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ABSTRACT. We investigate the alternating sum of the f-adic
cohomology of the Rapoport-Zink tower for GSp(4) by the Lef-
schetz trace formula. Under some assumptions on L-packets of
GSp(4) and its inner form, we observe that the local Jacquet-
Langlands correspondence appears in the cohomology.

1 Introduction

A Rapoport-Zink space is a certain moduli space of deformations by quasi-isogenies
of a p-divisible group with additional structures. By using level structures on the
universal p-divisible group, we can construct a projective system of étale coverings
over the rigid generic fiber of the Rapoport-Zink space. This projective system is
called the Rapoport-Zink tower. It can be regarded as a local analogue of a tower
of Shimura varieties of PEL type.

By taking a compactly supported f-adic cohomology of the tower, we obtain
a representation Hf, of G(Q,) x J(Q,) x Wg,, where G is the reductive group
which is naturally attached to the local Shimura datum defining the Rapoport-Zink
space, J is an inner form of G, and Wy, is the Weil group of Q,. It is expected
that the alternating sum Hgy = > _;(—1)"Hj, of H}, can be described by the (still
conjectural) local Langlands correspondence of G and J (c¢f. [Rap95]).

The most classical examples of the Rapoport-Zink tower are the Lubin-Tate
tower and the Drinfeld tower. In these cases, the expectation above is called the
non-abelian Lubin-Tate theory (cf. [Car90]) and has been already proven ([Har97],
[HTO01]). There are more precise studies on the individual cohomology H,; see
[Boy09] and [Dat07].

In this paper, we consider the case where G = GSp,. In this case, the Rapoport-
Zink space M is the moduli space of deformations by quasi-isogenies of a principally
polarized 2-dimensional p-divisible group with slope 1/2. We ignore the action of
the Weil group Wy, and concentrate on the action of G(Q,) x J(Q,) on Hf,. Our
main result can be summarized as follows:
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Theorem 1.1 (Theorem 7.8, Corollary 7.9) For an irreducible smooth repre-
sentation p of J(Q,), we put Hrzlp] = >, ;50(—1)"" Ext] g | (Hig, p)*™", where
Extﬂ((@p) is taken in the category of smooth J(Q,)-representations and (—)* de-
notes the set of G(Qy)-smooth vectors. Let ¢: Wy, x SLy(C) — GSp,(C) be an

L-parameter which is relevant for J(Q,). Assume that the L-packets HE(Q”) and
H‘;(Qp) corresponding to ¢ are stable and satisfy the character relation (see Section
7.1 for notation on L-parameters and L-packets).

Then, for an element of the Hecke algebra f € H(G(Q,)) supported on regular

elliptic elements, we have

Z Tr(f; Hralp]) = —4 Z Tr(f;m).

J(Qp) G(Qp)
@ ¢

pell well

Moreover, if the G(Q,)-representation Extg(Qp)(Hﬁz, p)™™ has finite length for every
i,j>0andp€ H;(@p), we have

Z 9HRZ[P](9)2_4 Z ew(g)

perr, %) rerg )

for every regular elliptic element g of G(Q,). Here 0y, and 0, denote the distri-
bution characters of Hrz|p] and 7 respectively, which are locally constant functions
over regular elements of G(Q,).

Very roughly speaking, this theorem says that the local Jacquet-Langlands cor-
respondence Hg(Q”) — H;(Q”) appears in Hgy.

To prove the theorem above, we will apply the Lefschetz trace formula for adic
spaces developed in [Miel0Oa; we count fixed points on the Rapoport-Zink space
under the action of elements in G(Q,) x J(Q,) to compute the trace on the coho-
mology Hgyz. Such a method goes back to a pioneering work of Faltings [Fal94], in
which he treated the Drinfeld tower. A similar study for the Lubin-Tate tower has
been carried out by Strauch [Str08]. Needless to say, our work is strongly inspired
by these two works. However, our case is more difficult than the classical cases in
the following two points. First, any connected component of our Rapoport-Zink
space M is neither quasi-compact nor p-adic, therefore harder to deal with. This is
related to the fact that neither G(Q,) nor J(Q,) is compact modulo center (in the
classical cases, G(Q,) or J(Q,) is the multiplicative group of a division algebra).
Recall that, in the Lubin-Tate case the connected component is the formal spectrum
of a complete local ring. This fact makes the approximation arguments in [Str08,
§2.3, §3.2, §3.3] possible. In our case it is impossible to apply the same method. To
avoid this problem, we require the Lefschetz trace formula proved in [MielOa]. The
other point is representation-theoretic one; the local Langlands correspondences for
G(Q,) and J(Q,) are not bijective. Under the “dictionary” between irreducible
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representations and conjugacy classes, this corresponds to the fact that conjugacy
and stable conjugacy are different in G(Q,) and J(Q,). This difference makes our
argument on counting points and harmonic analysis more subtle.

We sketch the outline of this paper. In Section 2, we introduce some notation
on algebraic groups and stable orbital integrals, which will be used throughout this
paper. In section 3, after recalling basic definitions on the Rapoport-Zink tower for
GSp,,, we count fixed points on the Rapoport-Zink space under the action of an
element (g, h) € G(Q,) x J(Q,). Our method of counting is similar to [Str08, §2.6];
we use the period map introduced in [RZ96, Chapter 5] and the p-adic Hodge theory
for p-divisible groups. In Section 4, we construct formal models of the Rapoport-
Zink spaces with some higher levels (more precisely, levels which are open normal
subgroups of parahoric subgroups of G(Q,)). Moreover, we introduce “boundary
strata” of these formal models and investigate group actions on them. These con-
structions are extremely important for applying the Lefschetz trace formula such as
[Miel0a, Theorem 4.5]. Basically, the content of this section (especially Proposition
4.11) forces us to assume that d = 2. In Section 5, we construct a nice open covering
of the Rapoport-Zink space with parahoric level. The construction is similar to the
case of the Drinfeld upper half space, which has an open covering indexed by vertices
of the Bruhat-Tits building for PGL,,. In Section 6, we apply the Lefschetz trace
formula to a finite union of open subsets belonging to the open covering constructed
in Section 5. Finally in Section 7, we briefly review the local Langlands correspon-
dence for G(Q,) and J(Q,) due to Gan-Takeda [GT1la] and Gan-Tantono [GT)]
respectively, and give a proof of the main theorem. We use the harmonic-analytic
method introduced in [Miel2].

During writing this paper, the author found a preprint by Xu Shen [Shel2a]
in which a related topic was studied. Our works are totally independent, and our
methods are also different. Moreover, the main result in [Shel2a] does not seem
completely sufficient for deducing representation-theoretic results such as Theorem
1.1. See Remark 7.13 for detailed comments.

Acknowledgment The author would like to thank Tetsushi Ito and Matthias
Strauch for valuable discussions. He is also grateful to Takuya Konno for helpful
comments. This work was supported by JSPS KAKENHI Grant Numbers 21740022,
24740019.

Notation
Let d > 1 be an integer. For ating 4, let (, ): A?¢x A% — A be the symplectic
pairing defined as follows: for x = (x;),y = (y;) € A%,

(T, y) = T1Y2d + - - + TalYd+1 — Tat1Yd — =+ — T24Y1-

We denote by GSp,,(A) the symplectic similitude group with respect to the sym-
plectic pairing ( , ).

For a field k, we denote its algebraic closure by k. Fix a prime number p. For an
integer m > 1, we denote by Q,~ the unique degree m unramified extension of Q,,
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and by Z,~ the ring of integers of Q,m. We denote by Q,~ the completion of the
maximal unramified extension of Q,, and by Z,~ the ring of integers of Q. Let
¢ be a prime number distinct from p. We fix an isomorphism Q, = C and identify
them. Every representation is considered over C, and every function is C-valued.

For a totally disconnected locally compact group G with a fixed Haar mea-
sure, we denote by H(G) the Hecke algebra of G, namely, the abelian group of lo-
cally constant compactly supported functions on G' with convolution product. Put
H(G) = H(G)/[H(G),H(G)] = H(G)q (the G-coinvariant quotient). For smooth
representations 7, 7 of G, we denote by Extl(m,m) the ith Ext group in the
category of smooth G-representations.

2 Notation on stable conjugacy classes

In this section, we introduce some basic notation on algebraic groups and harmonic
analysis. Here we will work on slightly general situation; let F' be a p-adic field
and G a connected reductive group over F. Put G = G(F). Assume for simplicity
that the derived group of G is simply connected. We denote by Zg the center of
G and put Zg = Zg(F). For g € G, let Z(g) denote the centralizer of g and put
Z(g) = Z(g)(F). Since we assume that the derived group of G is simply connected,
Z(g) is connected for a semisimple g. We say that g is regular if Z(g) is a maximal
torus of G (note that a regular element is assumed to be semisimple). We write
G*® for the set of regular elements of G. For a maximal torus T of G, we put
T8 = T(F)NG™. We say that g is elliptic if it is contained in an elliptic maximal
torus. If g is regular, this is equivalent to saying that Z(g) is an elliptic maximal
torus. We write G°!! for the set of regular elliptic elements of G.

Two elements ¢g1,92 € G = G(F) is said to be stably conjugate if they are
conjugate in G(F). For g € G, we write {g} (resp. {g}«) for the conjugacy class
(resp. stable conjugacy class) of g. It is well-known that {g}s/~, the set of conjugacy
classes in {g}s, is a finite set if g is regular.

Two maximal tori Ty, Ty of G are said to be stably conjugate if 73 = T;(F) and
Ty = Ty(F) are conjugate in G(F). For such tori Ty, Ty and elements g, € T,®,

go € T3, which are stably conjugate, we can construct an isomorphism ¢, 4,: T1 —

T, as follows. Take h € G(F) such tha_t g2 = h™1g1h. Since G and g, are F-valued
points, such h satisfies ho(h)~" € Ty (F) for every o € Gal(F/F). By this fact, it
is easy to see that Ty ®p F — Ty ®@r F; g — h~'gh descends to an isomorphism

1%

Lgr.go: T1 — Ty over F. It does not depend on the choice of h. In particular,

stably conjugate maximal tori are isomorphic, and thus a maximal tori which is
stably conjugate to an elliptic torus is elliptic.

For a maximal torus T, we write {T} (resp. {T}s) for its conjugacy class (resp.
stable conjugacy class). We denote the set of conjugacy classes of maximal tori
(resp. elliptic maximal tori) of G by 7g (resp. 7&!), and the set of stable conjugacy

classes of maximal tori (resp. elliptic maximal tori) of G by T (resp. T&'k).
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Fix a Haar measure on GG. For an element g € G™%, we also choose a Haar
measure on Z(g). Then, for each ¢' € {g}«, Z(¢’) is naturally equipped with a Haar
measure induced by the isomorphism ¢, ,: Z(g9) — Z(g’). For a locally constant
function f on G whose support is compact modulo Z¢, we set

O04(f) = /Z L A0 S0,0)= 37 0y(p),

g’ €{g}st/~

and call them the orbital integral and the stable orbital integral of f, respectively.
It is well-known that O,(f) always converges ([RR72]).

Next we compare stable conjugacy classes between inner forms. Let G’ be an
inner form of G, and fix an inner twist £: G’ ®p F — G ®p F. For ¢ € G and
g € G'=G/(F), g is said to be a transfer of g’ with respect to £ if g and {(g’) are
conjugate in G(F'). We also say that g and ¢’ match, and write g <> ¢’. For g € G™*
and ¢’ € G with g < ¢/, we can construct an isomorphism ¢y ,: Z(g") — Z(g)
in the same way as above. In particular, ¢ is elliptic if and only if ¢’ is elliptic.

By [Kot86, Lemma 10.2], there is a natural bijection 7§, — 7§, such that
{T"}; corresponds to {T}; if and only if £(T'(F)) and T(F) are conjugate in G(F).
Therefore, for every ¢ € G'" (resp. g € GU), we can always find g € G (resp.
g € G") with g « ¢’. In particular, stable conjugacy classes of regular elliptic

elements of G are in bijection with those of G'.
The following lemma, which is used in Section 7, would be well-known.

Lemma 2.1 Let T be an elliptic maximal torus of G, and T’ that of G’ such that
{T'} corresponds to {T}y under the bijection above. Let Wy denote the Weyl
group Ng(T)/T of T, which is an algebraic group over F. Similarly we define Wr.
Then, we have an isomorphism Wy = W, In particular, #Wy(F) = #Wp/ (F).

Proof. Take t € T™ and t' € T" such that t < ¢/, and h € G(F) such that
t = h (). Let &: G' ®@p F — G @p F be the composite Ad(h™!) o &. It
satisfies ¢&,(T’) = T, thus induces W @5 F =, Wr ®@p F. Tt suffices to check
that this isomorphism descends to an isomorphism over F. Take o € Gal(F/F).

Since ¢ is an inner twist, there exists ¢, € G(F') such that o o ¢ = Ad(c,) o € 0 0.
Then t = h='¢(t')h implies that t = Ad(o(h)~") Ad(c,)&(') (note that t and ¢’ are

rational), and thus o(h) 'c,h € T(F). Therefore, for ¢’ € Ng/(T)(F) we have
a(fh(g’)) = Ad(a(h)_lcah)fh(a(g’)) S fh(a(g'))T(F).

This means that &,: W ®@p F = Wr @p F commutes with the action of o, as

desired. |
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3 Rapoport-Zink tower for GSp(2d)

3.1 Definition of the Rapoport-Zink tower

In this subsection, we recall basic notions on the Rapoport-Zink tower. General
definitions are given in [RZ96], but here we restrict ourselves to the Siegel case,
namely, the case for GSp(2d). _
Fix a d-dimensional isoclinic p-divisible group X over F, with slope 1/2, and

a (principal) polarization Ag: X =5 XY of X, namely, an isomorphism satisfying
A = —Xo. Let Nilp be the category of Zyeo-schemes on which p is locally nilpotent.
For an object S of Nilp, we put S = 5 ®z . F,. Consider the contravariant functor
A : Nilp — Set that associates S with the set of isomorphism classes of pairs
(X, p) consisting of

— a d-dimensional p-divisible group X over S,

— and a quasi-isogeny (cf. [RZ96, Definition 2.8]) p: X ®g, S — X ®s 9,
such that there exists an isomorphism A: X — XV which makes the following
diagram commutative up to multiplication by Q'

X@ﬁPEL)X@Sg

\Po ®id \Lz\@id

XY ®p S+ — XV @4 5.

Note that such A is uniquely determined by (X, p) up to multiplication by Z) and
gives a polarization of X. It is proved by Rapoport-Zink that M s represented
by a special formal scheme (cf. [Ber96]) over Spf Zy,~. Moreover, .4 is separated
over Spf Z,~ ([Far04, Lemme 2.3.23]). However, each connected component of M
is neither quasi-compact nor p-adic. It is known that dim.Z™ = |d2/4], where
|z] denotes the greatest integer less than or equal to x (for example, see [Vie08]),
and every irreducible component of M s projective over Fp ([RZ96, Proposition
2.32]).

Let J be the group consisting of self-quasi-isogenies h on X which makes the
following diagram commutative up to multiplication by Q'

X—rsx

-

XVAXV.

Then, we can define a right action of J on .# by h: 4 (S) — #(S); (X, p) —
(X,poh). It is known that J is the group of Q,-valued points of an inner form
J of GSp,, (see the next subsection). In particular, J is naturally endowed with a
topology.
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We denote the rigid generic fiber .#™8 of .4 by M. It is defined as t(.#) \
V(p), where t(.#) is the adic space associated with .# (cf. [Hub94, Proposition
4.1]). It is locally of finite type, partially proper and smooth over Spa(Qpe, Zy=)
([Far04, Lemme 2.3.24]). Moreover, we know that dim M = d(d + 1)/2; it can be
proved by using étaleness of the period map ([RZ96, Proposition 5.17]) or the p-adic
uniformization theorem ([RZ96, Theorem 6.30]).

Let X be the universal p-divisible group over M and X'® the induced p-divisible
group over M. For each geometric point  of M, the rational Tate module V,,(X%#)
is endowed with a non-degenerate alternating pairing V;)(f( Hg) x \/;3()? rig) — Q,(1)
induced by a polarization on X. Tt is well-defined up to Z,-multiplication. There-
fore, by taking a trivialization of the Tate twist, we get a non-degenerate symplectic
form V,(X}¢) x V,(X}®) — Q, which is well-defined up to Q-multiplication. By
considering K-level structures on X" for each compact open subgroup K C K, =
GSpyy(Z,), we can construct a projective system { My } kc , of finite étale coverings
of M, which is called the Rapoport-Zink tower. If K is a normal subgroup of K,
My is a finite étale Galois covering of M with Galois group Ky/K. In particular,
Mk, is nothing but M. For more precise description, see [RZ96, 5.34] or [IM10,
§3.1].

The group J naturally acts on the projective system { Mk }xcr,. On the other
hand, for ¢ € G = GSpy,(Q,) and a compact open subgroup K C K satisfy-
ing g7 'Kg C Ky, we can define a natural morphism Mg — M,-1x, over Qpe.
Therefore, we have a right action of G on the pro-object “lim” M.

Definition 3.1 For an integer i, we put

H(Mg) = Hi(Mg ®q,0 Qpe, Qo) ®q, Qpy  Hpg = lim H(Mg).

KCKy

Here H!(Mf ®Q, 00 @pm,(@g) denotes the compactly supported ¢-adic cohomology
introduced in [Hub98]. The group G x J naturally acts on Hy,. It is known that
this action is smooth ([Ber94, Corollary 7.7], [Far04, Corollaire 4.4.7]).

Remark 3.2 We can also define a natural action of the Weil group Wg, of @, on
H,. This action is expected to be very interesting, but in this article we do not
consider it.

Definition 3.3 For an irreducible smooth representation p of J and integers i, 7 >
0, we put N A
Hyylp) = Ext) (Hyy, p) .

The definition of (—)P="™ is as follows. Let D.(G) denotes the convolution algebra
of compactly supported distributions on G. For a (left or right) D.(G)-module
V, we put VPesm — lim exV, where K runs through compact open subgroups
of G and ex € D.(G) denotes the idempotent corresponding to K. It is a smooth
representation of G. Note that Ext’,(H,, p) has a structure of a right D,(G)-module
which comes from the left D.(G)-module structure on H,.
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Remark 3.4 By the same argument as in [Miell, Lemma 3.1], we can show that
Hy[p)® = Ext? ((Hk,)X, p) = Ext),(H{(Mg), p) for a compact open subgroup K of
K.

Lemma 3.5 Let x: Q) — @Z be an unramified character, that is, a character

which is trivial on Z). Denote the composite GG sim, Q, = @Z (resp. J sim,
Q, =, @KX ) by x¢ (resp. xs) , where sim denotes the similitude character. Then,

we have Hyyj(p ® x1] = Hilp] ® xe.

Proof. First let us recall the natural partition of M into open and closed formal
subschemes introduced in [RZ96, 3.52]. For an integer § € Z, let 9 be the open
and closed subscheme consisting of (X, p) such that d~! - height(p) = §. Note that
the left hand side is always an integer. Indeed, by the definition of M , there exist a
polarization A\: X — XV and an element a € Q such that a\g = p"o(A mod p)op.
Taking the heights of both sides, we obtain d~' - height(p) = v,(a) € Z, where v,
is the p-adic valuation. Denote by M the rigid generic fiber of M. For a
compact open subgroup K of Ky, let M 1(?) be the inverse image of M under the
map My — M. We have My = [T, My, Put Hipy 5 = lim, _  HI(My). Then
Hf{z = @aez HIZ?{Z,&

For (g9,h) € G x J with g 'Kg C Ky, it is known that (g,h): Mx — M1,
maps M[(?) to Mgfvp(Simg)ﬂp(Sim ") In particular, if we denote by (G x J)? the kernel
of the homomorphism G'x.J — Z; (g, h) —— vp(sim g)—v,(sim h), Hg,  is a smooth

representation of (G x J)° and Hj, is isomorphic to C—Ind?GXXJJ)O H}y o (cf. [Far04,

§4.4.2]). Since the character yo ® x7': G x J — Q;; (9,h) — XG(Q)XJ('h>_1

is trivial on (G x J)°, we have a natural isomorphism Hy, ® xg ® X;' = Hyy of
G x J-representations. Hence we have

Ext’,(Hy, p®x.) = BExt’(Hiy,@x5 ", p) = Ext)(Hy,®xg", p) = Ext))(Hiy, p)®xa,
and thus Hg[p ® x,] = Hilp] @ xo- i

Sometimes it is convenient to work on the quotient My / p? of Mk by the discrete
subgroup p” of J. The cohomology of My /p” and Hgy[p] are related by the following
lemma.

Lemma 3.6 Assume that an irreducible smooth representation p of J is trivial on
the subgroup p* C J. Then we have Ext’,(H!(Mf), p) = Extf]/pZ(Hé(MK/pZ), p) for
each compact open subgroup K C K.

Proof. We will use the notation in the proof of Lemma 3.5. Since p € J maps M I(f)
isomorphically onto M I(?H) for every integer 0, we have Mg /p? = M [(?) oM 1(<1)-
Under this isomorphism, the natural morphism from Mg to My /p? is described as
follows:
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— If 6 = 24’ is even, the restriction to M[(?) is given by p~% : MI(?) — MI(?).

— If 6 =2’ + 1 is odd, the restriction to MI(?) is given by p~%': MI(?) — Ml({l).
From this description we deduce that the natural push-forward map H'(Mg) —
H!(My /p*) induces a J-equivariant isomorphism H:(M),z = H:(Mg /p*). On the
other hand, it is immediate to see that H:(Mgk) = @y H{(MY is a free Q,[p"-
module, where Q,[p?] denotes the group algebra of p”. In particular, H (M) is
acyclic for (—),z (namely, the higher left derived functor of (—),z vanishes). There-
fore we have

Ext/, (H!(My), p) = Ext’

e (Ho(Mi )y, p) 2 Ext)) o (HA(Mic /1), p),

as desired. |

Corollary 3.7 Let p be an irreducible smooth representation of .J.
i) For integers i, > 0, Hy}[p] is an admissible representation of G.
ii) If j > d — 1, we have Hy)[p] = 0.

Proof. First assume that p is trivial on p? C J. Then, for a compact open subgroup
K C Ky, we have

Higlpl™ = Btz (Ho (M /5°). )

by Remark 3.4 and Lemma 3.6. As in [Far04, Proposition 4.4.13], Hi(Mg/p”) is
a finitely generated J/p”-module, and thus [SS97, Corollary I1.3.2] tells us that
Ext?, /pZ(H {( Mg /p"), p) is finite-dimensional ‘a'nd vanishes for j > d—1 (here d—1
is the split semisimple rank of J). Since Hg}[p] = lim, Hgl[p)®, we obtain i)
and ii) for this case.

Next we consider a general p. Let w: Q; — @Z be the central character of

p. Take ¢ € @Z such that ¢ = w(p), and x: Q) — @ZX the character given by
x(a) = ¢=@. Lemma 3.5 tells us that Hyj[p] = Hiylp © x5] © xg'. Since p® xs
is trivial on pZ, the right hand side is admissible and vanishes for j > d — 1. This
concludes the proof.

By the corollary above, we can take the alternating sum of HE{’% [p]-

Definition 3.8 For an irreducible smooth representation p of .J, we put Hgrz[p] =
> iiso(—1) P Hgg[p], where the sum is taken in the Grothendieck group of admis-
sible representations of G.

The goal of this paper is to investigate Hryz[p] by means of the Lefschetz trace
formula.

In the sequel, we fix Haar measures on G and J. For each g € G™, we also
fix a Haar measure on Z(g). If ¢ is elliptic, then we normalize the measure so that
vol(Z(g)/p”) = 1, where p” C G is endowed with the counting measure. Note that
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if g1,92 € G are stably conjugate, then the isomorphism ¢4, 4, Z(91) = Z(gn)

preserves the measures. For g € G and a locally constant function f on G whose
support is compact modulo Zg, we have

Oy(f)= [  f(h7'gh)dh, SO, (f)= > f(h~"g'h)dh.

G g'efgya /) CIP"

Similarly we fix a Haar measure of the centralizer of each regular element of J. For
g € G"and h € J with g < h, the isomorphism ¢y, ,: Z(h) — Z(g) preserves

the measures.

3.2 Period space and period map

The goal of the rest of this section is to count fixed points under the action of
(9,h) € G x J on My /p%. As in [Str08, §2.6], we use the period map introduced in
[RZ96, Chapter 5.

Put Ly = FracW(F,) and denote the Frobenius automorphism on Ly by o.
Although Ly is isomorphic to Q,e, we distinguish them as in [RZ96]. An isocrystal
over Fp is a finite-dimensional Lg-vector space equipped with a bijective o-linear
endomorphism (c¢f. [RZ96, §1.1]).

Let D(X)g = (N, ®) be the rational Dieudonné module of X, which is a d-
dimensional isocrystal over F,. The fixed polarization Ay on X gives the alternating
pairing ¢: N x N — L satisfying ¢(®(z), ®(y)) = po(¢(z,y)) for every z,y € N.
We define the algebraic group J over Q, as follows: for a Q,-algebra R, the group
J(R) consists of elements g € Autpe, r,(1? ®q, V) such that

— g commutes with ®, i.e., go (idg @P) = (idgp ®P) o g,
— and ¢ preserves the pairing ¢ up to scalar multiplication, i.e., there exists
c(g) € (R®q, Lo)* such that ¥ (gz, gy) = c(g9)v(x,y) for every z,y € R®qg, N.

Representability of J is shown in [RZ96, Proposition 1.12]. By the Dieudonné theory,
we have J(Q,) = J.

Since the isocrystal (N, ®) is basic, J is known to be an inner form of GSp,,
([RZ96, Corollary 1.14, Remark 1.15]). For later use, we will observe it directly.
Put N° = N7 '®_ Tt is a ®-stable Qp2-subspace of N satisfying Lo ®q, N° = N.
For z,y € N°, we have o®(¢(z,y)) = p>¢(®*(x), ®*(y)) = p~*b(px, py) = ¥(z,y),
and thus ¢ (z,y) € Q2. Therefore 1 gives a perfect alternating bilinear pairing
: N° X N° — Q,2. Its base change from Q,2 to Ly coincides with the original ).
By using N° and the restrictions of ® and v on it, we can describe J as follows: for
each Q,-algebra R,

J(R) = { g € Aut R®q,Q,s (R®q, N°) ‘ g satisfies the similar conditions as above}.

In the sequel, we always use this description of J. Now we can prove the following:

10
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Lemma 3.9 We have a natural isomorphism §: J ®q, Q2 =, GSp(N°, ) of alge-

braic groups over Q.

Proof. Take a Q2-algebra R. Then we have R®g, N° = (R®q , N°) @ (R®g, "N°),
where °N° is the scalar extension of N° by 0: Q2 — Q2. Under this isomorphism,
idr @P: R®q, N° — R ®q, N° is expressed by the matrix

0 idp @P,
idr @P, 0 ’

where ®; (resp. ®2) denotes the Qp2-homomorphism °N° — N° (resp. N° —
?N°) induced by ®. Therefore, every element g € Autrgg,Q,s (R ®qg, N°) can be
written as ¢’ @ g” with ¢’ € Autr(R ®q , N°) and ¢" € Autp(R ®g , “N°), and the
condition go (idg ®P) = (idg ®P) 0 g is equivalent to ¢’ o (idg @P4) = (idg @P1) 0 g”
and ¢" o (idg ®Ps) = (idr @P2) 0 ¢g". For ¢' € Autpggy, g, (R ®g, N°), put ¢" =
(idrg @P1) ! 0 ¢’ o (idgp ®®;). Then the pair (¢, ¢”) satisfies the conditions above
(note that ®; o &3 = p). In other words, the group

{9 € Autre, o, (R®g, N°) | go (idpg®®) = (idg @) 0 g}

can be identified with the group Autg(R ®q,. N °). Now it is straightforward to
see that (g',¢") preserves the pairing ¢ on R ®g, N° up to scalar if and only if
g € GSp(N°,9)(R). This concludes the proof. i

By the construction of the isomorphism &, we have the following:

Corollary 3.10 A natural homomorphismJ — Resq , /g, GSp(N°, ¥) corresponds
to & by the adjointness between base change and the Weil restriction. In particu-

lar, the composite J(Q,) — J(Q,2) % GSp(N°, 1) is nothing but the natural

inclusion.

Remark 3.11 Actually, we can describe J more explicitly as follows.

Let 5 be a (unique) one-dimensional p-divisible group with slope 1/2 over F,.
It is well-known that there exists a polarization Ay, on Y; for example, a principal
polarization on a supersingular elliptic curve over Fp induces such a polarization.
Put D = End(%;) ®z, Q,. Then D is a quaternion division algebra over Q, and
Ay, induces an involution on it. By [IM10, Lemma 4.1], we know that (X, \¢) and
(357, A&Y) are isogenous. Therefore, we can prove without difficulty that the alge-
braic group J is isomorphic to the quaternionic unitary similitude group GU(d, D).

Next we introduce the period space for GSp,,.

Definition 3.12 i) Let F be the Grassmannian over Ly parameterizing d-dimensional
subspaces Fil € N such that Fil* = Fil.

11
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ii) Let L be a finite extension of Ly. An element Fil C L ®,, N of F(L) is said
to be weakly admissible if, for every subspace N’ of N which is stable under ®,
the following inequality holds:

dimy, ((L ®z, N') NFil) < - dim N".

N[ —

It is known that there exists a canonical open rigid subspace Q C F*d such that
Q(L) = {Fil € F(L) | Fil is weakly admissible} for every finite extension L of
Ly ([RZ96, Proposition 1.36]). We call this 2 a period space for GSp,,;. The
group GSp(N, 1) naturally acts on F and the induced action of J = J(Q,) C
GSp(V,v) preserves Q C F.

The following theorem is due to Rapoport-Zink:

Theorem 3.13 i) There exists a J-equivariant étale morphism ©: M — € over
Lg called the period morphism. For a finite extension L of Ly and an L-valued
point x = (X, p) of M, p(z) is given by the subspace p;'(Filx) of L ®r, N,
where p.: D(X)q = D(X)q is the isomorphism between rational Dieudonné
modules induced by p, and Filx C L ®, D(X)q is the Hodge filtration of X.

ii) The period map g induces a surjection on classical points. Namely, for every
finite extension L of Ly and every L-valued point x of §2, there exist a finite
extension L' of L and an L'-valued point T of M such that p(T) = x.

Proof. The period map g is constructed in [RZ96, 5.16]. Precisely speaking, our p
is the first factor 7, of the period map 7 defined by Rapoport-Zink.

ii) follows from [RZ96, Proposition 5.28]; note that Fontaine’s conjecture assumed
in the proposition has been solved by Kisin ([Kis06, Corollary 2.2.6]). i

The following proposition is the first step of our point counting:

Proposition 3.14 Let h be a regular element of J. Then all fixed points of F
under h are discrete with multiplicity one. If moreover h is elliptic, then every fixed
point lies in €.

The former part is well-known. In order to see the latter part, we will use the
theory of Harder-Narasimhan filtrations. Let us fix a finite extension L of Ly and
an element Fil € F(L). For a non-zero subspace N’ of N which is stable under &,
we put

.. dimg((L ®z, N') NFil) — 1/2dim, N’
N = dimp, N’ ‘
We say that N’ # 0 is semi-stable if every non-zero ®-stable subspace N’ C N’
satisfies u(N") < pu(N').
The following proposition is a part of [RZ96, Proposition 1.4]:

12
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Proposition 3.15 There exists a unique ®-stable subspace Ny C N satisfying the
following conditions:

— Ny is semi-stable (in particular non-zero).
— For every ®-stable N' with Ngo C N’ C N, we have u(No) > u(N').

Proof of Proposition 3.14. Let h € J be a regular element, L a finite extension of L
and Fil an element of F(L) which is fixed by h. We will assume Fil ¢ 2 and prove
that A is not elliptic. Since Fil ¢ Q, u(N') > 0 = p(N) for some P-stable subspace
N’ C N. Therefore N is not semi-stable and thus Ny C N, where Ny is given in
Proposition 3.15. Since Fil is fixed by h, we have hiNg = Ny by the uniqueness.

Let us prove that Ny C Ng. The following argument is inspired by [RZ96,
Proposition 1.43]. Put W = Ny N Ni and assume that W C Ny. Then 1 induces
a perfect alternating pairing No/W x No/W — Lg. Denote the image of (L ®p,
No) N Fil under L @, Ny — (L ®p, No)/(L ®r, W) by Fil'. Since Fil* = Fil, we
have Fil' C Fil'". Therefore we have dimy Fil' < 1/2dimz,(No/W). On the other
hand, by the definition of Ny, Ng € N implies u(Ng) > pu(N) = 0. Hence, if W # 0,

dimy, ((L @z, W)NFil) 1 dimy((L ®r, No) NFil) — dim, Fil' 1
Hwv) = dimp, W T2 dimp, W T2
- dimy, (L ®r, No) NFil) — 1/2dimp,(No/W) 1 _ dimy, NOM(NO)
- dimz, W 2 dimg, W
> pu(No),

which contradicts to semi-stability of Ny. If W =0,
1 1
dimy, (L ®r, No) NFil) — 5 dimy, Ny = dim, Fil’ -5 dimp,,(Ng/W) <0,

which contradicts to u(Np) > 0. Thus we get Ny C Ny-.

Put Ng = (No)? '® < N°. Since (Ny, ®) is isoclinic of slope 1/2, we have
Ly®q,, N§ = No. In particular 0 ¢ N§ C N°. Moreover we have Ng C (N§)*, since
Ny C Ng-. Consider the subgroup P of J given as follows (R denotes a Q,-algebra):

P(R)={h' € J(R) | I'(R ®q, N§) = R ®q, N; }.

Here J(R) is regarded as a subgroup of Autrg, o, (R®q, N °). In the similar way as
in the proof of Lemma 3.9, we can see that P ®g, Q2 is isomorphic to the stabilizer
subgroup Stabgsp(ve,y) (Ng) of Ng in GSp(N°,v). Therefore P ®q, Q)2 is a proper
parabolic subgroup of J ®q, Q,2, and thus P is a proper parabolic subgroup of J.
Since h € P(Q,), the following lemma says that h is not elliptic. This completes
the proof. [

Lemma 3.16 Let F' be a p-adic field, G a connected reductive group over F' and
g a regular elliptic element of G(F'). Then, for every proper parabolic subgroup P
of G defined over F', g does not lie in P(F).

13
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Proof. Assume that there exists a proper parabolic subgroup of G defined over F'
such that g € P(F). Then, since g € G(F) is semisimple, there exists a Levi sub-
group L of P defined over F' such that g € L(F') (cf. [Spr98, 13.3.8 (i), 8.4.4, 16.1.4]).
By the restricted root decomposition, it is easy to see that the split center of L is
strictly bigger than that of G. In other words, the center Zy, of L is not anisotropic
modulo Zg. Therefore the centralizer of g, that contains Zy,, is not anisotropic
modulo Zg. This contradicts to the assumption that g is regular elliptic. i

Remark 3.17 By the Bruhat decomposition, we can easily calculate the number
of fixed points in Proposition 3.14; the number is d!2¢-1.

3.3 Counting fixed points under the group action

Let (g, h) be an element of G x J and K a compact open subgroup of Ky normalized
by g. Let px: Mg — Q and pg,: Mg /p” — Q be the étale morphisms induced
from the period map p. In Proposition 3.14, we considered fixed points on the
period space 2. Thus, to count fixed points on My /p?, it suffices to investigate the
action of (g, h) on the fiber p;(}p(x) of each point z in Q fixed by h.

Definition 3.18 Let L be a finite extension of Ly and x € Q(L) a point fixed by
h. We denote the subspace of L ®, N corresponding to = by Fil,. Then, since
(N, ®, Fil,) is a weakly admissible filtered isocrystal, there exists a 2d-dimensional
p-adic Galois representation V, of Gal(L/L) such that Deys(V,) = (N, ®, Fil,) (cf.
[CF00]). As the functor D,y is fully faithful and compatible with tensor products,
the alternating bilinear pairing ¢: N x N — Ly induces an alternating bilinear

pairing ¢, V, x V; — Q,(1). Since h: N = N commutes with &, preserves Fil,

and preserves ¢ up to Q,-multiplication, it induces a Gal(L/L)-automorphism Ih,z
on V, preserving ¢, up to Q,-multiplication. By choosing isomorphisms Q,(1) = @,
and (V,1,) = ( zd, (,)), gna can be regarded as an element of G. Obviously, the
conjugacy class of g, , is independent of the choice of the isomorphisms above.

Proposition 3.19 The element gy, € G is a transfer of h € J with respect to &.

Namely, if we fix an isomorphism (N°,¢) = ( §§,< , )), the image of h under the
composite

J(Q,) — J(@p2) = GSP(N°, ¢)) = GSpyy(Q2)

and g, € G are conjugate in GSpy,(Q,).

In particular, g, € G is regular (resp. regular elliptic) if and only if h is regular
(resp. regular elliptic).
Proof. Since Deyys(Vy) = (N, @, Fil,), we have an isomorphism

Va ®q, Bair = N QLo Bqr = N° ®Qp2 Bar.

14
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Since we have fixed isomorphisms (V,,,) = (Q%, (, )) and (N°, %) = (Q%,(, )),

P p?’
the isomorphism above induces

a3 o

Bit — V, ®q, Bir — N° ®q,» Bar — B3,

which gives an element o € GSp,,(Bgr). By the definition of g, and Corollary
3.10, we have gy, , = ™ *¢(h)a in GSpyy(Bar). Therefore gy, . and £(h) are conjugate

in GSpyy(Bar), and thus conjugate in GSpy,(Q,).

We will consider how the conjugacy class of g;, changes when we vary h inside its
stable conjugacy class. Assume that h is regular. Let T}, = Z(h) be the centralizer
of A in J, which is a maximal torus of J.

Lemma 3.20 For every Q,-algebra R and an element t € T (R), t stabilizes the
subspace R ®q, Fil, C R ®q, (L ®1, N) = L ®r, (R ®q, N).

Proof. Let F° be the Grassmannian over QQ,: parameterizing d-dimensional sub-
spaces Fil C N° such that Fil* = Fil. Then, clearly F° ®q,. Lo = F. Moreover,
since h is regular, the fixed point z in F comes from a closed point of F°; namely,
there exists a finite extension F' of Q2 contained in L and 2’ € F°(F) such that
Fil, = L ®p Fil,». Therefore, we may consider the subspace Fil,, C F ®¢g , N°
instead of Fil, C L @, N. ’

Put G = GSp(N°,v) ®q,, F. This algebraic group acts on Fp = F° ®q, I
Let P be the stabilizer of 2’ € Fz(F) in G. It is a parabolic subgroup of G. We
have homomorphisms J — Rest2 /0, GSp(N°,¥) — Resp/g, G, which induce an
action of J on Resp/q, Fr. What we would like to show is that the subgroup T}, of
J stabilizes 2’ € (Resp)q, Fr)(Qp); in other words, T), C Resp/q, P. Let us denote
by A’ the image of h € J(Q,) in (Resg)g, G)(Q,) = G(F'). Note that ' € P(F), for
h stabilizes x’. Moreover h' is regular, since it is the image of {(h) € GSp(IN°, 1))
under GSp(N°®,¢) — GSp(N°® ®q, F,¢) = G(F). It suffices to show that the
centralizer Sy of ' in G is contained in P. We can pass to an algebraic closure
F of F; we simply write G and P for G ®p F and P ®p F, respectively. Take a
maximal torus T of P containing h’. As P is a parabolic subgroup of G, it contains
a maximal torus T” of G. Since T' and T" are conjugate in P, T’ is also a maximal
torus of G. This implies that T" = S;,. In particular S; is contained in P. |
Definition 3.21 Fix isomorphisms Q,(1) = Q, and (V,,1,) = (Q2%, (, )) as in
Definition 3.18. We define a homomorphism ¢, : T}, — GSp,, of algebraic groups
over Q, as follows. For a Q,-algebra R, each element ¢t € Tj(R) gives an automor-
phism of the filtered isocrystal (R®gq, N, ®, R®q, Fil,) by the previous lemma. The
induced automorphism on (R ®g, N ®r, Bays)®™ = R ®q, V; defines an element
Lh,w(t) € GSp(R ®Qp Ve, 1/’:1:) = GSde(R)

By definition, we have ¢, ,(h) = gp .. Clearly ¢, is independent of the choice of
Q,(1) = Q,, and the GSp,,(Q,)-conjugacy class of ¢, , is independent of the choice

Of (nyw:r) = ( ?)d7< ’ >)
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Proposition 3.22 Let Ty, . = Z(gn.) be the centralizer of g, in GSpy;. The

homomorphism t, induces an isomorphism T, — T, .

Proof. The proof of Proposition 3.19 tells us that the base change of ¢, to Bgqr can
be described as the composite of

Ad(a™1)
Ty, @, Ban — J ®q, Ban —— GSay 0, Ban ——— GSpy, @, Bar,

o

where o € GSpy,(Bgr) is the element defined in the proof of Proposition 3.19. Now
it is clear that the homomorphism T}, ®q, Bar — Ty, , ®q, Bar induced by ¢y, is

an isomorphism, and thus ¢y ,: T — T, . is also an isomorphism. |

Proposition 3.23 i) For b’ € {h}y, take v € J(@p) such that K = ~v 'hy.

Then, for every o € Gal(Q,/Q,), chw (o) = vo(y)~! lies in T,(Q,), and chp
gives an element of H*(Q,, Ty). The map I —— ¢y induces a bijection

{h}ss)~ — H'(Q,, T}y). Similarly, we have a natural bijection {gn s }st/~ =,

Hl (@p’ Tgh,a;)'
ii) Assume that h is elliptic. Then we have a commutative diagram

{h}se/~> ——— H'(Qp, Th)

J/(*) J{Lh,z

{ghyx}St/N — Hl (QP? Tgh,:c>7

where the map (x) is given by h' = v 'hy +—— gp ¢)-10. (Recall that
carries v € J(Q,) to an element of GSp(N® ®q, Q,. %) C GSp(N @1, Lo, ).
Corollary 3.10 ensures that &(y)™'x is fixed by b/, and Proposition 3.14 tells us
that () 'x lies in 2.)

Proof. i) It is well-known that the map A’ —— ¢, 5 induces a bijection
{h}se/~ — Ker(H'(Qy, Th) — H'(Q,, 7).

Therefore it suffices to show H'(Q,,J) = 1. Since the derived group Jge, is simply
connected, we have H'(Q,, Jaer) = 1 by Kneser’s theorem. Now the exact sequence

1 —Jgeg —J —G,,, — 1

gives the desired vanishing result. Similarly we can prove H'(Q,, GSp,,) = 1.

ii) Take a finite extension F' of Q,2 and 2’ € F°(F) as in the proof of Lemma
3.20. Let E be a finite Galois extension of Q2 such that v € J(E). Extending F if
necessary, we may assume that £ C F' (although we can take £ = F it is better to
distinguish them in order to avoid confusion). Put y' = £(y)~1(2) € F°(F).
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First we prove that the subspace F ®q, Fil,, C E ®q, (F ®q,. N °) is mapped
to £ ®q, Fil,, by v' € J(E). Put W = v 1(E ®q, Fily) C E ®q, (F ®q,, N°).
As i/ =y thy € J(Q,), we have yo(y)™' € Ty (E) for every o € Gal(E/Q,2). By
Lemma 3.20, we have W = o(v) " }(E ®q, Fil,). The commutative diagram

FE ®Qp (F ®Qp2 NO) i}E ®Qp (F ®Qp2 NO>

J(U®id J,U®id

()1
E ®Qp (F ®Qp2 NO> h*)}E ®Qp (F ®Qp2 NO>

tells us that (o ® id)(W) = W. Therefore, by the Galois descent, there exists an
F-subspace W' C F®q , N° such that W = E®q, W’. It suffices to show that W’ =

Fil,. By definition, W' is the image of Fil,» under the map F ®q,, V° RNy ®q,, V°

obtained as the base change of v ': E ®q, (F ®q,, N°) — E®q, (F ®q,, N°) by
E ®q, F — F. Corollary 3.10 tells us that the base change of y7': F ®g, N° —
E ®q, N° by E ®g, Qpz — E coincides with {(v)™!: E®q, N° — E ®q, N°.
Hence (%) is equal to the base change of (7)™ by F — F, and we conclude that
W' = ¢(vy) !(Fil,y) = Fil,/, as desired.

Now we know that v: E ®q, N° = E ®q, N° gives an isomorphism of filtered

isocrystals (£ ®q, N°, ®, E ®q, Fil,) = (E ®q, N°, ®, E ®q, Fil,y). It induces an

isomorphism of corresponding Gal(F /F)-representations 7: E ®q, Vy = E ®q,
V. Since B’ = o(y)tho(y) and 3 = &(o(v))"(2') for each 0 € Gal(E/Q,),

—_—

we may also define o(7y): £ ®q, Vi = FE ®q, Vi, which clearly coincides with
o(7) = (6 ®id) 0§ o (¢ ® id)~! by functoriality. By the construction, we have

Yo(¥) ™t =70(7) 7t = tha(yo(y)t). The relation b’ = v~ 1hy is translated into the
commutativity of the following diagram:

E ®q, Vy =% E ®q, Vy

5 5
E ®Qp ‘/:13/ M}E ®@p %/.
In other words, if we fix (Vor, ) = (Q%,(, ) = (V,,¢,) and regard 7 as an

p

element of GSpy,(E), then we have g, = 3 'gn 7. Therefore, under the isomor-
phism {gns}/~ — H'(Q,, Ty, ), the conjugacy class of g, corresponds to the

cohomology class of the cocycle o — Fo(7)~!. This concludes the proof, since we
have Yo (V)™ = th.(vo (7)) = tho(cn (o)) as mentioned above. i
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Corollary 3.24 Assume that h is elliptic. Let g, € G be an arbitrary element with
gn <> h. Then, each [g] € {gn}st/~ satisfies the following:

#{([],z) | ] € {h}st/~, 2 € Fix(M; Q), [gw ] = 9]} = d12?7".
Here [—] denotes the conjugacy class.

Proof. For I € {h}, take v € J(Q,) such that b’ =y 'hy. Then £(7)~" induces a
bijection Fix(h;Q) — Fix(h';2). Thus by Proposition 3.23 we have

#{z € Fix(W, Q) | g o] = 9]} = #{x € Fix(h, Q) | [9 e0)-12] = [9]}
= #{x € Fix(h,Q) | th(cw) = ¢4},

where ¢,y € H'(Qp, T}) (resp. ¢; € H'(Q,, Ty, ,)) is the element corresponding to
(1] € {h}st/~ (resp. [g] € {gn}st/~ = {gn}st/~) under the bijection in Proposition
3.23 i). Varying [h] (or equivalently c¢p/), we obtain

#{([],2) | [W'] € {h}st/~, x € Fix(I;Q), g 0] = [9]}
=#{(c,x) € Hl(Qp,Th) X F1X(h Q) ] tha(C) = ¢4ty

whose right hand side is clearly equal to # Fix(h; Q) = d'2¢7! (¢f. Remark 3.17). i

The following is an analogue of [Fal94, Theorem 1] and [Str08, Theorem 2.6.8]:

Proposition 3.25 Let x be as in Definition 3.18. Assume that g € G is regular
elliptic. Then, the number of fixed points in o, () under the action of (g, h) is
given by

#{VKp® € G/Kp” | vKp® = g, ,79Kp"}.

If h is elliptic, this number is equal to the orbital integral

Otho (Vii?f?)) ’

where 1,z denotes the characteristic function of giK p? C G (for our normalization
of the Haar measure, see the last paragraph of Section 3.1).

Proof. As in Theorem 3.13 ii), there exist a finite extension L' of L and = =
(X p, M) € Mg(L') such that px(Z) = x. Here, (X, p) is an Op-valued point of
M and 7 is a K- level structure on X, namely, a Gal(L/L)-invariant K-orbit of iso-
morphisms Q%d — V,(X) preserving symplectic pairings up to Q, -multiplication.
Fix n € 7. Then, by [RZ96, Proposition 5.37], the fiber o' (z) of px: Mx — Q
at x can be identified with G/K. The identification is given as follows. Let
¥ = (X', p,7) be another point in the fiber. Then, there exists a unique quasi-
isogeny f: X' — X satisfying p = (f mod p) o p/. This f automatically preserves
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polarizations on X and X' up to Q) -multiplication. Choose a representative 7’ in
the level structure 77/, and define v € G by the following commutative diagram:

Q' = Vo(X)

J(‘Y le(f )

Q¥ —5 V,(X).

The class of v in G/K does not depend on the choice of 7'.
Since (g,h) acts on ' (z), it also acts on G/K by the identification above.
We will show that this action is given by vK +— g;’i’ng , where the element

gne € G is given by the isomorphism V, = V,(X) lN; Q2% (cf. Definition 3.18).
Take (X', p/,7) € 9 (z) corresponding to YK € G/K. Then (g,h) (X', o', 7) =
(X', p' o h,n og). Since p,oho(p.)': D(X)g — D(X)g preserves the Hodge
filtration, there exists a quasi-isogeny ¢: X — X such that po h = (¢ mod p) o p.
For this ¢, we have p = ((¢7' o f) mod p) o (p' o h), where f: X' — X is a
quasi-isogeny as above. Now we have the following commutative diagram:

Q2 TV (X")

g
Q2 2,V (X)

v J{Vp(f)
@1, v,(X)

I Vo(9) ™!
Q2 LV, (X)

This diagram tells us that (g, h)(X’, p’,7) corresponds to g,;glc’ng € G/K, as de-
sired.

Now we consider the fiber ga;(}p(m) = ' (x)/p*. By [RZ96, Lemma 5.36], it is
in bijection with G/Kp%. The action of (g, h) is given by yvKp* g,:’}ﬂngZ.
Therefore, the number of fixed points under this action is equal to

#{VKp® € G/Kp” | vKp® = g, ,79Kp"}.

If h is elliptic, then g, , is regular elliptic by Proposition 3.19, and thus the number
above is equal to

]. 1 K Z
— | Lage (7 ge)dy = 0, (S50, i
vol(KpZ [ p%) /G/pz orp? (Y Gna)dy I \vol(K)
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For later use, we will state our result for the action of the inverse element

(g~ h7h).

Theorem 3.26 Let (g,h) € G x J be an element and K a compact open subgroup
of Ky normalized by g.

i) If h is regular elliptic, then we have

BRI M) = Y 0, (S,

. vol(K)
z€Fix(h;Q)

where the Haar measure on Z(g,) is normalized as in the last paragraph of
Section 3.1. The left hand side denotes the number of fixed points in the sense
of [MielOa, Definition 2.6].

ii) Assume that h is regular non-elliptic, and gK consists of regular elliptic ele-
ments. Then there is no point on My /p? fixed by (g=*, h™1).

Proof. 1) Since the multiplicity at each fixed point in € is one and g, is étale, the
multiplicity at each fixed point in My /p? is equal to one (cf. [Miel0Oa, Proposition
2.10, Proposition 2.11]). Therefore, we have only to count points in My /p? fixed by
(g7, h™1) (or equivalently, fixed by (g, h)) as sets. The desired equality immediately
follows from Proposition 3.25.

ii) If there exists a fixed point, then we can find v € G and an integer n such
that p~"v 'gn.y € gK. Since gK consists of regular elliptic elements, g, is also
regular elliptic. By Proposition 3.19, this contradicts to the assumption that h is
non-elliptic. i

Corollary 3.27 In the setting of Theorem 3.26 i), we have

1 .2
. -1 7—1y. ZY — 124-1 9P
Z #Fix((g~', h7"); M /p”) = d'2 SOg;L<V01(K)>’
[h/]e{h}st/’\’

where g, € G is an arbitrary element with g, < h.

Proof. By Theorem 3.26 i) and Corollary 3.24, we have

> #Fix((g L) Mg /pY) = ) > ng(vloﬁl((f@

[p']e{h}st/~ [A]e{h}st/~ z€Fix(h';2)

_ 1, k.2 _ |
= 12471 Z Og'(vogl?;}» = d'2° 180%(\/0?;;'))’

l9'1€{gn}st/~

as desired. |

20



Lefschetz trace formula and ¢-adic cohomology of Rapoport-Zink tower for GSp(4)

4 Some formal models

In order to apply the Lefschetz trace formula [MielOa, Theorem 4.5], we need to
construct a formal model of My for K in a certain family of compact open subgroups
of Ko.

4.1 Construction of formal models

First let us recall the definition of a chain of lattices of Q2* considered in [RZ96, §3]:

Definition 4.1 The set .2 of Z,-lattices of Q2% is said to be a chain of lattices if
the following hold (c¢f. [RZ96, Definition 3.1)):

— for L, L' € &, we have either L C L' or L D L,
— and for L € Z and a € Q;, we have al € Z.

Moreover, .Z is said to be self-dual if L € % implies LY € £, where LY denotes
the dual lattice with respect to the fixed symplectic form ( , ) on de.

For a self-dual chain of lattices .Z, write K¢ for the stabilizer of .Z in G. It is
a parahoric subgroup of GG. Moreover, for an integer m > 0, we put

Ky ={g9 € K¢ | for every L € £, g acts trivially on L/p™L},

which is an open normal subgroup of K.

Let Ny be the set of g € G such that ¢.¢ = .Z. It coincides with the normalizer
of K¢ in G. Furthermore, Ng also normalizes K¢ ,, for every m > 0. It is known
that Ng is a compact-mod-center subgroup of G.

In this subsection, we will construct a formal model ///u ¢.m of M K., On Which
N g acts as isomorphisms.

In the following, we fix a self-dual chain of lattices .. First we recall the
Rapoport-Zink space with parahoric level M ‘¢ introduced in [RZ96, Definition 3.21]:

Definition 4.2 Let .//Z < be the contravariant functor Nilp — Set that associates
S with the set of isomorphism classes of {(X, p)} e where

— X is a d-dimensional p-divisible group X over S,

—and pr: X ®F, S — X1 ®g S is a quasi-isogeny (as in the definition of M , We
put S =S ®z. Fp),

satisfying the following conditions:

— For L, I’ € £ with L C LI/, the quasi-isogeny pp o p;': X; ®sS — Xp ®g 5
lifts to an isogeny pr/r: X — Xp.

— For L, L’ as above, deg pr/ 1 = log, #(L'/L).

— For L € &, the quasi-isogeny p,z, o [p]op;': X1 ®5S — X, @5 S lifts to an
isomorphism 6,,: X, = X, (here [p] denotes the multiplication by p).
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— There exists a constant a € Q) such that for every L € £, we can find an
isomorphism Ay : X, — (Xpv)Y which makes the following diagram commu-
tative:

X®p §— 1 X, 265

Jra)\()@id J()\L ®id
XV ®E, §<L (X)) ®s g
(such \j automatically satisfies \Y = —Apv)
The functor .# ¢ is represented by a special formal scheme over Spf Z

pOO'
The group Nf x J naturally acts on .# ¢ on the right; for (g,h) € Ny x J, the
action (g,

h): My (S) — My (S) is given by {(Xr, pr)} — {(Xgr, pr 0 h)}. Tt is
easy to see that (g, 1) with g € Ky and (p, p) act trivially on My.

Next we consider level structures on .Z ¢

Definition 4.3 For an integer m > 0, let M “ym be the contravariant functor
Nilp — Set that associates S with the set of isomorphism classes of { (X1, pr,L.m) } Les
where

— {(Xr,pL) ey € M4 (S), and

— Npm: L/p™L — Xp[p™] is a homomorphism
satisfying the following conditions:

of sections of X [p™] (¢f. [KMS85, §1.8]).

— N is a Drinfeld m-level structure. Namely, the image of 1., gives a full set
— For L, L' € ¥ with L C L/, the following diagrams are commutative

L/p™L — L' /pmL L/p"L—2%pL/p™ 'L
J{nL m lnL’, J{nL,m J{an,m
0
X pm] S X[,

0
X[p™] T Xorlp™
— There exists a homomorphism Z/p™Z — i,m such that for every L € £ the

diagram below is commutative up to constant which is independent of L

L/p"L x LY Jp™ LY ) A
J{ananLV m J/
m id xApv
XL[p ]XXL\/[ ]HXL

[p™] x X[ [p™] —— Hpm-

It is easy to see that M "g is represented by a formal scheme which is finite over
/¢ (cf. [KM85, Proposition 1.9.1]). The group Ng x J naturally acts on t///i’gm
on the right; by (g,h) € Ny x J, {(Xr, pr,ML.m) e is mapped to {(Xyr, pgr ©
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h, NgLm © 9)}rey. It is easy to see that (g,1) with g € K¢, and (p, p) act trivially
on A .- By [Man04, Lemma 7.2], (M) % .m ym>0 forms a projective system of formal
schemes equlpped with actions of Ny x J.

Let ., ‘v.m be the intersection of the scheme-theoretic images of M S T

M . for all m" > m. Obviously {/// ‘v.m }m>0 again forms a projective system of
formal schemes.

Finally, let ///?"Z,’m be the closed formal subscheme of .#« ,,, defined by the quasi-
coherent ideal of O, consisting of elements killed by p' for some integer [ > 0. It
is flat over Spf Z,~. We obtain a projective system of formal schemes {//izpm}mm

equipped with actions of N x J. Obviously we can identify .4’ 7 8 with /// e

Remark 4.4 By [RZ96, Proposition A.21], we can show that the natural map
M rlgm N 2" is surjective for every m > 0. In particular, we have /// ve //l ne

The formal scheme //Z"Z;m gives a formal model of the rigid space Mk, ,,

Proposition 4.5 Assume that K¢ ,, C K,. Then, we have a natural isomorphism
M) 7 ”g = My, ,, of rigid spaces over Qe which is compatible with actions of Ny x J
and Change of m.

Proof. First we construct a morphism Mg,  — .//Z;gig. Let S be a formal scheme
of finite type over SpfZ,~ such that S is connected, and 8" — My,  a

morphism over Q. It suffices to construct a morphism S8 — Z/m¢.

By changing S by its admissible blow-up, we may assume that the composite
S" — Mg, , — M extends to S — .#. Therefore, we have the following
data:

— a p-divisible group X on S,
— a quasi-isogeny p: X ®F, S — X x5 S satisfying the same condition as in the
definition of .# ,
— and a 7;(S"8,T)-stable Ky ,,-orbit 77 of an isomorphism 7: ng =, Tngg
which preserves polarizations up to multiplication by Z .
Here we put S = S Q7,00 Fp and fix a geometric point T of S™s.

Fix n € 7. It corresponds to a homomorphism n: Q2*/Z2 — X8 Choose
Ly € £ with Z2* C Lo and consider L € £ with Ly C L  p~'Ly. The image
of L/ Zid C de / Zﬁd under 7 corresponds to a finite étale subgroup scheme of X,
Since there are only finitely many such L, by the flattening theorem (cf. [BL93]),
after replacing & by an admissible blow-up we may assume that for each L there

exists a finite flat subgroup scheme Y7, of X whose rigid generic fiber YL]fig corresponds
to the image n(L/Z2"). Put X, = X/Y7, and write ¢, : X — X, for the canonical

isogeny. The homomorphism 7: Q2*/Z2¢ — X2 induces 7y : Q)L — Xzi%,
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which corresponds to n;: L — TPXE%. It is easy to see that this homomorphism
fits into the following commutative diagram:

0 > 22 s L » L) 722" —— 0
o [
0—— T, X108 —— T, X% »Y e » 0.

In particular, 7y, is an isomorphism.

For L,I' € & with Ly C L C L' C p~!Ly, we have a natural closed immersion
YL]fig — Yerg. Since Y7, and Y, are finite flat closed subgroup schemes of X, this
extends to a closed immersion Y;, — Y,. Therefore we have a natural isogeny
pr.: X, — Xp. Clearly the following diagrams are commutative:

2d /r72d 2d 2d )1/ 2d
QUTH QL@ 2 L &
J{n ln L J{W L %Jﬁ’? %l’?L %J{UL '
. ® i PLL i ig _® ig L i
ng . XE% — le’gfw TpX%lg — TPXI?% - Tng/g’T

OLg,L

For L € £ with Lo C L & p™' Lo, Xy, o, X, factors as Xr, =% X

By the construction, we have the following commutative diagrams:

X1,

2d 2d /,,—1 -1
Qp /LHQP /P~ Lo L———p "Ly
lﬁL J{WLO op %lm %J(WLO op
: 0Ly,L ; o OrLo.L i
rig 0> rig rig T1g
XL’E XLO’E7 TPXL,E TPXLO,E'

Next consider the level structure. For L € £ with Ly C L C p~'Lg, let K,
be the kernel of GL(L) — GL(L/p™L). As the Ky ,,-orbit of n,: L — Tszi%
is 71 (S8, T)-invariant, so is the K .m-orbit of ny. Therefore we obtain an isomor-
phism L/p™L =, X7¥[p™]. Again by the flattening theorem, we may assume that
this isomorphism extends to a homomorphism 7,,r: L/p™L — X [p™] of group
schemes. This is a Drinfeld m-level structure (c¢f. [KM85, Lemma 1.8.3, Proposition

1.9.1]). For L, L' € £ with Ly C L C L' C p~'Ly, the following diagrams are
clearly commutative:

L/p™L —— L' /p"L’ L/p™L —)p‘lLo/pm_lLo
lnL,m lnL’,m lnL,m J{ULO,mOP
P, 0L,
Xp[pm] == X", Xp[p] —2 Xp 7).

Now we extend the construction above to all L € .Z; take an integer n such that
Ly C p"L € p 'Ly, and put Xp = Xpnp, 0p = p "o X — Xp, np =
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Npng, © ™ L =, Tszi% and nL, = Nprpm © P L/p™L — Xp[p™]. Then, for

L, L' € & with L C L', we have a natural isogeny pr/ : X; — X/ which makes
the following diagrams commutative:

L———1[ L/pmL ——L'/p™L’
EJ{"]L Elnl/ J/T]L,m lnL/,m
T,X5E Ml o xe X RN

Indeed, take integers n, n’ such that Ly C p"L C p~'Lo and Ly C p"' L' C p~'L,
(the assumption L C L’ implies n < n/). If p"L C p" L', we sct

~ ,7
ppn/Ll anO[pn n]

ﬁL/,L:XL:Xp"L : Xp",L’:XL"

If p»L D p™ L (in this case n < n’), we set

, ~
OLy,prLolp™ T Ppn' 111,

0P b ,Log
XL() ? Xpn/L’ = XL/.

ﬁL',LI X = Xan

Put pp, = ¢pop: X ®F, S — X xs 8. Then, it is straightforward to check

that {(Xz, pr, NL.m) }Ley satisfies the conditions in the definition of //i’gm (for the
condition on polarizations, we can work on the generic fibers). Moreover, the iso-
morphism class of {(X1, pr,nr.m)}Lee is independent of the choice of 7, n and Ly.
Hence we get a morphism & — .4 “v.m» and thus a morphism My, — i’(}iin :
By the construction, it is easy to verify that this morphism is compatible with the
actions of Ny x J and change of m.

For m’ > m, the transition morphism M Kot~ Mk, ,, 1s surjective. There-

fore, the morphism My, = — ’“g factors through the image of ///H%n R
MGE for every m' > m. Since . “g — M ;%n is finite étale, .Zp% '4m coincides

with the intersection of the images of /// ne

7
— M ;%n for all m’ > m. Hence we
. JTig
have a morphism Mg, , — A, of rlgld spaces over Qe
Next we construct an inverse morphism #o% — M, . Let S be a formal

scheme of finite type over Spf Z,~ such that S"8 is connected, and S"& — /// e
a morphism over Q. It suffices to construct a morphism 8" — My, . By
changing S by its admissible blow-up, we may assume that the morphism Ste —
M ;%m comes from a morphism § — #¢ ,, of formal schemes over Z,-. Therefore,
we have the data {(Xy, pr,nrm)} where

— X is a p-divisible group on S,

- pp: X ®F, S — X xg 8 is a quasi-isogeny,

— and np ., L/p™L — Xp[p™]
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satisfying suitable conditions (cf. Definition 4.3).
Fix a geometric point T of S"8. By the definition of .# ¢ ,,, we can find a family

of isomorphisms {n;: L =T pXE%} ey satisfying the following:

(a) nr mod p™ =1L mz.
(b) For L, L' € £ with L C L', the following diagrams are commutative:

L————1I L———pL
NJ/’Q 19 Nln % %’JUL EJUPL

ri ~L’, ri ri ri
TXLgm TXL,g TXLgx—>TXpLgx

(c¢) Fix an isomorphism Z, = Zy(1). Then, for every L € .Z, the diagram below

is commutative up to constant which is independent of L:

L x LY e > Ly,
:lannLv l:
T, X5 x T, X0 COR T X T XY 7,(1),

Fix Ly € £ such that Ly C Z2%. The homomorphism 7, : Ly — T;,,Xffj can be
identified with 7z,: Q%/Lo — X1.. We will see that the image nr,(Z2!/Ly) of
724/ Ly under ny, is m1(S"8, 7)-stable. Indeed, for each o € m1(S"€,7) and L € .2,
we can find gy, € GL(L) such that ¢ on, =1y 0 g,. By (b) above, if we regard
GL(L) as a subset of GL94(Q,), then g1, = g1, for every L € £. Moreover, (a)
tells us that g, , = g1, lies in the kernel of GL(L) — GL(L/p™L), and (c) tells us
that gr,0 € GSpyy(Q,). We conclude that gz, , € K¢, and thus gz, ,» € Ko by the
assumption. Hence o (1, (Z2%/Lo)) = 1o(9re.e(Z2/Lo)) = n1y(Z27/ L), as desired.

Therefore, the subset np,(Z2/Ly) C TsziOgj corresponds to a finite étale closed

subgroup scheme of Xzif. By the flattening theorem, after replacing S, we may
assume that this subgroup scheme comes from a finite flat closed subgroup scheme
Y of X;,. Put X = X,/Y. Then, by the similar argument as above, we have an

isomorphism 7: Z}%d =, TPX;ig which makes the following diagram commutative:

Ly——— 72

glmo gJ’n

rig rig
Ty Xpes — T, X5°.

Let p be the composite X ®r, S o, Xr, Xs S — X x5 S. We will show that the

triple (X, p,7) gives an S"&-valued point of M Ky ., For existence of a polarization,
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let \: X — XV be the quasi-isogeny X — X % (Xpv)Y 2L xv — XV,

where () is the quasi-isogeny pyv ; if L C LY, and (p} ;v)~" if LY C L. Then, the
following diagram is commutative up to multiplication by Z:

()
Qx x Q¥ Q

~lnxn J~

V,XTE x VX1 1A s oy xvis (1),

where the isomorphism Q, — Q,(1) is induced from the isomorphism Z, — Z,(1)
fixed in (c) above. In particular A\(7,X%®) = T, X", and thus ) is an 1som0rph1sm
It obviously satisfies that p¥ o Ao p = a)g for some a 6 Q, - The diagram above also
tells us that 7 preserves polarizations up to multiplication by Z. On the other hand,
the Ky ,,-orbit of 1 is invariant under m (8"8,7) simply because the K. ‘¢ .m-orbit of
nL, 1s invariant (recall that we have proved gr, ., € Kyz.m).

Now we obtain an S"¢-valued point (X, p,7) of My, . It is easy to see that
it is independent of the choice of * and Ly. Hence we have a canonical morphism
S" — My, ., and thus %;gm — Mg, ..

It is not difficult to show that the morphisms Mg, ,, — ”g and A, ng

. . %

Mk, . we have obtained are inverse to each other. As ///”g = fr;i, we have a
S . %

desired isomorphism My, = 4 8 |

4.2 Boundary strata

Definition 4.6 For an integer h with 1 < h < d, let S, be the set of totally
isotropic subspaces of dimension h of di. Recall that a subspace V' of di is said to
be totally isotropic if V' C V+. For a lattice L of Zid and an integer m > 0, denote
by Sr.mp the set of direct summands of rank h of L/p™L.

For a self-dual chain of lattices .Z of Qid and an integer m > 0, we have a
natural map Seen — [[;c0 Semp: V — Vem = (VN L mod p™)recy. We denote
its image by Sgmn. The group Ng acts naturally on Sop and []; .o Srmp, and
the map above is equivariant with respect to these actions. Therefore N¢ also acts
on S m.h-

Put S, = UZ:1 Soop ald Sg = UZ:13.$,m,h- For two elements a = (ay)yg,
B = (Br)r in Sg.m, we write a < [ if o, D fy, for every L € £. This gives a partial
order on S¢ ,,. The action of Ny on S¢ ,, obviously preserves this partial order.

Lemma 4.7 For every m > 0, S¢,, is a finite set.
Proof. Since Ky, acts trivially on S¢ ,,,, we have a natural surjection Ky ,,\Soc —

S.m. Therefore it suffices to show that K¢ ,,\Seo s is a finite set for each 1 < h < d.
For an integer m’ > 0, let K, be the kernel of Ky — GSpyy(Z/p™ Z). Then,
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for a sufficiently large m’, we have K,, C Kg,,. Therefore it suffices to show
that K, \Ssn 1s a finite set. Fix an element V of Swp, and denote by P the
stabilizer of V in G. It is well-known that G acts transitively on S5 and P is a
parabolic subgroup of GG. Therefore, by the Iwasawa decomposition G = KyP for
the hyperspecial subgroup K, we have

Ky \Soon = K,y \G/P = K,y \Ky/P N Koy,
which is obviously a finite set. |

Put //vj;fms = ///i';fm Q00 F,. To a € Sg,,, we will attach a closed formal
subscheme .7 % ma Of M % ms A family (A % matacSy,, of these formal subschemes
plays a role of the “boundary” of M, ,, inside M ﬁ/m

Definition 4.8 For a = (o) € S¢m, we define the subfunctor ///Vfg’m’a of ///}ms

as follows: for an F,-scheme S, {(X1, pr, M5.m)}ree € %\:bgm(s) lies in //izp’m’a(S)
if and only if WL,m’af =0 for every L € .Z.

Lemma 4.9 The subfunctor ///i"gma is represented by a closed formal subscheme
of M ;Z/pms

Proof. Obviously, for each L € £ the condition UL,m’af = 0 gives a closed formal

subscheme of ///izﬂms Therefore it suffices to show the equivalence of 77L,m|af =0
and an7m|aLL = 0. Since a € S¢,,, we have a,;, = pay. Therefore the commutative
P

diagram
L/p"L 2= pL/p™ 'L
JnL,m J{"]pL,'m
0
Xelp™] —=— Xpr[p™]
in the definition of .# v.m gives the equivalence. |

The following lemma is clear from the definition:

Lemma 4.10 i) The action of J on .4 fg’m preserves the closed formal subscheme
///igﬂ’m’a for each o € S .

ii) For g € Ng, the right action g: //l}m — //li';;m induces an isomorphism

//Z,Ef’m’a — ///vj;f’m’g for each o € Sg .

,101

For o € Sy, put MY, = t(,///uﬁ/,m’a)a. It is a closed analytic adic subspace
of M, . = t(//}vmvs)a. Moreover, set M:;’m’(a) = MYy o\ Upa MYy .5 Itisa
locally closed subset of Miﬂms
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Proposition 4.11 i) For o, € Sg,, with a # 3, M;m( ﬂMQm( =0.

a)

B)
ii) Assume that d = 2. Then, we have M}, = UaESgJR ]\/[fip’m’(a).

Proof. We use the p-adic uniformization theorem. Fix a compact open subgroup
KP? of GSp2d(AZ}). By [IM10, Lemma 4.1], we may assume that (X, \g) comes from
a polarized d-dimensional abelian variety. Let Sh¢ x» be the moduli space over Ze
of “%-sets” of abelian varieties with principal polarizations and KP-level structures
introduced in [RZ96, Definition 6.9]. We shrink K? so that Shy g» is represented
by a quasi-projective scheme over Zy~. For simplicity, we write Shy for Shy g». By
using Drinfeld level structures, we can construct towers {Sh'y . }m>0, {Shzm}m=0

and {ShE{f}m}mzo over Sh ¢ similarly as in Definition 4.3. These towers are endowed

with right actions of Ng. Let Y, be a closed subset of Sh&/ﬂ’m consisting of super-
A
/Y
p-adic uniformization theorem [RZ96, Theorem 6.30] tells us that we have a natural
N g-equivariant étale surjection

singular points, and (ShEg’m) the formal completion of Shipm along Y. The

em: %E,m - (Shi}(/,m);\YgL

(note that GSp,, satisfies the Hasse principle; cf. [Kot92, §7]).
Put Shgﬂ’m’S = Shfg,m ®ZPOORJ. For o € S ,,,, we can define a closed subscheme

Ship’mﬁa of Shfg’m’s in the same way as ///}ma By the construction of 6,,, ///;b/pma
is isomorphic to the fiber product .///v}ms Xspi, Shif’m’a. Thus, as in [Miel0a,
Example 4.2], we can reduce our problem to an analogue for {Shz,m’a}; namely, for
ShEg’m’(a) = Shgma \Usea Shigﬂ,n”g, it suffices to show the following:

(I) For o, 3 € Sy, With o # 8, Sy () NSV, (5) = @

(II) Under the assumption d = 2, we have Shfgﬂm9 \Y) = Uses ., Sh27m7(a).

Let = {(AL,NL.m) } ey € Shfg’m’s(Fp). We shall prove that ((Kerny,,)*)z lies in

Sg.m provided that np,, # 0 for some L. Since Shfg,m is flat over Z,~, x can be
lifted to a point on the generic fiber. Therefore, we can find

— a finite extension F' of Qpe,

— an “.Z-set” of p-divisible groups { X } Lc.# with a principal polarization {1} pc.#
(cf. [RZ96, Definition 6.5, Definition 6.6]) whose special fiber can be identified
with {AL[p™®]}rey (with the implicit polarization),

— and a family of isomorphisms {7, : L =, T, X5} ey (here X7 denotes the

geometric generic fiber of X)) satisfying the following conditions:

(a) Denote by 7y, the composite L RN T,X15 — T,X s, where X , denotes

the special fiber of X;. Then, n; mod p™ coincides with 7, under the
identification of Ap[p>] and X ;.
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(b) For L, L' € & with L C L', the following diagrams are commutative:

Xp
L——1[ L—— pL
NlﬁL NJ'%/ NlﬁL NlﬁpL
Op
TpXL,ﬁ — TpXL/,ﬁa TpXLﬁ ? TpoLﬁ-

(c¢) Fix an isomorphism Z, = Zy(1). Then, for every L € £, the diagram

below is commutative up to constant which is independent of L:

()

L x LY

l’lﬁL XMV

TpXL,ﬁ X TpXLv

» Ly

|

T Xy} Ty X 7 —— Zy(1).

1%

id xApv

Let V' be the kernel of 7, ®z,Q,: Q2% = L®z,Q, — V, X ,. By the first diagram in
(b) above, V' is independent of the choice of L. Moreover, we have Ker 77L =VnNL,
and thus Kern,, = V N Lmod p™ by (a). In particular V # Q2¢ as we are
assuming that g, # 0 for some L. Therefore, it suffices to prove that V C Qf,d
is coisotropic that is to say, satisfies V+ C V. Denote by A the quasi-isogeny

X o, XLv XZ, where (%) comes from the .Z-set structure of { X }ce. This

induces an alternating pairing

(e VoXog X VX 25 VX x Vo XY — Q(1).

By the commutative diagrams in (b) and (c) above, 7, ®z, Qp: Q2 = L ®g, Qp

V, X7 maps the pairing ( , ) to a scalar multiple of (, ), under an identification
of Q, = Q,(1). Thus, it suffices to show that the kernel of the specialization map
VoXr7 — VX1 s is a coisotropic subspace of V, X5 with respect to ( , )x. To
prove it, we can argue in the same way as in the proof of [IM10, Lemma 5.8].
Let us recall the argument briefly. Take an exact sequence of p-divisible groups
0 — XP, — Xp, — Xi', — 0, where X}, is connected and X', is étale.
It is canonically lifted to an exact sequence 0 — X? — X; — X% — (0 over
Op, where X¢ is an étale p-divisible group (cf. [Mes72, p. 76]). It is easy to see
that the kernel of V, X7 — V, X s coincides with V, X 0 7 Therefore it suffices
to prove that the composite of Ga101s equivariant homomorph1sms (V, X9 ) —
Vo Xpm — VX8 7.7 is zero. This follows from the p-adic Hodge theory, notlng that

AV X =, VpXin = (V,X15)"(1) induces a Galois-equivariant isomorphism
(VpXLa) = (VX153 (1)

Now we can show (I) nd (II) above. For (I), assume that © = {(AL, nL.m) t ey €
Shg m.s(Fp) lies in Shg mi (). Lhen at C Kerny,, for every L € &, or equivalently,
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a < ((Kerngm)*)r. As x belongs to Sh;mKKerm m)L)L<Fp)’ we conclude that o =
(Kernzm)*)r. In particular, for z € ShEg7m7s(Fp>, there is at most one a € S¢

with z € ShE{/’m7(a)(Fp>. This concludes the proof of (I). For (II), assume that
nm = 0 for every L € . By [HT01, Lemma I1.2.1], A7[p™] has no étale part.
Since the rational Dieudonné module D(AL[p™])g is polarized, [IM10, Lemma 4.1]
tells us that, under the assumption d = 2, Ay, is supersingular, namely, z € V", (Fp).

Hence we conclude that Shlzg7m7s \Y? = Sh27m7(a), as desired.

a€$$7m

Remark 4.12 For every quasi-compact open formal subscheme % of '///i?/m, we
can choose the level K? C GSpyy(A%) such that 6,,|7 is an isomorphism from %/

onto the image (cf. [Far04, Corollaire 3.1.4]). In particular, the formal scheme //li"gm
is locally algebraizable in the sense of [MielOb, Definition 3.18].

4.3 Group action on S¢,,

In this subsection, we assume that d = 2. In this case, by the Bruhat-Tits theory,
we can easily classify self-dual chains of lattices:

Lemma 4.13 For every self-dual chain of lattices £, we can find g € G so that
9-Z is one of the following:

(hyperspecial type) %, = {p"'Z, | m € Z}.

(paramodular type)

gpara = {pm—lngamep@mep@mep’pmzp@pmzp@pmzp@pm—i-lzp | m € Z}
(Siegel parahoric type)
gSiegel = o% U {mep @mep @pmHZp S5 pmHZp | m € Z}

(Klingen parahoric type) Zxiingen = -Z0 U Zpara-
(Iwahori type) Ly = Lsiegel U Lpara-

Lemma 4.14 Every maximal compact-mod-center subgroup of G is conjugate to
one of Ng,, Ng,,.. or Ngg_ .

Proof. Since a compact-mod-center subgroup is contained in the normalizer of some
parahoric subgroup, it suffices to show that Ng. . = Ng N Ng, . and Ng =
Ngsicgcl N prara'

For a self-dual chain of lattices .Z, let £, be the subset of £ consisting of
lattices L such that LY = aL for some a € Q,, and put £ = £\ Z;. Then,
clearly g € Ng preserves 2, and Z_. If £ = Lxiingen, then £, = £ and
2L = ZLpara- This implies that Ng,, . is contained in Ng, N Ng,... The other
inclusion is obvious. If . = %, then we have .2, = Lyiegel and Z_ = Lara,

which gives Ny, = Ng,,, N Ng,.... i
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The following proposition is very important to control the group action on the
“boundary strata” of the Rapoport-Zink spaces introduced in the previous subsec-
tion:

Proposition 4.15 Let £ be one of £y, ZLyara OF Lsiegel. Then, for 1 < h < 2 and
m > 1, the natural surjection S — Sz m induces a bijection Ky ,,\Seop, —
’Sf,m,h-

Before proving it, we give its immediate corollary:

Corollary 4.16 Let .£ be as in Proposition 4.15. For ¢ € N¢ and an integer
m > 1, assume that gKy¢ ,, = K¢ ,,g consists of regular elliptic elements. Then the
action of g on S¢ ,, has no fixed point.

Proof. Assume that g has a fixed point Vg ,, € S¢,, with V € S,,. Then Proposi-
tion 4.15 says that K¢ ,,g intersects the stabilizer P of V in G. Since P is a proper
parabolic subgroup of G, it has no regular elliptic element (Lemma 3.16). This
contradicts to the assumption. |

We will give a case-by-case proof of Proposition 4.15.

4.3.1 Hyperspecial case

Here we consider the case & = %,. For V,V' € Sqop, put I = VN Zf, and
I'=V'n Z;. Under the assumption I = I’ (mod p™), we will prove that there
exists g € Ky, ,, with I’ = gI.

First consider the case where h = 2. Fix a basis z,y € I. Since the lattice Z;f
is self-dual, we can find z,w € Z, such that (z,z) = (y,w) =1, (z,w) = (y,2) =0
(note that Homg, (Z,,Z,) — Homy, (I,Z,) is surjective, as I C Z, is a direct
summand). Replacing w by w + (z, w)x, we may assume that (z,w) = 0. It is easy
to see that z,y, 2z, w spans a self-dual Z,-lattice of Qﬁ contained in Z;*,. Therefore
x,y,z,w form a basis of Z;‘,. Take o',y € I’ such that = 2/;y = ¢’ (mod p™).
Since ', y’, z, w form a basis of Zi;, we can take A, B,C, D € Z, so that 2’ = Az+Bw
and w’' = Cz+ Dw satisfy (2/,2') = (y/,w') = 1 and (2, w') = (¥/,2’) = 0 (note that
we have (2/,w') = 0 automatically). These are equivalent to the following identity

of matrices:
(0 2) () Gra) = (0 1)

By using the fact 2’ — z,y —y € me;‘;, it is immediate to observe that
(a',2) (v,2) m
([ rap) €1tz

Therefore we can conclude that A, D € 14 p™Z, and B,C € p™Z,. In other words,
we have 2/ = z,w' = w (mod p™). In particular, 2/, 3/, 2/, w’ form a basis of Z;. Let
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g be the automorphism of Z;; that maps x to 2/, y to ¢/, z to 2’ and w to w'. Clearly
g is an element of Ky, ,, satisfying g/ = I'.

Next consider the case where h = 1. Take a basis x of I and a basis 2’ of I’ such
that # = 2/ (mod p™). Put I+ = V- NZ; and I'* = V' NZ}, which are direct
summands of rank 3 of Z; satisfying I = I'* (mod p™). There exists y € I such
that = and y span a totally isotropic direct summand I; of rank 2 of Z;;. Take an
arbitrary element ¢y’ € I'* such that y = 3 (mod p™). Then 2z’ and ¢’ span a totally
isotropic direct summand I of Zé. By the argument in the case h = 2, there exists

g € Kg, m satisfying g(z) = 2" and g(y) = ¢'. In particular, we have gI = I'.

4.3.2 Paramodular case

Here assume that & = Lpara. Put L = p'Z, ® Z, ® Z, ® Z,. Then we have
LY =72,®7,®7Z,®pZ, and [L: LV] = p?. In particular, g € G lies in K¢ if and
only if gL = L. For every z,y € L, we have (x,y) € p~'Z,. We introduce temporary
terminology:

Definition 4.17 An element z of L is said to be primitive if x ¢ pL. A primitive
element z of L is said to be type (I) if (z,y) € p~'Z, \ Z, for some y € L, and z is
said to be type (II) if (z,y) € Z, for every y € L.

Remark 4.18 A primitive element of type (I) is of the form (p~'a,b,c,d) where
a,b,c,d € Z, and either a ¢ pZ, or d ¢ pZ,. A primitive element of type (II) is of
the form (a, b, ¢, pd) where a,b,c,d € Z, and either b ¢ pZ, or ¢ ¢ pZ,.

Lemma 4.19 i) Let « € L be a primitive element of type (I), and y € L an
element satisfying (x,y) € Z,. Then there exists \ € Z, such that y — Az is not
primitive of type (I).

ii) For every primitive element x € L of type (II), there exists a primitive element
y € L of type (II) such that (z,y) = 1.

iii) Let m > 1 be an integer. For x,x’ € L with x = 2’ (mod p™), x is primitive of
type (I) (resp. (II)) if and only if 2" is primitive of type (I) (resp. (II)).

iv) Let x and y be primitive elements of L. If x is type (I) and y is type (II), then

the Z,-submodule of L generated by x and y is a direct summand of rank 2 of
L.

Proof. i) Write # = (p~ta,b,c,d) and y = (p~td’, ¥/, ,d’) with a,b,c,d,d’, b, c,d €
Z,. Since z is primitive of type (I), a or d is a unit. If a is a unit, by replacing y by
y — (d’/a)x, we may assume that @’ = 0. Since (z,y) = p~tad +bd —b'c € Z,, d
lies in pZ,. Therefore y is not primitive of type (I). If d is a unit, by replacing y by
y — (d'/d)x, we may assume that d’ = 0. A similar argument as above tells us that
a' € pZ,, namely, y is not primitive of type (I).

ii) Since x is primitive of type (II), we have = = (a, b, ¢, pd), where a, b, c,d € Z,
and either b ¢ pZ, or ¢ ¢ pZ,. We can find O/, ¢ € Z, such that bc’ — cb’ = 1. For
y=(0,0,c,0) € L, we have (z,y) = 1, as desired.
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iii) It is clear that z is primitive if and only if 2’ is primitive. Moreover, noting
that (z,y) — (2',y) = (x — 2/, y) € p™ 'Z, C 7Z,, it is also immediate to see that
is type (I) (resp. (II)) if and only if 2’ is type (I) (resp. (II)).

iv) Write x = (p~ta,b,c,d) and y = (a’,0/, ¢, pd’) as in Remark 4.18. To show
that they generates a direct summand of rank 2 of L, it suffices to see that there
exists a 2 x 2-minor of the following matrix whose determinant is a unit in Z,:

QL O o Q
9}

It is clear from the assumptions that a or d is a unit, and o’ or ¢’ is a unit. |

Lemma 4.20 Let I be a totally isotropic direct summand of rank 2 of L. Then
there exist a primitive element x € I of type (I) and a primitive element y € I of
type (II). These elements x,y form a basis of I.

Proof. Take a basis x,y of I. Obviously they are primitive. First prove that one of
and y is type (I). Suppose that both = and y are type (II), and write x = (a, b, ¢, pd)
and y = (a/,0/,¢,pd") as in Remark 4.18. Then, since x and y generates a direct
summand of L, there exists a 2 x 2-minor of the following matrix whose determinant
is a unit in Z,:

pa  pa

b v

c

pd pd

Namely, bc’ — V'c € Z. Therefore, we have (x,y) = p(ad’ — a'd) +bc —V'c € Z.
This contradicts to (z,y) = 0.

Next, assume that z is type (I), and find an element of I which is primitive of
type (II). Since (x,y) = 0 € Z,,, Lemma 4.19 i) tells us that there exists A € Z,, such
that y — Az is not primitive of type (I). On the other hand, y — Az is primitive since
x,y — Ax form a basis of a direct summand /. Thus we can conclude that y — Az is
primitive of type (II).

Finally, let = (resp. y) be an arbitrary primitive element of type (I) (resp. (II))
of I. Then, Lemma 4.19 iv) tells us that = and y form a basis of I.

Lemma 4.21 Let I be a totally isotropic direct summand of rank 2 of L, x € I a
primitive element of type (I) and y € I a primitive element of type (II). Then there
exist z,w € L satisfying the following conditions:

— x,v, z,w form a basis of L.

—(z,2) =p7 L, (y,w) =1, {x,w) = (y,2) = (z,w) = 0.
Moreover, if we are given an element u € L satistying (x,u) € p~'Z, \ Z,, then we
can find z and w so that (z,u) = (w,u) = 0 holds.
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Proof. 1t suffices to show the latter part, since we can always find such u € L.

It is easy to see that the images T,y,u € L/pL of z,y, u are linearly independent
over [F,. Therefore, we can find v € L such that Z,7,u,v form a basis of L/pL.
Then z,y, u,v form a basis of L. Since (u,v) € p~'Z, and (u,z) € p~'Z,\ Z,, there
exists a € Z, satisfying (u,v) = a(u,x). Therefore, by replacing v by v — az, we
may assume that (u,v) = 0.

Denote by I’ the Z,-submodule of L generated by u, v. It is a totally isotropic
direct summand of rank 2 of L. The pairing ( , ) induces an isomorphism of Q,-

\

vector spaces I = (Ig,)", where (=)q, = (=) ®z, Qp. Thus we obtain a basis

xV,y" of I@p satisfying (x,2Y) = (y,y") = 1 and (z,y") = (y,z") = 0. Since I’ is
totally isotropic, ¥ and y* belongs to LY. As LY C L, we have 2, y" € Iy NL = 1I".

Let I” be the Z,-submodule of I" generated by z¥, y", and L” the Z,-lattice of
@; generated by x,y,x",y". Then we have L/L" = I'/I". Since L" is self-dual, we
have LY C (L")Y = L" C L. Therefore [L : L"] = p, and thus I'/I" = L/L" = Z/pZ.
In particular, there exist a,b € Q, such that ax¥ +by" € I’\ I”. Since y is primitive
of type (II), b = (y,az" + by") € Z,. Therefore a ¢ Z,, and thus p~'zV € L.
Now we can easily observe that z = p~'zV and w = y" satisfy all conditions in the
proposition; note that (p~'z",u) = (y",u) = 0 since u, p~'z" and y" belong to I,
which is a totally isotropic direct summand. |

Now we can prove Proposition 4.15 for h = 2.

Proposition 4.22 If £ = £, and h =2, we have Ky ;,\Soo.n = S m -

Proof. Let V and V' be elements of S » such that Vg, =V, . Put I = VN L and
I'=V'N L. Then I and I" are totally isotropic and I = I’ (mod p™). It suffices to
find g € K¢, satistying gI = I".

By Lemma 4.20, there exist a primitive element x € I of type (I) and a primitive
element y € I of type (II). Take z/,y" € I’ such that x = 2’,y =y’ (mod p™). Then
' (resp. y') is primitive of type (I) (resp. type (II)) by Lemma 4.19 iii), and z’, ¢ form
a basis of I’ by Lemma 4.20. As p~™(y' —y) € L, we have (z,p ™ (y —y)) € p~'Z,.
Moreover, if (z,p (v — y)) € Z,, Lemma 4.19 i) enables us to find A\ € Z, such
that p~™(y — y) — Az is not primitive of type (I). Replacing y by y + p" Az, we may
assume that p~"(y’ — y) is not primitive of type (I).

By Lemma 4.21, there exist z,w € L such that

— x,¥, 2, w form a basis of L,

- <SC,Z> :p_la <y7w> =1, <a:,w) = <y7 Z> = <Z>w> =0,

—and (z,p™" (Y —y)), (w,p™" (Y —y)) € Zy.
Indeed, if (x,p™™(y' — y)) ¢ Z,, we can apply Lemma 4.21 to v = p~"(y — y);
otherwise the third condition is automatic since p~"(y’ — y) is not primitive of type

(D).
Since z’,y', z,w form a basis of L, we can take A, B,C, D € Q, so that 2’ = Az+
Bw and w' = Cz + Dw satisfy (2/,2') = p~!, (/,w') = 1 and (z/,w') = (¢/,2) =0
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(note that we have (2/,w’) = 0 automatically). These are equivalent to the following

identity of matrices:
A BY (plz) (=) _ (10
¢ o)\ w) w) =0 1)

By using the facts ' — 2« € p™L and (z,p™™(y — v)), (w,p™™(y —y)) € Z,, it is
immediate to observe that

pa’z) (Y 2) m
( /7w> <y7 >)€1+p MQ(Z)

Therefore we can conclude that A, D € 14 p™Z, and B,C € p™Z,. In other words,
we have 2/, w" € L and 2/ = z,w’ = w (mod p™). In particular, ', ¢/, 2/, w' form a
basis of L. Let ¢ be the automorphism of L that maps x to 2/, y to ¢/, z to 2’ and
w to w'. It is clear that ¢ is an element of K¢, satisfying g/ = I’. This completes

the proof. [

Finally we prove Proposition 4.15 for h = 1.

Proposition 4.23 If £ = L. and h = 1, we have K¢y \Soon = S m.p-

Proof. Let V and V' be elements of Sy, 1 such that Vg, = V5 . Put I =V NL
and I’ = V' N L. It suffices to find g € Ky, satisfying g/ = I".

Take a basis z of I and a basis 2’ of I’ satisfying x = 2’ (mod p™). First consider
the case where x is primitive of type (I). Then 2’ is also primitive of type (I) by
Lemma 4.19 iii). Take z,2’ € L such that (z,z) = (2/,2') = p~!. Take an arbitrary
primitive element y € L of type (II). By replacing it by y — p(z, y)z, we may assume
that (x,y) = 0. Put ¥/ =y — p(2’,y)2’. Then ¢/ is a primitive element of type (II)
satisfying (z/,y') = 0 and y = ¢/ (mod p™). By the proof of Proposition 4.22, we
can find g € Ky ,, such that gz = z'.

Next consider the case where z is primitive of type (II). In this case 2’ is also
primitive of type (II). By Lemma 4.19 ii), there exist primitive elements z, 2’ € L of
type (II) such that (z,z) = (2/,2’) = 1. Let us prove that we can find a primitive
element y € L of type (I) satistying (x,y) = 0 and (p~™(2' —2),y) € Z,. If p~™ (2’
x) is primitive of type (I), put y = p~" (2’ — z) — az where a = (z,p ™ (2’ — :1:)}
Then a € Z, as x is primitive of type (II), and (p~™ (2’ — z),y) = a(z,y) €
since z is primitive of type (II). If p~™ (2’ — x) is not primitive of type (I), take
an arbitrary primitive element w € L of type (I) and put y = w — (z,w)z.
this case, the condition (p~™ (2’ — x),y) € Z, is automatic. Put y =y — (2 ,y)
Then we have (z',y') = 0. Furthermore we have y = 3/ (mod p™), for (z/,y) =
p"(p~™ (2" — x),y) € p"Z,. Hence, again by the proof of Proposition 4.22, we can
find g € K¢, such that gz = 2'. |

Now a proof of Proposition 4.15 for the paramodular case is complete.
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4.3.3 Siegel parahoric case

Here we assume that £ = Ziege. Put Ly = ij and L, = Z, ® Z, ® pZ, ® pZ,. We
have pLo C Ly C Lo and Lo/Ly = Ly/pLy = F>. An element g € G lies in Ky if
and only if gLy = Ly and gL, = L.

Lemma 4.24 Let x,y € Ly and z,w € L, be elements satisfying

(Z,y) =0, (z,2)=(yw)=1 (z,w)=(y,2)=0, (z,w)=0.
Then, x,y, z,w (resp. px,py, z,w) form a basis of Ly (resp. L1).

Proof. Let us prove that the images 7,7 of z,y in Ly/L; form an [F,-basis of Ly/L;.
Assume that v = ax + by € Ly for a,b € Z,. Then, a = (u,2) € pZ, and b =
(u, w)y € pZ,, since the pairing ( , ) on Ly takes its value in pZ,. This implies that
7,y € Lo/ Ly are linearly independent over [, and thus they form a basis. Similarly,
we can prove that zZ,w € Ly /pLy form a basis of Ly /pLgy. From this, it is immediate
to conclude the lemma. |

Proposition 4.25 Let Iy be a totally isotropic direct summand of rank 2 of Ly and
put Il = I() N Ll.
i) Assume that Iy = I,. For a basis x,y € Iy = I, there exist z,w € Ly such that

<ZL’, Z) = <y7w> =1, <ZE,U)> = <y7 Z> =0, <27w> =0.

ii) Assume that [ly: I;] = p. Forx € Iy \ I and y € I, \ ply, x,y form a basis of
Iy. Moreover, there exist z € Ly and w € Lq such that

(x,z) = (y,w) =1, (z,w)=(y,2) =0, (z,w)=0.
iii) Assume that [Iy : I;] = p?. For a basis x,y € Iy, there exist z,w € L, such that
(x,2) =(y,w) =1, (z,w)=(y,z) =0, (z,w)=0.

Proof. 1) Take u,v € Ly such that z,y,u,v form a basis of Ly. Since y ¢ pLy and
(x,y) = 0, either (u,y) or (v,y) is a unit in Z,. Therefore we may assume that
(u,y) € Z). Then there exists a € Z, such that (u,v — ay) = 0. Replacing v by
v—ay, we may assume that (u,v) = 0. Let J be a direct summand of Ly generated by

u, v, which is totally isotropic. The pairing ( , ) induces an isomorphism J =, Iy.

Therefore, there exists a basis z,w of J satistying

<$,Z> = <yaw> =1, <x,w> = <y,Z> = 0.

This concludes ).
ii) It is immediate to see that x, y form a basis of Ly. We shall prove the existence
of z,w. Take u € Ly (resp. v € L) so that Z,u (resp. 7,7) form a basis of Lg/L4
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(resp. Li/pLg). Since y ¢ pLg and (z,y) = 0, either (u,y) or (v,y) is a unit in
Zy. As (v,y) € pZy,, we have (u,y) € Z;. Replacing v by v — ay for a suitable
a € Z,, we may assume that (u,v) = 0. By the same argument as above, we can
find z, w € Zyu + Zyv satisfying

<I7Z> = <y7w> =1, (x,w) = <y,Z> = 0.

We should prove that z € Ly. Since px,y, pu,v form a basis of Ly, it is easy to see
that (u,z) € pZ, for every u € L;. Therefore z € pL} = Ly, as desired.

iii) Take w,v € Ly such that w,v € L;/pLo form a basis of L;/pLy. Since
Lo/Ly = Iy/I, x,y,u,v form a basis of Ly. As in i) and ii), we may assume that
(u,y) € Z5. For a = (u,y) " (u,v) € Zy, we have (u,v—ay) = 0. Since (u,v) € pZ,,
the element ay belongs to L. Therefore, replacing v by v — ay, we may assume that
(u,v) = 0. By the same argument as above, we can find z,w € Z,u + Zyv C Ly
satisfying

(r,2) = (y,w) =1, (z,w)=(y,2) =0. i

Proposition 4.26 If £ = Lyiege and h = 2, we have Ky 1, \Soop = Sz mp-

Proof. Let V and V' be elements of S, » such that Vg ,, = Vg, . Put I; =V N L;
and I = V' N L; for i = 0,1. Then [; and I/ are totally isotropic and I; = I/
(mod p™). It suffices to find g € K¢, satistying gly = I|.

Let us take x,y, z,w € Ly as in Proposition 4.25. For 2/, 3/ € [ with 2’ —x,y' —
y € p" Ly, we can take A, B,C,D € Q, so that 2’ = Az + Bw and v’ = Cz 4+ Dw
satisfy (2, 2') = (y/,w’) = 1 and (2/,w') = (¥, 2’) = 0. These are equivalent to the
following identity of matrices:

A B\ [((*,2) (.,2)\ (1 0
C D) \(2w)y (y,wy) \0 1)°
By using the assumption ' — x,y’ —y € p™Ly, it is immediate to observe that
(', 2) (¥, 2) m
( Y, w el —|—p MQ(ZP)

Therefore we can conclude that A, D € 14 p™Z, and B,C € p™Z,. In other words,
2w lie in Zyz + Zyw and 2" — z,w' —w € p"Zyz + p" Lyw.
Now consider the three cases in Proposition 4.25 separately. First assume that

Iy =1,. Then I} = I{, as [ C Io + p™Lo C Ly + pLy = L;. By the assumption
I, = I} (mod p™), we may take z’,y’ € I} above so that © — a’,y — vy € p™Ly.
Lemma 4.24 tells us that

— x,y,z,w and 2,9, 2/, w’" are bases of Ly,

— x,y,pz,pw and 2’1y, pz’, pw’ are bases of L, and

— ',y form a basis of I,
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Let g be the automorphism of Ly that maps = to 2/, y to ¢/, z to 2z’ and w to w'. It
is clear that g is an element of Ky, satistying gly = I.

Next consider the case where [y : I;] = p. In this case, we can choose y’ so
that ¥ belongs to I{ and v/ —y € p™Ly, as I} = I] (mod p™). Then 2’ € Ly and
2/ — z € p™Ly; indeed, we have (y,z) = p"(p™™(y' — y), z) € p™*'Z, (note that
z € Ly) and thus B € p™*'Z,. Therefore, Lemma 4.24 tells us that

— x,y,z,w and 2,1y, 2/, w" are bases of Ly,
— px,y, z,pw and px’,y’, 2/, pw’ are bases of L, and
— o,y form a basis of I

Hence the automorphism of Ly defined as above gives an element g € K¢, satistying
g]() = ]/

Fmally consider the case where [Iy : ;] = p®. Since z,w € Ly, we have 2/, w’ € L,
and 2’ — z,w’ —w € p™L;. Lemma 4.24 tells us that

— x,y,z,w and 2,9/, 2/, w" are bases of Ly,
— px,py, z,w and px’,py’, ', w' are bases of L, and
— 2/, y form a basis of [

Hence the automorphism of L, defined as above gives an element g € K¢ ,, satisfying
gly =1, i

Proposition 4.27 If £ = Lyiege and h = 1, we have Ky ,\Soop = Sz mp-

Proof. Let V and V' be elements of S, ; such that Vg, = i’pm Put , =V nNL;
and Il = V'NL; for i = 0,1. Then we have I; = I/ (mod p™). It suffices to find
g € Ky, satisfying gly = ).

Take a basis = of I; and an element 2’ € [ such that 2’ —x € p™Ly. Then 2’ is
also a basis of [}, for 2’ ¢ pLy. Moreover, since ' —x € pLy C Ly, x € Ly if and
only if 2’ € L.

First consider the case where [y = I;. In this case, I) = I as 2’ € I{. By
the assumption I; = I] (mod p™), we may take 2’ above so that x — 2’ € p™L;.
Let us observe that there exists y € Ly \ L; such that (x,y) = 0. Consider an
[Fp-linear map (x, —): Lo/L; — F,. Since dimg, Ly/L; = 2, the kernel of this map
is non-trivial. In other words, there exists u € Ly \ Ly such that (z,u) € pZ,. Take
v € Lo such that (x,v) = 1 and put y = v — (x,u)v. Then we have (z,y) = 0 and
y € Lo \ Ly (note that (z,u)v € pLy C Ly). Take z € Ly satisfying (x',z) =1 and
put y' =y — (z',y)z. Since (2',y) = (¢ — z,y) € p"Z,, we have y’ € Lo\ Ly and
Yy —ye meo Let V (resp 1% ) be a subspace of Q generated by x,y (resp. z’,9/),
and put I —-Vn L;, I’ =V'n L; for i = 1,2. Then it is easy to see the following:

— V, V' e Soo,2-

— z,y (resp. x, py) form a basis of Iy (resp. 71)
/ /

— ',y (resp. o/, py’) form a basis of Z’) (resp. f{)
— L;=1 (mod p™).
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Therefore, by the proof of Proposition 4.26, we can find g € Ky, such that gz = 2.

Next consider the case where Iy # I;. In this case, I # I] since 2’ ¢ I]. In
the same way as above, we can find y € L; \ pLg such that (z,y) = 0. Since
x' ¢ Ly = pLy, there exists z € Ly such that (2/,2) = 1. Put ¢ =y — (2/,y)z. As
(@, y) = (' —x,y) € pP"Z,, we have y € Ly \ pLy and y' —y € p™L;. Define v,V

I; and I} as above. Then it is easy to see the following:
— V.V €8
— x,y (resp. px,y) form a basis of Iy (resp. 71)
— 2,y (resp. px’,y') form a basis of Zﬁ (resp. 7).
~ L =1, (mod p™).
Therefore, by the proof of Proposition 4.26, we can find g € Ky ,,, such that gz = 2’ 1

Now a proof of Proposition 4.15 for the Siegel parahoric case is complete.

5 Open covering of the Rapoport-Zink space

From this section, we convert the right action of G x J on the Rapoport-Zink tower
to the left action by taking inverse. Therefore, the action of (g,h) € G x J on the
cohomology H}., is given by (g1, h™1)*.

5.1 Definition of open covering

Fix a chain of lattices & of de. Then we can consider ///i"g (cf. Definition 4.3) and
its rigid generic fiber My. We write Irr(£) for the set of irreducible components of

A For each a € Irr(.Z), the set 4%\ Usete(#).ans=c B is open in M as
vfglred is locally of finite type over Fp. Let %, be the open formal subscheme of ///i';f
satisfying 4 = //Z;red \ Uﬁelrr(f),ocmﬁ:@ B, and U, the rigid generic fiber of %,.
As o C U, { U} aern(z) (resp. {Ua}aem(z)) gives an open covering of //ng (resp.
Mg). For a, 3 € Irr(Z), note that U, NUs # @ if and only if 2N %ﬁred #+ O,
since U, N U = (% N U3)"¢ and %, N U3 is flat over Zj.
Clearly J naturally acts on Irr(.%), and we have h, = %, for h € J.

Lemma 5.1 i) Put Irr(%)a0 = {a} and for m > 1 define the set Irr(L)am
inductively as follows; Irt(Z)a.m consists of 3 € Irr(£) which intersects some
element in Irr(.Z) o, m—1. Then Irr(ZL),. . s a finite set.

ii) The action of J on Irr(.¥) has finite orbits.

iii) For every o, € Irr(.Z), the subset {h € J | ha N # @} of J is contained in
a compact subset of J.

iv) For each a € Irr(.Z), the subgroup J, = {h € J | ha = a} is open and
compact.
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Proof. Since A /ored i locally of finite type and every irreducible component of /// yred
is projective, Irr(.,iﬂ)ml is a finite set. If Irr(%)qm—1 is a finite set, Irr(.,iﬂ)aym =
Usetr(2)a o 11(Z)p,1 is also a finite set. This concludes the proof of i).

We assume that £ = % = {p"Z2 | m € Z} and prove ii) and iii). In this
case, .///uf% — # and the action of .J on Irr(.%) is transitive ([Vie08, Theorem 2]).
Thus ii) is immediate. Let us prove iii). By the transitivity, we may assume that
a = 3. Let %GL be the Rapoport-Zink space for GL(2d) corresponding to the p-
divisible group X and Jgr, the group of self-quasi-isogenies of X which naturally acts
on 1. The group J is a closed subgroup of Jg,. By forgetting the condition on
polarization, we have a natural closed immersion M — My, and the actions of J
and Jg, are compatible. Therefore, it suffices to show that {h € Jgr, | haNa # T}
is contained in a compact subset of Jar,, where « is regarded as a quasi-compact
closed subset of S /red - This is essentially proved in [RZ96, proof of Proposition
2.34].

Next we assume that & = L, = {p™Z, ® p" 22" | m € Z,0 < i < 2d}.
Then we have a natural morphism : //{}IW — A gfo’ which is proper. Fix an
arbitrary element 8 € Irr(%) and let aq, ..., a,, be the collection of elements of
Irr (4, ) which are contained in 7=!(3). Since 7 is J-equivariant, it is easy to observe
Irr(Lw) = Upey Uisy hay. This concludes the proof of ii) in this case. To prove iii),
let oy (resp. Bp) be an element of Irr(.%5) which contains 7(«) (resp. m(3)). Then,
{h € J|hanp # @} is contained in {h € J | hay N Gy # D}, and thus we are
reduced to the case ¥ = .%.

Finally we consider an arbitrary .. Changing .Z by ¢.% with ¢ € G, we
may assume that 2" is contained in Zj,. Then we have a natural morphism
T ,///j — ,///j, which is proper. By Remark 4.4 and Proposition 4.5, the
induced morphism 7: Mg, — Mgy is surjective, and therefore the morphism
,///vzjd — A is also surjective (note that .7, is flat over Zy). For ii), let
B,y B € Irr(ZAy) be elements such that Irr(Ly) = U, UL A0, and o; an
element of Trr(.Z) which contains 7(8;). Then {ha;}res1<icm cover .45, and we
have Irr(.Z) = U, Uity hoy. To prove iii), take of,...,ap, 01, ... ,ﬁl ¢ Irr(ﬁw)
so that 7 1(a) € UL, o and 771(8) C U;Zl 3;. We have

{heJ|hanp#a}={heJ|n Y ha)N7aB) # 2}

k1
cJUth e T hain B # o}

i=1j=1

We already know that the latter set is contained in a compact subset of J. This
completes the proof of ii) and iii).

Let us prove iv). By [Far04, Proposition 2.3.11], there exists an open subgroup
of J whose elements stabilize a. This implies that J, is an open subgroup of J. In
particular, J, is a closed subgroup of J. On the other hand, by iii), J, is contained
in a compact subset of J. Thus .J, is compact, as desired. |
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Corollary 5.2 For each o € Trr(.Z), there exist only finitely many € Irr(.Z)
with Uy, N Us # @.

Proof. By the construction, it is easy to see that %4 N %ﬁred = & unless 3 €
Irr(:Z)a.2. Thus the claim follows from Lemma 5.1 i). i

Consider the quotient M fg/pz of //li"? by the discrete subgroup p* C J. For
a € Irr(&) /p?, we write %y (resp. Ug) for the image of %, (resp. U,). Recall that
we have an action of Ny on //ZE, /p*. Therefore, Ng also acts on Irr(.#)/p?. This
action factors through the quotient Ng/p?Ky, which is a finite group. Therefore,
each Ng-orbit in Irr(Z) /p? is a finite set. We denote by I(.%) the set of N g-orbits
in Irr(Z) /p”. For A € I(Z), we put % = Uz % and Uy = Uzcy Us. Then %,
and Uy are stable under the action of Ng. Clearly J/p” naturally acts on (%),
and we have h%, = %, and hUy = Uy for h € J/p? and X € I(L).

Since U, is a finite union of Ug’s, the following corollary is an immediate conse-
quence of Lemma 5.1 and Corollary 5.2:

Corollary 5.3 i) For each A\ € I(Z), there exist only finitely many p € 1(.Z)

with Uy N UN 7& .
ii) The action of J on I(%) has finite orbits. In particular, there exist finitely

many elements Xy, ..., Ay, of I(Z) such that My /p” = U, Ui"; hU,,.

iii) For every A\, € I(%), the subset {h € J/p* | hU\NU, # @} of J/p* is
contained in a compact subset of J/p~.

iv) For each \ € 1(.%), the subgroup J, = {h € J | hA = A} is open and compact-
mod-center.

Corollary 5.4 For A\, € I(£), the set {h € J/p* | hU\NU, # @} is in fact a
compact open subset of J/p”.

Proof. Put Cy,, = {h € J/p* | hU\NU, # @} and consider the closure C), in
J/p%. By Corollary 5.3 iii), it is compact. The group Jy acts on Cy, and C, on
the right. Since Jy/p” is an open subgroup of J/p%, the quotient Cy ,/Jy is finite.
Therefore C) ,/Jy is also a finite set. Since Jy/p” is compact open, so is C) .

For a finite subset A = {A1,..., A} of I(Z), we put % = (g %, Uy =
Nz, Uy, and Jy = {h € J | hA = A}. Since the group J,/ (2, J\, acts faithfully on
A, it is a finite group. Thus, Corollary 5.3 iv) tells us that J, is an open compact-
mod-center subgroup of J.

For an integer s > 1, let 1(.%)s be the set of subsets A C I(.%) such that #\ = s
and Uy # &. The group J (or J/p”?) naturally acts on I(.Z),.

Lemma 5.5 For an integer s > 1, the action of J on I(.£)s has finite orbits.
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Proof. Let I(.Z)7 be the subset of I(.Z)® consisting of elements (A1,...,As) such
that Aj,..., A, are mutually disjoint and Uy, .,y # @. It is stable under the
diagonal action of J on I(.Z)*, and the natural surjection I(Z)y — I(ZL)s;
(A, As) — {A1,...,As} is obviously J-equivariant. Therefore it suffices to
see that the action of J on I(.Z)7 has finite orbits.

Consider the first projection [(.Z)y — (%), which is J-equivariant. By
Corollary 5.3 i), each fiber of this map is finite. Thus, Corollary 5.3 ii) tells us the
finiteness of J-orbits in I(.Z)7. i

For an integer m > 0 and X\ € I(.Z), let %, (resp. Uy,,) be the inverse image
of %\ (resp. U,) under //ngm/pZ — //}/pz (resp. Mg, /p? — My /p”, where
we put Mg, = A /" “g) These are stable under the natural action of Ng x Jy /p”
on //ng’m/p and My, /p?. Similarly we define %, and Uy .

As '%ibfm is locally algebraizable (Remark 4.12), [Miel0Oa, Proposition 4.6] tells
us that the compactly supported cohomology

H(Uxm) = Hi(Uxm g0 Qpec, Qr) @g, Qg

is finite-dimensional. Two groups Ny and Jy/p” naturally act on it. The action
of Ky, C Ng is trivial, and the action of .J,/p” is known to be smooth ([Ber94,
Corollary 7.7], [Far04, Corollaire 4.4.7]). Therefore, for fixed g € Ny, the function

Mgt B Tr((g7 1) Hi(Upm))

on Jy/p” only depends on the coset gKy ,,, and is locally constant. Extending it by
0, we regard it as a locally constant compactly supported function on .J/p%.
The following construction is very important in this work.

Definition 5.6 For each integer s > 0, take a system of representatives A ;,..., A, .
of the quotient J\I(Z)s41. For m > 0 and g € Ng, we define a locally constant
compactly supported function nyx,, ,, on J /p” as follows:

s—i-t

NgKep m Z Z Vol J /p nx\SZ,gKg "

s,t>0 i

Proposition 5.7 Let m > 0 be an integer such that K¢ ,, C Ky, and g an element
of Ng. For every admissible representation p of J/p%, we have

Tr(ngy s p) = Tr(g; Hrz[p)"4 ™)

(for a definition of Hggz[p], see Definition 3.3 and Definition 3.8). Moreover, the
image of 1y, in H(J/ p?) is characterized by this property. In particular, the
image Is independent of the choice of Agy,. .., Ay -
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Proof. By Remark 3.4, Lemma 3.6 and Proposition 4.5, we obtain the equality

Te(g; Hralp]**m) = Y (1) Tr(g; Ext), o (HA Mz m/P"), p))-
i,j>0
On the other hand, we have an Ng x J/p%-equivariant Cech spectral sequence
Ef = @ HUUrm) = H M (M /p").
AEL(L)s+1
It is easy to see that B, ' = @F (:—IndﬁA Ht(UA m) as N x J/pP-representations.

Since c- Ind‘] Ht(U,\ m) Is projective in the category of smooth J/pZ-modules, in

the Grothendleck group of finite-dimensional representations of N¢ we can compute
as follows:

Y ()T Et) L (H (M /"), p)

i,j>0
ks
= D> 2 (DTYE) (eIndy, H{(Uy, ). p)
s,t,720 =1
ks
- Z Z( 1)3+t HOHIJA /p? (HC(U/\S i m)? p)
>0 i=1
Therefore,
ks
Tr(g; Hpz[p)"m) = Z Z(—1)5+t Tr(g; HomJAS’i/pz(Hﬁ(UASJ’m),p))
s,t>0 i=1
s+t :
= h) Tr p(h)dh
stZ>OZVOI J)\ /p)/ pzn*“gKg ( ) P( )
[ e, (0Tl
I, /P" "
= Tr(ngKy,m; 10)7
as desired. o
The uniqueness of an element of H(.J/p?) with this property follows from [Kaz86,
Theorem 0]. i

5.2 Action of regular element

Let .Z and m > 0 be as in the previous section. We fix a regular element v € J and
consider how v permutes the open subsets {Ux}rer(2)-
First recall the following well-known lemma:
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Lemma 5.8 Let H be a connected reductive group over Q,, Zy its center and 7y €
H(Q,) a regular element. Put H = H(Q,), Zy = Zu(Q,) and Z(y) = Z(v)(Q,).
Then the map Z(y)\H — H/Zy; h — h™'~h is proper.

Proof. We have only to prove that the inverse image of any compact subset of H/Zy
is compact. It follows from [HC70, Lemma 18]. i

Proposition 5.9 Let I(.Z), be the subset {\ € I(Z) | yUxNU, # @} of I1(ZL).
Then the left action of Z(v) on I(£) preserves I(£)., and Z(y)\I(L) is finite. If
v is elliptic, 1(.Z),, is a finite set.

Proof. Take a system of representatives Ay,...,A\p of J\I(.Z). Then, I(.£) can
be identified with ]_[f:1 J/Jy,. Since Jy,/p” is a compact open subgroup of J/p”
(Corollary 5.3 iv)), to show the finiteness of Z(v)\I(.Z),, it suffices to show that
the set {h € Z(y)\J | YUnr,NUpny, # @} is compact. The condition yUpx, NUpy, # @
is equivalent to Up-1,p1, N Uy, # @. By Corollary 5.4, the set {h' € J/p? | Uy, N
Uy, # @} is a compact subset of J/p”. Therefore, Lemma 5.8 tells us that the set
{h € Z(yY)\J | Up-14px, N Uy, # D} is compact.

Assume that v is elliptic, namely, Z(v)/p? is compact. Then, for each \ €
I1(Z),, the Z(v)-orbit of A is finite; indeed, the Z()-orbit can be identified with

(Z()/p®)](Z(v)NJy) /p*), and (Z(v)NJy)/p? is an open subgroup of Z(7)/p”. In
other words, each fiber of the natural projection I(£), — Z(7)\I(.Z), is a finite

set. Hence I(.Z), is a finite set.

Definition 5.10 Put

U %A ,ms Uv, U U)\ m-

AEI(ZL), \EI(ZL

These are stable under the actions of N¢ and Z(7).

Corollary 5.11 Let I(£)!, be the subset of I(£) consisting of A such that Uy, N
Uym # @. Then the left action of Z(v) on I(Z) preserves I(£). and Z(y)\I(Z).,
is finite. If 7y is elliptic, I(£) is a finite set.

Proof. Tt is an easy consequence of Proposition 5.9 and Corollary 5.3 i). Indeed, for
a system of representatives A1, ..., A for Z(y)\I(Z),, Z(7)\I(Z)., is contained in

the image of a finite set |JI_ {\ € I(Z) | UxNU,, # @}. i

Definition 5.12 Put

= U %/\ My Ufly, - U U)\m

AEI(2), AeI(¥

These are stable under the actions of Ng and Z(7).
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Remark 5.13 The closure U, ,, of U, ,, is contained in U, . Indeed, let x be a
point in U, ,,, and take A € I(.Z) such that € Uy,,. Then U, ,, should be intersect
U, m and therefore A lies in I(.Z)!

v

If v is elliptic, then %, ,, is quasi-compact, and thus the cohomology H:(U, )
is finite-dimensional. For g € N, the alternating sum of the traces of (g7, v™!)
on H!(U,,,) can be computed by the function 7y, , introduced in the previous
subsection:

Proposition 5.14 Assume that v is elliptic. Then, for g € Ny we have

Z(_l)i Tr((gila '771)§ Hci(U%m» = Ov(nng,m>-

For our normalization of the Haar measure, see the last paragraph of Section 3.1.

Proof. For an integer s > 1, put I(.Z),s = {A € I(Z)s | A C I(£),}. Then we
have the Cech spectral sequence

El_sjt - @ Hé(UA,m) = HC_SJ'_t(U'me)'
AEI(L )~ 541

Therefore, we can compute

D DT T HU)) = Y Y (T Te((97 ) He(Unm)

i $t>0 NI (L) 541
ks
=) D> = Y (9 ) HAUna, )
5,t>0 i=1 heJ/Jy, .
hA, (),
ks
=22 U D M ke, (9T IR)
5,t>0 i=1 held/Jy, .
h,,CI(Z),
D 3) Dt [0 l0. 1 b = O, )
- Ay 9K m ? _ m/°
a5 VOI(JAS,i/pZ) I/ Asi9K e, y\lgKe

For (x), note that if hA ;, ¢ I(Z),, then yh),; # h),,; indeed, if an element
Ain hAg; \ I(Z), satisfies YA € hAy;, we have Uy , C Uy N U, = &, which
contradicts to the fact h),; € I(Z)s41. Thus kA, ; ¢ [(£), implies h™'vh & J,

and 7735’ (g, h"1vh) = 0. |

ingZ,m

Next we consider the case where ~ is not elliptic. In this case, the centralizer
Z(7) is a maximal torus which is not anisotropic modulo the center of J. We can
take a discrete torsion-free cocompact subgroup I' of Z(v)/p”.
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Take a system of representatives \j,..., A\ for Z(y)\I(£),. For each i with
1 < i <1, let C; be the subset of J/p? consisting of h € J/p% such that there
exist fuy, g, i3 € I(Z) with Uy NU,, # G, Uy, NUL, # 9, Uy, NU,, # O
and Uy, N Upx # @. By Corollary 5.3 i) and Corollary 5.4, C; is compact. Put
¢= Ui’:l Ci.

Since [ is discrete, C' N I' is finite. Therefore, by shrinking I' if necessary, we
may assume that C N T = {1}.

Lemma 5.15 The quotient T'\I(.Z)! is a finite set.

Proof. As in the proof of Proposition 5.9, it follows from compactness of Z(v)/T"
and Corollary 5.11. |

Lemma 5.16 For A\ € I(Z). and " € I, assume that there exist i, pig, j13 € I1(L)
such that UxNU,, # 2, U, NU,, # 2, U,,NU,, # @ and U,, N Uy # &. Then
~ =1.

In particular, if v # 1 then we have U, N Uy = & for every A € I(Z).,.

Proof. We may write A = h\, with h € Z(v) and 1 <1 <[. If there exist pq, ua, i3
as above, then Uy N Up-1,, # &, Up-1yy N Up-1yy # D, Up-1y N Up-1,, # @ and
Un-1ys N Up-1yny # @, and thus h='o'h € C;. Since 7/, h € Z(vy) and Z(y) is
abelian, we have v/ = h™'4'h. Therefore 7/ € CNT = {1}, as desired.

By the lemma above, we can take quotient of %, ., % ,,, Uym and U, by
I Lemma 5.15 tells us that I'\%,,, is quasi-compact, and thus the cohomol-

ogy H}(T'\U,,) is finite-dimensional. We write pr for the natural maps %, —
N\%,,, and U, — I\U',,

Proposition 5.17 i) Let g be an element of Ngy. Assume that a point © €
I'\U,, is fixed by (g,7). Then, every point y € U, ,, satisfying pr(y) = x is
fixed by (g,7).

ii) For A € I(£), \ I(£),, we have pr(Uyxm) N pr(Usxm) = 9.

Proof. i) Take A € I(.Z), such that y € Uy,,. As z is fixed by (g, ), there exists
v € I' such that (g,7"v)y = y. In particular Uy, N Uy, # @. Since A € 1(Z),,
we have Uyyp, N Uy, # 9, and thus Uyynm N Uy # 9. Therefore, by Lemma
5.16, we can conclude that v/ = 1. Hence y is fixed by (g, 7).

ii) Assume that pr(U,am) N pr(Usm) is non-empty. Then there exists v/ € T’
such that U,y N Uyam # @. Since A € I(£)!, we can find p € I(.Z), such that
UrxmNU,m # @. By the definition of 1(.Z).,, we have U, ,, N\U,,m # @. Therefore,
all of Uy N Upms U N Uqypmy Uy 0 Usya i and Uy, N Uiy are non-empty.
Lemma 5.16 tells us that 7 = 1. Hence U, N Uy, # &, which contradicts to the
assumption A ¢ I1(.Z),. i
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By the same argument as in the proof of Proposition 5.14, we can obtain the
following:

Proposition 5.18 For g € Ny, we have
Y (=D Te((g ) HAT\Uy ) = vol(Z()/T) 05 (g )

where T’ denotes the inverse image of ' under J — J /p*.

6 Application of Lefschetz trace formula

From now on, we assume that d = 2. In this section, we will apply the Lefschetz
trace formula to compute the left hand side of the identities in Proposition 5.14
and Proposition 5.18. Let .Z be one of %), ZLara OF Lsiegel in Lemma 4.13, and
m > 1 be an integer. In this case, K¢, is contained in Ky. We put K = Ky, for
simplicity. The goal of this section is as follows:

Theorem 6.1 For g € Ny, assume that gK consists of regular elliptic elements.

i) For every regular elliptic element v € J, we have

. 1 5
0,() = #Fix((9.2) Mym/F) = 3 0, (2,
z€Fix(v;Q)

(The latter equality has been proved in Theorem 3.26 and .)

ii) For every regular non-elliptic element vy € J, we have O, (n,x) = 0.

Before proving the theorem, we record the following corollary, which is an im-
mediate consequence of Theorem 6.1 i) and Corollary 3.27:

Corollary 6.2 Let g be an element of Ny such that gK consists of regular elliptic
elements. For v € JU, let g, be an element of G with g, <> ~. Then we have

1,k,2
50, () = 150,, (1 4775 )

6.1 Complement on [MielOa]

We would like to apply [MielOa, Theorem 4.5] to %, ,, and I'\%,,, but the rigid
generic fiber of these formal schemes are not partially proper over Q,~. Here we
will give a slightly stronger version of [Miel0Oa, Theorem 4.5] which is applicable to
our cases. All techniques we need are included in [MielOa, §4].

We use the same notation as in [MielOa, §4]. Let R be a complete discrete
valuation ring and k an algebraic closure of the fraction field F' of R. Put § = Spf R
and S = Spa(k, k), where kT is the valuation ring of k. Let X be a quasi-compact
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special formal scheme which is separated over §. Then we can associate X with the
adic spaces X = t(X),, X, = t(X), and X5 = t(X);. We denote the special fiber
of X (resp. X) by X; (resp. X).

Let X’ be a quasi-compact special formal scheme separated over S which contains
X as an open formal subscheme. We can define X', X7, X7, X7 and X{ similarly.
Let 7 be a finite set equipped with a partial order and {V, }ae7 a family of closed
formal subschemes of X, indexed by 7. We put Y, = t(Va)a = t(Va) Xyx) X, and
assume the same condition as in [MielOa, Assumption 4.1];

Assumption 6.3 i) X, =J,.; Yo

ii) Fora € 7, put Vo) = Ya\Upsy Y- Then, for o, 8 € T with o # 3, Y(o)NY(5) =
.

Let f: X’ — X’ be an isomorphism preserving X'. We also denote the induced
isomorphism X’ — X’ by the same symbol f. The induced isomorphisms X; —

X, and X7 =, Xj; are denoted by f, and fz, respectively. We will make the same

assumption as in [MielOa, Assumption 4.3];

Assumption 6.4 There exist an order-preserving bijection f: 7 =57 and a Sys-

tem of closed constructible subsets {Y,(n)},>1 of X for each o € T satisfying the
following:

i) Ya(n+1) C Yu(n) for every n > 1.
i) Mpz1 Ya(n) = Ya.

iii) f(Ya(n)) = Yy@)(n) for every a € 7 and n > 1.
)

iv) f(a) # a for every a € 7.

Remark 6.5 As proved in [MielOa, Proposition 4.18], if f induces an isomorphism
of formal schemes ), =, V(o) for each o € 7, then we can find a system of closed

constructible subsets {Y, (n)},>1 of X satisfying Assumption 6.4 i), ii), iii).

Theorem 6.6 In addition to Assumption 6.3 and Assumption 6.4, assume the fol-

lowing:

(a) X' is locally algebraizable ([MielOb, Definition 3.18]) and X,, is smooth over
Spa(F, R).

(b) The closure X,, of X, in X, is partially proper over Spa(F), R).

(c) Forevery x € X[\ X, fy(z) # .

Let A = Z/{™Z for a prime ¢ which is invertible in k™ and some integer n > 1.
Then, Fix(fz|x,) (cf. [MielOa, Example 2.9]) is proper over S and we have

Tr(f5: RUe(X, N)) = ## Fix(fylx,)-
For the definition of the right hand side, see [MielOa, Definition 2.6].
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Proof. First of all, [MielOa, Proposition 4.6] tells us that RI'.(X7, A) is a perfect
A-complex, and therefore we can consider the trace Tr(f7; RI'.(Xg, A)).

Note that the proof of [Miel0Oa, Lemma 4.8] does not require partially properness
of X,; thus we can find an integer n, > 1 for each o € T satisfying the following
conditions:

— For every a € T, ng = ny(q).

— For a € 7, put Uy = Ya(na) \ Upsq Ys(ns). Then we have U, N Us = & for
every a, f € T with a # (.

Put W = {J,er Ya(na) and Xo = X \ W. As in the proof of [Miel0a, Lemma 4.12
i)], we can show that X is a quasi-compact open adic subspace of X,. Moreover,
by exactly the same method as in the proof of [MielOa, Proposition 4.10], we can
obtain the equality Tr(fy; RI(Xz, A)) = Tr(f5; RT(Xoz, A)).

Consider the closure Xo5 of Xo57 in X7. Since X7 is taut (c¢f. [MielOb, Lemma
4.14]), Xo5 is quasi-compact. On the other hand, by the assumption (b), X5
is partially proper over S. Thus m is proper over S. Let us observe that for
r € X\ Xoy we have fp(z) # ». Indeed, if z ¢ Xz, by the assumption (c) we
have fp(z) # x. If v € X5\ Xog, then x € Wi = [] .7 Usz, and thus we can find
a € 7T such that € Uyz. Since Usz N f(Uag) = Uasi N Upa)5 = D, x and f5(x)
are distinct. Note that this implies that Fix(fz]x,,) = Fix( fﬁ\ﬁﬁ) = Fix(f3lx,). In
particular Fix(f;|x, ) is proper over S.

Now we can apply the Lefschetz trace formula [MielOa, Theorem 3.13] to X7 —
m, and obtain

Tr(fy; RUe(Xq, A)) = Tr(fz; RUe(Xoz, A)) = # Fix(filx,,) = # Fix(fzlx,)-
For the final equality, we use [MielOa, Proposition 2.10]. |

Remark 6.7 At least when the characteristic of k is 0, we can deduce from Theorem
6.6 the analogous result for ¢-adic coefficient simply by taking projective limit (cf.
[MielOb, proof of Corollary 4.40]).

6.2 Proof of Theorem 6.1

Here we give a proof of Theorem 6.1.

First we consider the case where v € J is elliptic. We will apply Theorem 6.6
to Uym C U,,, and (g9,7): %,,, — U, By Remark 4.12, %, is locally
algebraizable (actually it is algebraizable). We know that the generic fiber U, ,, is
smooth over Qp-. Moreover, Remark 5.13 tells us that the closure m of Uym
inside Mg ,,,/p” is the same as that inside U. .- Since My ./ p” is partially proper
over Qpee, 5018 Uy . Let x € Ul \ U, 1. Then we can find X € I(.£), \ I(.Z), such
that © € Uy . Since Uy, N (9,7)Unm = Unim N Uyam = &, we have x # (g,7)x.
Thus the assumptions (a), (b), (¢) in Theorem 6.6 are satisfied.
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Recall that for each o € S¢,,, a closed formal subscheme .///ibgma is attached

(Definition 4.8, Lemma 4.9). We denote by ), the restriction of ///u°"2ﬂ7,717()é/19Z t0 Uy -
In Proposition 4.11, we have checked that {Va}acs, . satisfies Assumption 6.3.
By Lemma 4.10, the isomorphism (g,7): %ym — %, m induces an isomorphism
Yo — Yyo. Therefore, Assumption 6.4 is also satisfied; note that Assumption 6.4
iv) is nothing but Corollary 4.16.

Therefore all the conditions of Theorem 6.6 are verified, and we have

D (=D Te((g7 AT Hi Uy m) = #Fix((9,7); Uym) -

i

By Proposition 5.14, the left hand side is equal to O, (nyx). As there is no fixed point
under (g,7) in (Mg /p”)\Uy, m, the right hand side is equal to # Fix((g,7); M.z.m/p")
(cf. [MielOa, Proposition 2.10]). This completes the proof of Theorem 6.1 i).

The case where v is non-elliptic is similar. Let I' C Z(v)/p” be as in Section
5.2, and apply Theorem 6.6 to ['\%, ,, C I\%],, and (g,7): I\%,,, — T\%],,
The conditions (a), (b), (c¢) in Theorem 6.6 can be proved in the same manner. (a)
is clear. For (b), note that I'\U,,, is a closed subset of I'\U! ,, which is partially
proper over Qp. Thus the closure of I'\U, ,,, in T'\U ,,, being a closed subset of
[\U, m, is also partially proper over Q. (c) can be proved in the same way as
above by using Proposition 5.17 ii).

It is easy to show that ), for a € Sy, induces a closed formal subscheme I'\ ),
of I\%,ym, and a family {I"\Va}acs,, . satisfies Assumption 6.3 and Assumption
6.4.

Therefore we can apply Theorem 6.6, and we have

S (=) (g h ) HAT\Uy m)) = # Fix((9,7); T\Uym)-

i

By Proposition 5.18, the left hand side is equal to vol(Z(y)/INj)OV(ngK). By Propo-
sition 5.17 i), the right hand side is equal to # Fix((g,v); U,,m), which is zero by
Theorem 3.26 ii). This completes the proof of Theorem 6.1 ii).

7 Computation of the character

7.1 Local Langlands correspondence for G and J

A candidate of the local Langlands correspondence for G and J has been constructed
by Gan-Takeda [GT11a] and Gan-Tantono [GT]. Here we review their results briefly.
In this subsection, let F' be a p-adic field and put G = GSp,(F), J = GU(2, D) where
D is a quaternion division algebra over F'.

First we recall basic definitions on L-parameters.
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Definition 7.1 i) An L-parameter for G is a homomorphism ¢: WgxSLy(C) —

ii)

iii)

GSp,(C) satisfying the following conditions:

— The restriction to the first factor ¢|w,: Wr — GSp,(C) is continuous,
where GSp,(C) is endowed with the discrete topology. The restriction to the
second factor ¢lsp,cy: SLa(C) — GSpy(C) comes from a homomorphism
of algebraic groups.

— For w € Wg, ¢(w,1) € GSp,(C) is semisimple.

We denote by ®(G) the set of GSp,(C)-conjugacy classes of L-parameters for
G.

An L-parameter ¢: Wp x SLy(C) — GSp,(C) is said to be discrete if Im ¢ is
not contained in any proper parabolic subgroup of GSp,(C).

Let P be a proper parabolic subgroup of J, which is unique up to conjugacy
It determines a conjugacy class P of parabolic subgroups of GSp,(C) = GrSp4
(in fact, it is the conjugacy class containing the Siegel parabolic subgroup). A
proper parabolic subgroup of GSp,(C) belonging to P is said to be relevant for
J. An L-parameter ¢: Wpr x SLy(C) — GSp,(C) is said to be relevant for .J
if Im ¢ is not contained in any proper parabolic subgroup of GSp,(C) which is
not relevant for J. We denote by ®(J) the set of GSp,(C)-conjugacy classes of
L-parameters for G which are relevant for J.

The main theorem of [GT11a] can be summarized as follows:

Theorem 7.2 (Gan-Takeda [GT11a]) Let Irr(G) denote the set of isomorphic
classes of irreducible admissible representations of G.

i)

i)

iii)

iv)

v)

vi)

There exists a natural surjection Irr(G) — ®(G) with finite fibers. For ¢ €
®(G), we denote the fiber at ¢ by Hg and call it the L-packet corresponding
to .

An irreducible representation m € Irr(G) is a (essentially) discrete series if and
only if m € Hg for a discrete L-parameter ¢ € ®(G).

For ¢ € ®(G), we put Ay = mo(Zasp, (Im ¢)) and write f/l\¢ the set of irreducible
characters of Ag. Then, there exists a natural bijection between Hg and A\¢.
For ¢ € ®(G) and 7 € Hg, the central character of w is equal to (simo¢) o Art,
where sim: GSp,(C) — C* denotes the similitude character and Art: F* —
W2b denotes the isomorphism of local class field theory (normalized so that a
uniformizer is mapped to a lift of the geometric Frobenius element).

For ¢ € ®(G) and a smooth character x of F*, let ¢ ® x be the L-parameter
given by (¢® x)(w,v) — x(Art™ (w))¢(w, v) for (w,v) € Wi x SLy(C). Then
we have Hi@x ={r®xc¢|7E€ Hg}, where Yg = x o sim as in Lemma 3.5.
There is a way to characterize the map Irr(G) — ®(G) by means of local
factors and Plancherel measures.

Moreover, from the construction in [GT11a], we have the following:
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Theorem 7.3 If ¢ € ®(G) is discrete and trivial on SLy(C), then II§ consists of
supercuspidal representations.

Proof. We freely use the notation in [GT11a] and [GT11b]. First assume that ¢ is
not irreducible as a 4-dimensional representation of Wr. Then ¢ = ¢1 P ¢ where ¢,
and ¢, are two-dimensional irreducible representations of W with det ¢; = det ¢
and ¢ 2 ¢ (c¢f. [GT11a, Lemma 6.2 (ii)]). Let 7; be the irreducible representation
of GLy(F) corresponding to ¢; by the local Langlands correspondence. By the
assumption, 7, and 7y are supercuspidal and 7 2 7. By the construction of L-
packets (cf. [GT11a, §7]), we have IIS = {(2,.2)(11 B 72), 04,0y (7° K 73°) }, where 052
(resp. 0(40)) denotes the theta correspondence between GSp, and GSO, (resp.
GSOyp) and 7”7 denotes the representation of D* corresponding to 7; by the local
Jacquet-Langlands correspondence. [GT11b, Theorem 8.2 (ii)] tells us that 0, o) (71X
Ty) is supercuspidal. [GT11b, Theorem 8.1 (iii)] tells us that () (r X 75°) is
supercuspidal. Therefore Hg consists of two supercuspidal representations.

Next assume that ¢ is irreducible as a 4-dimensional representation. Then, Hg
consists of a single representation 7 € Irr(G) such that 63 3)(7) = IIX u, where 3 3)
denotes the theta correspondence between GSp, and GSOs3, II is the irreducible
representation of GL4(F') corresponding to the 4-dimensional representation ¢, and
i = (simog)oArt is the character of F'* corresponding to sim o¢. By the assumption
on ¢, IT is supercuspidal, and thus 0 3)(m) is supercuspidal. Therefore, [GT11b,

Section 14, Table 1] tells us that 7 is supercuspidal, as desired. |

The main theorem of [GT] is as follows:

Theorem 7.4 (Gan-Tantono [GT]) Let Irr(J) denote the set of isomorphic classes
of irreducible admissible representations of J.

i) There exists a natural surjection Irr(J) — ®(J) with finite fibers. For ¢ €
®(J), we denote the fiber at ¢ by Hé and call it the L-packet corresponding to

o,

ii) An irreducible representation p € Irr(G) is a (essentially) discrete series if and
only if p € 11 for a discrete L-parameter ¢ € ®(.J).

iii) For ¢ € ®(J), we put By = mo(Zsp,(Im ¢)) and write §¢ the set of irreducible
characters of By. The natural map B, — Ay Is surjective, and thus Ay can
be regarded as a subgroup of Z§¢. There exists a natural bijection between Hé
and By \ Ay.

iv) For ¢ € ®(J) and p € IT;, the central character of p is equal to (sim o) o Art.

v) For ¢ € ®(J), we have I, = {p® x, | p € II]}, where x; = x osim as in
Lemma 3.5.

vi) There is a way to characterize the map Irr(J) — ®(J) by means of local
factors and Plancherel measures.

We also have an analogous result as Theorem 7.3:
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Theorem 7.5 If ¢ € ®(J) is discrete and trivial on SLy(C), then IT}) consists of
supercuspidal representations.

Proof. We freely use the notation in [GT]. First assume that ¢ is not irreducible
as a 4-dimensional representation of Wr. Then ¢ = ¢ @& ¢2 as in the proof of
Theorem 7.3. Define 7y and 7, similarly. They are supercuspidal and not isomorphic
to each other. By the construction of L-packets (cf. [GT, §7]), we have Hg =
{0a.1 (P X7y), 01,1 (rPX7)}, where 0(1,1) denotes the theta correspondence between
J = GSp(1,1) and GO*(1,1). Therefore, [GT, Proposition 5.4 (iv)] tells us that IT}
consists of two supercuspidal representations.

Next assume that ¢ is irreducible as a 4-dimensional representation. Then, Hi
consists of a single representation p € Irr(.J) such that (30)(p) = IIX p1, where 6,3
denotes the theta correspondence between J = GSp(1,1) and GO*(3,0), II is the
irreducible representation of D corresponding to the 4-dimensional representation
¢ (here D, is the central division algebra over Q, with invariant 1/4), and p =
(simog) o Art is the character of F'* corresponding to simo¢. By the assumption
on ¢, II is not a character. Therefore, [GT, Proposition 5.7] tells us that p is
supercuspidal; indeed, if p is neither supercuspidal nor a twist of the Steinberg
representation, then 63 0)(p) = 0, and if p is a twist of the Steinberg representation,

then 6(30)(p) is a character. |

For an irreducible admissible representation 7 of G, we denote the character of 7
by 6.. It is locally constant on G"¢; namely, 6, is a unique locally constant function
on G™ such that Tr(f; ) = [, f(9)0x(g)dg for every f € H(G) with supp f C G™®.
For ¢ € ®(G), put (91—[5 = Zneng 0.

Similarly, we define 6, and Qné for p € Irr(J) and ¢ € ®(J).

Definition 7.6 i) For ¢ € ®(G), the corresponding L-packet Hg is said to be
stable if Hng is a stable function on G*8, that is, 9115;' (9) = 0“5 (¢') for every

9,9 € G which are stably conjugate. Similarly we can define the stability of
the L-packet IT} for ¢ € ®(J).

i) For ¢ € ®(J), we say that II§ and I} satisfy the character relation if Qng (9) =
_Qni(h) for every g € GV, h € J! with g < h (cf. Section 2).

Remark 7.7 For every discrete (or more generally, tempered) L-parameter ¢, it is
expected that Hg and Hi are stable and satisfy the character relation. It is plausible
that one can deduce these properties from the stable trace formula.

If ¢ is a TRSELP in the sense of [DR09], then the stability and the character
relation for II§ and I} are already known due to [DR09], [Kal10] and [Lus11].

7.2 Computation of the character

Theorem 7.8 Let ¢ € ®(J) be an L-parameter such that 11§, I} are stable and
satisfy the character relation. Then, for every f € H(G) with supp f C G, we
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have

> Te(f; Hralp]) = =4 Y Te(f;m).

J G
peH¢ 7r€1'[4S

Proof. By Theorem 7.2 iv) and Theorem 7.4 iv), all representations in Hg and Hé
share the same central character w = (simo@) o Art: Q) — @ZX . First we will
reduce the theorem to the case where w|,z is trivial. The method is similar to the

proof of Corollary 3.7. Take ¢ € Q, such that ¢* = w(p), and x: Q) — Q, the
character given by x(a) = ¢~%(®. Consider the L-packets

Hg®X:{7T®XG|7TEHg}7 Hi®xz{p®XJ|p€Hi}

corresponding to ¢®x (c¢f. Theorem 7.2 v), Theorem 7.4 v)). It is clear that these L-
packets are stable and satisfy the character relation. Moreover, every representation
belonging to these L-packets has the central character trivial on p?.

We have Hryz[p ® x| = Hrzlp] ® x¢ by Lemma 3.5. Therefore, if we have the
theorem for the L-parameter ¢ ® x € ®(J), then

Z Tr(f; Hrzlp]) = Z Tr(f; Hrzlp @ xJ] ® x5')

pell] p@XEM]
= Y (/x5 Hralp @ X))
p®XJ€H‘¢])®X
=4 Y T(fxghmexe) =4 Y Te(fim),
W®xG€H§®X WGH?

and thus the theorem also holds for ¢.
In the following, we assume that the central character w is trivial on p?.

By the similar way as in [Miel2, Lemma 3.5], we can prove that G¢! is contained
in the union of all open compact-mod-center subgroups of G. Therefore, we may
assume that supp f is contained in an open compact-mod-center subgroup of G.
Recall that a maximal open compact-mod-center subgroup is conjugate to N where
Z is one of %y, Lpara OF Lsiegel (Lemma 4.14). Note that both sides of the identity
in the theorem do not change if we replace f by its conjugate. Therefore, we may
assume that supp f is contained in N where £ is one of .Zj), ZLpara O Liegel. Since
{K% m}m>1 form a fundamental system of neighborhoods of 1 € N consisting of
normal subgroups of N, f can be written as a linear combination of 1yx,, . with
g € Ng. Hence we are reduced to the case where f = VOl(Kg’m)_lng‘z’m. For
simplicity, put K = Kg,. Note that gK = supp f C G

By Proposition 5.7, Theorem 6.1, Corollary 6.2 and the stable version of Weyl’s
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integration formula, we can compute as follows:

Z Tr(vollg(ll(( ) Z Tr(g; Hrzlp Z Tr(nyk; p)
pell’

S pEIL] pEIL]

=3 | wasman = /J/pzngm)eni(mdh

eHJ

(2) 1 /

i Dy (t')bn; (t)SOv (1)t
{T/}zt;%ent W (Qp) Jrees I v (g

( ) 1 / / / 1ngZ ,
4 Dy(t"0q. () SO,, a’,
{T’hZeTell # T’(Qp) Tres [pl J( ) Hi( ) 9¢ <V01(K)>

where gy € G is an arbitrary element with g, < #, and Dj(#') is the Weyl
denominator (cf. [Rog83, p. 185]). Here (1) follows from Proposition 5.7 and (3)
from Corollary 6.2. (2) is a consequence of Theorem 6.1 ii), stability of Gni and the
stable version of Weyl’s integration formula for J. Other equalities are obvious.
Recall that we have a natural bijection Ty, — 7&%. For an elliptic maximal
torus TV of J and an elliptic maximal torus T of G corresponding to T, choose
ty € T8, tg € T™® with ty < ¢, and consider the isomorphism ¢ = ¢y 4,: T — T
(cf. Section 2). Then we can take gy as t = «(t'). Obviously we have Dj(t') =
Dq(t). Since II§ and I} satisfy the character relation, we have 01'[;; ) = —Gng (t).

Moreover, v: T"/p* —> T/p” is compatible with the fixed measures (cf. the last

paragraph of Section 3.1). Together with Lemma 2.1, we can convert the sum with
respect to 754, to that with respect to 7&ly,, and obtain

ZJ Tr <V011g([[((> ; Hrz, [P])

S - 1(@p) /T - DG(t)QHg(t)SOt(Vt‘ié{;?)>dt

{T}S GTCe;Hat

—4
- vol(K) /C;/p 1ngz($)9H§(I)dx: Vol(K) /Glgk(@gng(x)dx

== 2 (G )

(in the second equality, we use the stable version of Weyl’s integration formula for
G; again we use the fact that 1,z is supported on G°Y). This completes the proof.l

Corollary 7.9 Let ¢ be an L-parameter as in Theorem 7.8. Assume that for every
p € 11} and integers i,j > 0, Hg}[p] is a G-module of finite length. Then, for each
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p € IIJ, we can consider the character Oy, of the virtual representation Hyz|p).
This character satisfies the following for every g € G°U:

> Ongi(9) = =4 > 6=(g).

J G
pEH¢ 7r€H¢

Proof. This is an immediate consequence of Theorem 7.8. |

Remark 7.10 i) Since the G-representation Hyj[p] is admissible, it has finite
length if and only if it is finitely generated as a G-module.

ii) At least if p € Hé is supercuspidal, the assumption in Corollary 7.9 will be
proved once we establish an analogue of Faltings’ isomorphism for the Rapoport-
Zink tower { Mk} (c¢f. [Miel2, Lemma 5.2]). In a recent preprint of Scholze
and Weinstein [SW12], Faltings’ isomorphism for a Rapoport-Zink tower of EL
type is obtained. It is plausible that a similar method is applicable to our case.

Corollary 7.11 Under the setting in Corollary 7.9, assume moreover that ¢ is
discrete and trivial on SLy(C). Then, for each m € Hg, the representation w" of G
appears in H3,.

Proof. By the similar method as in the proof of Theorem 7.8, we may reduce to the
case where 7 is trivial on p?. By Theorem 7.3 and Theorem 7.5, Hg and Hé consist
of supercuspidal representations. Therefore Ext?,(Hf{Z,p) = 0if 7 > 1, and thus
Hgzlp] = >,(—=1)" Hom (H}y, p)™. We denote the supercuspidal part of Hgz[p] by
Hrz[pleusp. Write pett] Hyzlplewsp = D awm’', where 7' runs through irreducible
supercuspidal representations of G. Assume that 7 does not appear in Hy,. Then,
by [IM10, Theorem 1.1], 7 can appear only in H3, and Hy,. Hence 7 can appear in
Hom ;(H}y, p)*™ only if ¢ = 2,4, and thus a, > 0. On the other hand, by Corollary
7.9 and the orthogonality relation of characters, we have

n = <97” Z 9HRZ[p]>eu - _4<9”’ Z 97ﬂ>e11 =

p€IL n'ell§
(for the definition of ( , )en, see [Miell, §5]). This is a contradiction. i

Remark 7.12 In a forthcoming paper with Tetsushi Ito, the author will give more
precise description of the cuspidal part Hpy[p|eusp Of the individual cohomology
Hio[p] via global method. We can also obtain information on the action of Weil
group on Hpy[pleusp; we find the local Langlands correspondence for G and J in
H o [pleusp, as expected.

Remark 7.13 In the end of this paper, we will give a remark on a related work
of Xu Shen [Shel2a]. He applied the author’s Lefschetz trace formula [MielOa,
Theorem 3.13] to a large quasi-compact open subset of the Rapoport-Zink space
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My for GU(1,n — 1) with an arbitrary level K. However, the author does not
know how to deduce a result on the character of Hgry from his computation [Shel2a,
Theorem 11.3, Corollary 11.5]. He stated such a result [Shel2a, Corollary 11.6]
and sketched a proof, but the first equality “trg(-(g) = ---” in his proof is far
from trivial, since the left hand side is the value of the distribution character of an
infinite-dimensional representation of a p-adic reductive group, while the right hand
side is the usual trace of an endomorphism on a finite-dimensional vector space. By
a trivial reason, the trace on the cohomology of a large open subset of M is not
necessarily equal to the character of the cohomology of the whole space. Therefore,
to justify his argument, one at least should prove some geometric property of the
quasi-compact open subset he chose; even in the Lubin-Tate case, one needed such
a result [Shel2b, Proposition 3.5].
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