDm
(
c-IndGKα Γc(Uα,J •)

)
=

⊕
α∈G\(G/K)n+1

Dm
(
c-IndGKα H

i
c(Uα,Λ)

)
.
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Since H i
c(Uα,Λ) is a finitely generated Λ-module, Proposition 2.2 tells us that the

homomorphism

c-Ind
Dc(G)
Dc(Kα) H

i
c(Uα,Λ)∗ −→ Dm

(
c-IndGKα H

i
c(Uα,Λ)

)
is an isomorphism. Hence the homomorphism H−i(C̃n•) −→ H−i(Dm(C−n,•)) is an

isomorphism, as desired.

Lemma 4.8 Let D••0 be as in Corollary 4.5, and C̃•• as in Lemma 4.7. We have a
natural isomorphism

Tot(D••0 )(d)[2d]
∼=−−→ Tot(C̃••)

in D+(Mod(Dc(G))).

Proof. First we fix α ∈ (G/K)m+1, and construct a morphism

Γ(Uα, I•)(d)[2d] −→ Γc(Uα,J •)∗

in D+(Mod(Dc(Kα))). Since In is flat for each n, the complex Tot(J •⊗I•) gives a
resolution of Λ. Therefore we have a morphism of complexes Tot(J • ⊗ I•) −→ I•,
which is determined up to homotopy. The cup product

Γc(Uα,J •)⊗Λ Γ(Uα, I•)(d)[2d] −→ Γc(Uα,J • ⊗ I•)(d)[2d]

gives a morphism of complexes

Γ(Uα, I•)(d)[2d] −→ Hom
(

Γc(Uα,J •),Γc
(
Uα,Tot(J • ⊗ I•)

)
(d)[2d]

)
.

Consider the following morphisms of complexes:

Γc
(
Uα,Tot(J • ⊗ I•)

)
(d)[2d] −→ Γc(Uα, I•)(d)[2d] −→ Γc(X, I•)(d)[2d]

−→ τ≥0

(
Γc(X, I•)(d)[2d]

)
(∗)←−− H2d

c (X,Λ)(d)
TrX−−→ Λ.

The morphism (∗) is a quasi-isomorphism, as H i
c(X,Λ)(d) = 0 for i > 2d. By

composing these morphisms, we get morphisms of complexes

Γ(Uα, I•)(d)[2d] −→ Hom
(
Γc(Uα,J •), τ≥0(Γc(X, I•)(d)[2d])

)
(∗)←−− Hom

(
Γc(Uα,J •), H2d

c (X,Λ)(d)
)

−→ Hom
(
Γc(Uα,J •),Λ

)
= Γc(Uα,J •)∗.

Since Γc(Uα,J •) consists of free Λ-modules (cf. Proposition 3.45), (∗) is a quasi-
isomorphism. As in [Far06, Lemme 2.6], it is easy to show that these morphisms
are Dc(Kα)-linear. Moreover, by Corollary 3.37 and Proposition 3.45, the (−i)th
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cohomology of the composite morphism Γ(Uα, I•)(d)[2d] −→ Γc(Uα,J •)∗ in the de-
rived category D+(Mod(Dc(Kα))) is by definition the isomorphism of the Poincaré
duality

H2d−i(Uα,Λ)(d)
∼=−−→ H i

c(Uα,Λ)∗.

Hence we obtain an isomorphism

Γ(Uα, I•)(d)[2d]
∼=−−→ Γc(Uα,J •)∗

in D+(Mod(Dc(Kα))).
Put

C̃••1 =
⊕

α∈G\(G/K)•+1

c-Ind
Dc(G)
Dc(Kα) Hom

(
Γc(Uα,J •), τ≥0(Γc(X, I•)(d)[2d])

)
,

C̃••2 =
⊕

α∈G\(G/K)•+1

c-Ind
Dc(G)
Dc(Kα) Hom

(
Γc(Uα,J •), H2d

c (X,Λ)(d)
)
,

which are double complexes in Mod(Dc(G)). Then, by the construction above, we
obtain morphisms of double complexes

D••0 (d)[2d] −→ C̃••1

(∗)←−− C̃••2 −→ C̃••.

As (∗) induces a quasi-isomorphism C̃n•
1 ←− C̃n•

2 for each n, the morphism Tot(∗) is
also a quasi-isomorphism. Similarly, we can conclude that the composite morphism

TotD••0 (d)[2d] −→ Tot C̃••

in D+(Mod(Dc(G))) is an isomorphism.

Proof of Theorem 4.1. By Lemma 4.7 and Lemma 4.8, we have isomorphisms

TotD••(d)[2d] ∼=∞D(Tot C̃••) ∼=∞D
(
Dm(TotC••)

)
= D(TotC••)

inD+(RepΛ(G)). Therefore, by Lemma 4.2 and Lemma 4.6, we have aG-equivariant
isomorphism

RΓc,X (X,Λ)(d)[2d] ∼= RD
(
RΓc(X/G,Λ)

)
in D+(Mod(Λ)). By taking cohomology, we get the desired isomorphism

H2d+i
c,X (X,Λ)(d)

∼=−−→ RiD
(
RΓc(X/G,Λ)

)
.

To construct the isomorphism above, we chose V and K. Next we prove that
the isomorphism is independent of these choices.

30



Zelevinsky involution and `-adic cohomology of the Rapoport-Zink tower

Proposition 4.9 The isomorphism

H2d+i
c,X (X,Λ)(d)

∼=−−→ RiD
(
RΓc(X/G,Λ)

)
in Theorem 4.1 is independent of the choice of V and K.

Proof. We denote the isomorphism attached to V and K by fV,K . Let V ′ and K ′ be
another choice. We should prove that fV,K = fV ′,K′ . We may assume either V = V ′

or K = K ′. Indeed, if we obtain the equality in this case, then in general we have

fV,K = fV,K∩K′ = fV ∪V ′,K∩K′ = fV ′,K∩K′ = fV ′,K′

as desired. In particular, we may assume that V ⊂ V ′ and K ⊂ K ′.
We put Z ′ = V ′ and U ′ = sp−1(Z ′)◦. For β ∈ (G/K ′)m, we define U ′β and K ′β

in the same way as in Proposition 3.27. Since the open covering {gU}g∈G/K is a
refinement of {gU ′}g∈G/K′ , there exists a natural morphism of double complexes∏

β∈(G/K′)•+1

j′β∗j
′∗
β I• −→

∏
α∈(G/K)•+1

jα∗j
∗
αI•.

Here j′β denotes the open immersion U ′β ↪−→ X. This morphism turns out to be a
G-equivariant morphism of double complexes D′•(I•) −→ D•(I•), where D′•(In)
denotes the complex D•(In) in Lemma 4.4 attached to V ′ and K ′. Put D′••0 =
Γc,X (X,D′•(I•)), which is a double complex in Mod(Dc(G)) by Lemma 4.4. It is
easy to see that the induced morphism D′••0 −→ D••0 is Dc(G)-equivariant. Note
that the following diagram is commutative, where (∗) (resp. (∗∗)) is induced from
the augmentation morphism I• −→ D′•(I•) (resp. I• −→ D•(I•)) in Lemma 4.4:

Γc,X (X, I•)
(∗)

ww

(∗∗)

&&

TotD′••0
// TotD••0 .

Hence we obtain the commutative diagram below, where we put D′•• =∞DD′••0 (cf.
Lemma 4.6):

H i
c,X (X,Λ)

∼=

ww

∼=

''

H i(TotD′••) // H i(TotD••).

Let C ′•(J •) denote the double complex⊕
β∈G\(G/K′)−•+1

c-Ind
X/G

U ′β/K
′
β

Res
X/G

U ′β/K
′
β
J •

attached to U ′ and K ′ defined in Proposition 3.27 i). Then we have a morphism

C•(J •) −→ C ′•(J •) of double complexes in Λ-X̃ét/G. This morphism is clearly
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compatible with the augmentation morphisms C•(J •) −→ J • and C ′•(J •) −→ J •
(cf. Proposition 3.27 i)). Put

C ′•• = Γc
(
X/G,C ′•(J •)

)
=

⊕
β∈G\(G/K′)−•+1

c-IndGK′β Γc(U
′
β,J •).

Then, a G-equivariant morphism C ′•• −→ C•• is induced, and the following dia-
grams are commutative (cf. Lemma 4.2):

TotC•• //

∼=
''

TotC ′••

∼=
ww

RΓc(X/G,Λ),

RD
(
RΓc(X/G,Λ)

)
∼=

uu

∼=

))

D(TotC ′••) // D(TotC••).

As in Lemma 4.7 and the proof of Lemma 4.8, we put

C̃ ′•• =
⊕

β∈G\(G/K′)•+1

c-Ind
Dc(G)

Dc(K′β) Γc(U
′
β,J •)∗,

C̃ ′••1 =
⊕

β∈G\(G/K′)•+1

c-Ind
Dc(G)

Dc(K′β) Hom
(
Γc(U

′
β,J •), τ≥0(Γc(X, I•)(d)[2d])

)
,

C̃ ′••2 =
⊕

β∈G\(G/K′)•+1

c-Ind
Dc(G)

Dc(K′β) Hom
(
Γc(U

′
β,J •), H2d

c (X,Λ)(d)
)
.

Then, Dc(G)-equivariant morphisms C̃ ′•• −→ C̃••, C̃ ′••1 −→ C̃••1 and C̃ ′••2 −→ C̃••2

are naturally induced. Furthermore, we can easily check that the following diagram
is commutative (the horizontal arrows are the morphisms appeared in Lemma 4.7
and the proof of Lemma 4.8):

D′••0 (d)[2d] //

��

C̃ ′••1

��

C̃ ′••2
//oo

��

C̃ ′•• //

��

Dm(C ′••)

��

D••0 (d)[2d] // C̃••1 C̃••2
//oo C̃•• // Dm(C••).

Putting all together, we obtain the commutative diagram

H2d+i
c,X (X,Λ)(d)

∼=
��

∼=

''

RiD
(
RΓc(X/G,Λ)

)
∼=
��

∼=

ww

H i(TotD′••(d)[2d]) //

��

H i
(
D(TotC ′••)

)
��

H i(TotD••(d)[2d]) // H i
(
D(TotC••)

)
,
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which gives the desired equality fV,K = fV ′,K′ .

Corollary 4.10 For an isomorphism ϕ : X
∼=−−→ X of formal schemes which is com-

patible with the action of G on X , we have the following commutative diagram:

H2d+i
c,X (X,Λ)(d)

∼= //

ϕ∗∼=
��

RiD
(
RΓc(X/G,Λ)

)
RiD(ϕ∗)∼=
��

H2d+i
c,X (X,Λ)(d)

∼= // RiD
(
RΓc(X/G,Λ)

)
.

Proof. We use the notation fV,K in the proof of Proposition 4.9. It is immediate to
see that the following diagram is commutative:

H2d+i
c,X (X,Λ)(d)

fV,K

∼=
//

ϕ∗∼=
��

RiD
(
RΓc(X/G,Λ)

)
RiD(ϕ∗)∼=
��

H2d+i
c,X (X,Λ)(d)

fϕ−1(V ),K

∼=
// RiD

(
RΓc(X/G,Λ)

)
.

Hence the corollary follows from Proposition 4.9.

By standard argument as in [Far06, §3], we can show the similar results for `-adic
coefficients.

Theorem 4.11 Let X and G be as in Theorem 4.1, and Lλ a finite extension of
Q`. Then, for each integer i, we have a G-equivariant isomorphism

H2d+i
c,X (X,Lλ)(d)

∼=−−→ RiD
(
RΓc(X/G,Lλ)

)
.

This isomorphism is functorial with respect to an automorphism of X which is
compatible with the action of G on X .

Remark 4.12 Assume that G is a quotient of the group H(Qp) for some connected
reductive group H over Qp. Then, for every field L of characteristic 0, the category
RepL(G) is noetherian and has finite projective dimension.

In this case, for a finite extension Lλ of Q`, the Čech spectral sequence

Ei,j
1 =

⊕
α∈G\(G/K)−i+1

c-IndGKα H
j
c (Uα, Lλ) =⇒ H i+j

c (X,Lλ)

(cf. Lemma 4.2) and Proposition 3.10 iv) tell us that RΓc(X/G,Lλ) is an object of
Db

fg(RepLλ(G)) (recall that Uα = ∅ for all but finitely many α ∈ G\(G/K)−i+1).
Hence, by Corollary 2.3 iii), we have a G-equivariant functorial isomorphism

H2d+i
c,X (X,Q`)(d)

∼=−−→ RiD
(
RΓc(X/G,Q`)

)
.

33



Yoichi Mieda

5 Application to the Rapoport-Zink tower

5.1 Rapoport-Zink tower for GSp(2n)

Let n ≥ 1 be an integer. For a ring A, let 〈 , 〉 : A2n ×A2n −→ A be the symplectic
pairing defined by 〈(xi), (yi)〉 = x1y2n+x2y2n−1 + · · ·+xnyn+1−xn+1yn−· · ·−x2ny1,
and GSp2n(A) the symplectic similitude group with respect to 〈 , 〉.

Here we briefly recall the definition of the Rapoport-Zink tower for GSp(2n).
See [Mie12b, §3.1] for details. In this section, we assume that p 6= 2.

We fix a n-dimensional p-divisible group X over Fp which is isoclinic of slope

1/2 and a polarization λ0 : X
∼=−−→ X∨. We write Zp∞ for the completion of the

maximal unramified extension of Zp and Nilp for the category of Zp∞-schemes
on which p is locally nilpotent. Let M : Nilp −→ Set be the moduli functor
of deformations by quasi-isogenies (X, ρ) of (X, λ0) (for the precise definition, see
[Mie12b, §3.1]). It is known that M is represented by a special formal scheme over
Spf Zp∞ , which is also denoted byM. By [RZ96, Proposition 2.32], every irreducible
component ofMred is projective over Fp. In particular,Mred is partially proper over
Fp. We write M for the rigid generic fiber t(M)η ofM. The adic space M is purely
n(n + 1)/2-dimensional and smooth over Spa(Qp∞ ,Zp∞), where Qp∞ = FracZp∞ .
By Proposition 3.9, M is partially proper over Spa(Qp∞ ,Zp∞).

By adding level structures on the universal polarized p-divisible group on M ,
we can construct a projective system of étale coverings {MK}K⊂K0 of M , where K
runs through open subgroups of K0 = GSp2n(Zp). This projective system is called
the Rapoport-Zink tower for GSp(2n). For each K and g ∈ G = GSp2n(Qp) with

g−1Kg ⊂ K0, we have a natural isomorphism [g] : MK

∼=−−→Mg−1Kg called the Hecke

operator. In particular, the group G acts on the pro-object {MK}K⊂K0 on the right.
Let J be the group of self-quasi-isogenies of X preserving λ0 up to multiplication

by Q×p . We can construct a connected reductive algebraic group J over Qp in a
natural way such that J(Qp) = J . In particular, J is naturally equipped with
a topology. Concretely, J is isomorphic to GU(n,D), where D is the quaternion
division algebra over Qp (cf. [Mie12b, Remark 3.11]). By definition, J acts on M
and M . This action naturally extends to MK for each K and transition maps in
the projective system {MK}K⊂K0 are compatible with the actions of J . Further, the
Hecke operators also commute with the actions of J . By [Far04, Corollaire 4.4.1],
the action of J on MK is continuous in the sense of Definition 3.19. Sometimes it
is convenient to consider the quotient MK/p

Z of MK by the discrete subgroup pZ of
the center of J .

Fix a prime number ` which is different from p. Put

H i
c(MK) = H i

c(MK ⊗Qp∞ Qp∞ ,Q`), H i
c(M∞) = lim−→

K⊂K0

H i
c(MK),

H i
c(MK/p

Z) = H i
c

(
(MK/p

Z)⊗Qp∞ Qp∞ ,Q`

)
, H i

c(M∞/p
Z) = lim−→

K⊂K0

H i
c(MK/p

Z).
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AsG×J acts on the tower {MK}K⊂K0 , the Q`-vector spacesH i
c(M∞) andH i

c(M∞/p
Z)

are equipped with actions of G × J . The actions of G are obviously smooth. The
actions of J are also smooth, as the action of J on MK is smooth (cf. [Far04, Corol-
laire 4.4.7]). By [RZ96, Lemma 5.36], the action of G on H i

c(M∞/p
Z) factors through

G/pZ, where pZ ⊂ Q×p ⊂ G is a discrete subgroup of the center of G. For an open
subgroup K of K0, we have

H i
c(M∞)K = H i

c(MK), H i
c(M∞/p

Z)K = H i
c(MK/p

Z).

By using the Weil descent datum on M (cf. [RZ96, 3.48]), we can define actions
of the Weil group WQp of Qp on H i

c(MK), H i
c(M∞), H i

c(MK/p
Z), and H i

c(M∞/p
Z).

Hence, H i
c(M∞) is a representation of G× J ×WQp , and H i

c(M∞/p
Z) is a represen-

tation of G/pZ × J/pZ ×WQp .

In the following, we also write M and MK for M⊗Qp∞Qp∞ and MK⊗Qp∞Qp∞ by
abuse of notation. Recall that the formal modelM of M gives a support set CM of
M (cf. Definition 3.15). We denote by the same symbol CM the support set of MK

induced by the morphism MK −→ M (cf. Definition 3.14 i)). Similarly, the formal
modelM/pZ of M/pZ determines a support set of MK/p

Z, which is also denoted by
CM for simplicity.

Proposition 5.1 Let K be an open subgroup of K0, and g an element of G such

that g−1Kg ⊂ K0. Then, the Hecke operator [g] : MK

∼=−−→ Mg−1Kg induces an

isomorphism of pairs (MK , CM)
∼=−−→ (Mg−1Kg, CM) (cf. Definition 3.14 ii)). Similarly,

we have an isomorphism of pairs [g] : (MK/p
Z, CM)

∼=−−→ (Mg−1Kg/p
Z, CM).

Proof. It suffices to show that if Z ⊂ MK belongs to CM, then [g](Z) belongs to
CM. If g lies in the center ZG of G, then the claim holds, because [RZ96, Lemma
5.36] tells us that the Hecke action [g] on M = MK0 extends to an automorphism
of M. Therefore, replacing g by zg with a suitable element z ∈ pZ, we may assume
that Z2n

p ⊂ gZ2n
p . Take an integer N ≥ 0 such that gZ2n

p ⊂ p−NZ2n
p .

For an integer k ≥ 0, let Mred,k be the subfunctor of Mred consisting of (X, ρ)
such that pkρ and pkρ−1 are isogenies. By [RZ96, Proposition 2.9], it is represented
by a closed subscheme ofMred, which is quasi-compact (cf. [RZ96, Corollary 2.31]).
Clearly we have Mred =

⋃
k≥0Mred,k. Since Z ∈ CM, we can find k ≥ 0 such that

Z ⊂ sp−1
K (Mred,k), where spK denotes the composite MK

pK−−→ M
sp−−→ Mred. It

suffices to prove that [g](Z) ⊂ sp−1
g−1Kg(M

red,k+N).
Take a geometric point x in Z. It corresponds to a triple (X, ρ, α), where X is

a p-divisible group over the valuation ring κ(x)+, ρ : X⊗Fp (κ(x)+/p) −→ X ⊗κ(x)+

(κ(x)+/p) is a quasi-isogeny, and α is a level structure Z2d
p

∼=−−→ Tp(X ⊗κ(x)+ κ(x))

(mod K). Put y = [g](x). The pair (X ′, ρ′) corresponding to the point pg−1Kg(y) in
M can be described as follows. Note that α gives a homomorphisms (Qp/Zp)2n −→
X ⊗κ(x)+ κ(x), which is well-defined up to K-action. Let H be the scheme-theoretic
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closure in X of the image of gZ2n
p /Z2n

p under this homomorphism. Then, it is
a finite locally free subgroup scheme of X[pN ], since κ(x)+ is a valuation ring.
By the definition of Hecke operators (cf. [RZ96, 5.34]), we have X ′ = X/H and
ρ′ = (φ mod p) ◦ ρ, where φ : X −→ X ′ is the canonical isogeny. As spK(x) lies in
Mred,k, pkρ and pkρ−1 are isogenies. Therefore, so is pkρ′. On the other hand, since
H ⊂ X[pN ], Kerφ is killed by pN , and thus pNφ−1 is an isogeny. Hence pk+Nρ′−1

is also an isogeny. Namely, y = [g](x) lies in sp−1
g−1Kg(M

red,k+N). Now we conclude

that [g](Z) ⊂ sp−1
g−1Kg(M

red,k+N).

PutH i
CM(M∞) = lim−→K⊂K0

H i
CM(MK) andH i

CM(M∞/p
Z) = lim−→K⊂K0

H i
CM(MK/p

Z).

By the previous proposition, G acts naturally on H i
CM(M∞) and H i

CM(M∞/p
Z). For

an open subgroup K of K0, we have

H i
CM(M∞)K = H i

CM(MK), H i
CM(M∞/p

Z)K = H i
CM(MK/p

Z).

Obviously the groups J and WQp act on H i
CM(M∞) and H i

CM(M∞/p
Z). We have nat-

ural homomorphisms H i
c(M∞) −→ H i

CM(M∞) and H i
c(M∞/p

Z) −→ H i
CM(M∞/p

Z),
which are G× J ×WQp-equivariant.

In the sequel, we will describe the action of G on H i
CM(M∞) by using some formal

models (cf. [IM10, §5.2]). For an integer m ≥ 0, let Mm be the formal scheme
classifying Drinfeld m-level structures on the universal p-divisible group on M (for
a precise definition, see [IM10, §3.2]). The formal schemeMm is finite overM, and
satisfies t(Mm)η ∼= MKm , where Km is the kernel of GSp2n(Zp) −→ GSp2n(Z/pmZ).

Lemma 5.2 There exists a natural isomorphism

H i
CM(MKm) ∼= H i

c(Mred
m , RΨQ`),

where RΨQ` = R sp∗Q` denotes the formal nearby cycle complex (see [Ber96]).

Proof. By Proposition 3.16, we have

H i
c(Mred

m , RΨQ`) = H i
c,Mm

(MKm) = H i
CMm

(MKm).

Hence it suffices to show the equality CMm = CM of support sets of MKm . This

immediately follows from Lemma 3.17 and the fact that Mm −→M is finite.

Let G+ denote the submonoid {g ∈ G | Z2n
p ⊂ gZ2n

p } of G. For g ∈ G+, let e(g)

be the minimal non-negative integer such that gZ2n
p ⊂ p−e(g)Z2n

p . Following [Man05,
§6], for g ∈ G+ with m ≥ e = e(g), we can define a formal scheme Mm,g over Mm

satisfying the following properties (cf. [IM10, §5.2]):

– The structure morphism pr: Mm,g −→ Mm is proper, and the induced mor-
phism on rigid generic fibers t(Mm,g)η −→ t(Mm)η is an isomorphism.
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– There exists a proper morphism [g] : Mm,g −→Mm−e such that the composite

MKm = t(Mm)η
pr−1

−−→ t(Mm,g)η
[g]−−→ t(Mm−e)η = MKm−e

coincides with the Hecke operator MKm

[g]−−→ Mg−1Kmg −→ MKm−e attached to

g ∈ G (note that Z2n
p ⊂ gZ2n

p ⊂ p−eZ2n
p implies that g−1Kmg ⊂ Km−e).

Lemma 5.3 For g ∈ G+ and m ≥ e = e(g), the composite of

H i
c(Mred

m−e, RΨQ`)
[g]∗−−→ H i

c(Mred
m,g, RΨQ`)

pr∗−−→∼= H i
c(Mred

m , RΨQ`)

corresponds to the composite of

H i
CM(MKm−e) −→ H i

CM(Mg−1Kmg)
[g]∗−−→ H i

CM(MKm)

under the isomorphism in Lemma 5.2.

Proof. As in Lemma 5.2, we can see that

H i
c(Mred

m,g, RΨQ`) ∼= H i
CM

(
t(Mm,g)η

) (pr∗)−1

−−−−→∼= H i
CM(MKm).

Hence the lemma immediately follows from the property of [g] : Mm,g −→Mm−e.

By this description and the main theorem in [IM10], we can compare the cuspidal
parts of H i

c(M∞) and H i
CM(M∞) in the case n = 2.

Corollary 5.4 Assume that n = 2. Then, no supercuspidal representation of G
appears as a subquotient of the kernel and the cokernel of the map H i

c(M∞) −→
H i
CM(M∞). The same holds for the map H i

c(M∞/p
Z) −→ H i

CM(M∞/p
Z).

Proof. We will use the notation in [IM10, §5] freely. By [IM10, Proposition 5.11,
Proposition 5.18], we have aG-equivariant isomorphismH i

c(M∞) ∼= H i
c(Mred

∞ ,F [0])Q` .

On the other hand, [Ber96, Theorem 3.1] tells us that H i
CM(M∞) ∼= H i

c(Mred
∞ ,F [2])Q` .

The right hand side H i
c(Mred

∞ ,F [2])Q` is endowed with an action of G (cf. [IM10,
§5.2]), and Lemma 5.3 ensures that the isomorphism above is G-equivariant. By
[IM10, Proposition 5.6 i)], for each h ∈ {1, 2} we have an exact sequence of smooth
G-representations

H i−1
c (Mred

∞ ,F (h))Q` → H i
c(Mred

∞ ,F [h−1])Q` → H i
c(Mred

∞ ,F [h])Q` → H i
c(Mred

∞ ,F (h))Q` .

Hence the kernel and the cokernel of H i
c(Mred

∞ ,F [0])Q` −→ H i
c(Mred

∞ ,F [2])Q` is a

successive extension of subquotients of Hj
c (Mred

∞ ,F (h))Q` for i − 1 ≤ j ≤ i and

1 ≤ h ≤ 2. On the other hand, by [IM10, Theorem 5.21], Hj
c (Mred

∞ ,F (h))Q` has no

supercuspidal subquotient. Therefore the kernel and the cokernel of H i
c(M∞) −→

H i
CM(M∞) have no supercuspidal subquotient. Similar argument can be applied to

the map H i
c(M∞/p

Z) −→ H i
CM(M∞/p

Z).
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The following result on the vanishing of cohomology is also essentially obtained
in [IM10].

Proposition 5.5 i) For an integer i < dimM−dimMred, we have H i
c(M∞) = 0.

ii) For an integer i > dimM + dimMred, we have H i
CM(M∞) = 0.

Proof. Fix an integer m ≥ 0. Let U be a quasi-compact open formal subscheme
of Mm. By the p-adic uniformization theorem, there exist a scheme U which is
separated of finite type over Zp∞ and a closed subscheme Z of the special fiber Us
of U such that U is isomorphic to the formal completion of U along Z (cf. [IM10,
Corollary 4.4]; we can take U as an open subscheme of a suitable integral model of
the Siegel modular variety). We denote the closed immersion Z ↪−→ Us by ι. By
[Mie10, Theorem 4.35] and [Mie10, Proposition 3.13], we have

H i
c

(
t(U)η,Q`

) ∼= H i
c(Z,RΨU ,cQ`) ∼= H i

c(Z,Rι
!RψUQ`).

Therefore, [IM10, Lemma 5.26] tells us that H i
c(t(U)η,Q`) = 0 if i < dimUη −

dimZ = dimM − dimMred. Since H i
c(M∞) = lim−→m

lim−→U⊂Mm
H i
c(t(U)η,Q`), we

conclude i).
We prove ii). By [Ber96, Theorem 3.1] and [IM10, Lemma 5.26], we have

H i
c(U red, RΨQ`) ∼= H i

c(Z, ι
∗RψUQ`) = 0

for i > dimM − dimMred. Therefore, by Lemma 5.2 and Proposition 3.5 ii), we
have

H i
CM(MKm) ∼= H i

c(Mred
m , RΨQ`) ∼= lim−→

U⊂Mm

H i
c(U red, RΨQ`) = 0

for i > dimM − dimMred. Hence H i
CM(M∞) = lim−→m

H i
CM(MKm) also vanishes for

i > dimM − dimMred.

5.2 Application of the duality theorem

Fix an isomorphism Q`
∼= C and identify them. Every representation in this subsec-

tion is considered over C. Let K̃ be an open compact-mod-center subgroup of G and
τ an irreducible smooth representation of K̃. Denote by χ : ZG −→ C× the central
character of τ∨. For a smooth G-representation V , put Vτ = HomK̃(τ, V ⊗H(ZG)χ

−1).
Then, H i

c(M∞)τ and H i
CM(M∞)τ are representations of J×WQp . By [RZ96, Lemma

5.36], the actions of the center ZJ = ZG of J on H i
c(M∞)τ and H i

CM(M∞)τ are given
by χ. Hence we can consider the Bernstein decomposition with respect to the action
of J (cf. Section 2):

H i
c(M∞)τ =

⊕
s∈Iχ

H i
c(M∞)τ,s, H i

CM(M∞)τ =
⊕
s∈Iχ

H i
CM(M∞)τ,s.
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Theorem 5.6 Fix s ∈ Iχ. Assume thatHq
c (M∞)τ,s is a finite length J-representation

for every integer q. Then, for each integer i, we have an isomorphism of J ×WQp-
representations

H
2d+ι(s)−i
CM (M∞)τ∨,s∨(d) ∼= Zel

(
H i
c(M∞)∨τ,s

)
,

where d = n(n+ 1)/2 is the dimension of M .

Remark 5.7 For the Drinfeld tower, a similar result is proved by Fargues [Far06,
Théorème 4.6]. In that caseM is a p-adic formal scheme, thus H i

CM(M∞) coincides
with H i

c(M∞) (cf. Remark 3.12).

Proof of Theorem 5.6. First we will reduce the theorem to the case where τ is trivial
on pZ. Take c ∈ C such that c2 = χ(p) and define the character ω : Q×p −→ C×

by ω(a) = cvp(a), where vp is the p-adic valuation. We denote the composite of the
similitude character G −→ Q×p (resp. J −→ Q×p ) and ω by ωG (resp. ωJ). Then,
τ ′ = τ ⊗ (ωG|K̃) is trivial on pZ. Moreover, as in the proof of [Mie12b, Lemma 3.5],
we have Hq

c (M∞)⊗ ωG ⊗ ω−1
J
∼= Hq

c (M∞) as G× J ×WQp-representations for every
integer q. Therefore we obtain

Hq
c (M∞)τ = HomK̃

(
τ,Hq

c (M∞)⊗H(ZG) χ
−1
)

= HomK̃

(
τ ′, (Hq

c (M∞)⊗H(ZG) χ
−1)⊗ ωG

)
= HomK̃

(
τ ′, (Hq

c (M∞)⊗ ωG)⊗H(ZG) ω
2χ−1

)
∼= HomK̃

(
τ ′, (Hq

c (M∞)⊗ ωJ)⊗H(ZG) ω
2χ−1

)
= Hq

c (M∞)τ ′ ⊗ ωJ .

For s = [(M, σ)] ∈ Iχ, put s′ = [(M, σ ⊗ (ω−1
J |M(Qp)))]. Then, we conclude that

Hq
c (M∞)τ,s ∼= Hq

c (M∞)τ ′,s′ ⊗ ωJ as J ×WQp-representations. In particular, the J-
representation Hq

c (M∞)τ ′,s′ has finite length. Similarly we have Hq
CM(M∞)τ∨,s∨ ∼=

Hq
CM(M∞)τ ′∨,s′∨ ⊗ ω−1

J . Suppose that the theorem holds for τ ′ and s′. Then, by the
isomorphisms above, we have

H
2d+ι(s)−i
CM (M∞)τ∨,s∨(d) ∼= H

2d+ι(s′)−i
CM (M∞)τ ′∨,s′∨(d)⊗ ω−1

J
∼= Zel

(
H i
c(M∞)∨τ ′,s′

)
⊗ ω−1

J

∼= Zel
(
H i
c(M∞)∨τ,s ⊗ ωJ

)
⊗ ω−1

J

(∗)∼= Zel
(
H i
c(M∞)∨τ,s

)
.

For the isomorphism (∗), see Lemma 2.9 i).
Thus, in the following we may assume that τ is trivial on pZ. Then, we have

Hq
c (M∞)τ,s = Hq

c (M∞/p
Z)τ,s = HomK̃

(
τ,Hq

c (M∞/p
Z)s
)
,

Hq
CM(M∞)τ∨,s∨ = Hq

CM(M∞/p
Z)τ∨,s∨ = HomK̃

(
τ∨, Hq

CM(M∞/p
Z)s∨

)
.

Since K̃ is compact-mod-center, there exists a self-dual chain of lattices L of Q2d
p

(cf. [RZ96, Definition 3.1, Definition 3.13]) such that every g ∈ K̃ and L ∈ L satisfy
gL ∈ L . As in [Mie12b, §4.1], we write KL for the stabilizer of L in G. For an
integer m ≥ 0, we put

KL ,m = {g ∈ KL | for every L ∈ L , g acts trivially on L/pmL}.
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It is an open normal subgroup of KL . We denote by NL the subgroup of G consisting
of g ∈ G satisfying gL = L . We have KL ,m ⊂ KL ⊂ NL and KL ,m is normal in

NL . By definition, K̃ is contained in NL .

Take an integer m ≥ 0 large enough so that KL ,m ⊂ K0 and τ |KL ,m
is trivial. In

[Mie12b, Definition 4.3], the author constructed a formal schemeM[
L ,m over Spf Zp∞

satisfying the following:

– t(M[
L ,m)η is naturally isomorphic to MKL ,m.

– M[
L ,m is naturally endowed with an action of K̃×J and a Weil descent datum,

and they are compatible with those structures onMKL ,m under the isomorphism
above.

We shall apply Theorem 4.11 to M[
L ,m/p

Z and J/pZ. We should verify the condi-
tions in Theorem 4.1. The conditions (a) and (c) are satisfied, as explained in the
previous subsection. The condition (b) is satisfied by [Mie12b, Remark 4.12]. For

the condition (d), let I denote the set of irreducible components of M[,red
L ,m/p

Z. For

α ∈ I, put Vα = (M[,red
L ,m/p

Z) \
⋃
β∈I,α∩β=∅ β. It is a quasi-compact open subset of

M[,red
L ,m/p

Z. By [Mie12b, Lemma 5.1 ii)], the action of J/pZ on I has finite orbits.

Take α1, . . . , αk ∈ I so that I =
⋃k
j=1(J/pZ)αj, and put V =

⋃k
j=1 Vαj . Clearly

we have M[,red
L ,m/p

Z =
⋃
h∈J/pZ hV . The closure V is the union of finitely many

irreducible components of M[,red
L ,m/p

Z. Therefore, by the same way as in [Mie13,

Corollary 4.3 ii)], we can prove that the set {g ∈ J/pZ | gV ∩ V 6= ∅} is compact.
Thus the condition (d) is satisfied. Now, by Theorem 4.11 and Remark 4.12, we
have a J-equivariant isomorphism

H2d+i

c,M[
L ,m

(MKL ,m
/pZ)(d) ∼= RiD

(
RΓc

(
(MKL ,m

/pZ)/(J/pZ),Q`

))
.

By Corollary 4.10, this isomorphism is also K̃ ×WQp-equivariant.

We prove that the left hand side is equal to H2d+i
CM (MKL ,m

/pZ)(d). For simplicity,
we denote the support set CM[

L ,m
of MKL ,m

by CL ,m. Let LIw be the self-dual chain

of lattices {
(pmZp)⊕j ⊕ (pm+1Zp)⊕(2d−j)}

0≤j≤2d,m∈Z.

The group KLIw
attached to LIw is an Iwahori subgroup of G. There exists g0 ∈ G

such that L ⊂ g0LIw. The following morphisms of formal schemes are naturally
induced:

M[
L ,m

(1)←−−M[
g0LIw,m

[g0]−−→∼= M[
LIw,m

(2)−−→Mm
(3)−−→M.

The morphisms (1), (2) and (3) are proper. The rigid generic fiber of the diagram
above is identified with the following diagram:

MKL ,m

π←−−Mg0KLIw,m
g−1
0

[g0]−−→∼= MKLIw,m
−→MKm −→M.
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Therefore, by Lemma 3.17 and Proposition 5.1, we have equalities

π−1CL ,m = Cg0LIw,m = [g0]−1CLIw,m = [g0]−1CM = CM = π−1CM

of support sets of Mg0KLIw,m
g−1
0

(recall that we denote by CM the support set of

MK induced from the support set CM of M for various K ⊂ K0). Since π is finite
and surjective, we conclude that CL ,m = CM. Hence H2d+i

c,M[
L ,m

(MKL ,m
/pZ)(d) =

H2d+i
CM (MKL ,m

/pZ)(d), and thus we have a K̃ × J ×WQp-equivariant isomorphism

H2d+i
CM (MKL ,m

/pZ)(d) ∼= RiD
(
RΓc

(
(MKL ,m

/pZ)/(J/pZ),Q`

))
.

The (τ∨, s∨)-part of the left hand side is equal to H2d+i
CM (M∞)τ∨,s∨(d). We will

consider the (τ∨, s∨)-part of the right hand side. For simplicity, we put

A = RΓc
(
(MKL ,m

/pZ)/(J/pZ),Q`

)
,

which is an object of Db(Rep(J/pZ)) endowed with an action of K̃ × WQp . The

action of K̃ factors through the finite quotient H = K̃/KL ,mp
Z. By Corollary 3.42,

Hq(A) = Hq
c (MKL ,m

/pZ). Therefore, we have a spectral sequence

Es,t
2 = RsD

(
H−tc (MKL ,m

/pZ)
)

=⇒ Rs+tD(A).

Take the (τ∨, s∨)-part of this spectral sequence:

Es,t
2 = RsD

(
H−tc (MKL ,m

/pZ)
)
τ∨,s∨

=⇒ Rs+tD(A)τ∨,s∨ .

We can observe that

RsD
(
H−tc (MKL ,m

/pZ)
)
τ∨,s∨

= RsD
(
H−tc (MKL ,m

/pZ)τ,s
)

= RsD
(
H−tc (M∞)τ,s

)
.

Indeed, for the τ∨-part, notice the isotypic decomposition

H−tc (MKL ,m
/pZ) =

⊕
σ

H−tc (MKL ,m
/pZ)σ ⊗ σ,

where σ runs through irreducible representations of H. Since each σ is finite-
dimensional and there are only finitely many such σ, we have

RsD
(
H−tc (MKL ,m

/pZ)
)

=
⊕
σ

RsD
(
H−tc (MKL ,m

/pZ)σ
)
⊗ σ∨,

and thus RsD(H−tc (MKL ,m
/pZ))τ∨ = RsD(H−tc (MKL ,m

/pZ)τ ). For the s-part, see
[Far06, Remarque 1.5].

By the assumption, H−tc (M∞)τ,s has finite length as a J-representation. There-
fore, Theorem 2.5 tells us that RsD

(
H−tc (MKL ,m

/pZ)
)
τ∨,s∨

= 0 unless s = ι(s).

Thus, we have

RiD(A)τ∨,s∨ ∼= Rι(s)D
(
H−i+ι(s)c (M∞)τ,s

)
= Zel

(
H−i+ι(s)c (M∞)∨τ,s

)
.
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Hence we obtain a J ×WQp-equivariant isomorphism

H2d+i
CM (M∞)τ∨,s∨(d) ∼= Zel

(
H−i+ι(s)c (M∞)∨τ,s

)
.

Replacing i by ι(s)− i, we conclude the theorem.

To apply Theorem 5.6, we need the following technical assumption.

Assumption 5.8 For each integer q and each compact open subgroup H of J , the
G-representation Hq

c (M∞)H is finitely generated.

Remark 5.9 We know that for every compact open subgroup K of G, the J-
representation Hq

c (M∞)K is finitely generated (cf. [Far04, Proposition 4.4.13]; see
also [Mie13, Theorem 4.4]). Therefore, if we can establish an analogue of Faltings’
isomorphism for our tower {MK}K , we can prove Assumption 5.8 by switching the
role of G and J .

Lemma 5.10 i) For an irreducible supercuspidal representation π of G, there

exists a compact-mod-center open subgroup K̃ of G and an irreducible smooth
representation τ of K̃ such that c-IndG

K̃
τ is admissible (hence supercuspidal)

and π is a direct summand of c-IndG
K̃
τ .

ii) If n = 2, under the same setting as i), we can take (K̃, τ) so that π = c-IndG
K̃
τ .

iii) Let (K̃, τ) be as in i). Under Assumption 5.8, Hq
c (M∞)τ is a finite length

J-representation for every integer q.

Proof. i) Put G1 = Sp2n(Qp) and write G′ for the image of Q×p ×G1 −→ G; (c, g) 7−→
cg. Let π′ be the restriction of π to G′. Since G′ is a normal subgroup of index 2 in
G, π′ has finite length. Take an irreducible subrepresentation π1 of π′, and regard
it as a representation of Q×p × G1. It is irreducible and supercuspidal. By [Ste08,
Theorem 7.14], there exist a compact open subgroup K of G1, an irreducible smooth
representation σ of K and a smooth character χ of Q×p such that π1

∼= χ⊗c-IndG1
K σ.

Let K̃ be the image of Q×p ×K in G1. Then, χ⊗σ descends to an irreducible smooth

representation τ of K̃ and we have c-IndG
′

K̃
τ ∼= π1. Then, c-IndG

K̃
τ ∼= c-IndGG′ π1 is

admissible. If π1 6= π′, c-IndG
K̃
τ is isomorphic to π; otherwise c-IndG

K̃
τ is the direct

sum of two supercuspidal representations, one of which is isomorphic to π.
ii) is proved in [Moy88]; see the final comment in [Moy88, p. 328].
iii) Let χ be the central character of τ∨. By the Frobenius reciprocity, we have

Hq
c (M∞)τ ∼= HomG(c-IndG

K̃
τ,Hq

c (M∞) ⊗H(ZG) χ
−1). As c-IndG

K̃
τ is a supercuspidal

representation of finite length with central character χ−1, it is a finite direct sum of
irreducible supercuspidal representations of G. Therefore, it suffices to show that
for an irreducible supercuspidal representation π′′ of G with central character χ−1,
HomG(π′′, Hq

c (M∞) ⊗H(ZG) χ
−1) is a J-representation of finite length. We apply

[Mie12a, Lemma 5.2] to Hq
c (M∞) ⊗H(ZG) χ

−1. By [Far04, Proposition 4.4.13] and
Assumption 5.8, all the conditions in [Mie12a, Lemma 5.2] are satisfied. Hence
we conclude that HomG(π′′, Hq

c (M∞) ⊗H(ZG) χ
−1) has finite length (see the final

paragraph of the proof of [Mie12a, Lemma 5.2]).
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Now we will give some consequences of Theorem 5.6. For simplicity, we focus on
the cohomology H i

c(M∞/p
Z).

Corollary 5.11 Suppose Assumption 5.8. Let π be an irreducible supercuspidal
representation of G and ρ an irreducible non-supercuspidal representation of J .
Then, the representation π ⊗ ρ of G × J does not appear as a subquotient of
Hd−dimMred

c (M∞/p
Z).

Proof. Clearly we may assume that π (resp. ρ) is trivial on pZ ⊂ G (resp. pZ ⊂ J).

Take (K̃, τ) as in Lemma 5.10 i). Then τ is trivial on pZ ⊂ G. Let s ∈ IpZ be the
inertially equivalence class of cuspidal data for J such that ρ ∈ Rep(J/pZ)s. As ρ
is non-supercuspidal, we have ι(s) ≥ 1.

Put d0 = dimMred. As π is projective in the category Rep(G/pZ), π ⊗ ρ
appears in Hd−d0

c (M∞/p
Z) if and only if ρ appears in HomG(π,Hd−d0

c (M∞/p
Z)).

Since HomG(π,Hd−d0
c (M∞/p

Z)) is embedded into

HomG

(
c-IndG

K̃
τ,Hd−d0

c (M∞/p
Z)
)

= Hd−d0
c (M∞)τ ,

it suffices to show that Hd−d0
c (M∞)τ,s = 0. By Theorem 5.6 and Lemma 5.10 iii), we

have Zel(Hd−d0
c (M∞)∨τ,s)

∼= H
d+d0+ι(s)
CM (M∞)τ∨,s∨(d). By Proposition 5.5 ii), the right

hand side equals 0. Hence we conclude that Hd−d0
c (M∞)τ,s = 0.

Corollary 5.12 In addition to Assumption 5.8, assume that n = 2. Let π and ρ
be as in Corollary 5.11, and σ an irreducible `-adic representation of WQp . Then,
π⊗ρ⊗σ appears as a subquotient of H3

c (M∞/p
Z) if and only if π∨⊗Zel(ρ∨)⊗σ∨(−3)

appears as a subquotient of H4
c (M∞/p

Z).

Proof. Again we may assume that π (resp. ρ) is trivial on pZ ⊂ G (resp. pZ ⊂ J). Let

s ∈ IpZ be as in the proof of Corollary 5.11. In this case we have ι(s) = 1. Take (K̃, τ)
as in Lemma 5.10 ii). Note that, since π = c-IndG

K̃
τ is irreducible, we have π∨ =

(c-IndG
K̃
τ)∨ = IndG

K̃
τ∨ = c-IndG

K̃
τ∨. In the same way as in the proof of Corollary

5.11, we can see that π⊗ ρ⊗ σ appears as a subquotient of H3
c (M∞/p

Z) if and only
if ρ ⊗ σ appears as a subquotient of H3

c (M∞)τ,s. Similarly, π∨ ⊗ Zel(ρ∨) ⊗ σ∨(−3)
appears as a subquotient of H4

c (M∞/p
Z) if and only if Zel(ρ∨)⊗ σ∨(−3) appears as

a subquotient of H4
c (M∞)τ∨,s∨ .

On the other hand, by Theorem 5.6 and Lemma 5.10 iii), we have

Zel
(
H3
c (M∞)∨τ,s

) ∼= H4
CM(M∞)τ∨,s∨(3).

Corollary 5.4 tells us that

H4
CM(M∞)τ∨ = HomK̃

(
τ∨, H4

CM(M∞/p
Z)
)

= HomG

(
π∨, H4

CM(M∞/p
Z)
)

∼= HomG

(
π∨, H4

c (M∞/p
Z)
)

= H4
c (M∞)τ∨ .
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Thus we have an isomorphism of J ×WQp-representations

Zel
(
H3
c (M∞)∨τ,s

) ∼= H4
c (M∞)τ∨,s∨(3).

In particular, ρ ⊗ σ appears in H3
c (M∞)τ,s if and only if Zel(ρ∨) ⊗ σ∨(−3) appears

in H4
c (M∞)τ∨,s∨ . This concludes the proof.

Remark 5.13 i) In the case n = 2, by a global method, Tetsushi Ito and the
author proved that for a supercuspidal representation π of G and a supercusp-
idal representation ρ of J , π ⊗ ρ does not appear in H i

c(M∞/p
Z) unless i = 3.

Together with Corollary 5.11, we obtain the vanishing of the G-cuspidal part
H2
c (M∞/p

Z)G-cusp = 0 (note that in this case dimMred = 1).

ii) Consider the case n = 2. Let π be an irreducible supercuspidal representa-
tion of G which is trivial on pZ, φ the L-parameter of π (cf. [GT11]), and ΠJ

φ

the L-packet of J attached to φ (cf. [GT]). Suppose that there exists a non-
supercuspidal representation ρ in ΠJ

φ. Then, ΠJ
φ consists of two representations

ρ and ρ′, where ρ′ is supercuspidal. In this case, {Zel(ρ), ρ′} is known to be a
non-tempered A-packet.
Motivated by Corollary 5.12 and the results in [Mie12b], the author expects the
following:

– π ⊗ ρ∨ and π ⊗ ρ′∨ appear in H3
c (M∞/p

Z), and
– π ⊗ Zel(ρ)∨ appears in H4

c (M∞/p
Z).

This problem will be considered in a forthcoming joint paper with Tetsushi Ito.
The speculation above suggests the existence of some relation between local A-
packets and the cohomology of the Rapoport-Zink tower. In the case of GL(n),
a result in this direction is obtained by Dat [Dat12].

Remark 5.14 i) The arguments here can be applied to more general Rapoport-
Zink towers. In [Mie13], the geometric properties used in the proof of Theorem
5.6 are obtained for many Rapoport-Zink spaces. See [Mie13, Theorem 2.6,
Corollary 4.3, Theorem 4.4] especially.

ii) There is another way to generalize the result in [Far06]; the author expects

some relation between ZelG×J(H i
c(M∞)∨s ) and H

2d+ι(s)−i
c (M∞)s∨(d), where s is

an inertially equivalence class of cuspidal data for G×J . In a subsequent paper,
the author plans to work on this problem in the case of GSp(4). However, the
case where n ≥ 3 seems much more difficult, and Theorem 5.6 has advantage
that it is valid for all the GSp(2n) cases (and many other cases).
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mologie étale équivariante des espaces analytiques rigides, preprint, http:
//www.math.jussieu.fr/~fargues/Prepublications.html, 2006.

[FGL08] L. Fargues, A. Genestier, and V. Lafforgue, L’isomorphisme entre les
tours de Lubin-Tate et de Drinfeld, Progress in Mathematics, vol. 262,
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Spécialisés, vol. 17, Société Mathématique de France, Paris, 2010.

[RZ96] M. Rapoport and Th. Zink, Period spaces for p-divisible groups, Annals
of Mathematics Studies, vol. 141, Princeton University Press, Princeton,
NJ, 1996.

[SS97] P. Schneider and U. Stuhler, Representation theory and sheaves on the
Bruhat-Tits building, Inst. Hautes Études Sci. Publ. Math. (1997), no. 85,
97–191.

[Ste08] S. Stevens, The supercuspidal representations of p-adic classical groups,
Invent. Math. 172 (2008), no. 2, 289–352.
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