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Abstract. We investigate the alternating sum of the `-adic
cohomology of the Rapoport-Zink tower for GSp(4) by the Lef-
schetz trace formula. Under some assumptions on L-packets of
GSp(4) and its inner form, we observe that the local Jacquet-
Langlands correspondence appears in the cohomology.

1 Introduction

A Rapoport-Zink space is a certain moduli space of deformations by quasi-isogenies
of a p-divisible group with additional structures. By using level structures on the
universal p-divisible group, we can construct a projective system of étale coverings
over the rigid generic fiber of the Rapoport-Zink space. This projective system is
called the Rapoport-Zink tower. It can be regarded as a local analogue of a tower
of Shimura varieties of PEL type.

By taking a compactly supported `-adic cohomology of the tower, we obtain
a representation H i

RZ of G(Qp) × J(Qp) × WQp , where G is the reductive group
which is naturally attached to the local Shimura datum defining the Rapoport-Zink
space, J is an inner form of G, and WQp is the Weil group of Qp. It is expected
that the alternating sum HRZ =

∑
i(−1)iH i

RZ of H i
RZ can be described by the (still

conjectural) local Langlands correspondence of G and J (cf. [Rap95]).
The most classical examples of the Rapoport-Zink tower are the Lubin-Tate

tower and the Drinfeld tower. In these cases, the expectation above is called the
non-abelian Lubin-Tate theory (cf. [Car90]) and has been already proven ([Har97],
[HT01]). There are more precise studies on the individual cohomology H i

RZ; see
[Boy09] and [Dat07].

In this paper, we consider the case where G = GSp4. In this case, the Rapoport-
Zink space M̆ is the moduli space of deformations by quasi-isogenies of a principally
polarized 2-dimensional p-divisible group with slope 1/2. We ignore the action of
the Weil group WQp and concentrate on the action of G(Qp)× J(Qp) on H i

RZ. Our
main result can be summarized as follows:
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Theorem 1.1 (Theorem 7.8, Corollary 7.9) For an irreducible smooth repre-
sentation ρ of J(Qp), we put HRZ[ρ] =

∑
i,j≥0(−1)i+j ExtjJ(Qp)(H

i
RZ, ρ)sm, where

ExtjJ(Qp) is taken in the category of smooth J(Qp)-representations and (−)sm de-

notes the set of G(Qp)-smooth vectors. Let φ : WQp × SL2(C) −→ GSp4(C) be an

L-parameter which is relevant for J(Qp). Assume that the L-packets Π
G(Qp)
φ and

Π
J(Qp)
φ corresponding to φ are stable and satisfy the character relation (see Section

7.1 for notation on L-parameters and L-packets).
Then, for an element of the Hecke algebra f ∈ H(G(Qp)) supported on regular

elliptic elements, we have∑
ρ∈Π

J(Qp)

φ

Tr(f ;HRZ[ρ]) = −4
∑

π∈Π
G(Qp)

φ

Tr(f ; π).

Moreover, if the G(Qp)-representation ExtjJ(Qp)(H
i
RZ, ρ)sm has finite length for every

i, j ≥ 0 and ρ ∈ Π
J(Qp)
φ , we have∑

ρ∈Π
J(Qp)

φ

θHRZ[ρ](g) = −4
∑

π∈Π
G(Qp)

φ

θπ(g)

for every regular elliptic element g of G(Qp). Here θHRZ[ρ] and θπ denote the distri-
bution characters of HRZ[ρ] and π respectively, which are locally constant functions
over regular elements of G(Qp).

Very roughly speaking, this theorem says that the local Jacquet-Langlands cor-

respondence Π
G(Qp)
φ ↔ Π

J(Qp)
φ appears in HRZ.

To prove the theorem above, we will apply the Lefschetz trace formula for adic
spaces developed in [Mie10a]; we count fixed points on the Rapoport-Zink space
under the action of elements in G(Qp) × J(Qp) to compute the trace on the coho-
mology HRZ. Such a method goes back to a pioneering work of Faltings [Fal94], in
which he treated the Drinfeld tower. A similar study for the Lubin-Tate tower has
been carried out by Strauch [Str08]. Needless to say, our work is strongly inspired
by these two works. However, our case is more difficult than the classical cases in
the following two points. First, any connected component of our Rapoport-Zink
space M̆ is neither quasi-compact nor p-adic, therefore harder to deal with. This is
related to the fact that neither G(Qp) nor J(Qp) is compact modulo center (in the
classical cases, G(Qp) or J(Qp) is the multiplicative group of a division algebra).
Recall that, in the Lubin-Tate case the connected component is the formal spectrum
of a complete local ring. This fact makes the approximation arguments in [Str08,
§2.3, §3.2, §3.3] possible. In our case it is impossible to apply the same method. To
avoid this problem, we require the Lefschetz trace formula proved in [Mie10a]. The
other point is representation-theoretic one; the local Langlands correspondences for
G(Qp) and J(Qp) are not bijective. Under the “dictionary” between irreducible
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representations and conjugacy classes, this corresponds to the fact that conjugacy
and stable conjugacy are different in G(Qp) and J(Qp). This difference makes our
argument on counting points and harmonic analysis more subtle.

We sketch the outline of this paper. In Section 2, we introduce some notation
on algebraic groups and stable orbital integrals, which will be used throughout this
paper. In section 3, after recalling basic definitions on the Rapoport-Zink tower for
GSp2d, we count fixed points on the Rapoport-Zink space under the action of an
element (g, h) ∈ G(Qp)× J(Qp). Our method of counting is similar to [Str08, §2.6];
we use the period map introduced in [RZ96, Chapter 5] and the p-adic Hodge theory
for p-divisible groups. In Section 4, we construct formal models of the Rapoport-
Zink spaces with some higher levels (more precisely, levels which are open normal
subgroups of parahoric subgroups of G(Qp)). Moreover, we introduce “boundary
strata” of these formal models and investigate group actions on them. These con-
structions are extremely important for applying the Lefschetz trace formula such as
[Mie10a, Theorem 4.5]. Basically, the content of this section (especially Proposition
4.11) forces us to assume that d = 2. In Section 5, we construct a nice open covering
of the Rapoport-Zink space with parahoric level. The construction is similar to the
case of the Drinfeld upper half space, which has an open covering indexed by vertices
of the Bruhat-Tits building for PGLn. In Section 6, we apply the Lefschetz trace
formula to a finite union of open subsets belonging to the open covering constructed
in Section 5. Finally in Section 7, we briefly review the local Langlands correspon-
dence for G(Qp) and J(Qp) due to Gan-Takeda [GT11a] and Gan-Tantono [GT]
respectively, and give a proof of the main theorem. We use the harmonic-analytic
method introduced in [Mie12].

During writing this paper, the author found a preprint by Xu Shen [She12a]
in which a related topic was studied. Our works are totally independent, and our
methods are also different. Moreover, the main result in [She12a] does not seem
completely sufficient for deducing representation-theoretic results such as Theorem
1.1. See Remark 7.13 for detailed comments.

Acknowledgment The author would like to thank Tetsushi Ito and Matthias
Strauch for valuable discussions. He is also grateful to Takuya Konno for helpful
comments. This work was supported by JSPS KAKENHI Grant Numbers 21740022,
24740019.

Notation
Let d ≥ 1 be an integer. For a ring A, let 〈 , 〉 : A2d×A2d −→ A be the symplectic

pairing defined as follows: for x = (xi), y = (yi) ∈ A2d,

〈x, y〉 = x1y2d + · · ·+ xdyd+1 − xd+1yd − · · · − x2dy1.

We denote by GSp2d(A) the symplectic similitude group with respect to the sym-
plectic pairing 〈 , 〉.

For a field k, we denote its algebraic closure by k. Fix a prime number p. For an
integer m ≥ 1, we denote by Qpm the unique degree m unramified extension of Qp,
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and by Zpm the ring of integers of Qpm . We denote by Qp∞ the completion of the
maximal unramified extension of Qp, and by Zp∞ the ring of integers of Qp∞ . Let
` be a prime number distinct from p. We fix an isomorphism Q`

∼= C and identify
them. Every representation is considered over C, and every function is C-valued.

For a totally disconnected locally compact group G with a fixed Haar mea-
sure, we denote by H(G) the Hecke algebra of G, namely, the abelian group of lo-
cally constant compactly supported functions on G with convolution product. Put
H(G) = H(G)/[H(G),H(G)] = H(G)G (the G-coinvariant quotient). For smooth
representations π1, π2 of G, we denote by ExtiG(π1, π2) the ith Ext group in the
category of smooth G-representations.

2 Notation on stable conjugacy classes

In this section, we introduce some basic notation on algebraic groups and harmonic
analysis. Here we will work on slightly general situation; let F be a p-adic field
and G a connected reductive group over F . Put G = G(F ). Assume for simplicity
that the derived group of G is simply connected. We denote by ZG the center of
G and put ZG = ZG(F ). For g ∈ G, let Z(g) denote the centralizer of g and put
Z(g) = Z(g)(F ). Since we assume that the derived group of G is simply connected,
Z(g) is connected for a semisimple g. We say that g is regular if Z(g) is a maximal
torus of G (note that a regular element is assumed to be semisimple). We write
Greg for the set of regular elements of G. For a maximal torus T of G, we put
T reg = T(F )∩Greg. We say that g is elliptic if it is contained in an elliptic maximal
torus. If g is regular, this is equivalent to saying that Z(g) is an elliptic maximal
torus. We write Gell for the set of regular elliptic elements of G.

Two elements g1, g2 ∈ G = G(F ) is said to be stably conjugate if they are
conjugate in G(F ). For g ∈ G, we write {g} (resp. {g}st) for the conjugacy class
(resp. stable conjugacy class) of g. It is well-known that {g}st/∼, the set of conjugacy
classes in {g}st, is a finite set if g is regular.

Two maximal tori T1, T2 of G are said to be stably conjugate if T1 = T1(F ) and
T2 = T2(F ) are conjugate in G(F ). For such tori T1, T2 and elements g1 ∈ T reg

1 ,

g2 ∈ T reg
2 which are stably conjugate, we can construct an isomorphism ιg1,g2 : T1

∼=−−→
T2 as follows. Take h ∈ G(F ) such that g2 = h−1g1h. Since g1 and g2 are F -valued
points, such h satisfies hσ(h)−1 ∈ T1(F ) for every σ ∈ Gal(F/F ). By this fact, it
is easy to see that T1⊗F F −→ T2⊗F F ; g 7−→ h−1gh descends to an isomorphism

ιg1,g2 : T1

∼=−−→ T2 over F . It does not depend on the choice of h. In particular,

stably conjugate maximal tori are isomorphic, and thus a maximal tori which is
stably conjugate to an elliptic torus is elliptic.

For a maximal torus T, we write {T} (resp. {T}st) for its conjugacy class (resp.
stable conjugacy class). We denote the set of conjugacy classes of maximal tori
(resp. elliptic maximal tori) of G by TG (resp. T ell

G ), and the set of stable conjugacy
classes of maximal tori (resp. elliptic maximal tori) of G by TG,st (resp. T ell

G,st).
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Fix a Haar measure on G. For an element g ∈ Greg, we also choose a Haar
measure on Z(g). Then, for each g′ ∈ {g}st, Z(g′) is naturally equipped with a Haar
measure induced by the isomorphism ιg,g′ : Z(g) −→ Z(g′). For a locally constant
function f on G whose support is compact modulo ZG, we set

Og(f) =

∫
Z(g)\G

f(h−1gh)dh, SOg(f) =
∑

g′∈{g}st/∼

Og′(f),

and call them the orbital integral and the stable orbital integral of f , respectively.
It is well-known that Og(f) always converges ([RR72]).

Next we compare stable conjugacy classes between inner forms. Let G′ be an

inner form of G, and fix an inner twist ξ : G′ ⊗F F
∼=−−→ G ⊗F F . For g ∈ G and

g′ ∈ G′ = G′(F ), g is said to be a transfer of g′ with respect to ξ if g and ξ(g′) are
conjugate in G(F ). We also say that g and g′ match, and write g ↔ g′. For g ∈ Greg

and g′ ∈ G′reg with g ↔ g′, we can construct an isomorphism ιg′,g : Z(g′)
∼=−−→ Z(g)

in the same way as above. In particular, g is elliptic if and only if g′ is elliptic.

By [Kot86, Lemma 10.2], there is a natural bijection T ell
G′,st

∼=−−→ T ell
G,st such that

{T′}st corresponds to {T}st if and only if ξ(T′(F )) and T(F ) are conjugate in G(F ).
Therefore, for every g′ ∈ G′ell (resp. g ∈ Gell), we can always find g ∈ Gell (resp.
g′ ∈ G′ell) with g ↔ g′. In particular, stable conjugacy classes of regular elliptic
elements of G are in bijection with those of G′.

The following lemma, which is used in Section 7, would be well-known.

Lemma 2.1 Let T be an elliptic maximal torus of G, and T′ that of G′ such that
{T′}st corresponds to {T}st under the bijection above. Let WT denote the Weyl
group NG(T)/T of T, which is an algebraic group over F . Similarly we define WT′ .
Then, we have an isomorphism WT

∼= WT′ . In particular, #WT(F ) = #WT′(F ).

Proof. Take t ∈ T reg and t′ ∈ T ′reg such that t ↔ t′, and h ∈ G(F ) such that

t = h−1ξ(t′)h. Let ξh : G′ ⊗F F
∼=−−→ G ⊗F F be the composite Ad(h−1) ◦ ξ. It

satisfies ξh(T
′) = T, thus induces WT′ ⊗F F

∼=−−→ WT ⊗F F . It suffices to check

that this isomorphism descends to an isomorphism over F . Take σ ∈ Gal(F/F ).
Since ξ is an inner twist, there exists cσ ∈ G(F ) such that σ ◦ ξ = Ad(cσ) ◦ ξ ◦ σ.
Then t = h−1ξ(t′)h implies that t = Ad(σ(h)−1) Ad(cσ)ξ(t′) (note that t and t′ are
rational), and thus σ(h)−1cσh ∈ T(F ). Therefore, for g′ ∈ NG′(T

′)(F ) we have

σ
(
ξh(g

′)
)

= Ad
(
σ(h)−1cσh)ξh

(
σ(g′)

)
∈ ξh

(
σ(g′)

)
T(F ).

This means that ξh : WT′ ⊗F F
∼=−−→ WT ⊗F F commutes with the action of σ, as

desired.
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3 Rapoport-Zink tower for GSp(2d)

3.1 Definition of the Rapoport-Zink tower

In this subsection, we recall basic notions on the Rapoport-Zink tower. General
definitions are given in [RZ96], but here we restrict ourselves to the Siegel case,
namely, the case for GSp(2d).

Fix a d-dimensional isoclinic p-divisible group X over Fp with slope 1/2, and

a (principal) polarization λ0 : X
∼=−−→ X∨ of X, namely, an isomorphism satisfying

λ∨0 = −λ0. Let Nilp be the category of Zp∞-schemes on which p is locally nilpotent.
For an object S of Nilp, we put S = S⊗Zp∞ Fp. Consider the contravariant functor

M̆ : Nilp −→ Set that associates S with the set of isomorphism classes of pairs
(X, ρ) consisting of

– a d-dimensional p-divisible group X over S,

– and a quasi-isogeny (cf. [RZ96, Definition 2.8]) ρ : X⊗Fp S −→ X ⊗S S,

such that there exists an isomorphism λ : X −→ X∨ which makes the following
diagram commutative up to multiplication by Q×p :

X⊗Fp S
ρ
//

λ0⊗id
��

X ⊗S S

λ⊗id

��

X∨ ⊗Fp S X∨ ⊗S S.
ρ∨
oo

Note that such λ is uniquely determined by (X, ρ) up to multiplication by Z×p and

gives a polarization of X. It is proved by Rapoport-Zink that M̆ is represented
by a special formal scheme (cf. [Ber96]) over Spf Zp∞ . Moreover, M̆ is separated

over Spf Zp∞ ([Far04, Lemme 2.3.23]). However, each connected component of M̆

is neither quasi-compact nor p-adic. It is known that dim M̆ red = bd2/4c, where
bxc denotes the greatest integer less than or equal to x (for example, see [Vie08]),

and every irreducible component of M̆ red is projective over Fp ([RZ96, Proposition
2.32]).

Let J be the group consisting of self-quasi-isogenies h on X which makes the
following diagram commutative up to multiplication by Q×p :

X h //

λ0

��

X
λ0

��

X∨ X∨.h∨oo

Then, we can define a right action of J on M̆ by h : M̆ (S) −→ M̆ (S); (X, ρ) 7−→
(X, ρ ◦ h). It is known that J is the group of Qp-valued points of an inner form
J of GSp2d (see the next subsection). In particular, J is naturally endowed with a
topology.
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We denote the rigid generic fiber M̆ rig of M̆ by M . It is defined as t(M̆ ) \
V (p), where t(M̆ ) is the adic space associated with M̆ (cf. [Hub94, Proposition
4.1]). It is locally of finite type, partially proper and smooth over Spa(Qp∞ ,Zp∞)
([Far04, Lemme 2.3.24]). Moreover, we know that dimM = d(d + 1)/2; it can be
proved by using étaleness of the period map ([RZ96, Proposition 5.17]) or the p-adic
uniformization theorem ([RZ96, Theorem 6.30]).

Let X̃ be the universal p-divisible group over M̆ and X̃rig the induced p-divisible
group over M . For each geometric point x of M , the rational Tate module Vp(X̃

rig
x )

is endowed with a non-degenerate alternating pairing Vp(X̃
rig
x )×Vp(X̃rig

x ) −→ Qp(1)

induced by a polarization on X̃. It is well-defined up to Z×p -multiplication. There-
fore, by taking a trivialization of the Tate twist, we get a non-degenerate symplectic
form Vp(X̃

rig
x )× Vp(X̃rig

x ) −→ Qp which is well-defined up to Q×p -multiplication. By

considering K-level structures on X̃rig for each compact open subgroup K ⊂ K0 =
GSp2d(Zp), we can construct a projective system {MK}K⊂K0 of finite étale coverings
of M , which is called the Rapoport-Zink tower. If K is a normal subgroup of K0,
MK is a finite étale Galois covering of M with Galois group K0/K. In particular,
MK0 is nothing but M . For more precise description, see [RZ96, 5.34] or [IM10,
§3.1].

The group J naturally acts on the projective system {MK}K⊂K0 . On the other
hand, for g ∈ G = GSp2d(Qp) and a compact open subgroup K ⊂ K0 satisfy-
ing g−1Kg ⊂ K0, we can define a natural morphism MK −→ Mg−1Kg over Qp∞ .
Therefore, we have a right action of G on the pro-object “lim←− ”MK .

Definition 3.1 For an integer i, we put

H i
c(MK) = H i

c(MK ⊗Qp∞ Qp∞ ,Q`)⊗Q` Q`, H i
RZ = lim−→

K⊂K0

H i
c(MK).

Here H i
c(MK ⊗Qp∞ Qp∞ ,Q`) denotes the compactly supported `-adic cohomology

introduced in [Hub98]. The group G × J naturally acts on H i
RZ. It is known that

this action is smooth ([Ber94, Corollary 7.7], [Far04, Corollaire 4.4.7]).

Remark 3.2 We can also define a natural action of the Weil group WQp of Qp on
H i

RZ. This action is expected to be very interesting, but in this article we do not
consider it.

Definition 3.3 For an irreducible smooth representation ρ of J and integers i, j ≥
0, we put

H i,j
RZ[ρ] = ExtjJ(H i

RZ, ρ)Dc-sm.

The definition of (−)Dc-sm is as follows. Let Dc(G) denotes the convolution algebra
of compactly supported distributions on G. For a (left or right) Dc(G)-module
V , we put V Dc-sm = lim−→K

eKV , where K runs through compact open subgroups
of G and eK ∈ Dc(G) denotes the idempotent corresponding to K. It is a smooth
representation of G. Note that ExtjJ(H i

RZ, ρ) has a structure of a right Dc(G)-module
which comes from the left Dc(G)-module structure on H i

RZ.
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Remark 3.4 By the same argument as in [Mie11, Lemma 3.1], we can show that
H i,j

RZ[ρ]K = ExtjJ((H i
RZ)K , ρ) = ExtjJ(H i

c(MK), ρ) for a compact open subgroup K of
K0.

Lemma 3.5 Let χ : Q×p −→ Q×` be an unramified character, that is, a character

which is trivial on Z×p . Denote the composite G
sim−−→ Q×p

χ−−→ Q×` (resp. J
sim−−→

Q×p
χ−−→ Q×` ) by χG (resp. χJ) , where sim denotes the similitude character. Then,

we have H i,j
RZ[ρ⊗ χJ ] ∼= H i,j

RZ[ρ]⊗ χG.

Proof. First let us recall the natural partition of M̆ into open and closed formal
subschemes introduced in [RZ96, 3.52]. For an integer δ ∈ Z, let M̆ (δ) be the open
and closed subscheme consisting of (X, ρ) such that d−1 · height(ρ) = δ. Note that

the left hand side is always an integer. Indeed, by the definition of M̆ , there exist a
polarization λ : X −→ X∨ and an element a ∈ Q×p such that aλ0 = ρ∨◦(λ mod p)◦ρ.
Taking the heights of both sides, we obtain d−1 · height(ρ) = vp(a) ∈ Z, where vp
is the p-adic valuation. Denote by M (δ) the rigid generic fiber of M̆ (δ). For a
compact open subgroup K of K0, let M

(δ)
K be the inverse image of M (δ) under the

map MK −→M . We have MK =
∐

δ∈ZM
(δ)
K . Put H i

RZ,δ = lim−→K⊂K0
H i
c(M

(δ)
K ). Then

H i
RZ =

⊕
δ∈ZH

i
RZ,δ.

For (g, h) ∈ G × J with g−1Kg ⊂ K0, it is known that (g, h) : MK −→ Mg−1Kg

maps M
(δ)
K to M

(δ−vp(sim g)+vp(simh))
K . In particular, if we denote by (G×J)0 the kernel

of the homomorphismG×J −→ Z; (g, h) 7−→ vp(sim g)−vp(simh), H i
RZ,0 is a smooth

representation of (G × J)0 and H i
RZ is isomorphic to c-IndG×J(G×J)0 H

i
RZ,0 (cf. [Far04,

§4.4.2]). Since the character χG ⊗ χ−1
J : G × J −→ Q×` ; (g, h) 7−→ χG(g)χJ(h)−1

is trivial on (G × J)0, we have a natural isomorphism H i
RZ ⊗ χG ⊗ χ−1

J
∼= H i

RZ of
G× J-representations. Hence we have

ExtjJ(H i
RZ, ρ⊗χJ) ∼= ExtjJ(H i

RZ⊗χ−1
J , ρ) ∼= ExtjJ(H i

RZ⊗χ−1
G , ρ) ∼= ExtjJ(H i

RZ, ρ)⊗χG,

and thus H i,j
RZ[ρ⊗ χJ ] ∼= H i,j

RZ[ρ]⊗ χG.

Sometimes it is convenient to work on the quotient MK/p
Z of MK by the discrete

subgroup pZ of J . The cohomology of MK/p
Z and H i,j

RZ[ρ] are related by the following
lemma.

Lemma 3.6 Assume that an irreducible smooth representation ρ of J is trivial on
the subgroup pZ ⊂ J . Then we have ExtjJ(H i

c(MK), ρ) ∼= Extj
J/pZ(H i

c(MK/p
Z), ρ) for

each compact open subgroup K ⊂ K0.

Proof. We will use the notation in the proof of Lemma 3.5. Since p ∈ J maps M
(δ)
K

isomorphically onto M
(δ+2)
K for every integer δ, we have MK/p

Z ∼= M
(0)
K q M

(1)
K .

Under this isomorphism, the natural morphism from MK to MK/p
Z is described as

follows:
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– If δ = 2δ′ is even, the restriction to M
(δ)
K is given by p−δ

′
: M

(δ)
K −→M

(0)
K .

– If δ = 2δ′ + 1 is odd, the restriction to M
(δ)
K is given by p−δ

′
: M

(δ)
K −→M

(1)
K .

From this description we deduce that the natural push-forward map H i
c(MK) −→

H i
c(MK/p

Z) induces a J-equivariant isomorphism H i
c(MK)pZ ∼= H i

c(MK/p
Z). On the

other hand, it is immediate to see that H i
c(MK) =

⊕
δ∈ZH

i
c(M

(δ)
K ) is a free Qp[p

Z]-

module, where Q`[p
Z] denotes the group algebra of pZ. In particular, H i

c(MK) is
acyclic for (−)pZ (namely, the higher left derived functor of (−)pZ vanishes). There-
fore we have

ExtjJ
(
H i
c(MK), ρ

)
= Extj

J/pZ

(
H i
c(MK)pZ , ρ

) ∼= Extj
J/pZ

(
H i
c(MK/p

Z), ρ
)
,

as desired.

Corollary 3.7 Let ρ be an irreducible smooth representation of J .

i) For integers i, j ≥ 0, H i,j
RZ[ρ] is an admissible representation of G.

ii) If j > d− 1, we have H i,j
RZ[ρ] = 0.

Proof. First assume that ρ is trivial on pZ ⊂ J . Then, for a compact open subgroup
K ⊂ K0, we have

H i,j
RZ[ρ]K = Extj

J/pZ

(
H i
c(MK/p

Z), ρ
)

by Remark 3.4 and Lemma 3.6. As in [Far04, Proposition 4.4.13], H i
c(MK/p

Z) is
a finitely generated J/pZ-module, and thus [SS97, Corollary II.3.2] tells us that
Extj

J/pZ(H i
c(MK/p

Z), ρ) is finite-dimensional and vanishes for j > d− 1 (here d− 1

is the split semisimple rank of J). Since H i,j
RZ[ρ] = lim−→K⊂K0

H i,j
RZ[ρ]K , we obtain i)

and ii) for this case.

Next we consider a general ρ. Let ω : Q×p −→ Q×` be the central character of

ρ. Take c ∈ Q×` such that c2 = ω(p), and χ : Q×p −→ Q×` the character given by

χ(a) = c−vp(a). Lemma 3.5 tells us that H i,j
RZ[ρ] = H i,j

RZ[ρ⊗ χJ ]⊗ χ−1
G . Since ρ⊗ χJ

is trivial on pZ, the right hand side is admissible and vanishes for j > d − 1. This
concludes the proof.

By the corollary above, we can take the alternating sum of H i,j
RZ[ρ].

Definition 3.8 For an irreducible smooth representation ρ of J , we put HRZ[ρ] =∑
i,j≥0(−1)i+jH i,j

RZ[ρ], where the sum is taken in the Grothendieck group of admis-
sible representations of G.

The goal of this paper is to investigate HRZ[ρ] by means of the Lefschetz trace
formula.

In the sequel, we fix Haar measures on G and J . For each g ∈ Greg, we also
fix a Haar measure on Z(g). If g is elliptic, then we normalize the measure so that
vol(Z(g)/pZ) = 1, where pZ ⊂ G is endowed with the counting measure. Note that

9
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if g1, g2 ∈ Gell are stably conjugate, then the isomorphism ιg1,g2 : Z(g1)
∼=−−→ Z(g2)

preserves the measures. For g ∈ Gell and a locally constant function f on G whose
support is compact modulo ZG, we have

Og(f) =

∫
G/pZ

f(h−1gh)dh, SOg(f) =
∑

g′∈{g}st/∼

∫
G/pZ

f(h−1g′h)dh.

Similarly we fix a Haar measure of the centralizer of each regular element of J . For

g ∈ Gell and h ∈ Jell with g ↔ h, the isomorphism ιh,g : Z(h)
∼=−−→ Z(g) preserves

the measures.

3.2 Period space and period map

The goal of the rest of this section is to count fixed points under the action of
(g, h) ∈ G× J on MK/p

Z. As in [Str08, §2.6], we use the period map introduced in
[RZ96, Chapter 5].

Put L0 = FracW (Fp) and denote the Frobenius automorphism on L0 by σ.
Although L0 is isomorphic to Qp∞ , we distinguish them as in [RZ96]. An isocrystal
over Fp is a finite-dimensional L0-vector space equipped with a bijective σ-linear
endomorphism (cf. [RZ96, §1.1]).

Let D(X)Q = (N,Φ) be the rational Dieudonné module of X, which is a d-
dimensional isocrystal over Fp. The fixed polarization λ0 on X gives the alternating
pairing ψ : N ×N −→ L0 satisfying ψ(Φ(x),Φ(y)) = pσ(ψ(x, y)) for every x, y ∈ N .
We define the algebraic group J over Qp as follows: for a Qp-algebra R, the group
J(R) consists of elements g ∈ AutR⊗QpL0(R⊗Qp N) such that

– g commutes with Φ, i.e., g ◦ (idR⊗Φ) = (idR⊗Φ) ◦ g,

– and g preserves the pairing ψ up to scalar multiplication, i.e., there exists
c(g) ∈ (R⊗Qp L0)× such that ψ(gx, gy) = c(g)ψ(x, y) for every x, y ∈ R⊗Qp N .

Representability of J is shown in [RZ96, Proposition 1.12]. By the Dieudonné theory,
we have J(Qp) = J .

Since the isocrystal (N,Φ) is basic, J is known to be an inner form of GSp2d

([RZ96, Corollary 1.14, Remark 1.15]). For later use, we will observe it directly.
Put N◦ = Np−1Φ2

. It is a Φ-stable Qp2-subspace of N satisfying L0 ⊗Qp2 N
◦ = N .

For x, y ∈ N◦, we have σ2(ψ(x, y)) = p−2ψ(Φ2(x),Φ2(y)) = p−2ψ(px, py) = ψ(x, y),
and thus ψ(x, y) ∈ Qp2 . Therefore ψ gives a perfect alternating bilinear pairing
ψ : N◦ ×N◦ −→ Qp2 . Its base change from Qp2 to L0 coincides with the original ψ.
By using N◦ and the restrictions of Φ and ψ on it, we can describe J as follows: for
each Qp-algebra R,

J(R) =
{
g ∈ AutR⊗QpQp2 (R⊗Qp N◦)

∣∣ g satisfies the similar conditions as above
}
.

In the sequel, we always use this description of J. Now we can prove the following:

10
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Lemma 3.9 We have a natural isomorphism ξ : J⊗Qp Qp2
∼=−−→ GSp(N◦, ψ) of alge-

braic groups over Qp2 .

Proof. Take a Qp2-algebra R. Then we have R⊗QpN◦ ∼= (R⊗Qp2N
◦)⊕(R⊗Qp2

σN◦),
where σN◦ is the scalar extension of N◦ by σ : Qp2 −→ Qp2 . Under this isomorphism,
idR⊗Φ: R⊗Qp N◦ −→ R⊗Qp N◦ is expressed by the matrix(

0 idR⊗Φ1

idR⊗Φ2 0

)
,

where Φ1 (resp. Φ2) denotes the Qp2-homomorphism σN◦ −→ N◦ (resp. N◦ −→
σN◦) induced by Φ. Therefore, every element g ∈ AutR⊗QpQp2 (R ⊗Qp N◦) can be

written as g′ ⊕ g′′ with g′ ∈ AutR(R⊗Qp2 N
◦) and g′′ ∈ AutR(R⊗Qp2

σN◦), and the

condition g ◦ (idR⊗Φ) = (idR⊗Φ)◦g is equivalent to g′ ◦ (idR⊗Φ1) = (idR⊗Φ1)◦g′′
and g′′ ◦ (idR⊗Φ2) = (idR⊗Φ2) ◦ g′. For g′ ∈ AutR⊗QpQp2 (R ⊗Qp N◦), put g′′ =

(idR⊗Φ1)−1 ◦ g′ ◦ (idR⊗Φ1). Then the pair (g′, g′′) satisfies the conditions above
(note that Φ1 ◦ Φ2 = p). In other words, the group{

g ∈ AutR⊗QpQp2 (R⊗Qp N◦)
∣∣ g ◦ (idR⊗Φ) = (idR⊗Φ) ◦ g

}
can be identified with the group AutR(R ⊗Qp2 N

◦). Now it is straightforward to

see that (g′, g′′) preserves the pairing ψ on R ⊗Qp N◦ up to scalar if and only if

g ∈ GSp(N◦, ψ)(R). This concludes the proof.

By the construction of the isomorphism ξ, we have the following:

Corollary 3.10 A natural homomorphism J −→ ResQp2/Qp GSp(N◦, ψ) corresponds
to ξ by the adjointness between base change and the Weil restriction. In particu-

lar, the composite J(Qp) ↪−→ J(Qp2)
ξ−−→∼= GSp(N◦, ψ) is nothing but the natural

inclusion.

Remark 3.11 Actually, we can describe J more explicitly as follows.
Let Σ2 be a (unique) one-dimensional p-divisible group with slope 1/2 over Fp.

It is well-known that there exists a polarization λΣ2 on Σ2; for example, a principal
polarization on a supersingular elliptic curve over Fp induces such a polarization.
Put D = End(Σ2) ⊗Zp Qp. Then D is a quaternion division algebra over Qp and
λΣ2 induces an involution on it. By [IM10, Lemma 4.1], we know that (X, λ0) and
(Σ⊕d2 , λ⊕dΣ2

) are isogenous. Therefore, we can prove without difficulty that the alge-
braic group J is isomorphic to the quaternionic unitary similitude group GU(d,D).

Next we introduce the period space for GSp2d.

Definition 3.12 i) Let F be the Grassmannian over L0 parameterizing d-dimensional
subspaces Fil ⊂ N such that Fil⊥ = Fil.

11
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ii) Let L be a finite extension of L0. An element Fil ⊂ L ⊗L0 N of F(L) is said
to be weakly admissible if, for every subspace N ′ of N which is stable under Φ,
the following inequality holds:

dimL

(
(L⊗L0 N

′) ∩ Fil
)
≤ 1

2
dimN ′.

It is known that there exists a canonical open rigid subspace Ω ⊂ Fad such that
Ω(L) = {Fil ∈ F(L) | Fil is weakly admissible} for every finite extension L of
L0 ([RZ96, Proposition 1.36]). We call this Ω a period space for GSp2d. The
group GSp(N,ψ) naturally acts on F and the induced action of J = J(Qp) ⊂
GSp(N,ψ) preserves Ω ⊂ F .

The following theorem is due to Rapoport-Zink:

Theorem 3.13 i) There exists a J-equivariant étale morphism ℘ : M −→ Ω over
L0 called the period morphism. For a finite extension L of L0 and an L-valued
point x = (X, ρ) of M , ℘(x) is given by the subspace ρ−1

∗ (FilX) of L ⊗L0 N ,

where ρ∗ : D(X)Q
∼=−−→ D(X)Q is the isomorphism between rational Dieudonné

modules induced by ρ, and FilX ⊂ L⊗L0 D(X)Q is the Hodge filtration of X.

ii) The period map ℘ induces a surjection on classical points. Namely, for every
finite extension L of L0 and every L-valued point x of Ω, there exist a finite
extension L′ of L and an L′-valued point x̃ of M such that ℘(x̃) = x.

Proof. The period map ℘ is constructed in [RZ96, 5.16]. Precisely speaking, our ℘
is the first factor π̆1 of the period map π̆ defined by Rapoport-Zink.

ii) follows from [RZ96, Proposition 5.28]; note that Fontaine’s conjecture assumed

in the proposition has been solved by Kisin ([Kis06, Corollary 2.2.6]).

The following proposition is the first step of our point counting:

Proposition 3.14 Let h be a regular element of J . Then all fixed points of F
under h are discrete with multiplicity one. If moreover h is elliptic, then every fixed
point lies in Ω.

The former part is well-known. In order to see the latter part, we will use the
theory of Harder-Narasimhan filtrations. Let us fix a finite extension L of L0 and
an element Fil ∈ F(L). For a non-zero subspace N ′ of N which is stable under Φ,
we put

µ(N ′) =
dimL

(
(L⊗L0 N

′) ∩ Fil
)
− 1/2 dimL0 N

′

dimL0 N
′ .

We say that N ′ 6= 0 is semi-stable if every non-zero Φ-stable subspace N ′′ ⊂ N ′

satisfies µ(N ′′) ≤ µ(N ′).
The following proposition is a part of [RZ96, Proposition 1.4]:

12
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Proposition 3.15 There exists a unique Φ-stable subspace N0 ⊂ N satisfying the
following conditions:

– N0 is semi-stable (in particular non-zero).

– For every Φ-stable N ′ with N0 ( N ′ ⊂ N , we have µ(N0) > µ(N ′).

Proof of Proposition 3.14. Let h ∈ J be a regular element, L a finite extension of L0

and Fil an element of F(L) which is fixed by h. We will assume Fil /∈ Ω and prove
that h is not elliptic. Since Fil /∈ Ω, µ(N ′) > 0 = µ(N) for some Φ-stable subspace
N ′ ⊂ N . Therefore N is not semi-stable and thus N0 ( N , where N0 is given in
Proposition 3.15. Since Fil is fixed by h, we have hN0 = N0 by the uniqueness.

Let us prove that N0 ⊂ N⊥0 . The following argument is inspired by [RZ96,
Proposition 1.43]. Put W = N0 ∩ N⊥0 and assume that W ( N0. Then ψ induces
a perfect alternating pairing N0/W × N0/W −→ L0. Denote the image of (L ⊗L0

N0) ∩ Fil under L ⊗L0 N0 −→ (L ⊗L0 N0)/(L ⊗L0 W ) by Fil′. Since Fil⊥ = Fil, we
have Fil′ ⊂ Fil′⊥. Therefore we have dimL Fil′ ≤ 1/2 dimL0(N0/W ). On the other
hand, by the definition of N0, N0 ( N implies µ(N0) > µ(N) = 0. Hence, if W 6= 0,

µ(W ) =
dimL

(
(L⊗L0 W ) ∩ Fil

)
dimL0 W

− 1

2
=

dimL

(
(L⊗L0 N0) ∩ Fil

)
− dimL Fil′

dimL0 W
− 1

2

≥
dimL

(
(L⊗L0 N0) ∩ Fil

)
− 1/2 dimL0(N0/W )

dimL0 W
− 1

2
=

dimL0 N0

dimL0 W
µ(N0)

> µ(N0),

which contradicts to semi-stability of N0. If W = 0,

dimL

(
(L⊗L0 N0) ∩ Fil

)
− 1

2
dimL0 N0 = dimL Fil′−1

2
dimL0(N0/W ) ≤ 0,

which contradicts to µ(N0) > 0. Thus we get N0 ⊂ N⊥0 .
Put N◦0 = (N0)p

−1Φ2 ⊂ N◦. Since (N0,Φ) is isoclinic of slope 1/2, we have
L0⊗Qp2 N

◦
0 = N0. In particular 0 ( N◦0 ( N◦. Moreover we have N◦0 ⊂ (N◦0 )⊥, since

N0 ⊂ N⊥0 . Consider the subgroup P of J given as follows (R denotes a Qp-algebra):

P(R) =
{
h′ ∈ J(R)

∣∣ h′(R⊗Qp N◦0 ) = R⊗Qp N◦0
}
.

Here J(R) is regarded as a subgroup of AutR⊗QpQp2 (R⊗QpN◦). In the similar way as
in the proof of Lemma 3.9, we can see that P⊗QpQp2 is isomorphic to the stabilizer
subgroup StabGSp(N◦,ψ)(N

◦
0 ) of N◦0 in GSp(N◦, ψ). Therefore P⊗Qp Qp2 is a proper

parabolic subgroup of J ⊗Qp Qp2 , and thus P is a proper parabolic subgroup of J.
Since h ∈ P(Qp), the following lemma says that h is not elliptic. This completes

the proof.

Lemma 3.16 Let F be a p-adic field, G a connected reductive group over F and
g a regular elliptic element of G(F ). Then, for every proper parabolic subgroup P
of G defined over F , g does not lie in P(F ).

13
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Proof. Assume that there exists a proper parabolic subgroup of G defined over F
such that g ∈ P(F ). Then, since g ∈ G(F ) is semisimple, there exists a Levi sub-
group L of P defined over F such that g ∈ L(F ) (cf. [Spr98, 13.3.8 (i), 8.4.4, 16.1.4]).
By the restricted root decomposition, it is easy to see that the split center of L is
strictly bigger than that of G. In other words, the center ZL of L is not anisotropic
modulo ZG. Therefore the centralizer of g, that contains ZL, is not anisotropic
modulo ZG. This contradicts to the assumption that g is regular elliptic.

Remark 3.17 By the Bruhat decomposition, we can easily calculate the number
of fixed points in Proposition 3.14; the number is d!2d−1.

3.3 Counting fixed points under the group action

Let (g, h) be an element of G×J and K a compact open subgroup of K0 normalized
by g. Let ℘K : MK −→ Ω and ℘K,p : MK/p

Z −→ Ω be the étale morphisms induced
from the period map ℘. In Proposition 3.14, we considered fixed points on the
period space Ω. Thus, to count fixed points on MK/p

Z, it suffices to investigate the
action of (g, h) on the fiber ℘−1

K,p(x) of each point x in Ω fixed by h.

Definition 3.18 Let L be a finite extension of L0 and x ∈ Ω(L) a point fixed by
h. We denote the subspace of L ⊗L0 N corresponding to x by Filx. Then, since
(N,Φ,Filx) is a weakly admissible filtered isocrystal, there exists a 2d-dimensional
p-adic Galois representation Vx of Gal(L/L) such that Dcrys(Vx) ∼= (N,Φ,Filx) (cf.
[CF00]). As the functor Dcrys is fully faithful and compatible with tensor products,
the alternating bilinear pairing ψ : N × N −→ L0 induces an alternating bilinear

pairing ψx : Vx × Vx −→ Qp(1). Since h : N
∼=−−→ N commutes with Φ, preserves Filx

and preserves ψ up to Q×p -multiplication, it induces a Gal(L/L)-automorphism gh,x
on Vx preserving ψx up to Q×p -multiplication. By choosing isomorphisms Qp(1) ∼= Qp

and (Vx, ψx) ∼= (Q2d
p , 〈 , 〉), gh,x can be regarded as an element of G. Obviously, the

conjugacy class of gh,x is independent of the choice of the isomorphisms above.

Proposition 3.19 The element gh,x ∈ G is a transfer of h ∈ J with respect to ξ.
Namely, if we fix an isomorphism (N◦, ψ) ∼= (Q2d

p2 , 〈 , 〉), the image of h under the
composite

J(Qp) ↪−→ J(Qp2)
ξ−−→∼= GSp(N◦, ψ) ∼= GSp2d(Qp2)

and gh,x ∈ G are conjugate in GSp2d(Qp).
In particular, gh,x ∈ G is regular (resp. regular elliptic) if and only if h is regular

(resp. regular elliptic).

Proof. Since Dcrys(Vx) ∼= (N,Φ,Filx), we have an isomorphism

Vx ⊗Qp BdR
∼= N ⊗L0 BdR = N◦ ⊗Qp2 BdR.

14



Lefschetz trace formula and `-adic cohomology of Rapoport-Zink tower for GSp(4)

Since we have fixed isomorphisms (Vx, ψx) ∼= (Q2d
p , 〈 , 〉) and (N◦, ψ) ∼= (Q2d

p2 , 〈 , 〉),
the isomorphism above induces

B2d
dR

∼=−−→ Vx ⊗Qp BdR

∼=−−→ N◦ ⊗Qp2 BdR

∼=−−→ B2d
dR,

which gives an element α ∈ GSp2d(BdR). By the definition of gh,x and Corollary
3.10, we have gh,x = α−1ξ(h)α in GSp2d(BdR). Therefore gh,x and ξ(h) are conjugate

in GSp2d(BdR), and thus conjugate in GSp2d(Qp).

We will consider how the conjugacy class of gh,x changes when we vary h inside its
stable conjugacy class. Assume that h is regular. Let Th = Z(h) be the centralizer
of h in J, which is a maximal torus of J.

Lemma 3.20 For every Qp-algebra R and an element t ∈ Th(R), t stabilizes the
subspace R⊗Qp Filx ⊂ R⊗Qp (L⊗L0 N) = L⊗L0 (R⊗Qp N).

Proof. Let F◦ be the Grassmannian over Qp2 parameterizing d-dimensional sub-
spaces Fil ⊂ N◦ such that Fil⊥ = Fil. Then, clearly F◦ ⊗Qp2 L0 = F . Moreover,

since h is regular, the fixed point x in F comes from a closed point of F◦; namely,
there exists a finite extension F of Qp2 contained in L and x′ ∈ F◦(F ) such that
Filx = L ⊗F Filx′ . Therefore, we may consider the subspace Filx′ ⊂ F ⊗Qp2 N

◦

instead of Filx ⊂ L⊗L0 N .
Put G = GSp(N◦, ψ) ⊗Qp2 F . This algebraic group acts on F◦F = F◦ ⊗Qp2 F .

Let P be the stabilizer of x′ ∈ F◦F (F ) in G. It is a parabolic subgroup of G. We
have homomorphisms J −→ ResQp2/Qp GSp(N◦, ψ) −→ ResF/Qp G, which induce an

action of J on ResF/Qp F◦F . What we would like to show is that the subgroup Th of
J stabilizes x′ ∈ (ResF/Qp F◦F )(Qp); in other words, Th ⊂ ResF/Qp P. Let us denote
by h′ the image of h ∈ J(Qp) in (ResF/Qp G)(Qp) = G(F ). Note that h′ ∈ P(F ), for
h stabilizes x′. Moreover h′ is regular, since it is the image of ξ(h) ∈ GSp(N◦, ψ)
under GSp(N◦, ψ) −→ GSp(N◦ ⊗Qp2 F, ψ) = G(F ). It suffices to show that the

centralizer Sh′ of h′ in G is contained in P. We can pass to an algebraic closure
F of F ; we simply write G and P for G ⊗F F and P ⊗F F , respectively. Take a
maximal torus T′ of P containing h′. As P is a parabolic subgroup of G, it contains
a maximal torus T′′ of G. Since T′ and T′′ are conjugate in P, T′ is also a maximal
torus of G. This implies that T′ = Sh′ . In particular Sh′ is contained in P.

Definition 3.21 Fix isomorphisms Qp(1) ∼= Qp and (Vx, ψx) ∼= (Q2d
p , 〈 , 〉) as in

Definition 3.18. We define a homomorphism ιh,x : Th −→ GSp2d of algebraic groups
over Qp as follows. For a Qp-algebra R, each element t ∈ Th(R) gives an automor-
phism of the filtered isocrystal (R⊗QpN,Φ, R⊗Qp Filx) by the previous lemma. The
induced automorphism on (R ⊗Qp N ⊗L0 Bcrys)

Φ,Fil = R ⊗Qp Vx defines an element
ιh,x(t) ∈ GSp(R⊗Qp Vx, ψx) ∼= GSp2d(R).

By definition, we have ιh,x(h) = gh,x. Clearly ιh,x is independent of the choice of
Qp(1) ∼= Qp, and the GSp2d(Qp)-conjugacy class of ιh,x is independent of the choice
of (Vx, ψx) ∼= (Q2d

p , 〈 , 〉).
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Proposition 3.22 Let Tgh,x = Z(gh,x) be the centralizer of gh,x in GSp2d. The

homomorphism ιh,x induces an isomorphism Th

∼=−−→ Tgh,x .

Proof. The proof of Proposition 3.19 tells us that the base change of ιh,x to BdR can
be described as the composite of

Th ⊗Qp BdR ↪−→ J⊗Qp BdR
ξ−−→∼= GSp2d⊗QpBdR

Ad(α−1)−−−−−→∼= GSp2d⊗QpBdR,

where α ∈ GSp2d(BdR) is the element defined in the proof of Proposition 3.19. Now
it is clear that the homomorphism Th⊗Qp BdR −→ Tgh,x ⊗Qp BdR induced by ιh,x is

an isomorphism, and thus ιh,x : Th −→ Tgh,x is also an isomorphism.

Proposition 3.23 i) For h′ ∈ {h}st, take γ ∈ J(Qp) such that h′ = γ−1hγ.

Then, for every σ ∈ Gal(Qp/Qp), ch,h′(σ) = γσ(γ)−1 lies in Th(Qp), and ch,h′
gives an element of H1(Qp,Th). The map h′ 7−→ ch,h′ induces a bijection

{h}st/∼
∼=−−→ H1(Qp,Th). Similarly, we have a natural bijection {gh,x}st/∼

∼=−−→
H1(Qp,Tgh,x).

ii) Assume that h is elliptic. Then we have a commutative diagram

{h}st/∼ //

(∗)
��

H1(Qp,Th)

ιh,x

��

{gh,x}st/∼ // H1(Qp,Tgh,x),

where the map (∗) is given by h′ = γ−1hγ 7−→ gh′,ξ(γ)−1x. (Recall that ξ

carries γ ∈ J(Qp) to an element of GSp(N◦ ⊗Qp2 Qp, ψ) ⊂ GSp(N ⊗L0 L0, ψ).

Corollary 3.10 ensures that ξ(γ)−1x is fixed by h′, and Proposition 3.14 tells us
that ξ(γ)−1x lies in Ω.)

Proof. i) It is well-known that the map h′ 7−→ ch,h′ induces a bijection

{h}st/∼
∼=−−→ Ker

(
H1(Qp,Th) −→ H1(Qp,J)

)
.

Therefore it suffices to show H1(Qp,J) = 1. Since the derived group Jder is simply
connected, we have H1(Qp,Jder) = 1 by Kneser’s theorem. Now the exact sequence

1 −→ Jder −→ J −→ Gm −→ 1

gives the desired vanishing result. Similarly we can prove H1(Qp,GSp2d) = 1.
ii) Take a finite extension F of Qp2 and x′ ∈ F◦(F ) as in the proof of Lemma

3.20. Let E be a finite Galois extension of Qp2 such that γ ∈ J(E). Extending F if
necessary, we may assume that E ⊂ F (although we can take E = F , it is better to
distinguish them in order to avoid confusion). Put y′ = ξ(γ)−1(x′) ∈ F◦(F ).
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First we prove that the subspace E ⊗Qp Filx′ ⊂ E ⊗Qp (F ⊗Qp2 N
◦) is mapped

to E ⊗Qp Fily′ by γ−1 ∈ J(E). Put W = γ−1(E ⊗Qp Filx′) ⊂ E ⊗Qp (F ⊗Qp2 N
◦).

As h′ = γ−1hγ ∈ J(Qp), we have γσ(γ)−1 ∈ Th(E) for every σ ∈ Gal(E/Qp2). By
Lemma 3.20, we have W = σ(γ)−1(E ⊗Qp Filx′). The commutative diagram

E ⊗Qp (F ⊗Qp2 N
◦)

γ−1
//

σ⊗id
��

E ⊗Qp (F ⊗Qp2 N
◦)

σ⊗id
��

E ⊗Qp (F ⊗Qp2 N
◦)
σ(γ)−1

// E ⊗Qp (F ⊗Qp2 N
◦)

tells us that (σ ⊗ id)(W ) = W . Therefore, by the Galois descent, there exists an
F -subspace W ′ ⊂ F⊗Qp2N

◦ such that W = E⊗QpW ′. It suffices to show that W ′ =

Fily′ . By definition, W ′ is the image of Filx′ under the map F⊗Qp2N
◦ (∗)−−→ F⊗Qp2N

◦

obtained as the base change of γ−1 : E ⊗Qp (F ⊗Qp2 N
◦) −→ E ⊗Qp (F ⊗Qp2 N

◦) by

E ⊗Qp F −→ F . Corollary 3.10 tells us that the base change of γ−1 : E ⊗Qp N◦ −→
E ⊗Qp N◦ by E ⊗Qp Qp2 −→ E coincides with ξ(γ)−1 : E ⊗Qp2 N

◦ −→ E ⊗Qp2 N
◦.

Hence (∗) is equal to the base change of ξ(γ)−1 by E −→ F , and we conclude that
W ′ = ξ(γ)−1(Filx′) = Fily′ , as desired.

Now we know that γ : E ⊗Qp N◦
∼=−−→ E ⊗Qp N◦ gives an isomorphism of filtered

isocrystals (E ⊗Qp N◦,Φ, E ⊗Qp Fily′)
∼=−−→ (E ⊗Qp N◦,Φ, E ⊗Qp Filx′). It induces an

isomorphism of corresponding Gal(F/F )-representations γ̃ : E ⊗Qp Vy′
∼=−−→ E ⊗Qp

Vx′ . Since h′ = σ(γ)−1hσ(γ) and y′ = ξ(σ(γ))−1(x′) for each σ ∈ Gal(E/Qp),

we may also define σ̃(γ) : E ⊗Qp Vy′
∼=−−→ E ⊗Qp Vx′ , which clearly coincides with

σ(γ̃) = (σ ⊗ id) ◦ γ̃ ◦ (σ ⊗ id)−1 by functoriality. By the construction, we have

γ̃σ(γ̃)−1 = γ̃σ̃(γ)−1 = ιh,x(γσ(γ)−1). The relation h′ = γ−1hγ is translated into the
commutativity of the following diagram:

E ⊗Qp Vy′
gh′,y′

//

γ̃
��

E ⊗Qp Vy′

γ̃
��

E ⊗Qp Vx′
gh,x′
// E ⊗Qp Vx′ .

In other words, if we fix (Vx′ , ψx′) ∼= (Q2d
p , 〈 , 〉) ∼= (Vy′ , ψy′) and regard γ̃ as an

element of GSp2d(E), then we have gh′,y′ = γ̃−1gh,x′ γ̃. Therefore, under the isomor-

phism {gh,x}/∼
∼=−−→ H1(Qp,Tgh,x), the conjugacy class of gh′,y′ corresponds to the

cohomology class of the cocycle σ 7−→ γ̃σ(γ̃)−1. This concludes the proof, since we

have γ̃σ(γ̃)−1 = ιh,x(γσ(γ)−1) = ιh,x(ch,h′(σ)) as mentioned above.
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Corollary 3.24 Assume that h is elliptic. Let gh ∈ G be an arbitrary element with
gh ↔ h. Then, each [g] ∈ {gh}st/∼ satisfies the following:

#
{

([h′], x)
∣∣ [h′] ∈ {h}st/∼, x ∈ Fix(h′; Ω), [gh′,x] = [g]

}
= d!2d−1.

Here [−] denotes the conjugacy class.

Proof. For h′ ∈ {h}st, take γ ∈ J(Qp) such that h′ = γ−1hγ. Then ξ(γ)−1 induces a
bijection Fix(h; Ω) −→ Fix(h′; Ω). Thus by Proposition 3.23 we have

#{x ∈ Fix(h′,Ω) | [gh′,x] = [g]} = #{x ∈ Fix(h,Ω) | [gh′,ξ(γ)−1x] = [g]}
= #{x ∈ Fix(h,Ω) | ιh,x(ch′) = cg},

where ch′ ∈ H1(Qp,Th) (resp. cg ∈ H1(Qp,Tgh,x)) is the element corresponding to
[h′] ∈ {h}st/∼ (resp. [g] ∈ {gh}st/∼ = {gh,x}st/∼) under the bijection in Proposition
3.23 i). Varying [h′] (or equivalently ch′), we obtain

#
{

([h′], x)
∣∣ [h′] ∈ {h}st/∼, x ∈ Fix(h′; Ω), [gh′,x] = [g]

}
= #{(c, x) ∈ H1(Qp,Th)× Fix(h; Ω) | ιh,x(c) = cg},

whose right hand side is clearly equal to # Fix(h; Ω) = d!2d−1 (cf. Remark 3.17).

The following is an analogue of [Fal94, Theorem 1] and [Str08, Theorem 2.6.8]:

Proposition 3.25 Let x be as in Definition 3.18. Assume that g ∈ G is regular
elliptic. Then, the number of fixed points in ℘−1

K,p(x) under the action of (g, h) is
given by

#{γKpZ ∈ G/KpZ | γKpZ = g−1
h,xγgKp

Z}.

If h is elliptic, this number is equal to the orbital integral

Ogh,x

( 1gKpZ

vol(K)

)
,

where 1gKpZ denotes the characteristic function of gKpZ ⊂ G (for our normalization
of the Haar measure, see the last paragraph of Section 3.1).

Proof. As in Theorem 3.13 ii), there exist a finite extension L′ of L and x̃ =
(X, ρ, η) ∈ MK(L′) such that ℘K(x̃) = x. Here, (X, ρ) is an OL′-valued point of

M̆ and η is a K-level structure on X, namely, a Gal(L/L′)-invariant K-orbit of iso-

morphisms Q2d
p

∼=−−→ Vp(X) preserving symplectic pairings up to Q×p -multiplication.

Fix η ∈ η. Then, by [RZ96, Proposition 5.37], the fiber ℘−1
K (x) of ℘K : MK −→ Ω

at x can be identified with G/K. The identification is given as follows. Let
x̃′ = (X ′, ρ′, η′) be another point in the fiber. Then, there exists a unique quasi-
isogeny f : X ′ −→ X satisfying ρ = (f mod p) ◦ ρ′. This f automatically preserves
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polarizations on X and X ′ up to Q×p -multiplication. Choose a representative η′ in
the level structure η′, and define γ ∈ G by the following commutative diagram:

Q2d
p

η′

∼=
//

γ

��

Vp(X
′)

Vp(f)

��

Q2d
p

η

∼=
// Vp(X).

The class of γ in G/K does not depend on the choice of η′.
Since (g, h) acts on ℘−1

K (x), it also acts on G/K by the identification above.
We will show that this action is given by γK 7−→ g−1

h,xγgK, where the element

gh,x ∈ G is given by the isomorphism Vx ∼= Vp(X)
η−1

−−→∼= Q2d
p (cf. Definition 3.18).

Take (X ′, ρ′, η′) ∈ ℘−1
K (x) corresponding to γK ∈ G/K. Then (g, h)(X ′, ρ′, η′) =

(X ′, ρ′ ◦ h, η′ ◦ g). Since ρ∗ ◦ h ◦ (ρ∗)
−1 : D(X)Q −→ D(X)Q preserves the Hodge

filtration, there exists a quasi-isogeny φ : X −→ X such that ρ ◦ h = (φ mod p) ◦ ρ.
For this φ, we have ρ = ((φ−1 ◦ f) mod p) ◦ (ρ′ ◦ h), where f : X ′ −→ X is a
quasi-isogeny as above. Now we have the following commutative diagram:

Q2d
p

η′◦g
∼=
//

g

��

Vp(X
′)

Q2d
p

η′

∼=
//

γ

��

Vp(X
′)

Vp(f)

��

Q2d
p

η

∼=
//

g−1
h,x
��

Vp(X)

Vp(φ)−1

��

Q2d
p

η

∼=
// Vp(X).

This diagram tells us that (g, h)(X ′, ρ′, η′) corresponds to g−1
h,xγgK ∈ G/K, as de-

sired.
Now we consider the fiber ℘−1

K,p(x) = ℘−1
K (x)/pZ. By [RZ96, Lemma 5.36], it is

in bijection with G/KpZ. The action of (g, h) is given by γKpZ 7−→ g−1
h,xγgKp

Z.
Therefore, the number of fixed points under this action is equal to

#{γKpZ ∈ G/KpZ | γKpZ = g−1
h,xγgKp

Z}.

If h is elliptic, then gh,x is regular elliptic by Proposition 3.19, and thus the number
above is equal to

1

vol(KpZ/pZ)

∫
G/pZ

1gKpZ(γ−1gh,xγ)dγ = Ogh,x

( 1gKpZ

vol(K)

)
.
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For later use, we will state our result for the action of the inverse element
(g−1, h−1).

Theorem 3.26 Let (g, h) ∈ G× J be an element and K a compact open subgroup
of K0 normalized by g.

i) If h is regular elliptic, then we have

# Fix
(
(g−1, h−1);MK/p

Z) =
∑

x∈Fix(h;Ω)

Ogh,x

( 1gKpZ

vol(K)

)
,

where the Haar measure on Z(gh,x) is normalized as in the last paragraph of
Section 3.1. The left hand side denotes the number of fixed points in the sense
of [Mie10a, Definition 2.6].

ii) Assume that h is regular non-elliptic, and gK consists of regular elliptic ele-
ments. Then there is no point on MK/p

Z fixed by (g−1, h−1).

Proof. i) Since the multiplicity at each fixed point in Ω is one and ℘K,p is étale, the
multiplicity at each fixed point in MK/p

Z is equal to one (cf. [Mie10a, Proposition
2.10, Proposition 2.11]). Therefore, we have only to count points in MK/p

Z fixed by
(g−1, h−1) (or equivalently, fixed by (g, h)) as sets. The desired equality immediately
follows from Proposition 3.25.

ii) If there exists a fixed point, then we can find γ ∈ G and an integer n such
that p−nγ−1gh,xγ ∈ gK. Since gK consists of regular elliptic elements, gh,x is also
regular elliptic. By Proposition 3.19, this contradicts to the assumption that h is
non-elliptic.

Corollary 3.27 In the setting of Theorem 3.26 i), we have

∑
[h′]∈{h}st/∼

# Fix
(
(g−1, h−1);MK/p

Z) = d!2d−1SOgh

( 1gKpZ

vol(K)

)
,

where gh ∈ G is an arbitrary element with gh ↔ h.

Proof. By Theorem 3.26 i) and Corollary 3.24, we have

∑
[h′]∈{h}st/∼

# Fix
(
(g−1, h−1);MK/p

Z) =
∑

[h′]∈{h}st/∼

∑
x∈Fix(h′;Ω)

Ogh,x

( 1gKpZ

vol(K)

)
= d!2d−1

∑
[g′]∈{gh}st/∼

Og′

( 1gKpZ

vol(K)

)
= d!2d−1SOgh

( 1gKpZ

vol(K)

)
,

as desired.
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4 Some formal models

In order to apply the Lefschetz trace formula [Mie10a, Theorem 4.5], we need to
construct a formal model of MK for K in a certain family of compact open subgroups
of K0.

4.1 Construction of formal models

First let us recall the definition of a chain of lattices of Q2d
p considered in [RZ96, §3]:

Definition 4.1 The set L of Zp-lattices of Q2d
p is said to be a chain of lattices if

the following hold (cf. [RZ96, Definition 3.1]):

– for L,L′ ∈ L , we have either L ⊂ L′ or L ⊃ L′,

– and for L ∈ L and a ∈ Q×p , we have aL ∈ L .

Moreover, L is said to be self-dual if L ∈ L implies L∨ ∈ L , where L∨ denotes
the dual lattice with respect to the fixed symplectic form 〈 , 〉 on Q2d

p .

For a self-dual chain of lattices L , write KL for the stabilizer of L in G. It is
a parahoric subgroup of G. Moreover, for an integer m ≥ 0, we put

KL ,m = {g ∈ KL | for every L ∈ L , g acts trivially on L/pmL},

which is an open normal subgroup of KL .
Let NL be the set of g ∈ G such that gL = L . It coincides with the normalizer

of KL in G. Furthermore, NL also normalizes KL ,m for every m ≥ 0. It is known
that NL is a compact-mod-center subgroup of G.

In this subsection, we will construct a formal model M̆L ,m of MKL ,m
on which

NL acts as isomorphisms.
In the following, we fix a self-dual chain of lattices L . First we recall the

Rapoport-Zink space with parahoric level M̆L introduced in [RZ96, Definition 3.21]:

Definition 4.2 Let M̆L be the contravariant functor Nilp −→ Set that associates
S with the set of isomorphism classes of {(XL, ρL)}L∈L where

– XL is a d-dimensional p-divisible group X over S,

– and ρL : X⊗Fp S −→ XL⊗S S is a quasi-isogeny (as in the definition of M̆ , we

put S = S ⊗Zp∞ Fp),
satisfying the following conditions:

– For L,L′ ∈ L with L ⊂ L′, the quasi-isogeny ρL′ ◦ ρ−1
L : XL⊗S S −→ XL′ ⊗S S

lifts to an isogeny ρ̃L′,L : XL −→ XL′ .

– For L,L′ as above, deg ρ̃L′,L = logp #(L′/L).

– For L ∈ L , the quasi-isogeny ρpL ◦ [p] ◦ ρ−1
L : XL ⊗S S −→ XpL ⊗S S lifts to an

isomorphism θp : XL

∼=−−→ XpL (here [p] denotes the multiplication by p).
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– There exists a constant a ∈ Q×p such that for every L ∈ L , we can find an
isomorphism λL : XL −→ (XL∨)∨ which makes the following diagram commu-
tative:

X⊗Fp S
ρL

//

aλ0⊗id
��

XL ⊗S S
λL⊗id

��

X∨ ⊗Fp S (XL∨)∨ ⊗S S
(ρL∨ )∨

oo

(such λL automatically satisfies λ∨L = −λL∨).

The functor M̆L is represented by a special formal scheme over Spf Zp∞ .

The group NL × J naturally acts on M̆L on the right; for (g, h) ∈ NL × J , the

action (g, h) : M̆L (S) −→ M̆L (S) is given by {(XL, ρL)} 7−→ {(XgL, ρgL ◦ h)}. It is

easy to see that (g, 1) with g ∈ KL and (p, p) act trivially on M̆L .

Next we consider level structures on M̆L .

Definition 4.3 For an integer m ≥ 0, let M̆ ′
L ,m be the contravariant functor

Nilp −→ Set that associates S with the set of isomorphism classes of {(XL, ρL, ηL,m)}L∈L

where

– {(XL, ρL)}L∈L ∈ M̆L (S), and

– ηL,m : L/pmL −→ XL[pm] is a homomorphism

satisfying the following conditions:

– ηL,m is a Drinfeld m-level structure. Namely, the image of ηL,m gives a full set
of sections of XL[pm] (cf. [KM85, §1.8]).

– For L,L′ ∈ L with L ⊂ L′, the following diagrams are commutative:

L/pmL

ηL,m

��

// L′/pmL′

ηL′,m
��

XL[pm]
ρ̃L′,L

// XL′ [p
m],

L/pmL

ηL,m

��

×p
//

∼=
// pL/pm+1L

ηpL,m

��

XL[pm] ∼=

θp
// XpL[pm].

– There exists a homomorphism Z/pmZ −→ µpm such that for every L ∈ L the
diagram below is commutative up to constant which is independent of L:

L/pmL× L∨/pmL∨

ηL,m×ηL∨,m
��

〈 , 〉
// Z/pmZ

��

XL[pm]×XL∨ [pm]
id×λL∨// XL[pm]×X∨L [pm] // µpm .

It is easy to see that M̆ ′
L ,m is represented by a formal scheme which is finite over

M̆L (cf. [KM85, Proposition 1.9.1]). The group NL × J naturally acts on M̆ ′
L ,m

on the right; by (g, h) ∈ NL × J , {(XL, ρL, ηL,m)}L∈L is mapped to {(XgL, ρgL ◦
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h, ηgL,m ◦ g)}L∈L . It is easy to see that (g, 1) with g ∈ KL ,m and (p, p) act trivially

on M̆ ′
L ,m. By [Man04, Lemma 7.2], {M̆ ′

L ,m}m≥0 forms a projective system of formal
schemes equipped with actions of NL × J .

Let M̆L ,m be the intersection of the scheme-theoretic images of M̆ ′
L ,m′ −→

M̆ ′
L ,m for all m′ ≥ m. Obviously {M̆L ,m}m≥0 again forms a projective system of

formal schemes.
Finally, let M̆ [

L ,m be the closed formal subscheme of M̆L ,m defined by the quasi-

coherent ideal of OM̆L ,m
consisting of elements killed by pl for some integer l ≥ 0. It

is flat over Spf Zp∞ . We obtain a projective system of formal schemes {M̆ [
L ,m}m≥0

equipped with actions of NL × J . Obviously we can identify M̆ [,rig
L ,m with M̆ rig

L ,m.

Remark 4.4 By [RZ96, Proposition A.21], we can show that the natural map

M̆ rig
L ,m −→ M̆ rig

L is surjective for every m ≥ 0. In particular, we have M̆ rig
L ,0 = M̆ rig

L .

The formal scheme M̆ [
L ,m gives a formal model of the rigid space MKL ,m

:

Proposition 4.5 Assume that KL ,m ⊂ K0. Then, we have a natural isomorphism

M̆ [,rig
L ,m
∼= MKL ,m

of rigid spaces over Qp∞ which is compatible with actions of NL ×J
and change of m.

Proof. First we construct a morphism MKL ,m
−→ M̆ ′rig

m . Let S be a formal scheme
of finite type over Spf Zp∞ such that Srig is connected, and Srig −→ MKL ,m

a

morphism over Qp∞ . It suffices to construct a morphism Srig −→ M̆ ′rig
m .

By changing S by its admissible blow-up, we may assume that the composite
Srig −→ MKL ,m

−→ M extends to S −→ M̆ . Therefore, we have the following
data:

– a p-divisible group X on S,

– a quasi-isogeny ρ : X⊗Fp S −→ X ×S S satisfying the same condition as in the

definition of M̆ ,

– and a π1(Srig, x)-stable KL ,m-orbit η of an isomorphism η : Z2d
p

∼=−−→ TpX
rig
x

which preserves polarizations up to multiplication by Z×p .

Here we put S = S ⊗Zp∞ Fp and fix a geometric point x of Srig.

Fix η ∈ η. It corresponds to a homomorphism η : Q2d
p /Z2d

p −→ Xrig
x . Choose

L0 ∈ L with Z2d
p ⊂ L0 and consider L ∈ L with L0 ⊂ L ( p−1L0. The image

of L/Z2d
p ⊂ Q2d

p /Z2d
p under η corresponds to a finite étale subgroup scheme of Xrig.

Since there are only finitely many such L, by the flattening theorem (cf. [BL93]),
after replacing S by an admissible blow-up we may assume that for each L there
exists a finite flat subgroup scheme YL of X whose rigid generic fiber Y rig

L corresponds
to the image η(L/Z2d

p ). Put XL = X/YL, and write ϕL : X −→ XL for the canonical

isogeny. The homomorphism η : Q2d
p /Z2d

p −→ Xrig
x induces ηL : Q2d

p /L −→ Xrig
L,x,
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which corresponds to ηL : L −→ TpX
rig
L,x. It is easy to see that this homomorphism

fits into the following commutative diagram:

0 // Z2d
p

//

η∼=
��

L //

ηL
��

L/Z2d
p

//

∼=
��

0

0 // TpX
rig
x

// TpX
rig
L,x

// Y rig
L

// 0.

In particular, ηL is an isomorphism.
For L,L′ ∈ L with L0 ⊂ L ⊂ L′ ( p−1L0, we have a natural closed immersion

Y rig
L −→ Y rig

L′ . Since YL and YL′ are finite flat closed subgroup schemes of X, this
extends to a closed immersion YL −→ YL′ . Therefore we have a natural isogeny
ρ̃L′,L : XL −→ XL′ . Clearly the following diagrams are commutative:

Q2d
p /Z2d

p
//

η

��

Q2d
p /L //

ηL
��

Q2d
p /L

′

ηL′

��

Xrig
x

ϕL
// Xrig

L,x

ρ̃L′,L
// Xrig

L′,x,

Z2d
p

//

η∼=
��

L //

ηL∼=
��

L′

ηL′∼=
��

TpX
rig
x

ϕL
// TpX

rig
L,x

ρ̃L′,L
// TpX

rig
L′,x.

For L ∈ L with L0 ⊂ L ( p−1L0, XL0

[p]−−→ XL0 factors as XL0

ρ̃L,L0−−−→ XL

θL0,L−−−→ XL0 .

By the construction, we have the following commutative diagrams:

Q2d
p /L //

ηL
��

Q2d
p /p

−1L0

ηL0
◦p

��

Xrig
L,x

θL0,L // Xrig
L0,x

,

L //

ηL∼=
��

p−1L0

ηL0
◦p∼=

��

TpX
rig
L,x

θL0,L // TpX
rig
L0,x

.

Next consider the level structure. For L ∈ L with L0 ⊂ L ( p−1L0, let KL,m

be the kernel of GL(L) −→ GL(L/pmL). As the KL ,m-orbit of ηL : L −→ TpX
rig
L,x

is π1(Srig, x)-invariant, so is the KL,m-orbit of ηL. Therefore we obtain an isomor-

phism L/pmL
∼=−−→ Xrig

L [pm]. Again by the flattening theorem, we may assume that

this isomorphism extends to a homomorphism ηm,L : L/pmL −→ XL[pm] of group
schemes. This is a Drinfeld m-level structure (cf. [KM85, Lemma 1.8.3, Proposition
1.9.1]). For L,L′ ∈ L with L0 ⊂ L ⊂ L′ ( p−1L0, the following diagrams are
clearly commutative:

L/pmL //

ηL,m

��

L′/pmL′

ηL′,m
��

XL[pm]
ρ̃L′,L

// XL′ [p
m],

L/pmL

ηL,m

��

// p−1L0/p
m−1L0

ηL0,m
◦p

��

XL[pm]
θL0,L // XL0 [p

m].

Now we extend the construction above to all L ∈ L ; take an integer n such that
L0 ⊂ pnL ( p−1L0, and put XL = XpnL, ϕL = p−n ◦ ϕpnL : X −→ XL, ηL =
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ηpnL ◦ pn : L
∼=−−→ TpX

rig
L,x and ηL,m = ηpnL,m ◦ pn : L/pmL −→ XL[pm]. Then, for

L,L′ ∈ L with L ⊂ L′, we have a natural isogeny ρ̃L′,L : XL −→ XL′ which makes
the following diagrams commutative:

L //

ηL∼=
��

L′

ηL′∼=
��

TpX
rig
L,x

ρ̃L′,L
// TpX

rig
L′,x,

L/pmL //

ηL,m

��

L′/pmL′

ηL′,m
��

XL[pm]
ρ̃L′,L

// XL′ [p
m].

Indeed, take integers n, n′ such that L0 ⊂ pnL ( p−1L0 and L0 ⊂ pn
′
L′ ( p−1L0

(the assumption L ⊂ L′ implies n ≤ n′). If pnL ⊂ pn
′
L′, we set

ρ̃L′,L : XL = XpnL

ρ̃
pn
′
L′,pnL◦[p

n′−n]

−−−−−−−−−−−→ Xpn′L′ = XL′ .

If pnL ⊃ pn
′
L′ (in this case n < n′), we set

ρ̃L′,L : XL = XpnL

θL0,p
nL◦[pn

′−n−1]
−−−−−−−−−−→ XL0

ρ̃
pn
′
L′,L0−−−−−→ Xpn′L′ = XL′ .

Put ρL = ϕL ◦ ρ : X ⊗Fp S −→ XL ×S S. Then, it is straightforward to check

that {(XL, ρL, ηL,m)}L∈L satisfies the conditions in the definition of M̆ ′
L ,m (for the

condition on polarizations, we can work on the generic fibers). Moreover, the iso-
morphism class of {(XL, ρL, ηL,m)}L∈L is independent of the choice of x, η and L0.

Hence we get a morphism S −→ M̆ ′
L ,m, and thus a morphism MKL ,m

−→ M̆ ′rig
L ,m.

By the construction, it is easy to verify that this morphism is compatible with the
actions of NL × J and change of m.

For m′ ≥ m, the transition morphism MKL ,m′
−→ MKL ,m

is surjective. There-

fore, the morphism MKL ,m
−→ M̆ ′rig

L ,m factors through the image of M̆ ′rig
L ,m′ −→

M̆ ′rig
L ,m for every m′ ≥ m. Since M̆ ′rig

L ,m′ −→ M̆ ′rig
L ,m is finite étale, M̆ rig

L ,m coincides

with the intersection of the images of M̆ ′rig
L ,m′ −→ M̆ ′rig

L ,m for all m′ ≥ m. Hence we

have a morphism MKL ,m
−→ M̆ rig

L ,m of rigid spaces over Qp∞ .

Next we construct an inverse morphism M̆ rig
L ,m −→ MKL ,m

. Let S be a formal

scheme of finite type over Spf Zp∞ such that Srig is connected, and Srig −→ M̆ rig
L ,m

a morphism over Qp∞ . It suffices to construct a morphism Srig −→ MKL ,m
. By

changing S by its admissible blow-up, we may assume that the morphism Srig −→
M̆ rig

L ,m comes from a morphism S −→ M̆L ,m of formal schemes over Zp∞ . Therefore,
we have the data {(XL, ρL, ηL,m)} where

– XL is a p-divisible group on S,

– ρL : X⊗Fp S −→ XL ×S S is a quasi-isogeny,

– and ηL,m : L/pmL −→ XL[pm]
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satisfying suitable conditions (cf. Definition 4.3).

Fix a geometric point x of Srig. By the definition of M̆L ,m, we can find a family

of isomorphisms {ηL : L
∼=−−→ TpX

rig
L,x}L∈L satisfying the following:

(a) ηL mod pm = ηL,m,x.

(b) For L,L′ ∈ L with L ⊂ L′, the following diagrams are commutative:

L

ηL∼=
��

// L′

ηL′∼=
��

TpX
rig
L,x

ρ̃L′,L
// TpX

rig
L′,x,

L

ηL∼=
��

×p
//

∼=
// pL

ηpL∼=
��

TpX
rig
L,x ∼=

θp
// TpX

rig
pL,x.

(c) Fix an isomorphism Zp
∼=−−→ Zp(1). Then, for every L ∈ L , the diagram below

is commutative up to constant which is independent of L:

L× L∨

ηL×ηL∨∼=
��

〈 , 〉
// Zp
∼=
��

TpX
rig
L,x × TpX

rig
L∨,x

id×λL∨// TpX
rig
L,x × TpX

∨rig
L,x

// Zp(1).

Fix L0 ∈ L such that L0 ⊂ Z2d
p . The homomorphism ηL0 : L0 −→ TpX

rig
L0,x

can be

identified with ηL0 : Q2d
p /L0 −→ Xrig

L0,x
. We will see that the image ηL0(Z2d

p /L0) of

Z2d
p /L0 under ηL0 is π1(Srig, x)-stable. Indeed, for each σ ∈ π1(Srig, x) and L ∈ L ,

we can find gL,σ ∈ GL(L) such that σ ◦ ηL = ηL ◦ gL,σ. By (b) above, if we regard
GL(L) as a subset of GL2d(Qp), then gL,σ = gL0,σ for every L ∈ L . Moreover, (a)
tells us that gL0,σ = gL,σ lies in the kernel of GL(L) −→ GL(L/pmL), and (c) tells us
that gL0,σ ∈ GSp2d(Qp). We conclude that gL0,σ ∈ KL ,m, and thus gL0,σ ∈ K0 by the
assumption. Hence σ(ηL0(Z2d

p /L0)) = ηL0(gL0,σ(Z2d
p /L0)) = ηL0(Z2d

p /L0), as desired.

Therefore, the subset ηL0(Z2d
p /L0) ⊂ TpX

rig
L0,x

corresponds to a finite étale closed

subgroup scheme of Xrig
L0

. By the flattening theorem, after replacing S, we may
assume that this subgroup scheme comes from a finite flat closed subgroup scheme
Y of XL0 . Put X = XL0/Y . Then, by the similar argument as above, we have an

isomorphism η : Z2d
p

∼=−−→ TpX
rig
x which makes the following diagram commutative:

L0
//

ηL0
∼=
��

Z2d
p

η∼=
��

TpX
rig
L0,x

// TpX
rig
x .

Let ρ be the composite X⊗Fp S
ρL0−−→ XL0 ×S S −→ X ×S S. We will show that the

triple (X, ρ, η) gives an Srig-valued point of MKL ,m
. For existence of a polarization,
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let λ : X −→ X∨ be the quasi-isogeny X −→ XL
λL−−→ (XL∨)∨

(∗)−−→ X∨L −→ X∨,

where (∗) is the quasi-isogeny ρ̃∨L∨,L if L ⊂ L∨, and (ρ̃∨L,L∨)−1 if L∨ ⊂ L. Then, the
following diagram is commutative up to multiplication by Z×p :

Q2d
p ×Q2d

p

η×η∼=
��

〈 , 〉
// Qp

∼=
��

VpX
rig
x × VpX

rig
x

id×λ
// VpX

rig
x × VpX

∨rig
x

// Qp(1),

where the isomorphism Qp −→ Qp(1) is induced from the isomorphism Zp −→ Zp(1)
fixed in (c) above. In particular λ(TpX

rig
x ) = TpX

∨rig
x , and thus λ is an isomorphism.

It obviously satisfies that ρ∨ ◦λ◦ρ = aλ0 for some a ∈ Q×p . The diagram above also
tells us that η preserves polarizations up to multiplication by Z×p . On the other hand,
the KL ,m-orbit of η is invariant under π1(Srig, x) simply because the KL ,m-orbit of
ηL0 is invariant (recall that we have proved gL0,σ ∈ KL ,m).

Now we obtain an Srig-valued point (X, ρ, η) of MKL ,m
. It is easy to see that

it is independent of the choice of x and L0. Hence we have a canonical morphism
Srig −→MKL ,m

, and thus M̆ rig
L ,m −→MKL ,m

.

It is not difficult to show that the morphisms MKL ,m
−→ M̆ rig

L ,m and M̆ rig
L ,m −→

MKL ,m
we have obtained are inverse to each other. As M̆ rig

L ,m
∼= M̆ [,rig

L ,m, we have a

desired isomorphism MKL ,m
∼= M̆ [,rig

L ,m.

4.2 Boundary strata

Definition 4.6 For an integer h with 1 ≤ h ≤ d, let S∞,h be the set of totally
isotropic subspaces of dimension h of Q2d

p . Recall that a subspace V of Q2d
p is said to

be totally isotropic if V ⊂ V ⊥. For a lattice L of Z2d
p and an integer m ≥ 0, denote

by SL,m,h the set of direct summands of rank h of L/pmL.
For a self-dual chain of lattices L of Q2d

p and an integer m ≥ 0, we have a
natural map S∞,h −→

∏
L∈L SL,m,h; V 7−→ VL ,m = (V ∩L mod pm)L∈L . We denote

its image by SL ,m,h. The group NL acts naturally on S∞,h and
∏

L∈L SL,m,h, and
the map above is equivariant with respect to these actions. Therefore NL also acts
on SL ,m,h.

Put S∞ =
⋃d
h=1 S∞,h and SL ,m =

⋃d
h=1 SL ,m,h. For two elements α = (αL)L,

β = (βL)L in SL ,m, we write α ≺ β if αL ⊃ βL for every L ∈ L . This gives a partial
order on SL ,m. The action of NL on SL ,m obviously preserves this partial order.

Lemma 4.7 For every m ≥ 0, SL ,m is a finite set.

Proof. Since KL ,m acts trivially on SL ,m, we have a natural surjection KL ,m\S∞ −→
SL ,m. Therefore it suffices to show that KL ,m\S∞,h is a finite set for each 1 ≤ h ≤ d.
For an integer m′ ≥ 0, let Km′ be the kernel of K0 −→ GSp2d(Z/pm

′Z). Then,
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for a sufficiently large m′, we have Km′ ⊂ KL ,m. Therefore it suffices to show
that Km′\S∞,h is a finite set. Fix an element V of S∞,h, and denote by P the
stabilizer of V in G. It is well-known that G acts transitively on S∞,h and P is a
parabolic subgroup of G. Therefore, by the Iwasawa decomposition G = K0P for
the hyperspecial subgroup K0, we have

Km′\S∞,h ∼= Km′\G/P ∼= Km′\K0/P ∩K0,

which is obviously a finite set.

Put M̆ [
L ,m,s = M̆ [

L ,m ⊗Zp∞ Fp. To α ∈ SL ,m, we will attach a closed formal

subscheme M̆ [
L ,m,α of M̆ [

L ,m,s. A family {M̆ [
L ,m,α}α∈SL ,m

of these formal subschemes

plays a role of the “boundary” of MKL ,m
inside M̆ [

L ,m.

Definition 4.8 For α = (αL)L ∈ SL ,m, we define the subfunctor M̆ [
L ,m,α of M̆ [

L ,m,s

as follows: for an Fp-scheme S, {(XL, ρL, ηL,m)}L∈L ∈ M̆ [
L ,m(S) lies in M̆ [

L ,m,α(S)
if and only if ηL,m|α⊥L = 0 for every L ∈ L .

Lemma 4.9 The subfunctor M̆ [
L ,m,α is represented by a closed formal subscheme

of M̆ [
L ,m,s.

Proof. Obviously, for each L ∈ L the condition ηL,m|α⊥L = 0 gives a closed formal

subscheme of M̆ [
L ,m,s. Therefore it suffices to show the equivalence of ηL,m|α⊥L = 0

and ηpL,m|α⊥pL = 0. Since α ∈ SL ,m, we have αpL = pαL. Therefore the commutative

diagram

L/pmL

ηL,m

��

×p
//

∼=
// pL/pm+1L

ηpL,m

��

XL[pm] ∼=

θp
// XpL[pm]

in the definition of M̆ ′
L ,m gives the equivalence.

The following lemma is clear from the definition:

Lemma 4.10 i) The action of J on M̆ [
L ,m preserves the closed formal subscheme

M̆ [
L ,m,α for each α ∈ SL ,m.

ii) For g ∈ NL , the right action g : M̆ [
L ,m −→ M̆ [

L ,m induces an isomorphism

M̆ [
L ,m,α −→ M̆ [

L ,m,g−1α for each α ∈ SL ,m.

For α ∈ SL ,m, put M [
L ,m,α = t(M̆ [

L ,m,α)a. It is a closed analytic adic subspace

of M [
L ,m,s = t(M̆ [

L ,m,s)a. Moreover, set M [
L ,m,(α) = M [

L ,m,α \
⋃
β�αM

[
L ,m,β. It is a

locally closed subset of M [
L ,m,s.
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Proposition 4.11 i) For α, β ∈ SL ,m with α 6= β, M [
L ,m,(α) ∩M [

L ,m,(β) = ∅.

ii) Assume that d = 2. Then, we have M [
L ,m,s =

⋃
α∈SL ,m

M [
L ,m,(α).

Proof. We use the p-adic uniformization theorem. Fix a compact open subgroup
Kp of GSp2d(A

p
f ). By [IM10, Lemma 4.1], we may assume that (X, λ0) comes from

a polarized d-dimensional abelian variety. Let ShL ,Kp be the moduli space over Zp∞
of “L -sets” of abelian varieties with principal polarizations and Kp-level structures
introduced in [RZ96, Definition 6.9]. We shrink Kp so that ShL ,Kp is represented
by a quasi-projective scheme over Zp∞ . For simplicity, we write ShL for ShL ,Kp . By
using Drinfeld level structures, we can construct towers {Sh′L ,m}m≥0, {ShL ,m}m≥0

and {Sh[L ,m}m≥0 over ShL similarly as in Definition 4.3. These towers are endowed

with right actions of NL . Let Y [
m be a closed subset of Sh[L ,m consisting of super-

singular points, and (Sh[L ,m)∧
/Y [m

the formal completion of Sh[L ,m along Y [
m. The

p-adic uniformization theorem [RZ96, Theorem 6.30] tells us that we have a natural
NL -equivariant étale surjection

θm : M̆ [
L ,m −→ (Sh[L ,m)∧/Y [m

(note that GSp2d satisfies the Hasse principle; cf. [Kot92, §7]).

Put Sh[L ,m,s = Sh[L ,m⊗Zp∞Fp. For α ∈ SL ,m, we can define a closed subscheme

Sh[L ,m,α of Sh[L ,m,s in the same way as M̆ [
L ,m,α. By the construction of θm, M̆ [

L ,m,α

is isomorphic to the fiber product M̆ [
L ,m,s ×Sh[L ,m,s

Sh[L ,m,α. Thus, as in [Mie10a,

Example 4.2], we can reduce our problem to an analogue for {Sh[L ,m,α}; namely, for

Sh[L ,m,(α) = Sh[L ,m,α \
⋃
β�α Sh[L ,m,β, it suffices to show the following:

(I) For α, β ∈ SL ,m with α 6= β, Sh[L ,m,(α) ∩ Sh[L ,m,(β) = ∅.

(II) Under the assumption d = 2, we have Sh[L ,m,s \Y [
m =

⋃
α∈SL ,m

Sh[L ,m,(α).

Let x = {(AL, ηL,m)}L∈L ∈ Sh[L ,m,s(Fp). We shall prove that ((Ker ηL,m)⊥)L lies in

SL ,m provided that ηL,m 6= 0 for some L. Since Sh[L ,m is flat over Zp∞ , x can be
lifted to a point on the generic fiber. Therefore, we can find

– a finite extension F of Qp∞ ,

– an “L -set” of p-divisible groups {XL}L∈L with a principal polarization {λL}L∈L

(cf. [RZ96, Definition 6.5, Definition 6.6]) whose special fiber can be identified
with {AL[p∞]}L∈L (with the implicit polarization),

– and a family of isomorphisms {η̃L : L
∼=−−→ TpXL,η}L∈L (here XL,η denotes the

geometric generic fiber of XL) satisfying the following conditions:

(a) Denote by ηL the composite L
η̃L−−→ TpXL,η −→ TpXL,s, where XL,s denotes

the special fiber of XL. Then, ηL mod pm coincides with ηL,m under the
identification of AL[p∞] and XL,s.
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(b) For L,L′ ∈ L with L ⊂ L′, the following diagrams are commutative:

L

η̃L∼=
��

// L′

η̃L′∼=
��

TpXL,η
// TpXL′,η,

L

η̃L∼=
��

×p
//

∼=
// pL

η̃pL∼=
��

TpXL,η ∼=

θp
// TpXpL,η.

(c) Fix an isomorphism Zp
∼=−−→ Zp(1). Then, for every L ∈ L , the diagram

below is commutative up to constant which is independent of L:

L× L∨

η̃L×η̃L∨∼=
��

〈 , 〉
// Zp
∼=
��

TpXL,η × TpXL∨,η
id×λL∨// TpXL,η × TpX∨L,η // Zp(1).

Let V be the kernel of ηL⊗ZpQp : Q2d
p = L⊗ZpQp −→ VpXL,s. By the first diagram in

(b) above, V is independent of the choice of L. Moreover, we have Ker ηL = V ∩ L,
and thus Ker ηL,m = V ∩ L mod pm by (a). In particular V 6= Q2d

p , as we are
assuming that ηL,m 6= 0 for some L. Therefore, it suffices to prove that V ⊂ Q2d

p

is coisotropic, that is to say, satisfies V ⊥ ⊂ V . Denote by λ the quasi-isogeny

XL
(∗)−−→ XL∨

λL∨−−→ X∨L , where (∗) comes from the L -set structure of {XL}L∈L . This

induces an alternating pairing

〈 , 〉λ : VpXL,η × VpXL,η
id×λ−−−→ VpXL,η × VpX∨L,η −→ Qp(1).

By the commutative diagrams in (b) and (c) above, η̃L⊗Zp Qp : Q2d
p = L⊗Zp Qp

∼=−−→
VpXL,η maps the pairing 〈 , 〉 to a scalar multiple of 〈 , 〉λ under an identification
of Qp

∼= Qp(1). Thus, it suffices to show that the kernel of the specialization map
VpXL,η −→ VpXL,s is a coisotropic subspace of VpXL,η with respect to 〈 , 〉λ. To
prove it, we can argue in the same way as in the proof of [IM10, Lemma 5.8].
Let us recall the argument briefly. Take an exact sequence of p-divisible groups
0 −→ X0

L,s −→ XL,s −→ X ét
L,s −→ 0, where X0

L,s is connected and X ét
L,s is étale.

It is canonically lifted to an exact sequence 0 −→ X0
L −→ XL −→ X ét

L −→ 0 over
OF , where X ét

L is an étale p-divisible group (cf. [Mes72, p. 76]). It is easy to see
that the kernel of VpXL,η −→ VpXL,s coincides with VpX

0
L,η. Therefore it suffices

to prove that the composite of Galois-equivariant homomorphisms (VpX
0
L,η)

⊥ ↪−→
VpXL,η −→ VpX

ét
L,η is zero. This follows from the p-adic Hodge theory, noting that

λ : VpXL,η

∼=−−→ VpX
∨
L,η = (VpXL,η)

∨(1) induces a Galois-equivariant isomorphism

(VpX
0
L,η)

⊥ ∼= (VpX
ét
L,η)

∨(1).
Now we can show (I) and (II) above. For (I), assume that x = {(AL, ηL,m)}L∈L ∈

Sh[L ,m,s(Fp) lies in Sh[L ,m,(α). Then α⊥L ⊂ Ker ηL,m for every L ∈ L , or equivalently,
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α ≺ ((Ker ηL,m)⊥)L. As x belongs to Sh[L ,m,((Ker ηL,m)⊥)L
(Fp), we conclude that α =

((Ker ηL,m)⊥)L. In particular, for x ∈ Sh[L ,m,s(Fp), there is at most one α ∈ SL ,m

with x ∈ Sh[L ,m,(α)(Fp). This concludes the proof of (I). For (II), assume that
ηL,m = 0 for every L ∈ L . By [HT01, Lemma II.2.1], AL[p∞] has no étale part.
Since the rational Dieudonné module D(AL[p∞])Q is polarized, [IM10, Lemma 4.1]
tells us that, under the assumption d = 2, AL is supersingular, namely, x ∈ Y [

m(Fp).
Hence we conclude that Sh[L ,m,s \Y [

m =
⋃
α∈SL ,m

Sh[L ,m,(α), as desired.

Remark 4.12 For every quasi-compact open formal subscheme U of M̆ [
L ,m, we

can choose the level Kp ⊂ GSp2d(A
p
f ) such that θm|U is an isomorphism from U

onto the image (cf. [Far04, Corollaire 3.1.4]). In particular, the formal scheme M̆ [
L ,m

is locally algebraizable in the sense of [Mie10b, Definition 3.18].

4.3 Group action on SL ,m

In this subsection, we assume that d = 2. In this case, by the Bruhat-Tits theory,
we can easily classify self-dual chains of lattices:

Lemma 4.13 For every self-dual chain of lattices L , we can find g ∈ G so that
gL is one of the following:

(hyperspecial type) L0 = {pmZ4
p | m ∈ Z}.

(paramodular type)

Lpara = {pm−1Zp⊕pmZp⊕pmZp⊕pmZp, pmZp⊕pmZp⊕pmZp⊕pm+1Zp | m ∈ Z}.

(Siegel parahoric type)

LSiegel = L0 ∪ {pmZp ⊕ pmZp ⊕ pm+1Zp ⊕ pm+1Zp | m ∈ Z}.

(Klingen parahoric type) LKlingen = L0 ∪Lpara.

(Iwahori type) LIw = LSiegel ∪Lpara.

Lemma 4.14 Every maximal compact-mod-center subgroup of G is conjugate to
one of NL0 , NLpara or NLSiegel

.

Proof. Since a compact-mod-center subgroup is contained in the normalizer of some
parahoric subgroup, it suffices to show that NLKlingen

= NL0 ∩ NLpara and NLIw
=

NLSiegel
∩NLpara .

For a self-dual chain of lattices L , let L+ be the subset of L consisting of
lattices L such that L∨ = aL for some a ∈ Qp, and put L− = L \ L+. Then,
clearly g ∈ NL preserves L+ and L−. If L = LKlingen, then L+ = L0 and
L− = Lpara. This implies that NLKlingen

is contained in NL0 ∩ NLpara . The other
inclusion is obvious. If L = LIw, then we have L+ = LSiegel and L− = Lpara,

which gives NLIw
= NLSiegel

∩NLpara .
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The following proposition is very important to control the group action on the
“boundary strata” of the Rapoport-Zink spaces introduced in the previous subsec-
tion:

Proposition 4.15 Let L be one of L0, Lpara or LSiegel. Then, for 1 ≤ h ≤ 2 and
m ≥ 1, the natural surjection S∞,h −→ SL ,m,h induces a bijection KL ,m\S∞,h −→
SL ,m,h.

Before proving it, we give its immediate corollary:

Corollary 4.16 Let L be as in Proposition 4.15. For g ∈ NL and an integer
m ≥ 1, assume that gKL ,m = KL ,mg consists of regular elliptic elements. Then the
action of g on SL ,m has no fixed point.

Proof. Assume that g has a fixed point VL ,m ∈ SL ,m with V ∈ S∞. Then Proposi-
tion 4.15 says that KL ,mg intersects the stabilizer P of V in G. Since P is a proper
parabolic subgroup of G, it has no regular elliptic element (Lemma 3.16). This

contradicts to the assumption.

We will give a case-by-case proof of Proposition 4.15.

4.3.1 Hyperspecial case

Here we consider the case L = L0. For V, V ′ ∈ S∞,h, put I = V ∩ Z4
p and

I ′ = V ′ ∩ Z4
p. Under the assumption I ≡ I ′ (mod pm), we will prove that there

exists g ∈ KL0,m with I ′ = gI.
First consider the case where h = 2. Fix a basis x, y ∈ I. Since the lattice Z4

p

is self-dual, we can find z, w ∈ Z4
p such that 〈x, z〉 = 〈y, w〉 = 1, 〈x,w〉 = 〈y, z〉 = 0

(note that HomZp(Z4
p,Zp) −→ HomZp(I,Zp) is surjective, as I ⊂ Z4

p is a direct
summand). Replacing w by w + 〈z, w〉x, we may assume that 〈z, w〉 = 0. It is easy
to see that x, y, z, w spans a self-dual Zp-lattice of Q4

p contained in Z4
p. Therefore

x, y, z, w form a basis of Z4
p. Take x′, y′ ∈ I ′ such that x ≡ x′, y ≡ y′ (mod pm).

Since x′, y′, z, w form a basis of Z4
p, we can take A,B,C,D ∈ Zp so that z′ = Az+Bw

and w′ = Cz+Dw satisfy 〈x′, z′〉 = 〈y′, w′〉 = 1 and 〈x′, w′〉 = 〈y′, z′〉 = 0 (note that
we have 〈z′, w′〉 = 0 automatically). These are equivalent to the following identity
of matrices: (

A B
C D

)(
〈x′, z〉 〈y′, z〉
〈x′, w〉 〈y′, w〉

)
=

(
1 0
0 1

)
.

By using the fact x′ − x, y′ − y ∈ pmZ4
p, it is immediate to observe that(

〈x′, z〉 〈y′, z〉
〈x′, w〉 〈y′, w〉

)
∈ 1 + pmM2(Zp).

Therefore we can conclude that A,D ∈ 1 + pmZp and B,C ∈ pmZp. In other words,
we have z′ ≡ z, w′ ≡ w (mod pm). In particular, x′, y′, z′, w′ form a basis of Z4

p. Let
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g be the automorphism of Z4
p that maps x to x′, y to y′, z to z′ and w to w′. Clearly

g is an element of KL0,m satisfying gI = I ′.
Next consider the case where h = 1. Take a basis x of I and a basis x′ of I ′ such

that x ≡ x′ (mod pm). Put I⊥ = V ⊥ ∩ Z4
p and I ′⊥ = V ′⊥ ∩ Z4

p, which are direct
summands of rank 3 of Z4

p satisfying I⊥ ≡ I ′⊥ (mod pm). There exists y ∈ I⊥ such
that x and y span a totally isotropic direct summand I1 of rank 2 of Z4

p. Take an
arbitrary element y′ ∈ I ′⊥ such that y ≡ y′ (mod pm). Then x′ and y′ span a totally
isotropic direct summand I ′1 of Z4

p. By the argument in the case h = 2, there exists
g ∈ KL0,m satisfying g(x) = x′ and g(y) = y′. In particular, we have gI = I ′.

4.3.2 Paramodular case

Here assume that L = Lpara. Put L = p−1Zp ⊕ Zp ⊕ Zp ⊕ Zp. Then we have
L∨ = Zp ⊕ Zp ⊕ Zp ⊕ pZp and [L : L∨] = p2. In particular, g ∈ G lies in KL if and
only if gL = L. For every x, y ∈ L, we have 〈x, y〉 ∈ p−1Zp. We introduce temporary
terminology:

Definition 4.17 An element x of L is said to be primitive if x /∈ pL. A primitive
element x of L is said to be type (I) if 〈x, y〉 ∈ p−1Zp \ Zp for some y ∈ L, and x is
said to be type (II) if 〈x, y〉 ∈ Zp for every y ∈ L.

Remark 4.18 A primitive element of type (I) is of the form (p−1a, b, c, d) where
a, b, c, d ∈ Zp and either a /∈ pZp or d /∈ pZp. A primitive element of type (II) is of
the form (a, b, c, pd) where a, b, c, d ∈ Zp and either b /∈ pZp or c /∈ pZp.

Lemma 4.19 i) Let x ∈ L be a primitive element of type (I), and y ∈ L an
element satisfying 〈x, y〉 ∈ Zp. Then there exists λ ∈ Zp such that y−λx is not
primitive of type (I).

ii) For every primitive element x ∈ L of type (II), there exists a primitive element
y ∈ L of type (II) such that 〈x, y〉 = 1.

iii) Let m ≥ 1 be an integer. For x, x′ ∈ L with x ≡ x′ (mod pm), x is primitive of
type (I) (resp. (II)) if and only if x′ is primitive of type (I) (resp. (II)).

iv) Let x and y be primitive elements of L. If x is type (I) and y is type (II), then
the Zp-submodule of L generated by x and y is a direct summand of rank 2 of
L.

Proof. i) Write x = (p−1a, b, c, d) and y = (p−1a′, b′, c′, d′) with a, b, c, d, a′, b′, c′, d′ ∈
Zp. Since x is primitive of type (I), a or d is a unit. If a is a unit, by replacing y by
y − (a′/a)x, we may assume that a′ = 0. Since 〈x, y〉 = p−1ad′ + bc′ − b′c ∈ Zp, d′
lies in pZp. Therefore y is not primitive of type (I). If d is a unit, by replacing y by
y − (d′/d)x, we may assume that d′ = 0. A similar argument as above tells us that
a′ ∈ pZp, namely, y is not primitive of type (I).

ii) Since x is primitive of type (II), we have x = (a, b, c, pd), where a, b, c, d ∈ Zp
and either b /∈ pZp or c /∈ pZp. We can find b′, c′ ∈ Zp such that bc′ − cb′ = 1. For
y = (0, b′, c′, 0) ∈ L, we have 〈x, y〉 = 1, as desired.
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iii) It is clear that x is primitive if and only if x′ is primitive. Moreover, noting
that 〈x, y〉 − 〈x′, y〉 = 〈x− x′, y〉 ∈ pm−1Zp ⊂ Zp, it is also immediate to see that x
is type (I) (resp. (II)) if and only if x′ is type (I) (resp. (II)).

iv) Write x = (p−1a, b, c, d) and y = (a′, b′, c′, pd′) as in Remark 4.18. To show
that they generates a direct summand of rank 2 of L, it suffices to see that there
exists a 2× 2-minor of the following matrix whose determinant is a unit in Zp:

a pa′

b b′

c c′

d pd′

 .

It is clear from the assumptions that a or d is a unit, and b′ or c′ is a unit.

Lemma 4.20 Let I be a totally isotropic direct summand of rank 2 of L. Then
there exist a primitive element x ∈ I of type (I) and a primitive element y ∈ I of
type (II). These elements x, y form a basis of I.

Proof. Take a basis x, y of I. Obviously they are primitive. First prove that one of x
and y is type (I). Suppose that both x and y are type (II), and write x = (a, b, c, pd)
and y = (a′, b′, c′, pd′) as in Remark 4.18. Then, since x and y generates a direct
summand of L, there exists a 2×2-minor of the following matrix whose determinant
is a unit in Zp: 

pa pa′

b b′

c c′

pd pd′

 .

Namely, bc′ − b′c ∈ Z×p . Therefore, we have 〈x, y〉 = p(ad′ − a′d) + bc′ − b′c ∈ Z×p .
This contradicts to 〈x, y〉 = 0.

Next, assume that x is type (I), and find an element of I which is primitive of
type (II). Since 〈x, y〉 = 0 ∈ Zp, Lemma 4.19 i) tells us that there exists λ ∈ Zp such
that y−λx is not primitive of type (I). On the other hand, y−λx is primitive since
x, y − λx form a basis of a direct summand I. Thus we can conclude that y − λx is
primitive of type (II).

Finally, let x (resp. y) be an arbitrary primitive element of type (I) (resp. (II))

of I. Then, Lemma 4.19 iv) tells us that x and y form a basis of I.

Lemma 4.21 Let I be a totally isotropic direct summand of rank 2 of L, x ∈ I a
primitive element of type (I) and y ∈ I a primitive element of type (II). Then there
exist z, w ∈ L satisfying the following conditions:

– x, y, z, w form a basis of L.

– 〈x, z〉 = p−1, 〈y, w〉 = 1, 〈x,w〉 = 〈y, z〉 = 〈z, w〉 = 0.

Moreover, if we are given an element u ∈ L satisfying 〈x, u〉 ∈ p−1Zp \ Zp, then we
can find z and w so that 〈z, u〉 = 〈w, u〉 = 0 holds.
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Proof. It suffices to show the latter part, since we can always find such u ∈ L.
It is easy to see that the images x, y, u ∈ L/pL of x, y, u are linearly independent

over Fp. Therefore, we can find v ∈ L such that x, y, u, v form a basis of L/pL.
Then x, y, u, v form a basis of L. Since 〈u, v〉 ∈ p−1Zp and 〈u, x〉 ∈ p−1Zp \Zp, there
exists a ∈ Zp satisfying 〈u, v〉 = a〈u, x〉. Therefore, by replacing v by v − ax, we
may assume that 〈u, v〉 = 0.

Denote by I ′ the Zp-submodule of L generated by u, v. It is a totally isotropic
direct summand of rank 2 of L. The pairing 〈 , 〉 induces an isomorphism of Qp-

vector spaces I ′Qp
∼=−−→ (IQp)

∨, where (−)Qp = (−) ⊗Zp Qp. Thus we obtain a basis

x∨, y∨ of I ′Qp satisfying 〈x, x∨〉 = 〈y, y∨〉 = 1 and 〈x, y∨〉 = 〈y, x∨〉 = 0. Since I ′ is
totally isotropic, x∨ and y∨ belongs to L∨. As L∨ ⊂ L, we have x∨, y∨ ∈ I ′Qp∩L = I ′.

Let I ′′ be the Zp-submodule of I ′ generated by x∨, y∨, and L′′ the Zp-lattice of
Q4
p generated by x, y, x∨, y∨. Then we have L/L′′ = I ′/I ′′. Since L′′ is self-dual, we

have L∨ ( (L′′)∨ = L′′ ( L. Therefore [L : L′′] = p, and thus I ′/I ′′ = L/L′′ ∼= Z/pZ.
In particular, there exist a, b ∈ Qp such that ax∨+ by∨ ∈ I ′ \ I ′′. Since y is primitive
of type (II), b = 〈y, ax∨ + by∨〉 ∈ Zp. Therefore a /∈ Zp, and thus p−1x∨ ∈ L.
Now we can easily observe that z = p−1x∨ and w = y∨ satisfy all conditions in the
proposition; note that 〈p−1x∨, u〉 = 〈y∨, u〉 = 0 since u, p−1x∨ and y∨ belong to I ′,

which is a totally isotropic direct summand.

Now we can prove Proposition 4.15 for h = 2.

Proposition 4.22 If L = Lpara and h = 2, we have KL ,m\S∞,h ∼= SL ,m,h.

Proof. Let V and V ′ be elements of S∞,2 such that VL ,m = V ′L ,m. Put I = V ∩L and
I ′ = V ′ ∩ L. Then I and I ′ are totally isotropic and I ≡ I ′ (mod pm). It suffices to
find g ∈ KL ,m satisfying gI = I ′.

By Lemma 4.20, there exist a primitive element x ∈ I of type (I) and a primitive
element y ∈ I of type (II). Take x′, y′ ∈ I ′ such that x ≡ x′, y ≡ y′ (mod pm). Then
x′ (resp. y′) is primitive of type (I) (resp. type (II)) by Lemma 4.19 iii), and x′, y′ form
a basis of I ′ by Lemma 4.20. As p−m(y′− y) ∈ L, we have 〈x, p−m(y′− y)〉 ∈ p−1Zp.
Moreover, if 〈x, p−m(y′ − y)〉 ∈ Zp, Lemma 4.19 i) enables us to find λ ∈ Zp such
that p−m(y′− y)−λx is not primitive of type (I). Replacing y by y+ pmλx, we may
assume that p−m(y′ − y) is not primitive of type (I).

By Lemma 4.21, there exist z, w ∈ L such that

– x, y, z, w form a basis of L,

– 〈x, z〉 = p−1, 〈y, w〉 = 1, 〈x,w〉 = 〈y, z〉 = 〈z, w〉 = 0,

– and 〈z, p−m(y′ − y)〉, 〈w, p−m(y′ − y)〉 ∈ Zp.
Indeed, if 〈x, p−m(y′ − y)〉 /∈ Zp, we can apply Lemma 4.21 to u = p−m(y′ − y);
otherwise the third condition is automatic since p−m(y′− y) is not primitive of type
(I).

Since x′, y′, z, w form a basis of L, we can take A,B,C,D ∈ Qp so that z′ = Az+
Bw and w′ = Cz + Dw satisfy 〈x′, z′〉 = p−1, 〈y′, w′〉 = 1 and 〈x′, w′〉 = 〈y′, z′〉 = 0
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(note that we have 〈z′, w′〉 = 0 automatically). These are equivalent to the following
identity of matrices: (

A B
C D

)(
p〈x′, z〉 〈y′, z〉
p〈x′, w〉 〈y′, w〉

)
=

(
1 0
0 1

)
.

By using the facts x′ − x ∈ pmL and 〈z, p−m(y′ − y)〉, 〈w, p−m(y′ − y)〉 ∈ Zp, it is
immediate to observe that(

p〈x′, z〉 〈y′, z〉
p〈x′, w〉 〈y′, w〉

)
∈ 1 + pmM2(Zp).

Therefore we can conclude that A,D ∈ 1 + pmZp and B,C ∈ pmZp. In other words,
we have z′, w′ ∈ L and z′ ≡ z, w′ ≡ w (mod pm). In particular, x′, y′, z′, w′ form a
basis of L. Let g be the automorphism of L that maps x to x′, y to y′, z to z′ and
w to w′. It is clear that g is an element of KL ,m satisfying gI = I ′. This completes

the proof.

Finally we prove Proposition 4.15 for h = 1.

Proposition 4.23 If L = Lpara and h = 1, we have KL ,m\S∞,h ∼= SL ,m,h.

Proof. Let V and V ′ be elements of S∞,1 such that VL ,m = V ′L ,m. Put I = V ∩ L
and I ′ = V ′ ∩ L. It suffices to find g ∈ KL ,m satisfying gI = I ′.

Take a basis x of I and a basis x′ of I ′ satisfying x ≡ x′ (mod pm). First consider
the case where x is primitive of type (I). Then x′ is also primitive of type (I) by
Lemma 4.19 iii). Take z, z′ ∈ L such that 〈x, z〉 = 〈x′, z′〉 = p−1. Take an arbitrary
primitive element y ∈ L of type (II). By replacing it by y−p〈x, y〉z, we may assume
that 〈x, y〉 = 0. Put y′ = y − p〈x′, y〉z′. Then y′ is a primitive element of type (II)
satisfying 〈x′, y′〉 = 0 and y ≡ y′ (mod pm). By the proof of Proposition 4.22, we
can find g ∈ KL ,m such that gx = x′.

Next consider the case where x is primitive of type (II). In this case x′ is also
primitive of type (II). By Lemma 4.19 ii), there exist primitive elements z, z′ ∈ L of
type (II) such that 〈x, z〉 = 〈x′, z′〉 = 1. Let us prove that we can find a primitive
element y ∈ L of type (I) satisfying 〈x, y〉 = 0 and 〈p−m(x′−x), y〉 ∈ Zp. If p−m(x′−
x) is primitive of type (I), put y = p−m(x′ − x) − az where a = 〈x, p−m(x′ − x)〉.
Then a ∈ Zp as x is primitive of type (II), and 〈p−m(x′ − x), y〉 = a〈z, y〉 ∈ Zp
since z is primitive of type (II). If p−m(x′ − x) is not primitive of type (I), take
an arbitrary primitive element w ∈ L of type (I) and put y = w − 〈x,w〉z. In
this case, the condition 〈p−m(x′ − x), y〉 ∈ Zp is automatic. Put y′ = y − 〈x′, y〉z′.
Then we have 〈x′, y′〉 = 0. Furthermore we have y ≡ y′ (mod pm), for 〈x′, y〉 =
pm〈p−m(x′ − x), y〉 ∈ pmZp. Hence, again by the proof of Proposition 4.22, we can

find g ∈ KL ,m such that gx = x′.

Now a proof of Proposition 4.15 for the paramodular case is complete.
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4.3.3 Siegel parahoric case

Here we assume that L = LSiegel. Put L0 = Z4
p and L1 = Zp⊕Zp⊕ pZp⊕ pZp. We

have pL0 ⊂ L1 ⊂ L0 and L0/L1
∼= L1/pL0

∼= F2
p. An element g ∈ G lies in KL if

and only if gL0 = L0 and gL1 = L1.

Lemma 4.24 Let x, y ∈ L0 and z, w ∈ L1 be elements satisfying

〈x, y〉 = 0, 〈x, z〉 = 〈y, w〉 = 1, 〈x,w〉 = 〈y, z〉 = 0, 〈z, w〉 = 0.

Then, x, y, z, w (resp. px, py, z, w) form a basis of L0 (resp. L1).

Proof. Let us prove that the images x, y of x, y in L0/L1 form an Fp-basis of L0/L1.
Assume that u = ax + by ∈ L1 for a, b ∈ Zp. Then, a = 〈u, z〉 ∈ pZp and b =
〈u,w〉 ∈ pZp, since the pairing 〈 , 〉 on L1 takes its value in pZp. This implies that
x, y ∈ L0/L1 are linearly independent over Fp, and thus they form a basis. Similarly,
we can prove that z, w ∈ L1/pL0 form a basis of L1/pL0. From this, it is immediate

to conclude the lemma.

Proposition 4.25 Let I0 be a totally isotropic direct summand of rank 2 of L0 and
put I1 = I0 ∩ L1.

i) Assume that I0 = I1. For a basis x, y ∈ I0 = I1, there exist z, w ∈ L0 such that

〈x, z〉 = 〈y, w〉 = 1, 〈x,w〉 = 〈y, z〉 = 0, 〈z, w〉 = 0.

ii) Assume that [I0 : I1] = p. For x ∈ I0 \ I1 and y ∈ I1 \ pI0, x, y form a basis of
I0. Moreover, there exist z ∈ L1 and w ∈ L0 such that

〈x, z〉 = 〈y, w〉 = 1, 〈x,w〉 = 〈y, z〉 = 0, 〈z, w〉 = 0.

iii) Assume that [I0 : I1] = p2. For a basis x, y ∈ I0, there exist z, w ∈ L1 such that

〈x, z〉 = 〈y, w〉 = 1, 〈x,w〉 = 〈y, z〉 = 0, 〈z, w〉 = 0.

Proof. i) Take u, v ∈ L0 such that x, y, u, v form a basis of L0. Since y /∈ pL0 and
〈x, y〉 = 0, either 〈u, y〉 or 〈v, y〉 is a unit in Zp. Therefore we may assume that
〈u, y〉 ∈ Z×p . Then there exists a ∈ Zp such that 〈u, v − ay〉 = 0. Replacing v by
v−ay, we may assume that 〈u, v〉 = 0. Let J be a direct summand of L0 generated by

u, v, which is totally isotropic. The pairing 〈 , 〉 induces an isomorphism J
∼=−−→ I∨0 .

Therefore, there exists a basis z, w of J satisfying

〈x, z〉 = 〈y, w〉 = 1, 〈x,w〉 = 〈y, z〉 = 0.

This concludes i).
ii) It is immediate to see that x, y form a basis of L0. We shall prove the existence

of z, w. Take u ∈ L0 (resp. v ∈ L1) so that x, u (resp. y, v) form a basis of L0/L1
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(resp. L1/pL0). Since y /∈ pL0 and 〈x, y〉 = 0, either 〈u, y〉 or 〈v, y〉 is a unit in
Zp. As 〈v, y〉 ∈ pZp, we have 〈u, y〉 ∈ Z×p . Replacing v by v − ay for a suitable
a ∈ Zp, we may assume that 〈u, v〉 = 0. By the same argument as above, we can
find z, w ∈ Zpu+ Zpv satisfying

〈x, z〉 = 〈y, w〉 = 1, 〈x,w〉 = 〈y, z〉 = 0.

We should prove that z ∈ L1. Since px, y, pu, v form a basis of L1, it is easy to see
that 〈u, z〉 ∈ pZp for every u ∈ L1. Therefore z ∈ pL∨1 = L1, as desired.

iii) Take u, v ∈ L1 such that u, v ∈ L1/pL0 form a basis of L1/pL0. Since
L0/L1

∼= I0/I1, x, y, u, v form a basis of L0. As in i) and ii), we may assume that
〈u, y〉 ∈ Z×p . For a = 〈u, y〉−1〈u, v〉 ∈ Zp, we have 〈u, v−ay〉 = 0. Since 〈u, v〉 ∈ pZp,
the element ay belongs to L1. Therefore, replacing v by v−ay, we may assume that
〈u, v〉 = 0. By the same argument as above, we can find z, w ∈ Zpu + Zpv ⊂ L1

satisfying
〈x, z〉 = 〈y, w〉 = 1, 〈x,w〉 = 〈y, z〉 = 0.

Proposition 4.26 If L = LSiegel and h = 2, we have KL ,m\S∞,h ∼= SL ,m,h.

Proof. Let V and V ′ be elements of S∞,2 such that VL ,m = V ′L ,m. Put Ii = V ∩ Li
and I ′i = V ′ ∩ Li for i = 0, 1. Then Ii and I ′i are totally isotropic and Ii ≡ I ′i
(mod pm). It suffices to find g ∈ KL ,m satisfying gI0 = I ′0.

Let us take x, y, z, w ∈ L0 as in Proposition 4.25. For x′, y′ ∈ I ′0 with x′− x, y′−
y ∈ pmL0, we can take A,B,C,D ∈ Qp so that z′ = Az + Bw and w′ = Cz + Dw
satisfy 〈x′, z′〉 = 〈y′, w′〉 = 1 and 〈x′, w′〉 = 〈y′, z′〉 = 0. These are equivalent to the
following identity of matrices:(

A B
C D

)(
〈x′, z〉 〈y′, z〉
〈x′, w〉 〈y′, w〉

)
=

(
1 0
0 1

)
.

By using the assumption x′ − x, y′ − y ∈ pmL0, it is immediate to observe that(
〈x′, z〉 〈y′, z〉
〈x′, w〉 〈y′, w〉

)
∈ 1 + pmM2(Zp).

Therefore we can conclude that A,D ∈ 1 + pmZp and B,C ∈ pmZp. In other words,
z′, w′ lie in Zpz + Zpw and z′ − z, w′ − w ∈ pmZpz + pmZpw.

Now consider the three cases in Proposition 4.25 separately. First assume that
I0 = I1. Then I ′0 = I ′1, as I ′0 ⊂ I0 + pmL0 ⊂ L1 + pL0 = L1. By the assumption
I1 ≡ I ′1 (mod pm), we may take x′, y′ ∈ I ′0 above so that x − x′, y − y′ ∈ pmL1.
Lemma 4.24 tells us that

– x, y, z, w and x′, y′, z′, w′ are bases of L0,

– x, y, pz, pw and x′, y′, pz′, pw′ are bases of L1, and

– x′, y′ form a basis of I ′0.
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Let g be the automorphism of L0 that maps x to x′, y to y′, z to z′ and w to w′. It
is clear that g is an element of KL ,m satisfying gI0 = I ′0.

Next consider the case where [I0 : I1] = p. In this case, we can choose y′ so
that y′ belongs to I ′1 and y′ − y ∈ pmL1, as I1 ≡ I ′1 (mod pm). Then z′ ∈ L1 and
z′ − z ∈ pmL1; indeed, we have 〈y′, z〉 = pm〈p−m(y′ − y), z〉 ∈ pm+1Zp (note that
z ∈ L1) and thus B ∈ pm+1Zp. Therefore, Lemma 4.24 tells us that

– x, y, z, w and x′, y′, z′, w′ are bases of L0,

– px, y, z, pw and px′, y′, z′, pw′ are bases of L1, and

– x′, y′ form a basis of I ′0.

Hence the automorphism of L0 defined as above gives an element g ∈ KL ,m satisfying
gI0 = I ′0.

Finally consider the case where [I0 : I1] = p2. Since z, w ∈ L1, we have z′, w′ ∈ L1

and z′ − z, w′ − w ∈ pmL1. Lemma 4.24 tells us that

– x, y, z, w and x′, y′, z′, w′ are bases of L0,

– px, py, z, w and px′, py′, z′, w′ are bases of L1, and

– x′, y′ form a basis of I ′0.

Hence the automorphism of L0 defined as above gives an element g ∈ KL ,m satisfying

gI0 = I ′0.

Proposition 4.27 If L = LSiegel and h = 1, we have KL ,m\S∞,h ∼= SL ,m,h.

Proof. Let V and V ′ be elements of S∞,1 such that VL ,m = V ′L ,m. Put Ii = V ∩ Li
and I ′i = V ′ ∩ Li for i = 0, 1. Then we have Ii ≡ I ′i (mod pm). It suffices to find
g ∈ KL ,m satisfying gI0 = I ′0.

Take a basis x of I0 and an element x′ ∈ I ′0 such that x′ − x ∈ pmL0. Then x′ is
also a basis of I ′0, for x′ /∈ pL0. Moreover, since x′ − x ∈ pL0 ⊂ L1, x ∈ L1 if and
only if x′ ∈ L1.

First consider the case where I0 = I1. In this case, I ′0 = I ′1 as x′ ∈ I ′1. By
the assumption I1 ≡ I ′1 (mod pm), we may take x′ above so that x − x′ ∈ pmL1.
Let us observe that there exists y ∈ L0 \ L1 such that 〈x, y〉 = 0. Consider an
Fp-linear map 〈x,−〉 : L0/L1 −→ Fp. Since dimFp L0/L1 = 2, the kernel of this map
is non-trivial. In other words, there exists u ∈ L0 \ L1 such that 〈x, u〉 ∈ pZp. Take
v ∈ L0 such that 〈x, v〉 = 1 and put y = u − 〈x, u〉v. Then we have 〈x, y〉 = 0 and
y ∈ L0 \ L1 (note that 〈x, u〉v ∈ pL0 ⊂ L1). Take z ∈ L0 satisfying 〈x′, z〉 = 1 and
put y′ = y − 〈x′, y〉z. Since 〈x′, y〉 = 〈x′ − x, y〉 ∈ pmZp, we have y′ ∈ L0 \ L1 and

y′ − y ∈ pmL0. Let Ṽ (resp. Ṽ ′) be a subspace of Q4
p generated by x, y (resp. x′, y′),

and put Ĩi = Ṽ ∩ Li, Ĩ ′i = Ṽ ′ ∩ Li for i = 1, 2. Then it is easy to see the following:

– Ṽ , Ṽ ′ ∈ S∞,2.

– x, y (resp. x, py) form a basis of Ĩ0 (resp. Ĩ1).

– x′, y′ (resp. x′, py′) form a basis of Ĩ ′0 (resp. Ĩ ′1).

– Ĩi ≡ Ĩ ′i (mod pm).

39



Yoichi Mieda

Therefore, by the proof of Proposition 4.26, we can find g ∈ KL ,m such that gx = x′.
Next consider the case where I0 6= I1. In this case, I ′0 6= I ′1 since x′ /∈ I ′1. In

the same way as above, we can find y ∈ L1 \ pL0 such that 〈x, y〉 = 0. Since
x′ /∈ L1 = pL∨1 , there exists z ∈ L1 such that 〈x′, z〉 = 1. Put y′ = y − 〈x′, y〉z. As

〈x′, y〉 = 〈x′− x, y〉 ∈ pmZp, we have y′ ∈ L1 \ pL0 and y′− y ∈ pmL1. Define Ṽ , Ṽ ′,

Ĩi and Ĩ ′i as above. Then it is easy to see the following:

– Ṽ , Ṽ ′ ∈ S∞,2.

– x, y (resp. px, y) form a basis of Ĩ0 (resp. Ĩ1).

– x′, y′ (resp. px′, y′) form a basis of Ĩ ′0 (resp. Ĩ ′1).

– Ĩi ≡ Ĩ ′i (mod pm).

Therefore, by the proof of Proposition 4.26, we can find g ∈ KL ,m such that gx = x′.

Now a proof of Proposition 4.15 for the Siegel parahoric case is complete.

5 Open covering of the Rapoport-Zink space

From this section, we convert the right action of G× J on the Rapoport-Zink tower
to the left action by taking inverse. Therefore, the action of (g, h) ∈ G × J on the
cohomology H i

RZ is given by (g−1, h−1)∗.

5.1 Definition of open covering

Fix a chain of lattices L of Q2d
p . Then we can consider M̆ [

L (cf. Definition 4.3) and
its rigid generic fiber ML . We write Irr(L ) for the set of irreducible components of

M̆ [,red
L . For each α ∈ Irr(L ), the set M̆ [,red

L \
⋃
β∈Irr(L ),α∩β=∅ β is open in M̆ [,red

L , as

M̆ [,red
L is locally of finite type over Fp. Let Uα be the open formal subscheme of M̆ [

L

satisfying U red
α = M̆ [,red

L \
⋃
β∈Irr(L ),α∩β=∅ β, and Uα the rigid generic fiber of Uα.

As α ⊂ U red
α , {Uα}α∈Irr(L ) (resp. {Uα}α∈Irr(L )) gives an open covering of M̆ [

L (resp.
ML ). For α, β ∈ Irr(L ), note that Uα ∩ Uβ 6= ∅ if and only if U red

α ∩ U red
β 6= ∅,

since Uα ∩ Uβ = (Uα ∩Uβ)rig and Uα ∩Uβ is flat over Zp∞ .
Clearly J naturally acts on Irr(L ), and we have hUα = Uhα for h ∈ J .

Lemma 5.1 i) Put Irr(L )α,0 = {α} and for m ≥ 1 define the set Irr(L )α,m
inductively as follows; Irr(L )α,m consists of β ∈ Irr(L ) which intersects some
element in Irr(L )α,m−1. Then Irr(L )α,m is a finite set.

ii) The action of J on Irr(L ) has finite orbits.

iii) For every α, β ∈ Irr(L ), the subset {h ∈ J | hα ∩ β 6= ∅} of J is contained in
a compact subset of J .

iv) For each α ∈ Irr(L ), the subgroup Jα = {h ∈ J | hα = α} is open and
compact.
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Proof. Since M̆ [,red
L is locally of finite type and every irreducible component of M̆ [,red

L

is projective, Irr(L )α,1 is a finite set. If Irr(L )α,m−1 is a finite set, Irr(L )α,m =⋃
β∈Irr(L )α,m−1

Irr(L )β,1 is also a finite set. This concludes the proof of i).

We assume that L = L0 = {pmZ2d
p | m ∈ Z} and prove ii) and iii). In this

case, M̆ [
L0

= M̆ and the action of J on Irr(L0) is transitive ([Vie08, Theorem 2]).
Thus ii) is immediate. Let us prove iii). By the transitivity, we may assume that

α = β. Let M̆GL be the Rapoport-Zink space for GL(2d) corresponding to the p-
divisible group X and JGL the group of self-quasi-isogenies of X which naturally acts
on M̆GL. The group J is a closed subgroup of JGL. By forgetting the condition on
polarization, we have a natural closed immersion M̆ ↪−→ M̆GL and the actions of J
and JGL are compatible. Therefore, it suffices to show that {h ∈ JGLn | hα∩α 6= ∅}
is contained in a compact subset of JGL, where α is regarded as a quasi-compact
closed subset of M̆ red

GL . This is essentially proved in [RZ96, proof of Proposition
2.34].

Next we assume that L = LIw = {pmZip ⊕ pm+1Z2d−i
p | m ∈ Z, 0 ≤ i ≤ 2d}.

Then we have a natural morphism π : M̆ [
LIw
−→ M̆ [

L0
, which is proper. Fix an

arbitrary element β ∈ Irr(L0) and let α1, . . . , αm be the collection of elements of
Irr(LIw) which are contained in π−1(β). Since π is J-equivariant, it is easy to observe
Irr(LIw) =

⋃
h∈J
⋃m
i=1 hαi. This concludes the proof of ii) in this case. To prove iii),

let α0 (resp. β0) be an element of Irr(L0) which contains π(α) (resp. π(β)). Then,
{h ∈ J | hα ∩ β 6= ∅} is contained in {h ∈ J | hα0 ∩ β0 6= ∅}, and thus we are
reduced to the case L = L0.

Finally we consider an arbitrary L . Changing L by gL with g ∈ G, we
may assume that L is contained in LIw. Then we have a natural morphism
π : M̆ [

LIw
−→ M̆ [

L , which is proper. By Remark 4.4 and Proposition 4.5, the
induced morphism π : MLIw

−→ ML is surjective, and therefore the morphism

M̆ [,red
LIw

−→ M̆ [,red
L is also surjective (note that M̆ [

L is flat over Zp∞). For ii), let
β1, . . . , βm ∈ Irr(LIw) be elements such that Irr(LIw) =

⋃
h∈J
⋃m
i=1 hβi, and αi an

element of Irr(L ) which contains π(βi). Then {hαi}h∈J,1≤i≤m cover M̆ [,red
L , and we

have Irr(L ) =
⋃
h∈J
⋃m
i=1 hαi. To prove iii), take α′1, . . . , α

′
k, β

′
1, . . . , β

′
l ∈ Irr(LIw)

so that π−1(α) ⊂
⋃k
i=1 α

′
i and π−1(β) ⊂

⋃l
j=1 β

′
j. We have

{h ∈ J | hα ∩ β 6= ∅} = {h ∈ J | π−1(hα) ∩ π−1(β) 6= ∅}

⊂
k⋃
i=1

l⋃
j=1

{h ∈ J | hα′i ∩ β′j 6= ∅}.

We already know that the latter set is contained in a compact subset of J . This
completes the proof of ii) and iii).

Let us prove iv). By [Far04, Proposition 2.3.11], there exists an open subgroup
of J whose elements stabilize α. This implies that Jα is an open subgroup of J . In
particular, Jα is a closed subgroup of J . On the other hand, by iii), Jα is contained

in a compact subset of J . Thus Jα is compact, as desired.
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Corollary 5.2 For each α ∈ Irr(L ), there exist only finitely many β ∈ Irr(L )
with Uα ∩ Uβ 6= ∅.

Proof. By the construction, it is easy to see that U red
α ∩ U red

β = ∅ unless β ∈
Irr(L )α,2. Thus the claim follows from Lemma 5.1 i).

Consider the quotient M̆ [
L /p

Z of M̆ [
L by the discrete subgroup pZ ⊂ J . For

α ∈ Irr(L )/pZ, we write Uα (resp. Uα) for the image of Uα (resp. Uα). Recall that

we have an action of NL on M̆ [
L /p

Z. Therefore, NL also acts on Irr(L )/pZ. This
action factors through the quotient NL /p

ZKL , which is a finite group. Therefore,
each NL -orbit in Irr(L )/pZ is a finite set. We denote by I(L ) the set of NL -orbits
in Irr(L )/pZ. For λ ∈ I(L ), we put Uλ =

⋃
α∈λ Uα and Uλ =

⋃
α∈λ Uα. Then Uλ

and Uλ are stable under the action of NL . Clearly J/pZ naturally acts on I(L ),
and we have hUλ = Uhλ and hUλ = Uhλ for h ∈ J/pZ and λ ∈ I(L ).

Since Uλ is a finite union of Uα’s, the following corollary is an immediate conse-
quence of Lemma 5.1 and Corollary 5.2:

Corollary 5.3 i) For each λ ∈ I(L ), there exist only finitely many µ ∈ I(L )
with Uλ ∩ Uµ 6= ∅.

ii) The action of J on I(L ) has finite orbits. In particular, there exist finitely
many elements λ1, . . . , λm of I(L ) such that ML /p

Z =
⋃
h∈J
⋃m
i=1 hUλi .

iii) For every λ, µ ∈ I(L ), the subset {h ∈ J/pZ | hUλ ∩ Uµ 6= ∅} of J/pZ is
contained in a compact subset of J/pZ.

iv) For each λ ∈ I(L ), the subgroup Jλ = {h ∈ J | hλ = λ} is open and compact-
mod-center.

Corollary 5.4 For λ, µ ∈ I(L ), the set {h ∈ J/pZ | hUλ ∩ Uµ 6= ∅} is in fact a
compact open subset of J/pZ.

Proof. Put Cλ,µ = {h ∈ J/pZ | hUλ ∩ Uµ 6= ∅} and consider the closure Cλ,µ in
J/pZ. By Corollary 5.3 iii), it is compact. The group Jλ acts on Cλ,µ and Cλ,µ on
the right. Since Jλ/p

Z is an open subgroup of J/pZ, the quotient Cλ,µ/Jλ is finite.

Therefore Cλ,µ/Jλ is also a finite set. Since Jλ/p
Z is compact open, so is Cλ,µ.

For a finite subset λ = {λ1, . . . , λm} of I(L ), we put Uλ =
⋂m
i=1 Uλi , Uλ =⋂m

i=1 Uλi and Jλ = {h ∈ J | hλ = λ}. Since the group Jλ/
⋂m
i=1 Jλi acts faithfully on

λ, it is a finite group. Thus, Corollary 5.3 iv) tells us that Jλ is an open compact-
mod-center subgroup of J .

For an integer s ≥ 1, let I(L )s be the set of subsets λ ⊂ I(L ) such that #λ = s
and Uλ 6= ∅. The group J (or J/pZ) naturally acts on I(L )s.

Lemma 5.5 For an integer s ≥ 1, the action of J on I(L )s has finite orbits.
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Proof. Let I(L )∼s be the subset of I(L )s consisting of elements (λ1, . . . , λs) such
that λ1, . . . , λs are mutually disjoint and U{λ1,...,λs} 6= ∅. It is stable under the
diagonal action of J on I(L )s, and the natural surjection I(L )∼s −→ I(L )s;
(λ1, . . . , λs) 7−→ {λ1, . . . , λs} is obviously J-equivariant. Therefore it suffices to
see that the action of J on I(L )∼s has finite orbits.

Consider the first projection I(L )∼s −→ I(L ), which is J-equivariant. By
Corollary 5.3 i), each fiber of this map is finite. Thus, Corollary 5.3 ii) tells us the

finiteness of J-orbits in I(L )∼s .

For an integer m ≥ 0 and λ ∈ I(L ), let Uλ,m (resp. Uλ,m) be the inverse image

of Uλ (resp. Uλ) under M̆ [
L ,m/p

Z −→ M̆ [
L /p

Z (resp. ML ,m/p
Z −→ ML /p

Z, where

we put ML ,m = M̆ [,rig
L ,m). These are stable under the natural action of NL × Jλ/pZ

on M̆ [
L ,m/p

Z and ML ,m/p
Z. Similarly we define Uλ,m and Uλ,m.

As M̆ [
L ,m is locally algebraizable (Remark 4.12), [Mie10a, Proposition 4.6] tells

us that the compactly supported cohomology

H i
c(Uλ,m) := H i

c(Uλ,m ⊗Qp∞ Qp∞ ,Q`)⊗Q` Q`

is finite-dimensional. Two groups NL and Jλ/p
Z naturally act on it. The action

of KL ,m ⊂ NL is trivial, and the action of Jλ/p
Z is known to be smooth ([Ber94,

Corollary 7.7], [Far04, Corollaire 4.4.7]). Therefore, for fixed g ∈ NL , the function

ηiλ,gKL ,m
: h 7−→ Tr

(
(g−1, h−1);H i

c(Uλ,m)
)

on Jλ/p
Z only depends on the coset gKL ,m and is locally constant. Extending it by

0, we regard it as a locally constant compactly supported function on J/pZ.
The following construction is very important in this work.

Definition 5.6 For each integer s ≥ 0, take a system of representatives λs,1, . . . , λs,ks
of the quotient J\I(L )s+1. For m ≥ 0 and g ∈ NL , we define a locally constant
compactly supported function ηgKL ,m

on J/pZ as follows:

ηgKL ,m
=
∑
s,t≥0

ks∑
i=1

(−1)s+t

vol(Jλs,i/p
Z)
ηtλs,i,gKL ,m

.

Proposition 5.7 Let m ≥ 0 be an integer such that KL ,m ⊂ K0, and g an element
of NL . For every admissible representation ρ of J/pZ, we have

Tr(ηgKL ,m
; ρ) = Tr(g;HRZ[ρ]KL ,m)

(for a definition of HRZ[ρ], see Definition 3.3 and Definition 3.8). Moreover, the
image of ηgKL ,m

in H(J/pZ) is characterized by this property. In particular, the
image is independent of the choice of λs,1, . . . , λs,ks .
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Proof. By Remark 3.4, Lemma 3.6 and Proposition 4.5, we obtain the equality

Tr(g;HRZ[ρ]KL ,m) =
∑
i,j≥0

(−1)i+j Tr
(
g; Extj

J/pZ(H i
c(ML ,m/p

Z), ρ)
)
.

On the other hand, we have an NL × J/pZ-equivariant Čech spectral sequence

E−s,t1 =
⊕

λ∈I(L )s+1

H t
c(Uλ,m) =⇒ H−s+tc (ML ,m/p

Z).

It is easy to see thatE−s,t1
∼=
⊕ks

i=1 c-IndJJλs,i
H t
c(Uλs,i,m) asNL×J/pZ-representations.

Since c-IndJJλs,i
H t
c(Uλs,i,m) is projective in the category of smooth J/pZ-modules, in

the Grothendieck group of finite-dimensional representations of NL we can compute
as follows: ∑

i,j≥0

(−1)i+j Extj
J/pZ

(
H i
c(ML ,m/p

Z), ρ
)

=
∑
s,t,j≥0

ks∑
i=1

(−1)s+t+j Extj
J/pZ

(
c-IndJJλs,i

H t
c(Uλs,i,m), ρ

)
=
∑
s,t≥0

ks∑
i=1

(−1)s+t HomJλs,i/p
Z
(
H t
c(Uλs,i,m), ρ

)
.

Therefore,

Tr(g;HRZ[ρ]KL ,m) =
∑
s,t≥0

ks∑
i=1

(−1)s+t Tr
(
g; HomJλs,i/p

Z(H t
c(Uλs,i,m), ρ)

)
=
∑
s,t≥0

ks∑
i=1

(−1)s+t

vol(Jλs,i/p
Z)

∫
Jλs,i/p

Z
ηtλs,i,gKL ,m

(h) Tr ρ(h)dh

=

∫
Jλs,i/p

Z
ηgKL ,m

(h) Tr ρ(h)dh

= Tr(ηgKL ,m
; ρ),

as desired.
The uniqueness of an element ofH(J/pZ) with this property follows from [Kaz86,

Theorem 0].

5.2 Action of regular element

Let L and m ≥ 0 be as in the previous section. We fix a regular element γ ∈ J and
consider how γ permutes the open subsets {Uλ}λ∈I(L ).

First recall the following well-known lemma:
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Lemma 5.8 Let H be a connected reductive group over Qp, ZH its center and γ ∈
H(Qp) a regular element. Put H = H(Qp), ZH = ZH(Qp) and Z(γ) = Z(γ)(Qp).
Then the map Z(γ)\H −→ H/ZH ; h 7−→ h−1γh is proper.

Proof. We have only to prove that the inverse image of any compact subset of H/ZH
is compact. It follows from [HC70, Lemma 18].

Proposition 5.9 Let I(L )γ be the subset {λ ∈ I(L ) | γUλ ∩ Uλ 6= ∅} of I(L ).
Then the left action of Z(γ) on I(L ) preserves I(L )γ and Z(γ)\I(L )γ is finite. If
γ is elliptic, I(L )γ is a finite set.

Proof. Take a system of representatives λ1, . . . , λk of J\I(L ). Then, I(L ) can
be identified with

∐k
i=1 J/Jλi . Since Jλi/p

Z is a compact open subgroup of J/pZ

(Corollary 5.3 iv)), to show the finiteness of Z(γ)\I(L )γ, it suffices to show that
the set {h ∈ Z(γ)\J | γUhλi∩Uhλi 6= ∅} is compact. The condition γUhλi∩Uhλi 6= ∅
is equivalent to Uh−1γhλi ∩ Uλi 6= ∅. By Corollary 5.4, the set {h′ ∈ J/pZ | Uh′λi ∩
Uλi 6= ∅} is a compact subset of J/pZ. Therefore, Lemma 5.8 tells us that the set
{h ∈ Z(γ)\J | Uh−1γhλi ∩ Uλi 6= ∅} is compact.

Assume that γ is elliptic, namely, Z(γ)/pZ is compact. Then, for each λ ∈
I(L )γ, the Z(γ)-orbit of λ is finite; indeed, the Z(γ)-orbit can be identified with
(Z(γ)/pZ)/((Z(γ)∩Jλ)/pZ), and (Z(γ)∩Jλ)/pZ is an open subgroup of Z(γ)/pZ. In
other words, each fiber of the natural projection I(L )γ −→ Z(γ)\I(L )γ is a finite

set. Hence I(L )γ is a finite set.

Definition 5.10 Put

Uγ,m =
⋃

λ∈I(L )γ

Uλ,m, Uγ,m =
⋃

λ∈I(L )γ

Uλ,m.

These are stable under the actions of NL and Z(γ).

Corollary 5.11 Let I(L )′γ be the subset of I(L ) consisting of λ such that Uλ,m ∩
Uγ,m 6= ∅. Then the left action of Z(γ) on I(L ) preserves I(L )′γ and Z(γ)\I(L )′γ
is finite. If γ is elliptic, I(L )′γ is a finite set.

Proof. It is an easy consequence of Proposition 5.9 and Corollary 5.3 i). Indeed, for
a system of representatives λ1, . . . , λk for Z(γ)\I(L )γ, Z(γ)\I(L )′γ is contained in

the image of a finite set
⋃k
i=1{λ ∈ I(L ) | Uλ ∩ Uλi 6= ∅}.

Definition 5.12 Put

U ′
γ,m =

⋃
λ∈I(L )′γ

Uλ,m, U ′γ,m =
⋃

λ∈I(L )′γ

Uλ,m.

These are stable under the actions of NL and Z(γ).
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Remark 5.13 The closure Uγ,m of Uγ,m is contained in U ′γ,m. Indeed, let x be a

point in Uγ,m and take λ ∈ I(L ) such that x ∈ Uλ,m. Then Uλ,m should be intersect
Uγ,m and therefore λ lies in I(L )′γ.

If γ is elliptic, then Uγ,m is quasi-compact, and thus the cohomology H i
c(Uγ,m)

is finite-dimensional. For g ∈ NL , the alternating sum of the traces of (g−1, γ−1)
on H i

c(Uγ,m) can be computed by the function ηgKL ,m
introduced in the previous

subsection:

Proposition 5.14 Assume that γ is elliptic. Then, for g ∈ NL we have∑
i

(−1)i Tr
(
(g−1, γ−1);H i

c(Uγ,m)
)

= Oγ(ηgKL ,m
).

For our normalization of the Haar measure, see the last paragraph of Section 3.1.

Proof. For an integer s ≥ 1, put I(L )γ,s = {λ ∈ I(L )s | λ ⊂ I(L )γ}. Then we
have the Čech spectral sequence

E−s,t1 =
⊕

λ∈I(L )γ,s+1

H t
c(Uλ,m) =⇒ H−s+tc (Uγ,m).

Therefore, we can compute∑
i

(−1)i Tr
(
(g−1, γ−1);H i

c(Uγ,m)
)

=
∑
s,t≥0

∑
λ∈I(L )γ,s+1

(−1)s+t Tr
(
(g−1, γ−1);H t

c(Uλ,m)
)

=
∑
s,t≥0

ks∑
i=1

(−1)s+t
∑

h∈J/Jλs,i
hλs,i⊂I(L )γ

Tr
(
(g−1, γ−1);H t

c(Uhλs,i,m)
)

=
∑
s,t≥0

ks∑
i=1

(−1)s+t
∑

h∈J/Jλs,i
hλs,i⊂I(L )γ

ηtλs,i,gKL ,m
(g, h−1γh)

(∗)
=
∑
s,t≥0

ks∑
i=1

(−1)s+t

vol(Jλs,i/p
Z)

∫
J/pZ

ηtλs,i,gKL ,m
(g, h−1γh)dh = Oγ(ηgKL ,m

).

For (∗), note that if hλs,i /⊂ I(L )γ, then γhλs,i 6= hλs,i; indeed, if an element
λ in hλs,i \ I(L )γ satisfies γλ ∈ hλs,i, we have Uhλs,i ⊂ Uλ ∩ Uγλ = ∅, which

contradicts to the fact hλs,i ∈ I(L )s+1. Thus hλs,i /⊂ I(L )γ implies h−1γh /∈ Jλs,i
and ηtλs,i,gKL ,m

(g, h−1γh) = 0.

Next we consider the case where γ is not elliptic. In this case, the centralizer
Z(γ) is a maximal torus which is not anisotropic modulo the center of J. We can
take a discrete torsion-free cocompact subgroup Γ of Z(γ)/pZ.
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Take a system of representatives λ′1, . . . , λ
′
l for Z(γ)\I(L )′γ. For each i with

1 ≤ i ≤ l, let Ci be the subset of J/pZ consisting of h ∈ J/pZ such that there
exist µ1, µ2, µ3 ∈ I(L ) with Uλ′i ∩ Uµ1 6= ∅, Uµ1 ∩ Uµ2 6= ∅, Uµ2 ∩ Uµ3 6= ∅
and Uµ3 ∩ Uhλ′i 6= ∅. By Corollary 5.3 i) and Corollary 5.4, Ci is compact. Put

C =
⋃l
i=1Ci.

Since Γ is discrete, C ∩ Γ is finite. Therefore, by shrinking Γ if necessary, we
may assume that C ∩ Γ = {1}.

Lemma 5.15 The quotient Γ\I(L )′γ is a finite set.

Proof. As in the proof of Proposition 5.9, it follows from compactness of Z(γ)/Γ

and Corollary 5.11.

Lemma 5.16 For λ ∈ I(L )′γ and γ′ ∈ Γ, assume that there exist µ1, µ2, µ3 ∈ I(L )
such that Uλ ∩ Uµ1 6= ∅, Uµ1 ∩ Uµ2 6= ∅, Uµ2 ∩ Uµ3 6= ∅ and Uµ3 ∩ Uγ′λ 6= ∅. Then
γ′ = 1.

In particular, if γ′ 6= 1 then we have Uγ′λ ∩ Uλ = ∅ for every λ ∈ I(L )′γ.

Proof. We may write λ = hλ′i with h ∈ Z(γ) and 1 ≤ i ≤ l. If there exist µ1, µ2, µ3

as above, then Uλ′i ∩ Uh−1µ1
6= ∅, Uh−1µ1

∩ Uh−1µ2
6= ∅, Uh−1µ2

∩ Uh−1µ3
6= ∅ and

Uh−1µ3
∩ Uh−1γ′hλ′i

6= ∅, and thus h−1γ′h ∈ Ci. Since γ′, h ∈ Z(γ) and Z(γ) is

abelian, we have γ′ = h−1γ′h. Therefore γ′ ∈ C ∩ Γ = {1}, as desired.

By the lemma above, we can take quotient of Uγ,m, U ′
γ,m, Uγ,m and U ′γ,m by

Γ. Lemma 5.15 tells us that Γ\Uγ,m is quasi-compact, and thus the cohomol-
ogy H i

c(Γ\Uγ,m) is finite-dimensional. We write pΓ for the natural maps U ′
γ,m −→

Γ\U ′
γ,m and U ′γ,m −→ Γ\U ′γ,m.

Proposition 5.17 i) Let g be an element of NL . Assume that a point x ∈
Γ\Uγ,m is fixed by (g, γ). Then, every point y ∈ Uγ,m satisfying pΓ(y) = x is
fixed by (g, γ).

ii) For λ ∈ I(L )′γ \ I(L )γ, we have pΓ(Uγλ,m) ∩ pΓ(Uλ,m) = ∅.

Proof. i) Take λ ∈ I(L )γ such that y ∈ Uλ,m. As x is fixed by (g, γ), there exists
γ′ ∈ Γ such that (g, γ′γ)y = y. In particular Uγ′γλ,m ∩ Uλ,m 6= ∅. Since λ ∈ I(L )γ,
we have Uγλ,m ∩ Uλ,m 6= ∅, and thus Uγ′γλ,m ∩ Uγ′λ,m 6= ∅. Therefore, by Lemma
5.16, we can conclude that γ′ = 1. Hence y is fixed by (g, γ).

ii) Assume that pΓ(Uγλ,m) ∩ pΓ(Uλ,m) is non-empty. Then there exists γ′ ∈ Γ
such that Uγλ,m ∩ Uγ′λ,m 6= ∅. Since λ ∈ I(L )′γ, we can find µ ∈ I(L )γ such that
Uλ,m∩Uµ,m 6= ∅. By the definition of I(L )γ, we have Uµ,m∩Uγµ,m 6= ∅. Therefore,
all of Uλ,m ∩ Uµ,m, Uµ,m ∩ Uγµ,m, Uγµ,m ∩ Uγλ,m and Uγλ,m ∩ Uγ′λ,m are non-empty.
Lemma 5.16 tells us that γ′ = 1. Hence Uγλ,m ∩ Uλ,m 6= ∅, which contradicts to the

assumption λ /∈ I(L )γ.
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By the same argument as in the proof of Proposition 5.14, we can obtain the
following:

Proposition 5.18 For g ∈ NL , we have∑
i

(−1)i Tr
(
(g−1, γ−1);H i

c(Γ\Uγ,m)
)

= vol
(
Z(γ)/Γ̃

)
Oγ(ηgKL ,m

),

where Γ̃ denotes the inverse image of Γ under J −→ J/pZ.

6 Application of Lefschetz trace formula

From now on, we assume that d = 2. In this section, we will apply the Lefschetz
trace formula to compute the left hand side of the identities in Proposition 5.14
and Proposition 5.18. Let L be one of L0, Lpara or LSiegel in Lemma 4.13, and
m ≥ 1 be an integer. In this case, KL ,m is contained in K0. We put K = KL ,m for
simplicity. The goal of this section is as follows:

Theorem 6.1 For g ∈ NL , assume that gK consists of regular elliptic elements.

i) For every regular elliptic element γ ∈ J , we have

Oγ(ηgK) = # Fix
(
(g, γ);ML ,m/p

Z) =
∑

x∈Fix(γ;Ω)

Ogγ,x

( 1gKpZ

vol(K)

)
,

(The latter equality has been proved in Theorem 3.26 and .)

ii) For every regular non-elliptic element γ ∈ J , we have Oγ(ηgK) = 0.

Before proving the theorem, we record the following corollary, which is an im-
mediate consequence of Theorem 6.1 i) and Corollary 3.27:

Corollary 6.2 Let g be an element of NL such that gK consists of regular elliptic
elements. For γ ∈ Jell, let gγ be an element of G with gγ ↔ γ. Then we have

SOγ(ηgK) = 4SOgγ

( 1gKpZ

vol(K)

)
.

6.1 Complement on [Mie10a]

We would like to apply [Mie10a, Theorem 4.5] to Uγ,m and Γ\Uγ,m, but the rigid
generic fiber of these formal schemes are not partially proper over Qp∞ . Here we
will give a slightly stronger version of [Mie10a, Theorem 4.5] which is applicable to
our cases. All techniques we need are included in [Mie10a, §4].

We use the same notation as in [Mie10a, §4]. Let R be a complete discrete
valuation ring and k an algebraic closure of the fraction field F of R. Put S = Spf R
and S = Spa(k, k+), where k+ is the valuation ring of k. Let X be a quasi-compact
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special formal scheme which is separated over S. Then we can associate X with the
adic spaces X = t(X )a, Xη = t(X )η and Xη = t(X )η. We denote the special fiber
of X (resp. X) by Xs (resp. Xs).

Let X ′ be a quasi-compact special formal scheme separated over S which contains
X as an open formal subscheme. We can define X ′, X ′η, X

′
η, X ′s and X ′s similarly.

Let T be a finite set equipped with a partial order and {Yα}α∈T a family of closed
formal subschemes of Xs indexed by T . We put Yα = t(Yα)a = t(Yα) ×t(X ) X, and
assume the same condition as in [Mie10a, Assumption 4.1];

Assumption 6.3 i) Xs =
⋃
α∈T Yα.

ii) For α ∈ T , put Y(α) = Yα\
⋃
β>α Yβ. Then, for α, β ∈ T with α 6= β, Y(α)∩Y(β) =

∅.

Let f : X ′ −→ X ′ be an isomorphism preserving X . We also denote the induced

isomorphism X ′
∼=−−→ X ′ by the same symbol f . The induced isomorphisms X ′η

∼=−−→

X ′η and X ′η
∼=−−→ X ′η are denoted by fη and fη, respectively. We will make the same

assumption as in [Mie10a, Assumption 4.3];

Assumption 6.4 There exist an order-preserving bijection f : T
∼=−−→ T and a sys-

tem of closed constructible subsets {Yα(n)}n≥1 of X for each α ∈ T satisfying the
following:

i) Yα(n+ 1) ⊂ Yα(n) for every n ≥ 1.

ii)
⋂
n≥1 Yα(n) = Yα.

iii) f(Yα(n)) = Yf(α)(n) for every α ∈ T and n ≥ 1.

iv) f(α) 6= α for every α ∈ T .

Remark 6.5 As proved in [Mie10a, Proposition 4.18], if f induces an isomorphism

of formal schemes Yα
∼=−−→ Yf(α) for each α ∈ T , then we can find a system of closed

constructible subsets {Yα(n)}n≥1 of X satisfying Assumption 6.4 i), ii), iii).

Theorem 6.6 In addition to Assumption 6.3 and Assumption 6.4, assume the fol-
lowing:

(a) X ′ is locally algebraizable ([Mie10b, Definition 3.18]) and Xη is smooth over
Spa(F,R).

(b) The closure Xη of Xη in X ′η is partially proper over Spa(F,R).

(c) For every x ∈ X ′η \Xη, fη(x) 6= x.

Let Λ = Z/`nZ for a prime ` which is invertible in k+ and some integer n ≥ 1.
Then, Fix(fη|Xη) (cf. [Mie10a, Example 2.9]) is proper over S and we have

Tr
(
f ∗η ;RΓc(Xη,Λ)

)
= # Fix(fη|Xη).

For the definition of the right hand side, see [Mie10a, Definition 2.6].
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Proof. First of all, [Mie10a, Proposition 4.6] tells us that RΓc(Xη,Λ) is a perfect
Λ-complex, and therefore we can consider the trace Tr(f ∗η ;RΓc(Xη,Λ)).

Note that the proof of [Mie10a, Lemma 4.8] does not require partially properness
of Xη; thus we can find an integer nα ≥ 1 for each α ∈ T satisfying the following
conditions:

– For every α ∈ T , nα = nf(α).

– For α ∈ T , put Uα = Yα(nα) \
⋃
β>α Yβ(nβ). Then we have Uα ∩ Uβ = ∅ for

every α, β ∈ T with α 6= β.

Put W =
⋃
α∈T Yα(nα) and X0 = X \W . As in the proof of [Mie10a, Lemma 4.12

i)], we can show that X0 is a quasi-compact open adic subspace of Xη. Moreover,
by exactly the same method as in the proof of [Mie10a, Proposition 4.10], we can
obtain the equality Tr(f ∗η ;RΓc(Xη,Λ)) = Tr(f ∗η ;RΓc(X0,η,Λ)).

Consider the closure X0,η of X0,η in X ′η. Since X ′η is taut (cf. [Mie10b, Lemma

4.14]), X0,η is quasi-compact. On the other hand, by the assumption (b), X0,η

is partially proper over S. Thus X0,η is proper over S. Let us observe that for
x ∈ X ′η \ X0,η we have fη(x) 6= x. Indeed, if x /∈ Xη, by the assumption (c) we
have fη(x) 6= x. If x ∈ Xη \X0,η, then x ∈ Wη =

∐
α∈T Uα,η, and thus we can find

α ∈ T such that x ∈ Uα,η. Since Uα,η ∩ f(Uα,η) = Uα,η ∩ Uf(α),η = ∅, x and fη(x)
are distinct. Note that this implies that Fix(fη|X0,η

) = Fix(fη|X0,η
) = Fix(fη|Xη). In

particular Fix(fη|Xη) is proper over S.
Now we can apply the Lefschetz trace formula [Mie10a, Theorem 3.13] toX0,η ↪−→

X0,η, and obtain

Tr
(
f ∗η ;RΓc(Xη,Λ)

)
= Tr

(
f ∗η ;RΓc(X0,η,Λ)

)
= # Fix(fη|X0,η

) = # Fix(fη|Xη).

For the final equality, we use [Mie10a, Proposition 2.10].

Remark 6.7 At least when the characteristic of k is 0, we can deduce from Theorem
6.6 the analogous result for `-adic coefficient simply by taking projective limit (cf.
[Mie10b, proof of Corollary 4.40]).

6.2 Proof of Theorem 6.1

Here we give a proof of Theorem 6.1.

First we consider the case where γ ∈ J is elliptic. We will apply Theorem 6.6
to Uγ,m ⊂ U ′

γ,m and (g, γ) : U ′
γ,m −→ U ′

γ,m. By Remark 4.12, U ′
L ,m is locally

algebraizable (actually it is algebraizable). We know that the generic fiber Uγ,m is
smooth over Qp∞ . Moreover, Remark 5.13 tells us that the closure Uγ,m of Uγ,m
inside ML ,m/p

Z is the same as that inside U ′γ,m. Since ML ,m/p
Z is partially proper

over Qp∞ , so is Uγ,m. Let x ∈ U ′γ,m\Uγ,m. Then we can find λ ∈ I(L )′γ \I(L )γ such
that x ∈ Uλ,m. Since Uλ,m ∩ (g, γ)Uλ,m = Uλ,m ∩ Uγλ,m = ∅, we have x 6= (g, γ)x.
Thus the assumptions (a), (b), (c) in Theorem 6.6 are satisfied.
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Recall that for each α ∈ SL ,m, a closed formal subscheme M̆ [
L ,m,α is attached

(Definition 4.8, Lemma 4.9). We denote by Yα the restriction of M̆ [
L ,m,α/p

Z to Uγ,m.
In Proposition 4.11, we have checked that {Yα}α∈SL ,m

satisfies Assumption 6.3.
By Lemma 4.10, the isomorphism (g, γ) : Uγ,m −→ Uγ,m induces an isomorphism
Yα −→ Ygα. Therefore, Assumption 6.4 is also satisfied; note that Assumption 6.4
iv) is nothing but Corollary 4.16.

Therefore all the conditions of Theorem 6.6 are verified, and we have∑
i

(−1)i Tr
(
(g−1, h−1);H i

c(Uγ,m)
)

= # Fix
(
(g, γ);Uγ,m

)
.

By Proposition 5.14, the left hand side is equal to Oγ(ηgK). As there is no fixed point
under (g, γ) in (ML ,m/p

Z)\Uγ,m, the right hand side is equal to # Fix((g, γ);ML ,m/p
Z)

(cf. [Mie10a, Proposition 2.10]). This completes the proof of Theorem 6.1 i).

The case where γ is non-elliptic is similar. Let Γ ⊂ Z(γ)/pZ be as in Section
5.2, and apply Theorem 6.6 to Γ\Uγ,m ⊂ Γ\U ′

γ,m and (g, γ) : Γ\U ′
γ,m −→ Γ\U ′

γ,m.
The conditions (a), (b), (c) in Theorem 6.6 can be proved in the same manner. (a)
is clear. For (b), note that Γ\Uγ,m is a closed subset of Γ\U ′γ,m which is partially
proper over Qp∞ . Thus the closure of Γ\Uγ,m in Γ\U ′γ,m, being a closed subset of

Γ\Uγ,m, is also partially proper over Qp∞ . (c) can be proved in the same way as
above by using Proposition 5.17 ii).

It is easy to show that Yα for α ∈ SL ,m induces a closed formal subscheme Γ\Yα
of Γ\Uγ,m, and a family {Γ\Yα}α∈SL ,m

satisfies Assumption 6.3 and Assumption
6.4.

Therefore we can apply Theorem 6.6, and we have∑
i

(−1)i Tr
(
(g−1, h−1);H i

c(Γ\Uγ,m)
)

= # Fix
(
(g, γ); Γ\Uγ,m

)
.

By Proposition 5.18, the left hand side is equal to vol(Z(γ)/Γ̃)Oγ(ηgK). By Propo-
sition 5.17 i), the right hand side is equal to # Fix((g, γ);Uγ,m), which is zero by
Theorem 3.26 ii). This completes the proof of Theorem 6.1 ii).

7 Computation of the character

7.1 Local Langlands correspondence for G and J

A candidate of the local Langlands correspondence for G and J has been constructed
by Gan-Takeda [GT11a] and Gan-Tantono [GT]. Here we review their results briefly.
In this subsection, let F be a p-adic field and put G = GSp4(F ), J = GU(2, D) where
D is a quaternion division algebra over F .

First we recall basic definitions on L-parameters.

51



Yoichi Mieda

Definition 7.1 i) An L-parameter forG is a homomorphism φ : WF×SL2(C) −→
GSp4(C) satisfying the following conditions:

– The restriction to the first factor φ|WF
: WF −→ GSp4(C) is continuous,

where GSp4(C) is endowed with the discrete topology. The restriction to the
second factor φ|SL2(C) : SL2(C) −→ GSp4(C) comes from a homomorphism
of algebraic groups.

– For w ∈ WF , φ(w, 1) ∈ GSp4(C) is semisimple.

We denote by Φ(G) the set of GSp4(C)-conjugacy classes of L-parameters for
G.

ii) An L-parameter φ : WF × SL2(C) −→ GSp4(C) is said to be discrete if Imφ is
not contained in any proper parabolic subgroup of GSp4(C).

iii) Let P be a proper parabolic subgroup of J , which is unique up to conjugacy.

It determines a conjugacy class P̂ of parabolic subgroups of GSp4(C) = ĜSp4

(in fact, it is the conjugacy class containing the Siegel parabolic subgroup). A

proper parabolic subgroup of GSp4(C) belonging to P̂ is said to be relevant for
J . An L-parameter φ : WF × SL2(C) −→ GSp4(C) is said to be relevant for J
if Imφ is not contained in any proper parabolic subgroup of GSp4(C) which is
not relevant for J . We denote by Φ(J) the set of GSp4(C)-conjugacy classes of
L-parameters for G which are relevant for J .

The main theorem of [GT11a] can be summarized as follows:

Theorem 7.2 (Gan-Takeda [GT11a]) Let Irr(G) denote the set of isomorphic
classes of irreducible admissible representations of G.

i) There exists a natural surjection Irr(G) −→ Φ(G) with finite fibers. For φ ∈
Φ(G), we denote the fiber at φ by ΠG

φ and call it the L-packet corresponding
to φ.

ii) An irreducible representation π ∈ Irr(G) is a (essentially) discrete series if and
only if π ∈ ΠG

φ for a discrete L-parameter φ ∈ Φ(G).

iii) For φ ∈ Φ(G), we put Aφ = π0(ZGSp4
(Imφ)) and write Âφ the set of irreducible

characters of Aφ. Then, there exists a natural bijection between ΠG
φ and Âφ.

iv) For φ ∈ Φ(G) and π ∈ ΠG
φ , the central character of π is equal to (sim ◦φ) ◦Art,

where sim: GSp4(C) −→ C× denotes the similitude character and Art: F× −→
W ab
F denotes the isomorphism of local class field theory (normalized so that a

uniformizer is mapped to a lift of the geometric Frobenius element).

v) For φ ∈ Φ(G) and a smooth character χ of F×, let φ ⊗ χ be the L-parameter
given by (φ⊗χ)(w, v) 7−→ χ(Art−1(w))φ(w, v) for (w, v) ∈ WF ×SL2(C). Then
we have ΠG

φ⊗χ = {π ⊗ χG | π ∈ ΠG
φ }, where χG = χ ◦ sim as in Lemma 3.5.

vi) There is a way to characterize the map Irr(G) −→ Φ(G) by means of local
factors and Plancherel measures.

Moreover, from the construction in [GT11a], we have the following:
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Theorem 7.3 If φ ∈ Φ(G) is discrete and trivial on SL2(C), then ΠG
φ consists of

supercuspidal representations.

Proof. We freely use the notation in [GT11a] and [GT11b]. First assume that φ is
not irreducible as a 4-dimensional representation of WF . Then φ = φ1⊕φ2 where φ1

and φ2 are two-dimensional irreducible representations of WF with detφ1 = detφ2

and φ1 � φ2 (cf. [GT11a, Lemma 6.2 (ii)]). Let τi be the irreducible representation
of GL2(F ) corresponding to φi by the local Langlands correspondence. By the
assumption, τ1 and τ2 are supercuspidal and τ1 � τ2. By the construction of L-
packets (cf. [GT11a, §7]), we have ΠG

φ = {θ(2,2)(τ1 � τ2), θ(4,0)(τ
D
1 � τD2 )}, where θ(2,2)

(resp. θ(4,0)) denotes the theta correspondence between GSp4 and GSO2,2 (resp.
GSO4,0) and τDi denotes the representation of D× corresponding to τi by the local
Jacquet-Langlands correspondence. [GT11b, Theorem 8.2 (ii)] tells us that θ(2,2)(τ1�
τ2) is supercuspidal. [GT11b, Theorem 8.1 (iii)] tells us that θ(4,0)(τ

D
1 � τD2 ) is

supercuspidal. Therefore ΠG
φ consists of two supercuspidal representations.

Next assume that φ is irreducible as a 4-dimensional representation. Then, ΠG
φ

consists of a single representation π ∈ Irr(G) such that θ(3,3)(π) = Π�µ, where θ(3,3)

denotes the theta correspondence between GSp4 and GSO3,3, Π is the irreducible
representation of GL4(F ) corresponding to the 4-dimensional representation φ, and
µ = (sim ◦φ)◦Art is the character of F× corresponding to sim ◦φ. By the assumption
on φ, Π is supercuspidal, and thus θ(3,3)(π) is supercuspidal. Therefore, [GT11b,

Section 14, Table 1] tells us that π is supercuspidal, as desired.

The main theorem of [GT] is as follows:

Theorem 7.4 (Gan-Tantono [GT]) Let Irr(J) denote the set of isomorphic classes
of irreducible admissible representations of J .

i) There exists a natural surjection Irr(J) −→ Φ(J) with finite fibers. For φ ∈
Φ(J), we denote the fiber at φ by ΠJ

φ and call it the L-packet corresponding to
φ.

ii) An irreducible representation ρ ∈ Irr(G) is a (essentially) discrete series if and
only if ρ ∈ ΠJ

φ for a discrete L-parameter φ ∈ Φ(J).

iii) For φ ∈ Φ(J), we put Bφ = π0(ZSp4
(Imφ)) and write B̂φ the set of irreducible

characters of Bφ. The natural map Bφ −→ Aφ is surjective, and thus Âφ can

be regarded as a subgroup of B̂φ. There exists a natural bijection between ΠJ
φ

and B̂φ \ Âφ.

iv) For φ ∈ Φ(J) and ρ ∈ ΠJ
φ, the central character of ρ is equal to (sim ◦φ) ◦ Art.

v) For φ ∈ Φ(J), we have ΠJ
φ⊗χ = {ρ ⊗ χJ | ρ ∈ ΠJ

φ}, where χJ = χ ◦ sim as in
Lemma 3.5.

vi) There is a way to characterize the map Irr(J) −→ Φ(J) by means of local
factors and Plancherel measures.

We also have an analogous result as Theorem 7.3:
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Theorem 7.5 If φ ∈ Φ(J) is discrete and trivial on SL2(C), then ΠJ
φ consists of

supercuspidal representations.

Proof. We freely use the notation in [GT]. First assume that φ is not irreducible
as a 4-dimensional representation of WF . Then φ = φ1 ⊕ φ2 as in the proof of
Theorem 7.3. Define τ1 and τ2 similarly. They are supercuspidal and not isomorphic
to each other. By the construction of L-packets (cf. [GT, §7]), we have ΠJ

φ =
{θ(1,1)(τ

D
1 �τ2), θ(1,1)(τ

D
2 �τ1)}, where θ(1,1) denotes the theta correspondence between

J = GSp(1, 1) and GO∗(1, 1). Therefore, [GT, Proposition 5.4 (iv)] tells us that ΠJ
φ

consists of two supercuspidal representations.
Next assume that φ is irreducible as a 4-dimensional representation. Then, ΠJ

φ

consists of a single representation ρ ∈ Irr(J) such that θ(3,0)(ρ) = Π �µ, where θ(3,0)

denotes the theta correspondence between J = GSp(1, 1) and GO∗(3, 0), Π is the
irreducible representation of D×4 corresponding to the 4-dimensional representation
φ (here D4 is the central division algebra over Qp with invariant 1/4), and µ =
(sim ◦φ) ◦ Art is the character of F× corresponding to sim ◦φ. By the assumption
on φ, Π is not a character. Therefore, [GT, Proposition 5.7] tells us that ρ is
supercuspidal; indeed, if ρ is neither supercuspidal nor a twist of the Steinberg
representation, then θ(3,0)(ρ) = 0, and if ρ is a twist of the Steinberg representation,

then θ(3,0)(ρ) is a character.

For an irreducible admissible representation π of G, we denote the character of π
by θπ. It is locally constant on Greg; namely, θπ is a unique locally constant function
on Greg such that Tr(f ; π) =

∫
G
f(g)θπ(g)dg for every f ∈ H(G) with supp f ⊂ Greg.

For φ ∈ Φ(G), put θΠGφ
=
∑

π∈ΠGφ
θπ.

Similarly, we define θρ and θΠJφ
for ρ ∈ Irr(J) and φ ∈ Φ(J).

Definition 7.6 i) For φ ∈ Φ(G), the corresponding L-packet ΠG
φ is said to be

stable if θΠGφ
is a stable function on Greg, that is, θΠGφ

(g) = θΠGφ
(g′) for every

g, g′ ∈ Greg which are stably conjugate. Similarly we can define the stability of
the L-packet ΠJ

φ for φ ∈ Φ(J).

ii) For φ ∈ Φ(J), we say that ΠG
φ and ΠJ

φ satisfy the character relation if θΠGφ
(g) =

−θΠJφ
(h) for every g ∈ Gell, h ∈ Jell with g ↔ h (cf. Section 2).

Remark 7.7 For every discrete (or more generally, tempered) L-parameter φ, it is
expected that ΠG

φ and ΠJ
φ are stable and satisfy the character relation. It is plausible

that one can deduce these properties from the stable trace formula.
If φ is a TRSELP in the sense of [DR09], then the stability and the character

relation for ΠG
φ and ΠJ

φ are already known due to [DR09], [Kal10] and [Lus11].

7.2 Computation of the character

Theorem 7.8 Let φ ∈ Φ(J) be an L-parameter such that ΠG
φ , ΠJ

φ are stable and

satisfy the character relation. Then, for every f ∈ H(G) with supp f ⊂ Gell, we
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have ∑
ρ∈ΠJφ

Tr(f ;HRZ[ρ]) = −4
∑
π∈ΠGφ

Tr(f ; π).

Proof. By Theorem 7.2 iv) and Theorem 7.4 iv), all representations in ΠG
φ and ΠJ

φ

share the same central character ω = (sim ◦φ) ◦ Art: Q×p −→ Q×` . First we will
reduce the theorem to the case where ω|pZ is trivial. The method is similar to the

proof of Corollary 3.7. Take c ∈ Q×` such that c2 = ω(p), and χ : Q×p −→ Q×` the

character given by χ(a) = c−vp(a). Consider the L-packets

ΠG
φ⊗χ = {π ⊗ χG | π ∈ ΠG

φ }, ΠJ
φ⊗χ = {ρ⊗ χJ | ρ ∈ ΠJ

φ}

corresponding to φ⊗χ (cf. Theorem 7.2 v), Theorem 7.4 v)). It is clear that these L-
packets are stable and satisfy the character relation. Moreover, every representation
belonging to these L-packets has the central character trivial on pZ.

We have HRZ[ρ ⊗ χJ ] = HRZ[ρ] ⊗ χG by Lemma 3.5. Therefore, if we have the
theorem for the L-parameter φ⊗ χ ∈ Φ(J), then

∑
ρ∈ΠJφ

Tr(f ;HRZ[ρ]) =
∑

ρ⊗χJ∈ΠJφ⊗χ

Tr(f ;HRZ[ρ⊗ χJ ]⊗ χ−1
G )

=
∑

ρ⊗χJ∈ΠJφ⊗χ

Tr(f · χ−1
G ;HRZ[ρ⊗ χJ ])

= −4
∑

π⊗χG∈ΠGφ⊗χ

Tr(f · χ−1
G ; π ⊗ χG) = −4

∑
π∈ΠGφ

Tr(f ; π),

and thus the theorem also holds for φ.

In the following, we assume that the central character ω is trivial on pZ.

By the similar way as in [Mie12, Lemma 3.5], we can prove that Gell is contained
in the union of all open compact-mod-center subgroups of G. Therefore, we may
assume that supp f is contained in an open compact-mod-center subgroup of G.
Recall that a maximal open compact-mod-center subgroup is conjugate to NL where
L is one of L0, Lpara or LSiegel (Lemma 4.14). Note that both sides of the identity
in the theorem do not change if we replace f by its conjugate. Therefore, we may
assume that supp f is contained in NL where L is one of L0, Lpara or LSiegel. Since
{KL ,m}m≥1 form a fundamental system of neighborhoods of 1 ∈ NL consisting of
normal subgroups of NL , f can be written as a linear combination of 1gKL ,m

with
g ∈ NL . Hence we are reduced to the case where f = vol(KL ,m)−11gKL ,m

. For
simplicity, put K = KL ,m. Note that gK = supp f ⊂ Gell.

By Proposition 5.7, Theorem 6.1, Corollary 6.2 and the stable version of Weyl’s
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integration formula, we can compute as follows:∑
ρ∈ΠJφ

Tr
( 1gK

vol(K)
;HRZ[ρ]

)
=
∑
ρ∈ΠJφ

Tr(g;HRZ[ρ]K)
(1)
=
∑
ρ∈ΠJφ

Tr(ηgK ; ρ)

=
∑
ρ∈ΠJφ

∫
J/pZ

ηgK(h)θρ(h)dh =

∫
J/pZ

ηgK(h)θΠJφ
(h)dh

(2)
=

∑
{T′}st∈T ell

J,st

1

#WT′(Qp)

∫
T ′reg/pZ

DJ(t′)θΠJφ
(t′)SO t′(ηgK)dt′

(3)
= 4

∑
{T′}st∈T ell

J,st

1

#WT′(Qp)

∫
T ′reg/pZ

DJ(t′)θΠJφ
(t′)SOgt′

( 1gKpZ

vol(K)

)
dt′,

where gt′ ∈ Gell is an arbitrary element with gt′ ↔ t′, and DJ(t′) is the Weyl
denominator (cf. [Rog83, p. 185]). Here (1) follows from Proposition 5.7 and (3)
from Corollary 6.2. (2) is a consequence of Theorem 6.1 ii), stability of θΠJφ

and the

stable version of Weyl’s integration formula for J . Other equalities are obvious.

Recall that we have a natural bijection T ell
J,st

∼=−−→ T ell
G,st. For an elliptic maximal

torus T′ of J and an elliptic maximal torus T of G corresponding to T, choose

t′0 ∈ T ′reg, t0 ∈ T reg with t0 ↔ t′0 and consider the isomorphism ι = ιt′0,t0 : T′
∼=−−→ T

(cf. Section 2). Then we can take gt′ as t = ι(t′). Obviously we have DJ(t′) =
DG(t). Since ΠG

φ and ΠJ
φ satisfy the character relation, we have θΠJφ

(t′) = −θΠGφ
(t).

Moreover, ι : T ′/pZ
∼=−−→ T/pZ is compatible with the fixed measures (cf. the last

paragraph of Section 3.1). Together with Lemma 2.1, we can convert the sum with
respect to T ell

J,st to that with respect to T ell
G,st, and obtain∑

ρ∈ΠJφ

Tr
( 1gK

vol(K)
;HRZ[ρ]

)
= −4

∑
{T}st∈T ell

G,st

1

#WT(Qp)

∫
T reg/pZ

DG(t)θΠGφ
(t)SO t

( 1gKpZ

vol(K)

)
dt

=
−4

vol(K)

∫
G/pZ

1gKpZ(x)θΠGφ
(x)dx =

−4

vol(K)

∫
G

1gK(x)θΠGφ
(x)dx

= −4
∑
π∈ΠGφ

Tr
( 1gK

vol(K)
; π
)

(in the second equality, we use the stable version of Weyl’s integration formula for

G; again we use the fact that 1gKpZ is supported on Gell). This completes the proof.

Corollary 7.9 Let φ be an L-parameter as in Theorem 7.8. Assume that for every
ρ ∈ ΠJ

φ and integers i, j ≥ 0, H i,j
RZ[ρ] is a G-module of finite length. Then, for each
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ρ ∈ ΠJ
φ, we can consider the character θHRZ[ρ] of the virtual representation HRZ[ρ].

This character satisfies the following for every g ∈ Gell:∑
ρ∈ΠJφ

θHRZ[ρ](g) = −4
∑
π∈ΠGφ

θπ(g).

Proof. This is an immediate consequence of Theorem 7.8.

Remark 7.10 i) Since the G-representation H i,j
RZ[ρ] is admissible, it has finite

length if and only if it is finitely generated as a G-module.

ii) At least if ρ ∈ ΠJ
φ is supercuspidal, the assumption in Corollary 7.9 will be

proved once we establish an analogue of Faltings’ isomorphism for the Rapoport-
Zink tower {MK}K (cf. [Mie12, Lemma 5.2]). In a recent preprint of Scholze
and Weinstein [SW12], Faltings’ isomorphism for a Rapoport-Zink tower of EL
type is obtained. It is plausible that a similar method is applicable to our case.

Corollary 7.11 Under the setting in Corollary 7.9, assume moreover that φ is
discrete and trivial on SL2(C). Then, for each π ∈ ΠG

φ , the representation π∨ of G
appears in H3

RZ.

Proof. By the similar method as in the proof of Theorem 7.8, we may reduce to the
case where π is trivial on pZ. By Theorem 7.3 and Theorem 7.5, ΠG

φ and ΠJ
φ consist

of supercuspidal representations. Therefore ExtjJ(H i
RZ, ρ) = 0 if j ≥ 1, and thus

HRZ[ρ] =
∑

i(−1)i HomJ(H i
RZ, ρ)sm. We denote the supercuspidal part of HRZ[ρ] by

HRZ[ρ]cusp. Write
∑

ρ∈ΠJφ
HRZ[ρ]cusp =

∑
π′ aπ′π

′, where π′ runs through irreducible

supercuspidal representations of G. Assume that π∨ does not appear in H3
RZ. Then,

by [IM10, Theorem 1.1], π∨ can appear only in H2
RZ and H4

RZ. Hence π can appear in
HomJ(H i

RZ, ρ)sm only if i = 2, 4, and thus aπ ≥ 0. On the other hand, by Corollary
7.9 and the orthogonality relation of characters, we have

aπ =
〈
θπ,
∑
ρ∈ΠJφ

θHRZ[ρ]

〉
ell

= −4
〈
θπ,

∑
π′∈ΠGφ

θπ′
〉
ell

= −4

(for the definition of 〈 , 〉ell, see [Mie11, §5]). This is a contradiction.

Remark 7.12 In a forthcoming paper with Tetsushi Ito, the author will give more
precise description of the cuspidal part H i

RZ[ρ]cusp of the individual cohomology
H i

RZ[ρ] via global method. We can also obtain information on the action of Weil
group on H i

RZ[ρ]cusp; we find the local Langlands correspondence for G and J in
H3

RZ[ρ]cusp, as expected.

Remark 7.13 In the end of this paper, we will give a remark on a related work
of Xu Shen [She12a]. He applied the author’s Lefschetz trace formula [Mie10a,
Theorem 3.13] to a large quasi-compact open subset of the Rapoport-Zink space
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MK for GU(1, n − 1) with an arbitrary level K. However, the author does not
know how to deduce a result on the character of HRZ from his computation [She12a,
Theorem 11.3, Corollary 11.5]. He stated such a result [She12a, Corollary 11.6]
and sketched a proof, but the first equality “trH(π)(g) = · · · ” in his proof is far
from trivial, since the left hand side is the value of the distribution character of an
infinite-dimensional representation of a p-adic reductive group, while the right hand
side is the usual trace of an endomorphism on a finite-dimensional vector space. By
a trivial reason, the trace on the cohomology of a large open subset of MK is not
necessarily equal to the character of the cohomology of the whole space. Therefore,
to justify his argument, one at least should prove some geometric property of the
quasi-compact open subset he chose; even in the Lubin-Tate case, one needed such
a result [She12b, Proposition 3.5].
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