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ABSTRACT. In this paper, we study the ¢-adic cohomology of
the Rapoport-Zink tower for GSp(4). We prove that the smooth
representation of GSp,(Q,) obtained as the ith compactly sup-
ported ¢-adic cohomology of the Rapoport-Zink tower has no
quasi-cuspidal subquotient unless ¢ = 2,3,4. Our proof is
purely local and does not require global automorphic methods.

1 Introduction

In [RZ96], M. Rapoport and Th. Zink introduced certain moduli spaces of quasi-
isogenies of p-divisible groups with additional structures called the Rapoport-Zink
spaces. They constructed systems of rigid analytic coverings of them which we
call the Rapoport-Zink towers, and established the p-adic uniformization theory of
Shimura varieties generalizing classical Cerednik-Drinfeld uniformization. These
spaces uniformize the rigid spaces associated with the formal completion of certain
Shimura varieties along Newton strata.

Using the /¢-adic cohomology of the Rapoport-Zink tower, we can construct a
representation of the product G(Q,) x J(Q,) x W(Q,/Q,), where G is the reductive
group over Q, corresponding to the Shimura datum, J is an inner form of it, and
W(@p /Q,) is the Weil group of the p-adic field Q,. It is widely believed that this
realizes the local Langlands and Jacquet-Langlands correspondences (c¢f. [Rap95]).
Classical examples of the Rapoport-Zink spaces are the Lubin-Tate space and the
Drinfeld upper half space; these spaces were extensively studied by many people
and many important results were obtained (cf. [Dri76], [Car90], [Har97], [HTO01],
[Dat07], [Boy09] and references therein). However, very little was known about the
(-adic cohomology of other Rapoport-Zink spaces.

The aim of this paper is to study cuspidal representations in the /-adic cohomol-
ogy of the Rapoport-Zink tower for GSp,(Q,). Let us denote the Rapoport-Zink
space for GSp,(Q,) by .#. It is a special formal scheme over Zy~ = W (F,) in the
sense of Berkovich [Ber96]. Let .#™® be the Raynaud generic fiber of .#, that is,
the generic fiber of the adic space t(///u ) associated with M. Using level structures
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at p, we can construct the Rapoport-Zink tower

o M M s M s A — A,
where J/jﬁg — _/#"¢ is an étale Galois covering of rigid spaces with Galois group
GSp4(Z/p™Z). We take the compactly supported ¢-adic cohomology (in the sense
of [Hub98]) and take the inductive limit of them. Then, on

HEZ = hi)nHz(%v;;g ®ono @poov Qf)

m

(here Qpec = FracZ,~), we have an action of a product

GSp,(Qp) x J(Qp) X W(@p/(@p>7

where J is an inner form of GSp,.
The main theorem of this paper is as follows:

Theorem 1.1 (Theorem 3.2) The GSp,(Q,)-representation Hy, ®o, Q, has no
quasi-cuspidal subquotient unless i = 2,3, 4.

For the definition of quasi-cuspidal representations, see [Ber84, 1.20]. Note that
since ,///urfjg is 3-dimensional for every m > 0, Hf;{z =0 unless 0 <7 < 6.

Our proof of this theorem is purely local. We do not use global automorphic
methods. The main strategy of the proof is similar to that of [MielOal, in which
the analogous result for the Lubin-Tate tower is given; we construct the formal
model .#,, of ///:flig by using Drinfeld level structures and consider the geometry
of its special fiber. However, our situation is much more difficult than the case of
the Lubin-Tate tower. In the Lubin-Tate case, the tower consists of affine formal
schemes {Spf A,,}m>0, and we can associate it with the tower of affine schemes
{Spec A, }m>o0. In [MielOal], the second author defined the stratification on the
special fiber of Spec A,, by using the kernel of the universal Drinfeld level structure,
and considered the local cohomology of the nearby cycle complex RiA along the
strata. On the other hand, our tower {///um}mzo does not consist of affine formal
schemes and there is no canonical way to associate it with a tower of schemes. To
overcome this problem, we take a sheaf-theoretic approach. For each direct summand
I of (Z/p™Z)*, we will define the complex of sheaves Fp, ; on (A )req 50 that the
cohomology H i((«%vm)redvfm,[) substitutes for the local cohomology of RyA along
the strata defined by I in the Lubin-Tate case. For the definition of F,, ;, we use
the p-adic uniformization theorem by Rapoport and Zink.

There is another difficulty; since a connected component of M is not quasi-
compact, the representation Hj, of GSp,(Q,) is far from admissible. Therefore it
is important to consider the action of J(Q,) on H,, though it does not appear in
our main theorem. However, the cohomology H i((//zm)red’}_m’[) has no apparent
action of J(Q,), since J(Q,) does not act on the Shimura variety uniformized by
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M. We use the variants of formal nearby cycle introduced by the second author in
[MielOb] to endow it with an action of J(Q,). Furthermore, to ensure the smooth-
ness of this action, we use a property of finitely generated pro-p groups (Section
2). In fact, extensive use of the formalism developed in [MielOb] make us possible
to work mainly on the Rapoport-Zink tower itself and avoid the theory of p-adic
uniformization except for proving that My, is locally algebraizable. However, for
the reader’s convenience, the authors decided to make this article as independent of
[MielOb] as possible.

The authors expect that the converse of Theorem 1.1 also holds. Namely, we
expect that Hp, ®q, Q, has a quasi-cuspidal subquotient if i = 2,3,4. We hope to
investigate it in a future work.

The outline of this paper is as follows. In Section 2, we prepare a criterion for the
smoothness of representations over QQ;. It is elementary but very powerful for our
purpose. In Section 3, we give some basic definitions concerning with the Rapoport-
Zink space for GSp(4) and state the main theorem. Section 4 is devoted to introduce
certain Shimura varieties related to our Rapoport-Zink tower and recall the theory
of p-adic uniformization. The proof of the main theorem is accomplished in Section
5. The final Section 6 is an appendix on cohomological correspondences. The results
in the section are used to define actions of GSp,(Q,) on various cohomology groups.

Acknowledgment The second author would like to thank Noriyuki Abe and
Naoki Imai for the stimulating discussions.

Notation Let p be a prime number and take another prime ¢ with ¢ # p. We
denote the completion of the maximal unramified extension of Z, by Z,~ and its
fraction field by Qp~. Let Nilp = Nilproo be the category of Z,~-schemes on
which p is locally nilpotent. For an object S of Nilp, we put S =S Q2,00 F,.

In this paper, we use the theory of adic spaces ([Hub94], [Hub96]) as a framework
of rigid geometry. A rigid space over Qp~ is understood as an adic space locally of
finite type over Spa(Qpee, Zys ).

Every sheaf and cohomology are considered in the étale topology. Every smooth
representation is considered over Q; or Q,. For a Q-vector space V, we put Vo, =

Vv ®@z @Z'

2 Preliminaries: smoothness of representations of
profinite groups

Let G be a linear algebraic group over a p-adic field F'. In this section, we give
a convenient criterion for the smoothness of a G(F')-representation over Q,. The
following theorem is essential:

Theorem 2.1 Let K be a closed subgroup of GL,,(Z,,) and (w, V') a finite-dimensional
representation over (Q, of K as an abstract group. Assume that there exists a K-
stable Z-lattice A of V. Then this representation is automatically smooth.
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In order to prove this theorem, we require several facts on pro-p groups. Put
Ky = KN (1+pM,(Z,)), which is a pro-p open subgroup of K.

Lemma 2.2 The pro-p group K is (topologically) finitely generated.

Proof. By [DASMS99, §5.1], the profinite group GL,(Z,) has finite rank. In partic-
ular, K4, a closed subgroup of GL,,(Z,), has finite topological generators. |

Lemma 2.3 Every subgroup of finite index of K is open.

Proof. In fact, this is true for every finitely generated pro-p group; this is due to
Serre [Ser94, 4.2, Exercices 6)]. See also [DASMS99, Theorem 1.17], which gives a

complete proof.

Remark 2.4 More generally, every subgroup of finite index of a finitely generated
profinite group is open ([NS03], [NS07al, [NSO7b]). It is a very deep theorem.

Lemma 2.5 Let G be a pro-{ group. Then every homomorphism f: Ky — G is
trivial.

Proof. Let H be an open normal subgroup of G and denote the composite K; N

G — G/H by fg. By Lemma 2.3, Ker fy is an open normal subgroup of K;. Thus
K,/ Ker fy is a finite p-group. On the other hand, G/H is a finite ¢-group. Since we
have an injection K;/Ker fy — G/H, we have K/ Ker fy = 1, in other words,

fu = 1. Therefore the composite K Toa= h&lH G/H is trivial. Hence we have

f =1, as desired. |

Proof of Theorem 2.1. Since K is an open subgroup of K, we may replace K by K.
Take a Kj-stable Z,-lattice A of V. Then, A/¢A is a finite abelian group. Therefore,
by Lemma 2.3, there exists an open subgroup U of Kj which acts trivially on A/¢A.
In other words, the homomorphism 7: K; — GL(A) € GL(V) maps U into the
subgroup 1+¢End(A). Since U is a closed subgroup of 1+pM,,(Z,) and 14+¢ End(A)
is a pro-¢ group, by Lemma 2.5, the homomorphism 7|y: U — 1+ ¢End(A) is
trivial. Namely, 7|y is a trivial representation.

Lemma 2.6 Let I’ be a p-adic field and G a linear algebraic group over F'. Then
every compact subgroup K of G(F') can be realized as a closed subgroup of GL,,(Z,)
for some n.

Proof. Take an embedding G —— GL,, defined over F. Since G(F) is a closed
subgroup of GL,,(F), K is also a closed subgroup of GL,,(F'). Therefore we have
a faithful continuous action of K on F™. By taking a Q,-basis of F, we have
a faithful continuous action of K on Q) for some n. Since K is compact, it is
well-known that there is a K-stable Z,-lattice in QZ. Hence we have a continuous
injection K —— GL,,(Z,). Since K is compact, it is isomorphic to a closed subgroup

of GL,(Z,). i
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Corollary 2.7 Let I' and G be as in the previous proposition. Let I be a filtered
ordered set and {K;};c; be a system of compact open subgroups of G(F') indexed
by I.

Let (m, V') be a (not necessarily finite-dimensional) Q,-representation of G(F') as
an abstract group. Assume that there exists an inductive system {V;};c; of finite-
dimensional Qy-vector spaces satisfying the following:

— For every 1 € I, V; is endowed with an action of K; as an abstract group.

— For every i € I, V; has a K;-stable Z,-lattice.

— There exists an isomorphism li_r)niel \% =5V as Qy-vector spaces such that the
composite V; — li_rr>1i€[ Vi Vs K;-equivariant for every i € I.

Then (m, V') is a smooth representation of G(F).

Proof. Let us take x € V' and show that Stabg(r)(x), the stabilizer of x in G(F),
is open. There exists an element ¢ € [ such that x lies in the image of V; — V.
Take y € V; which is mapped to z. By Theorem 2.1 and Lemma 2.6, V; is a smooth
representation of K;. Therefore Stabg,(y) is open in K;, hence is open in G(F).
Since V; — V is Kj-equivariant, we have Stabg,(y) C Stabg,(z) C Stabgr ().
Thus Stabgr)(z) is open in G(F'), as desired.

Remark 2.8 Although we need the corollary above only for the case ' = Q,, we
proved it for a general p-adic field F' for the completeness.

3 Rapoport-Zink space for GSp(4)

3.1 The Rapoport-Zink space for GSp(4) and its rigid ana-
lytic coverings

In this subsection, we recall basic definitions concerning with Rapoport-Zink spaces.
General definitions are given in [RZ96], but here we restrict them to our special case.

Let X be a 2-dimensional isoclinic p-divisible group over Fp with slope 1/2, and

Ao X =XV a (principal) polarization of X, namely, an isomorphism satisfying

AY = —Xo. Consider the contravariant functor .# : Nilp — Set that associates S
with the set of isomorphism classes of pairs (X, p) consisting of

— a 2-dimensional p-divisible group X over .S,
— and a quasi-isogeny (cf. [RZ96, Definition 2.8]) p: X @, S — X ®s 9,

such that there exists an isomorphism A: X — XV which makes the following
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diagram commutative up to multiplication by Q,:

X®ﬁp§L>X®S§

J)\O ®id Jz\@id

Note that such A is uniquely determined by (X, p) up to multiplication by Z) and

gives a polarization of X. It is proved by Rapoport-Zink that M s represented by
a special formal scheme (cf. [Ber96]) over Spf Zye. Moreover, .4 is separated over
Spf Ze- [Far04, Lemme 2.3.23]. However, M is neither quasi-compact nor p-adic.
We put A = //Zred, which is a scheme locally of finite type and separated over Fp.
It is known that .# is 1-dimensional (for example, see [Vie08]) and every irreducible
component of .# is projective over Fp [RZ96, Proposition 2.32]. In particular, M
has a locally finite quasi-compact open covering.

Let D(X)g = (IV,®) be the rational Dieudonné module of X, which is a 4-
dimensional isocrystal over Q,~. The fixed polarization Ay gives the alternating
pairing ( , )x,: N X N — Qp(1). We define the algebraic group J over Q, as
follows: for a Q,-algebra R, the group J(R) consists of elements g € GL(R ®q, N)
such that

— g commutes with &,

— and g preserves the pairing ( , ), up to scalar multiplication, i.e., there exists
c(g) € R* such that (gx, gy)», = c(9){z,y), for every z,y € R ®q, N.
It is an inner form of GSp(4), since D(X)gq is the isocrystal associated with a basic
Frobenius conjugacy class of GSp(4).
In the sequel, we also denote J(Q,) by J. Every element g € J naturally induces
a quasi-isogeny g: X — X and the following diagram is commutative up to Q-
multiplication:

Therefore, we can define the left action of J on .# by g: #(S) — M#(S);
(X,p) — (X, pog™t). L ]

We denote the Raynaud generic fiber of .# by .. 1t is defined as t(.Z)\V (p),
where t(.#) is the adic space associated with .# (¢f. [Hub94, Proposition 4.1]). As
M s separated and special over Z,e, MTE s separated and locally of finite type
over Spa(Qpe, Zy~ ). Since M has a locally finite quasi-compact open covering, M
is taut by [MielOb, Lemma 4.14]. Moreover, by using the period morphism [RZ96,

Chapter 5], we can see that 8 is 3-dimensional and smooth over Spa(Qpee, Zye )
(cf. [RZ96, Proposition 5.17]).
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Next we will consider level structures. Let X be the universal p-divisible group
over .# and X8 be the associated p-divisible group over M. Note that X BT
an étale p-divisible group. Let us fix a polarization A: X — XV which is com-
patible with Ag, i.e., satisfies the condition in the definition of M. Let S be a
connected rigid space over Qe (i.e., a connected adic space locally of finite type
over Spa(Qpee, Zp)), S — 4" a morphism over Q- and X5% the pull-back of
X", Fix a geometrlc point T of S and an isomorphism T},(py= s)z = Zy(1) = Z,.
Then X induces an alternating bilinear form Y5 on the 7,(S,Z)-module (7, Xrig)

U (TpXrig)f X (TpXrig)f — Ty (pos)z = Zp.

Fix a free Z,-module L of rank 4 and a perfect alternating bilinear form ¢y: LxL —
Zy. Put Ko = GSp(L, ), V = L ®z, Q, and G = GSp(V,1). Let T(S,Z) be the

set consisting of isomorphisms 7: L =, (Tp)A(C rg) . which map 1 to Z,-multiples of

5. It is independent of the choice of X and Tp(fpee s)7 = Z,, since they are unique
up to Z)-multiplication. Obviously, the groups Ky and (S, Z) naturally act on
T(S,T).

For an open subgroup K of Ky, a K-level structure of )?gig means an element
of (T(S,7)/K)™(. Note that, if we change a geometric point T to 7', the sets
(T(S,7)/K)™&%) and (T(S,7')/K)™ &%) are naturally isomorphic. Thus the notion
of K-level structures is independent of the choice of 7. The functor that associates
S with the set of K-level structures of Xg U8 ig represented by a finite Galois étale
covering //Z e, /"%, whose Galois group is Ko/K. Since T(S,T) is a Ko-torsor,
My “g coincides with //[ e If K’ is an open subgroup of K, we have a natural
morphism PKK': M, ;(i,g — M Ir(ig. Therefore, we get the projective system of rigid
spaces {//Z Ir(ig} k indexed by the filtered ordered set of open subgroups of Kj, which
is called the Rapoport-Zink tower. Obviously, the group J acts on the projective
system {.Z18} .

Let g be an element of G and K an open subgroup of K, which is enough small
so that ¢7!Kg C K,. Then we have a natural morphism M ;g — ///vgri,gl Kg OVEr
Qpee. If g € Ko, then it is given by n —— 7 o g; for other g, it is more complicated
[RZ96, 5.34]. In any case, we get a right action of G on the pro-object “lim” //u;(ig.

Definition 3.1 We put Hjy, = lim = Hi(4E @g,. Qpee, Qv).

Here H g(/i [r(ig ®Q, 00 @poo,@g) is the compactly supported (-adic cohomology of

ME g, Qpee defined in [Hub98]; note that AME is separated and taut. By the
constructions above, G x J acts on Hg, on the left (the action of j € J is given
by (771)*). Obviously the action of G on Hp, is smooth. On the other hand, it is
known that the action of J on Hj, is also smooth. This is due to Berkovich (see
[Far04, Corollaire 4.4.7]); see also Remark 5.12, where we give another proof of the
smoothness. Hence we get the smooth representation Hj, of G x J.

Our main theorem is the following:



Tetsushi Ito and Yoichi Mieda

Theorem 3.2 (Non-cuspidality) The smooth representation H},, ~ T, of G has no

quasi-cuspidal subquotient unless 1 = 2, 3, 4.

For the definition of quasi-cuspidal representations, see [Ber84, 1.20].
Theorem 3.2 is proved in Section 5.

3.2 An integral model M, of ,//Z[réi

For an integer m > 1, let K, be the kernel of GSp(L,¢y) — GSp(L/p™L,1y). 1

is an open subgroup of Kj. We can describe the definition of K,,-level structures
more concretely. As in the previous subsection, we fix a polarization X of X which
is compatible with Ag. It induces the alternating bilinear morphism between finite
étale group schemes 15 : Xrig[pm] x Xis[pm] — fiym. Let S — 4" be as in

the previous subsection. Then a K,,-level structure of Xglg naturally corresponds
bijectively to an isomorphism 7: L/p™L =, Xgig[pm] between finite étale group
schemes such that there exists an isomorphism Z/p™Z = tym s Which makes the

following diagram commutative:

L/p™L x L/p"L —— Z/p™Z
anl% lN
Il ri, wX
ng[ ] X X g[ ] 4)/’me,5'

For simplicity, we write //Z rg for //Z rig and pp,, for pgk, k,. In this subsection, we
construct a formal model .2, of 4" rig. by following [Man05, §6]. Let S be a formal
scheme of finite type over /// e and denote by Xg the pull-back of X toS. A
Drinfeld m-level structure of X is a morphism n: L/p™L — Xs[p™] satisfying the
following conditions:

— the image of 7 gives a full set of sections of Xg p™,

— and there exists a morphism Z/p™Z — p,m s which makes the following dia-
gram commutative:

L/p"L x L/p"L 2 7./p"Z

wa| o J

Xslp™] x Xs[p™] —— Hpm.s-

It is known that the functor that associates & with the set of Drinfeld m-level
structures of Xg is represented by the formal scheme M,, which is finite over //[
(cf. [Man05, Proposition 15}) Note that, unlike the case of Lubin-Tate tower, .,

is not necessarily flat over M. Tt is easy to show that My, gives a formal model of
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8, namely, the Raynaud generic fiber of .#,, coincides with .Z". We denote
(//Zm)red by .#,,, which is a 1-dimensional scheme over Fp.

There is a natural left action of .J on .4, which is compatible with that on .z
On the other hand, the natural action K, on L/p™L induces a right action of Kj
on .#,,, which is compatible with that on ./, Ir;i .

We can also describe .#,, as a functor from Nilp to Set; for an object S of
Nilp, the set .#,,(S) consists of isomorphism classes of triples (X, p,n), where
(X,p) € Myp(S) and n: L/p™L —> X[p™] is a Drinfeld m-level structure of X. By
this description, the action of 7 € J on My, s given by (X, p,n) — (X, poj~tn).
On the other hand, the action of g € Ky on .4, is given by (X, p,n) — (X, p,n0g).

By [Man04, Lemma 7.2], {.#, }m>o forms a projective system of formal schemes
equipped with the commuting action of J and Kj.

3.3 Compactly supported cohomology of .#,,

For m > 0, we denote the set of quasi-compact open subsets of .#,, by Q,,. It has
a natural filtered order by inclusion.

Definition 3.3 For an object F of D*(.#,,,Z;) or D*(M,,,Q;), we put

H! (M, F) = lim H(U, Fly).

Assume that F has a J-equivariant structure, namely, for every g € J an isomor-
phism ¢,: ¢g*F — F is given such that ¢,y = @y 0 g™, for every g,¢' € J. Then

J naturally acts on H (M, F) on the right. Therefore we get a left action of J on
H!(M,,, F) by taking the inverse J — J; g — g~ .

Theorem 3.4 Let F° be an object of D%(.M,,,7¢) and F the object of D%( M, Qy)
associated with F°. Assume that we are given a J-equivariant structure of F° (thus
F also has a J-equivariant structure). Then H(.#,,, F) is a finitely generated
smooth .J-representation.

Proof. Let U be an element of Q,,. By [Far04, Proposition 2.3.11], there exists a
compact open subgroup Ky of J which stabilizes U. Then H'(U,F|y) is a finite-
dimensional Q,-vector space endowed with the action of Ky and has the Ky-stable
Zy-lattice Im(H (U, F°|y) — H{(U, F|y)). Therefore H(.#,,, F) is a smooth .J-
representation by Corollary 2.7.

To prove that H!(.#,,, F) is finitely generated, we may assume m = 0, for
Hi( My, F) = H{( My, pomsF). In this case, we can use the similar method as
in [Far04, Proposition 4.4.13]. Let us explain the argument briefly. By [Far04,
Théoreme 2.4.13], there exists W € Qg such that (J,., gW = My. We put K =
{ge J | gW=W}and Q = {g € J | gWNW # @}. Asin the proof of
[Far04, Proposition 4.4.13], K is a compact open subgroup of J and 2 is a compact
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subset of J. For o = ([¢1], ..., [g9n]) € (J/K)", we put W, = giW N ---N g, W and
K, = ﬂ?zl nggj_l. For an open covering {gW }4c;/k, we can associate the Cech
spectral sequence

EP= @ HWa Flw,) = H™ (Mo, F).
ae(J/K)-T+1
Consider the diagonal action of J on (J/K)~"*!. The coset
NN e (J/K)H | W, # 2}

is finite; indeed, if W, # @ for a = ([g1],...,[g-r41]) € (J/K)™!, then g;'a €
{1} x Q/K x --- x Q/K, which is a finite set.
Take a system of representatives aq,...,«, of the coset above. Then there is

a natural isomorphism B¢ ., Ho(Wa, Flw,) = C—Ind{(aj H;(Wa,, Flw,,). Hence
By = @ c—Ind}](aj H;(Wa,, Flw,,) is a finitely generated J-module, since the
cohomology H(Wa,, Flw,,) is finite-dimensional for each j. By this and the fact
that a finitely generated smooth J-module is noetherian [Ber84, Remarque 3.12],

we conclude that H!(.#,, F) is finitely generated.

Lemma 3.5 Let F be an object of Db(.#,,,Q,) with a K,/ K,,-equivariant struc-
ture. Let n be an integer with 0 < n < m and put G = (DpmsF)En/Em  Then we
have H( My, F)5n/Km = HY( M,,,G).

Proof. Since the cardinality of K, /K,, is prime to ¢, (—)%»/Km commutes with H.
Therefore, we have

Hi (M, FY$r /Ko = Yy HAU, Flo) /% = Y H (9 (V), Flo1 )

UeQm Ve,
3 1 KTL/K’"L . 7 K,L/K.,,L
- hi>n HC(‘/?pnm*(f|p;}n(V))) = h_H} H(:(VV: (pnm*(f|p7;1n(v))) >
Veon Veon
= lim H(V.Glv) = H(A,, ). i

Veon

Definition 3.6 A system of coefficients over the tower {4, }m>o is the data F =
{Fn}ym>0 where F,, is an object of D%(4,,, Q) with a Ky/K,,-equivariant structure
such that (pm.F)%/Em = F, for every integers m, n with 0 < n < m. Then, by
Lemma 3.5, we have H!(My,, Fp)5/5m = Hi(M,,F,). We put H( My, F) =
lim H (M, Fin).

If each F,, is endowed with a J-equivariant structure which commutes with the
given Ky/K,-equivariant structure, and for every 0 < n < m the J-equivariant
structures on F,, and JF,, are compatible under the identification (pnm*]:m)K"/ Rm —
Fn, then we say that we have a J-equivariant structure on F. Such a structure
naturally induces the action of J on H!( A, F).

By replacing “DY(.#,,,Q,)" with “Db(M,,,74)", we may also define a system
of integral coefficients F° over {Mom}m>0, the cohomology H:( M, F°) and a J-
equivariant structure on F°.

10
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Corollary 3.7 Let F° be a system of integral coefficients over {///_m}mzo with a
J-equivariant structure and F the system of coefficients associated with F°. Then
H! (M, F) is a smooth K x J-representation and H! (M, F)Em is a finitely gen-
erated smooth J-representation for every integer m > 0.

Proof. The smoothness is clear from Theorem 3.4 and the definition of A, Mo, F).
Since H!(Muo, F)5m = H (M, Fm), the second assertion also follows from Theo-
rem 3.4. i

4 Shimura variety and p-adic uniformization

In this section, we introduce certain Shimura varieties (Siegel threefolds) related
to our Rapoport-Zink tower. Let us fix a 4-dimensional Q-vector space V' and an
alternating perfect pairing ¢': V' x V! — Q. For an integer m > 0 and a compact
open subgroup K? C GSp(Viw,) = GSp(Viwp, ¥jer), consider the functor Shy, x»
from the category of locally noetherian Z,-~-schemes to the category of sets that
associates S with the set of isomorphism classes of quadruples (A, A, n?,n,) where

— A is a projective abelian surface over S up to prime-to-p isogeny,
— X A — AV is a prime-to-p polarization,

— nP is a KP-level structure of A,

— and n,: L/p"L — A[p™] is a Drinfeld m-level structure

(for the detail, see [Kot92, §5]). Two quadruples (A, X, n?,n,) and (A', X', P, 7)) are
said to be isomorphic if there exists a prime-to-p isogeny from A to A’ which carries
Atoa Z(Xp)—multiple of X', n” to n” and n, to n,. We put Shx» = Shg g». It is known
that if K? is sufficiently small, Sh,, x» is represented by a quasi-projective scheme
over Zp~ with smooth generic fiber. In the sequel, we always assume that K7 is
enough small so that Sh,, x» is representable. We denote the special fiber of Sh,, x»
(resp. Shg») by Shy, k» (resp. Shg).

For a compact open subgroup K’? contained in K? and an integer m’ > m, we
have the natural morphism Sh,,/ g» — Shy, g». This is a finite morphism and is
moreover étale if m/' = m.

Next we recall the p-adic uniformization theorem, which gives a relation between
A and Shgp. Let us fix a polarized abelian surface (Ag, Ay,) over F, such that
Ap[p™] is an isoclinic p-divisible group with slope 1/2. Note that such (Ag, Aa,)
exists; for example, we can take (Ag, \a,) = (F?, \%), where F is a supersingular
elliptic curve over Fp and Ag is a polarization of E. By definition, the rational
Dieudonné module D(Ay[p™])g is isomorphic to D(X)g. Thus, by the subsequent
lemma, there is an isomorphism of isocrystals D(Ay[p™])g = D(X)g which preserves
the natural polarizations.

Lemma 4.1 We use the notation in [RR96, §1]. Let d > 1 be an integer.

i) Let b be an element of B(GSp,,;) and b' the image of b under the natural map
B(GSpyy) — B(GLag). Then b is basic if and only if i is basic.

11
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ii) The map B(GSpsy)basic — B(GLiag)pasic induced from i) is an injection.

Proof. Note that the center of GSp,,; coincides with that of GLgs. Thus i) is clear,
since b (resp. ¥') is basic if and only if the slope morphism v;,: D — GSp,, (resp.
vy : D 2% GSpy, — GLyy) factors through the center of GSpy, (resp. Glag).

We prove ii). By [RR96, Theorem 1.15], it suffices to show that the natural
map 7 (GSpy,;) — m(GLag) is injective. Take a maximal torus T (resp. 7") of
GSpyy (resp. GLyg) such that T C 7”. Then, since Sp,y, (resp. SLgg) is simply
connected, m (GSpy,) (resp. m1(GLyg)) can be identified with the quotient of X, (T)
(resp. X.(7")) induced by ¢: T —» G,, (resp. det: 7" —» G,,), where ¢ denotes
the similitude character of GSp,,. In particular, both m (GSp,,;) and m(GLy,) are
isomorphic to Z.

The commutative diagram

GSpyy —» Gy,

-

GlLyy —2% G,,

induces the commutative diagram

Xo(T) —» X.(G,,) == m1(GSpyy)

l lxd

X (Th) —» X (G,p)

T (GLQd)

In particular, the natural map m (GSpy,;) — m1(GLag) is injective. |

Therefore, there is a quasi-isogeny X — A[p*>| preserving polarizations. If
we replace (X, \g) by the polarized p-divisible group (Ag[p™], Aa,) associated with
(Ao, A4,), the G-representation Hp, remains unchanged. Thus, in order to prove
Theorem 3.2, we may assume that (X, \g) = (Ao[p*°], A\4,)- In the remaining part of
this article, we always assume it. Moreover, we fix an isomorphism Hj(Ag, A®P) =
Vi preserving alternating pairings.

Denote the isogeny class of (Ag, Aa,) by ¢ and put I¢ = Aut(¢). We have natural
group homomorphisms I — J and I® — Aut(H; (A, A?)) = GSp(V/w)-
These are injective.

Let Yi» be the reduced closed subscheme of Shy» such that Vi (Fp) consists of
triples (A, \,n?) where the p-divisible group associated with (A, \) is isogenous to
(X, o). It is the basic (or supersingular) stratum in the Newton stratification of
Shg». Note that (A, \,7?) € Shg»(F,) belongs to Yi»(F,) if and only if (A, )\) € ¢
([Far04, Proposition 3.1.8], [Kot92, §7]). We denote the formal completion of Shy»
along Yx» by (Shg»)’)

/Ygp®
Now we can state the p-adic uniformization theorem:

12
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Theorem 4.2 ([RZ96, Theorem 6.30]) There exists a natural isomorphism of
formal schemes:

~

O IO\(M X GSP(Vie) /K”) — (Shia )y -

In the left hand side, I® acts on .4 through 19 — J and acts on GSp(V/w,)/K?
through I? — GSp(V}w).

The isomorphisms {0k» } k»r are compatible with change of K?. (It is also com-
patible with the Hecke action of GSp,(V/«.,), but we do not use it.)

Let us briefly recall the construction of the isomorphism 0. Take a lift (52, XO) of
(X, No) over Z, (such a lift is unique up to isomorphism). Then, by the Serre-Tate
theorem, the lift (Ag, Aa,) of (Ag, Mg, ) is canonically determined. Let S be an object
of Nilp, (X, p) € .#(S) and [g] € GSp(V/w.,,)/KP. Then p extends uniquely to the
quasi-isogeny p: X Xz,00 S — X. We can see that there exist a polarized abelian
variety (A, ) and a p-quasi-isogeny ZO Xz,0 S — A preserving polarizations, such
that the associated quasi-isogeny Ay [p™°] Xz,0 S — A[p™] coincides with p. The
fixed isomorphism H;(Ag, A®P) = V[, naturally induces a KP-level structure 7 of
A. The morphism Og» is given by Ox» (X, p), [9]) = (A, \,n 0 g).

By composing the morphism .# — 4 x GSp(V}w,)/K?; & — (z,[id]), we
get a morphism .# — (Sth)nyp, which is also denoted by Ox». For U € Qy, we
denote the image of U under 0x» by Yg»(U). It is an open subset of Yko.

Proposition 4.3 Let U be an element of Qy. Then for a sufficiently small compact
open subgroup K? of GSp(V)wy), Ox» induces an isomorphism U — Y (U).

Moreover, if we denote the open formal subscheme of .4 (resp. (Shgw))y,,) whose
underlying topological space is U (resp. Yo (U)) by M)y (vesp. (Shis))y,,(r))s then

Ok» induces an isomorphism Oy : //Z/U =, (Sth)?YKp(U).

Proof. The proof is similar to [Far04, Corollaire 3.1.4]. Put I'x» = I N KP, where
the intersection is taken in GSp(V/«.,). It is known that I'k» is discrete and torsion-
free [RZ96]. By Theorem 4.2, Of» gives an isomorphism from I’ KA//Z to an open
and closed formal subscheme of (Shg»)jy, . By the same method as in [Far04,
Lemme 3.1.2, Proposition 3.1.3], we can see that every element v € I'g» other
than 1 satisfies v- U NU = @ if K? is sufficiently small. For such K?, the natural
morphism M v — ke \//Z is an open immersion. Thus we have an open immersion

,//Z/U s T\ A 9;%) (Shiw))y, ,» Whose image is (Shx»))y. , 0)- i

Next we consider the case with Drinfeld level structures at p. Let Y, k» be the
closed subscheme of Shy, x» obtained as the inverse image of Yx» under Shy, x» —
Shir. By the construction of 6x» described above, we have the following result:

13
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Corollary 4.4 Let m > 0 be an integer. We can construct naturally a morphism
Om. v s My, — (Shyp, Kp)?ym » Which makes the following diagram cartesian:

o O,
%m KP (Shm7KI’);\meKp

SN

o Ogp
s (Sth);\YKp.

In particular, the similar result as Proposition 4.3 holds for 0,, k»; that is, for U €
Qs Om ir induces (%m)/U =, (Shm,Kp)?Ym n(U) if K? is sufficiently small.

5 Proof of the non-cuspidality result

5.1 The system of coefficients FI, F"

Definition 5.1 Let m > 1 and 0 < h < 2 be integers. We denote by S,, 5, the set of
direct summands of L/p™L of rank 4 — h, and by S5, the subset of S, , consisting
of coisotropic direct summands (recall that I € S, is said to be coisotropic if

I* CI). Put S = Uj_o S and S = J7_ &% .
For I € S, , let S_hm, ke 1) be the Fp—scheme defined by

ﬁ7nJ<1",[I](S) = {<A7)\>77p,77p) € S_hm,Kp,[I](S) ‘ IC Kernp}.

Clearly it is a closed subscheme of S_hm, Kr. Similarly, we can define the closed formal
subscheme ., 1) of M, @7, Fp. Obviously, .4, 1 is stable under the action of J
on M,

We denote by Y,, k» 1 the closed subscheme of ﬁm, kw1 Obtained as the inverse
image of Y,,, k». As Corollary 4.4, we have the following cartesian diagram of formal
schemes:

v

M 1)) — (S_hmﬁK”ﬁm)?Ym,Kp,m

L

%vm e (Shm7Kp);\1/7n,Kp :

Definition 5.2 For I € S,,, we put

Shy, ko1 = Shom o 1y \ U Shy, i 17,
1'€Sm ICI

which is an open subscheme of %m k»,[1], and thus is a subscheme of %m, x». More-

over, for an integer h with 0 < h < 2, we put S_hgiKp = Ulesm . %m,m’,[l} and

14
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S_hiil?m =U 1€Smn ﬁm,m,([). The former is a closed subscheme of S_hm kv, which is

the scheme theoretic image of || Ies,, S_hm Kp 1] — @m kr. The latter is an open

subscheme of Shm}Kp, since Shm)Kp = Shm Kp\Sh[mh Kl,]a (if h = 0, we put Shm o = 9).

Lemma 5.3 i) Let z = (A, A\, n",7n,) be an element of Sh,,, k»(F,). Then, for
1 €S, xc€ Shm Kp 1)( ») if and only if I = Kern,. For an integer h with

0<h<2 € Shm xv(Fp) (resp. z € S_hfs?Kp (F,)) if and only if rankg, Ap] < h
(resp. rankg, Alp] = h).

ii) For every integer h with 0 < h < 2, we have S_hgffm = HIeSm,h S_hm,Kp,(I) as
schemes.
[0]

iii) We have (S_hEL]’Kp)red = (S_hmj{z’)red and (S_hm’Kp)red = (Ym,KP>red-

Proof. Let us prove i). Put X = A[p>®]. Then there is an exact sequence 0 —
Xog — X — X4 — 0, where X is a connected p-divisible group and X is an
étale p-divisible group. By [HTO01, Lemma II.2.1], Kern, is a direct summand of
L/p™L and (L/p™L)/Kern, — Xe¢[p™] is an isomorphism. Thus Kern, € S,
where r = ranky/,mz X&[p™] = rankg, Alp] < 2. By this, all the claims in i) are
immediate.

By i), ﬁff;)}@ coincides with [[,cs  Shy, g as a set; thus to prove ii) it

m,h

suffices to show that S_hm, ke, s closed (hence open) in %fff)m for every I € S 5.
It is clear from ﬁm,m},(]) = S_hm,Kp,m N S_hE:Z?KP.

The former equality in iii) follows immediately from i). We will prove the latter.
For z = (A, \,n",n,) € ﬁgm(ﬁp), X = A[p>] has no étale part by i). Since
XY = X, X has no multiplicative part. Therefore X is isoclinic of slope 1/2;
indeed, if a Newton polygon with the terminal point (4,2) has neither slope 0 part
nor slope 1 part, then it is a line of slope 1/2. Thus, by Lemma 4.1, there is a quasi-
isogeny X — X preserving polarizations; namely, z € Y,, x»(IF,). The opposite
inclusion is clear.

Remark 5.4 The latter part of iii) in Lemma 5.3 is the only place where the same
argument does not work in the case GSp(2d) with d > 3.

Definition 5.5 Let m > 1 be an integer. Fix a compact open subgroup K” of
GSp(Vies). For I € S, denote the natural immersion Sh, g» (1) = Shy, g» by
Jm,1- For an integer h with 0 < h < 2, denote the natural immersions S_hEZ] Kp —
Sh,, x» and Sh( Kp Sh,,, k» by j[ land j,(ff), respectively.

We define F, ;, Fonr, fo[h] FlFoi and F as follows:

I = 0" <R.]m I*Rj:nJRwZE”Ym,va JTm,I =0 (R]m I*Rj’in,IRwQK”meKp’
Folh = 05 (RISLRINRVZ )y, s FI = 05, (R RGN REQ0) |y,
Fol = 0, (RIGIRIS RUZ)y, o FR = ORISR RUOQ0) v, e

15



Tetsushi Ito and Yoichi Mieda

Here 0,,: M, — Y. k» is the morphism induced from 6,, x» in Corollary 4.4.
These are independent of the choice of KP; indeed, for another compact open
subgroup K'P contained in K?, the natural map Sh,, x» — Shy, kv is étale.

Proposition 5.6 Let h be an integer with 1 < h < 2.
i) We have the following distinguished triangle:

f;[lzfl] . fgﬂ N f‘r(ril) N fgjfl][l]_

ii) We have Fib = Dics, , Fmr-

Proof. By the definition, i) is clear. ii) is also clear from Lemma 5.3 ii). i

Proposition 5.7 For I € S, \ S5, we have Fp, | = Fp1 = 0.

m,h?

Proof. We will prove that Rjim 1RYZ, = 0. Since the dual of Rjin’ 1RYZy is iso-
morphic to j7, ;RZ(3)[6], it suffices to show that, for every z € Shy, xr (1) (F,),
no point on the generic fiber of Sh,, x» specializes to z. In other words, for every
complete discrete valuation ring R with residue field F, which is a flat Z,~-algebra,
and every Zy~-morphism z: Spec R — Sh,, g», the image of the closed point of
Spec R under x does not lie in S_hm, ko). This is a consequence of the following

lemma. |

Lemma 5.8 Let R be a complete discrete valuation ring with perfect residue field
k and with mixed characteristic (0,p), and (X, \) a polarized p-divisible group over
R. We denote the generic (resp. special) fiber of X by X, (resp. X;). Then, for
every m > 1, the kernel of the specialization map X,[p™] — X,[p™] is a coisotropic
direct summand of X, [p™].

Proof. We shall prove that the kernel of the specialization map 7,X, — T,X, is a
coisotropic direct summand of 7,X,. Consider the exact sequence 0 — X;g —
Xs — Xset — 0 over k. It is canonically lifted to the exact sequence 0 —
Xo — X — X4 — 0 over R, where X is an étale p-divisible group (cf. [Mes72,
p. 76]). Thus we have the following commutative diagram, whose rows are exact:

0— 1, X0y —1,X;, — T Xty ——0

.

0 s () y T X —— T X5 e —— 0.

Hence the kernel of 7, X, — T,X; coincides with 7,X,,. Therefore it suffices to
show that the composite (7,Xo,)" — Tp,X,;, — T,Xs., is 0.

On the other hand, by the polarization 7,X, = (T,X,)V (1), (T,Xo,)* cor-
responds to (T, Xsy)" (1) = T,X,. Thus it suffices to prove that every Galois-
equivariant homomorphism 7, Xy , — T, Xs, is 0. For this, we may replace the
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Tate modules 7, X} ., and T, X4 ;) by the rational Tate modules V; .04 o and V, X .

These are crystalline representations and the corresponding filtered p-modules are
the rational Dieudonné modules D(X /) )o and D(X,e)q, respectively. Since the
slope of the former is 1 and that of the latter is 0, there is no p-homomorphism
other than 0 from D(X /4 )q to D(Xe)g. This completes the proof. i

The following corollary is immediate from Proposition 5.6 ii) and Proposition

5.7.
Corollary 5.9 For h with 1 < h < 2, we have F\y) = @Iesf,‘;‘h Fon,1

Let us consider the action of K. Since Ky/K,, naturally acts on Sh,, x» and
the action of g € K¢/ K,, maps %mj(p’[]] onto S_hm7Kp [g-11], the subschemes %,[Z]Kp
and ﬁfs)m are preserved by the action of Ky/K,,. Therefore Fp, S o el
and F\ ) have natural Ko/ K n-equivariant structures. Moreover, in the same way
as in [Miel0a, Proposition 2.5], we can observe that F" = {FIM o, and F® =
{FSN st (resp. Foll = {Fl), o1 and Folh) = {Fa 21) form systems of coef-
ficients (resp. integral coefficients) over {.#,,}>1.

Thanks to [MielOb], we can define J-equivariant structures on the systems of
coefficients introduced above.

Proposition 5.10 The complexes Fy, ;, fn[h], oh) s Fn I Fm and F have natu-
ral J-equivariant structures. These structures are compatible with the distinguished
triangles and the direct sum decompositions in Proposition 5.6.

Proof. We will prove the proposition for ﬁgf ); other cases are similar. Put

Shy,ﬁ]/]\@ = (Shn, Kp)fy xp X Sho, kv S_h[h],Kpa S_hgf,)m = (Sh[h]}(m Shy; I;P )7
MY = Mo X S0, S AP = (A AP,
m,KP

Then, by [MielOb, Proposition 3.11], we have the canonical isomorphism
(R-]m* Rj R¢Q€)|Ym KP = RU A ﬁ(h)ﬁp Qg.

(Shm,Kp)/ym Kp’

Moreover, since 6, k» is étale (cf. Corollary 4.4), by [MielOb, Proposition 3.14], we
have the canonical isomorphism

Since the action of J on //Zm preserves the closed formal subscheme ///um,m for every
I € S,,, it also preserves the closed formal subscheme ,///ur[,lL1 ! for every h. Thus, by
the functoriality [Miel0Ob, Proposition 3.7], RV, mQ has a natural J-equivariant

structure. We may import the structure into Fib by the isomorphism above.
The compatibilities with the exact sequence and the direct sum decomposition
are clear from the construction (cf. [MielOb, Remark 3.8]). i
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It is easy to see that the actions defined in the previous proposition give .J-
equivariant structures on the systems of (integral) coefficients F°lh, Fo(h) = Folhl and
F°() . Thus we get the smooth representations H!(.An, F) and H (Mo, FM) of
Ky x J (cf. Corollary 3.7).

Proposition 5.11 There exists an isomorphism H:( My, F) = Hj},,, which is
compatible with the action of Ky x J.

Proof. Let m > 1 be an integer and U € Q,,. Then, by [MielOb, Corollary 4.40]
and Proposition 4.3, we have the J-equivariant isomorphism

H(U, Fv) = Hi (M)} @0, Qpee, Q).
Since this isomorphism is functorial, we have K x J-equivariant isomorphisms

L A oo _ = . _
H (M, FI) 22 Vi H (M) @000 Qpoey Qo) = HAMEE g0 Qe Qu),
UeQm
H (Moo, F) = lim HI( M3 Rg, . Quee, Qr) = Hiyy

m

For the isomorphy of (x), we need [Hub98, Proposition 2.1 (iv)] and [Miel0b, Lemma
4.14]. i

Remark 5.12 We can deduce from Proposition 5.11 and Corollary 3.7 that the
action of Ky x J on Hf, is smooth.

5.2 G-action on H!( M, FM), H (M, FM)

In this subsection, we define actions of G' on H'(.Ay,, FM) and H! (M, F™) by
using the method in [Man05, §6]. Put GT = {g € G | go'L C L}, which is a
submonoid of G. For g € GT, let e(g) be the minimal non-negative integer such
that Ker(g~': V/L — V/L) is contained in p~®9 L /L. Since Ker g~' = (¢L+L)/L,
we have gL C p~cW L.

In the sequel, we fix a compact open subgroup K? of GSp(V/.,) and denote
Shyn.xe, Shon kv, S_hm,Kp,m, ...by Sh,,, Sh,,, %mv[ﬂ’ ..., respectively. Moreover, we
fix g € GT and denote e(g) by e for simplicity.

Assume that m > e. Let us consider the Z,~-scheme Sh,,, such that for
a Zyo-scheme S, the set Sh,, ,(S) consists of isomorphism classes of quintuples
(A, X\, P, mp, €) satisfying the following.

— The quadruple (A, X\, n”,n,) gives an element of Sh,,(S).

— & C X|[p] is a finite flat subgroup scheme of order pvr(dets™) where we put

X = Ap™]. It is self-dual with respect to A, and satisfies 7, (Ker g=") C £(5),
where 7, denotes the composite p~™L/L % L/p™L T, X[p™].
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— For £ as above, we have the following commutative diagram:

p~™L/L LN X[pme——X

| | |

p Mg L)L —— X[p"]/E— X/E

Lipm=L—= p ¥ (X/E) ™.

We denote the composite of the lowest row by 7, o g and assume that it gives
a Drinfeld (m — e)-level structure.

We have the two natural morphisms

pr: Shy, g — Shy; (A, X071, E) — (A, N, 107, mp),
[9]: Shyg — Shyy—e; (AN, 7P, 1, E) — (A/E, N 1P mp 0 g).

It is known that these are proper morphisms, pr induces an isomorphism on the
generic fibers, and [g] induces the action of g on the generic fibers [Man05, Propo-
sition 16, Proposition 17].

We can easily see that {Sh,, 4}m>e form a projective system whose transition
maps are finite. Obviously, pr and [g] are compatlble with change of m.

Similarly we can define the formal scheme My, g and the morphisms pr: My, g
M, and lg]: ///mvg — M,,_.. The former morphism induces an isomorphism on
the Raynaud generic fibers and the composite [g]"' o (pr'&)~! coincides with the
action of g. The group J naturally acts on .///Um,g and two morphisms pr and [g]
are compatible with the action of J. Moreover, if we denote by Y;, , the inverse
image of Y,, C Sh,, under pr: Sh,, , — Sh,,, then we can construct a morphism
Om.g: ///vmjg — (Shmg)fom,g which makes the following diagrams cartesian:

My, 4> (Shy, g)/ymg M, 4> (Shyy, g)/Ymg
A J
M= Sha) N e S (She) )y

Now let h be an integer with 1 < h < 2 and I € S,,,,. Then we can define the
subschemes Sh,, , 0. Shmg (1), Shrand Sh of Shy, 4 in the same way as Sh, 1,
S_hmy( 0 Sh[rz] and Shm . The followmg prop081t10n is obvious:

Proposition 5.13 We have the commutative diagrams below:

Shypng,(1) = Shn g, (1] = Shy g %fs)g — @[mh}’g —— Sl
R S e A A o
Shy 1) — Shyn ) — Shi, 5 — > 5g S
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The rectangles in the left diagram is cartesian. The rectangles in the right diagram

is cartesian up to nilpotent elements (namely, ﬁ%g — %EZ] Xgq Sh,, , induces a
homeomorphism on the underlying topological spaces, and so on).

Let us consider how S_hm,g,m are mapped by [¢]: Sh,,, — Sh,,_.. For this
purpose, let us introduce some notation.

Definition 5.14 We denote by S the set of direct summands of L of rank 4 — h
and by S, the subset of S, consisting of coisotropic direct summands. We can
identify S 5 with the set of direct summands of V' of rank 4 — h; thus G naturally
acts on Sy, and S, Let 7't Sy — Spen be the unique map which makes
the following diagram commutative:

Soo,h — Sm,h

b

Soo,h — Smfe,h-

The existence of such g=! follows from p™L C p°L C g~ 'L C L. Indeed, for direct
summands I, I’ of V', we have

INL+p"L=I'NL+p"L = ¢ ' INg 'L+p"L=¢g ' I'Nng'L+p"L
— ¢ 'INg 'LNpL+p"L=g ' I'Ng 'LNp°L +p™L
— ¢ 'INp°L+p"L=g ' I'Np°L+p™L
— g ' UNL+p"°L=¢g'I'nNL+p™°L.

coi

. —1. ; i
Obviously g7 : Sy — Sm—e,n induces a map from S0 to Sp ;.

Proposition 5.15 i) For h € {1,2} and I € S,,;, [¢9] induces morphisms

Shyn,g,111 — Shy—e,[g-117, Shyp,g,(1) = Shin—e g1
Sh" — snl | Sh{" — shl), .

ii) The rectangles of the following commutative diagram is cartesian up to nilpo-
tent elements:

%g@l,)g - S_hgig — Sl

| | lm

%fr]ﬁ)—e %LT—@ S_hm_e'
Proof. By the definition of [g], it is clear that [g] induces a morphism Shy, ;7 —
Shy,_eg-17) for I € Sy, 5, and thus induces a morphism Shgﬂg — Shyfl},e. On
the other hand, note that, for every (A, \,n%,n,,E) € Sh,,,(F,), the p-divisible
groups A[p™] and A[p>]/E are isogenous, and thus have the same étale heights.
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(]

m—e

(resp. Sn”

Therefore, by Lemma 5.3 1), the inverse image of Sh o)
coincides with ﬁ[ﬁ (resp. Shm g) as sets. Therefore a morphism Sh%b?g — Shgf),e

is naturally induced and the rectangles in the diagram above are cartesian up to

under [g]

nilpotent elements Finally, since Shmg = Shmg i N Sh
Shm eJg=11] ﬂSh

and S_hmfe,(g—lf) =

mg

[g] induces a morphism Shm,gﬂ) — Shm,&(g—ll). |

m—e?

By Proposition 5.13 and Proposition 5.15, we have the natural cohomological
correspondence v, from ]—"m . (resp. Fgﬂe) to F (resp. F ); see §6. This coho-
mological correspondence induces a homomorphism ~y, from H, e, J’: ") (resp.
Hi( Mo, FW V) to Hi( My, FEY) (vesp. Hi( M, F)). Indeed, for U € Q,,_., we
can take U' € Q,, which contains pr([g]~*(U)). Then v, induces H:(U, J—“,Eﬂew) —
Hi(U', F¥|1), and therefore induces Hi (Mo, FIL ) — Hi( Mo, FiD). Tt is easy
to see that this homomorphism is compatible with change of m; hence we get the
endomorphism 7, on H'(M o, FM) and HY (M, F).

Lemma 5.16 The endomorphism , commutes with the action of J on H}(M, F')
and H( My, FM).

Proof. We will only consider v, on H(.#,, F), since the other case is similar.
Let U € Q,,_. and U’ € Q,, be as above and put W = [¢] 1 (U), W = pr~1(U"). Tt
suffices to show the commutativity of the following diagram for j € J:

[9] ” pr, ..
Hi(GU, FIL o) == HIGW, FRL L w) — HIGW!, FE ) = HIGU', FE o)

| I | ;

[g]*

HU, FIL 1) == HI(W, F ) —— HI(W, FEL ) = HIU', 2 J0).

By the construction of the J-actions, the left and the middle rectangles are commu-
tative. On the other hand, since pr is proper and induces an isomorphism on the
generic fiber, pr, is an isomorphism and its inverse is pr*. As pr* commutes with the
J-action, the right rectangle above is also commutative. This concludes the proof.l

Lemma 5.17 i) For g,¢9' € G, v = 7507y
ii) Forg € Ky, v, coincides with the action of Ky on H:( Mo, F™) or HI (M oo, F™),
which we already introduced.

iii) The endomorphism 7,-1q an isomorphism (in fact, it coincides with the action
ofp~t-id € J).

Proof. i) follows from Corollary 6.3. ii) and iii) are consequences of [Man05, Propo-
sition 16, Proposition 17] and the analogous properties for the Rapoport-Zink spaces
(cf. [Man04, Proposition 7.4 (4), (5)]). i
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Note that G is generated by G* and p -id as a monoid. Therefore, by the
lemma above, we can extend the actions of Ky on H:(Mu, FI") and H(.M ., F™M)
to whole G. Together with Lemma 5.16, we have a smooth G x J-module structures
on H (M, F") and Hi( My, F™). We can observe without difficulty that the
isomorphism in Proposition 5.11 is in fact compatible with the action of G:

Proposition 5.18 The isomorphism H:(. My, FI%) = Hi, in Proposition 5.11 is
an isomorphism of G x J-modules.

Next we investigate the G-module structure of H!(#, F®) for h € {1,2}.
Let us fix an element [| (h) of Sggjh and denote its image under the natural map
S — S, by I(h)m. Put P, = Stabg(I(h)), which is a maximal parabolic
subgroup of G. Then we can identify S, with G/P, = Ky/(P, N Ky) and S, p
with K,,\G/P, = K,,\Ko/(P, N Ky). For g € G and an integer m with m > e :=
e(g), g7 S — Sm_en is identified with the map K,,\G/P, — K,;,_\G/Py;
KpxPy — Kp_og ta Py,

Definition 5.19 We put H(Ao, Fr,)) = lim  Hi( M, F,, 7. ) Here the tran-

sition maps are given as follows: for integers 1 < m<m,

Hé('%_mafmj(h)m) - Hl<%m apmm’Fm I(h)m) - @ HZ('%_m’aFm’,I’)
ress,
I /pm I =I(h)m

—»H’L<%m,f /Ih) ,)

m

It is easy to see that H(.,, ]:f(h)) has a structure of a smooth P, x J-module (use
Theorem 3.4 and Proposition 5.15 i)). For each m > 1 we have the homomorphism

H(Z:('%_mvfr(r?)) = @ HZ('%_’HMF’HL,I) - Hé('/l_m’]:m,f(h)m)v
180,
which induces the homomorphism H'(.#.,, F") — Hé(///_oo,.?f(h)). By Proposi-
tion 5.15 i), we can prove that this is a homomorphism of P, x J-modules.

Proposition 5.20 We have an isomorphism H!( M, FM) = Ind§, Hi(M, Finy)
of G x J-modules.

Proof. By the Frobenius reciprocity, we have a G-homomorphism H (Moo, FW) —
Indgh H( M, Finy)- We shall observe that this is bijective. For an integer m > 1,
we have

Hé(.//_m,}—gl)) = @ Hé<//zmvfm,f) = @ Hé(j/—m’f.m,gflf(h)m)
1esg, 9€Km\Ko/(P,NKo)
~ Ko/Km i
=Ind ;tho)/(thKm Hc('///mvfm,f(h)m>7
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where the last isomorphism, due to [Boy99, Lemme 13.2], is an isomorphism as
Ky-modules. By taking the inductive limit, we have isomorphisms

Hﬁ(%m,f(h)) — Indf»fmeo Hé(v///_ooaff(h)m) = Iﬂdgh Hﬁ(%ma]:f(h)m)

(the second isomorphy follows from the Iwasawa decomposition G = P, Kj). By
the proof of [Boy99, Lemme 13.2], it is easy to see that the first isomorphism above
is nothing but the Ky-homomorphism obtained by the Frobenius reciprocity for
P, N Ky C Ky. Therefore the composite of the two isomorphisms above coincides
with the G-homomorphism introduced at the beginning of this proof. Thus we
conclude the proof. |

5.3 Proof of the main theorem

We begin with the following result on non-cuspidality:

Theorem 5.21 For everyi € Z and h € {1,2}, the G-module H! (M, f(h))@[ has
no quasi-cuspidal subquotient.

By Proposition 5.20 and [Ber84, 2.4], it suffices to show the following proposition:

Proposition 5.22 Let h € {1,2}. The unipotent radical U, of P}, acts trivially on
H(Z:('//Om ff(h))@z'

To prove Proposition 5.22, we need some preparations. In the sequel, let G and
H be connected reductive groups over Q,, P a parabolic subgroup of G and U the
unipotent radical of P. We put P =P(Q,), H = H(Q,) and U = U(Q,).

Lemma 5.23 Let A be a noetherian Q-algebra and V' an A-module with a smooth
P-action. Assume that V' is A-admissible in the sense of [Ber84, 1.16]. Then U acts
onV trivially.

Proof. First assume that A is Artinian. Then we can prove the lemma in the same
way as [Boy99, Lemme 13.2.3] (we use length in place of dimension).

For the general case, we use noetherian induction. Assume that the lemma
holds for every proper quotient of A. Take a minimal prime ideal p of A. Then A, is
Artinian and V, is an A,-admissible representation of P (note that (V;)% = (VK),
for every compact open subgroup K of P). Therefore U acts on V; trivially. Let
V' (resp. V") be the kernel (resp. image) of V. — V,. Note that V' and V" are
A-admissible representations of P, for A is noetherian.

Consider the following commutative diagram:

0—— V' ——V VI ——0

J{(l) l@) l(i%)

00—V —Vu—=W)u.
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It is well-known that the functor taking U-coinvariant V —— Vs is an exact functor;
thus the lower row in the diagram above is exact. On the other hand, the arrow

labeled (3) is injective, since it is the composite of V" —— V, = (Vu)u. Therefore,

by the snake lemma, the injectivity of (2) is equivalent to that of (1). In other
words, we have only to prove that the action of U on V”’ is trivial.

On the other hand, by the definition, V' is the union of V; := {x € V' | sz = 0}
for s € A\ p. Since V; can be regarded as an admissible A/(s)-representation, U
acts on V; trivially by the induction hypothesis. Hence U acts on V' trivially. |

Proposition 5.24 Let V' be a smooth representation of P x H over Q, and assume
that for every compact open subgroup K of P, VX is a finitely generated H-module.
Then U acts on V' trivially.

Proof. Since Q, and C are isomorphic as fields, we may replace Q, in the statement
by C. Let 3 be the Bernstein center of H [Ber84]. It is decomposed as 3 = Hee@ 39,
where © denotes the set of connected components of the Bernstein variety of H. For
0 € O, we denote the f-part of V' by V. Then we have the canonical decomposition
V = @yco Vo, which is compatible with the action of P x H. Therefore, by replacing
V with Vp, we may assume that the action of 3 on V factors through 34 for some
fe0o.

By the assumption and [Ber84, Proposition 3.3], for every compact open sub-
group K of P, VX is a 3y-admissible H-module. Namely, for every compact open
subgroup K (resp. K') of P (resp. H), VXXX is a finitely generated 3y-module.
In other words, for every compact open subgroup K’ of H, VX' is a 3g-admissible
P-module. Since 34 is a finitely generated C-algebra, U acts trivially on VX' by
Lemma 5.23. Therefore U acts trivially on V' also.

Proof of Proposition 5.22. By Proposition 5.24, we have only to prove that, for every
m > 1, Hé(///_oo,F;(h))Ph”Km is a finitely generated J-module (recall that a finitely
generated J-module is noetherian [Ber84, Remarque 3.12]). As a J-module, it is
a direct summand of (Indg, Hi( Moo, Frpy))m =2 H( Moo, FP) . On the other
hand, by Corollary 3.7, H' (.M, F")En is a finitely generated J-module. Thus
H (M, Fipy) " is also finitely generated. i

Proposition 5.25 Let i be an integer. If i > 5, then H. (M, F*) = 0. On the
other hand, if i < 1, then H' (M, F1%) = 0.

Proof. By the definition, it suffices to show that for every m > 1 and every U € Q,,
we have H'(U, F25) =0fori > 5 and Hi(U, F¥) = 0 for i < 1. Thus the claim

is reduced to the following lemma. i

Lemma 5.26 Let S be the spectrum of a strict henselian discrete valuation ring
and X a separated S-scheme of finite type. We denote its special (resp. generic)
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fiber by X, (resp. X,). Let Z be a closed subscheme of X, and denote the natural
closed immersion Z —— X by i. Assume that X, is smooth of pure dimension d
and Z is purely d’'-dimensional.

Then we have H"(Z,i*RipxQp) = HMNZ,i*RixQp) = 0 for n > d + d' and
H™Y(Z,Ri'RipxQp) = 0 forn < d —d'.

Proof. First note that H"(Z,i* R*)xQ,) = H™(Z,i* RF¥)xQ,) = 0 if n > 2dim Z or
n > 2dim(supp R*1xQ,). By [BBDS82, Proposition 4.4.2], for each k > 0 we have
dim(supp R*xQ,) < d — k; therefore if n + k > d + d’' then we have

n>d 4+ (d— k) > dim Z + dim(supp R xQy)
> 2min{dim Z, dim(supp R*xQ,)}

and thus H"(Z,i* R¥)x Q) = H*(Z,i* R¥xQ,) = 0. By the spectral sequence, we
have H"(Z,i*RYx Q) = HX(Z,i*Ripx Q) = 0 for n > d + d'.

On the other hand, by the Poincaré duality, we have

HMZ,Ri' RpxQp) = H™(Z,Dz(Ri' RxQy))" = H "(Z,i*Ryx Dx, Qr)"

= H "(Z,i*RyxQu(d)[2d))” = H**™(Z,i* RipxQy)"(—d),

where Dy (resp. Dx,) denotes the dualizing functor with respect to Z (resp. X,).
Therefore it vanishes if 2d —n > d 4+ d’, namely, n < d — d'.

Now we can prove our main theorem.

Proof of Theorem 3.2. By Proposition 5.11 and Proposition 5.25, we have Hj, = 0
for + < 1. Therefore we may assume that ¢ > 5.
By Proposition 5.6 i), we have the exact sequence of smooth G-modules

HI N (Mg, FW)g, — HA Moo, F' g, — Hi( Moo, FM)g,

for every h with 1 < h < 2. Moreover, H'(.M,, F (h))@Z has no quasi-cuspidal sub-
quotient by Theorem 5.21. Thus, starting from H!(.#,, F [2])@2 = 0 (Proposition
5.25), we can inductively prove that H'(. ., F [h])@é has no quasi-cuspidal subquo-
tient; indeed, the property that a representation has no quasi-cuspidal subquotient

is stable under sub, quotient and extension (use the canonical decomposition in

[Bers4, 2.3.1]). In particular, Hi(M o, FI%)g, = Hﬁz@ (¢f. Proposition 5.18) has

no quasi-cuspidal subquotient. This completes the proof. |

6 Appendix: Complements on cohomological cor-
respondences

In this section, we recall the notion of cohomological correspondences (c¢f. [SGAS5,
Exposé 1], [Fuj97]) and give some results on them. These are used to define the
action of G on H!( M, F™) and H! (M, F®).
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In this section, we change our notation. Let k be a field and ¢ a prime number
which is invertible in k. We denote one of Z/¢"Z or Q, by A. Let X; and X, be
schemes which are separated of finite type over k, and L; an object of D’%(X;, A)
for i = 1,2 respectively. A cohomological correspondence from Lq to Lo is a pair
(7, ¢) consisting of a separated k-morphism of finite type v: I' — X; x X5 and a
morphism c¢: v;L; — Ry, Ly in the category D2(T, A), where we denote pr; oy by
~;. For simplicity, we also write ¢ for (v, ¢), if there is no risk of confusion. If we are
given a cohomological correspondence (7, c¢) where =, is proper, then we have the
associated morphism RI'.(c): R['.(Xy, L) — RI'.(X3, Ly) by composing

RTW(Xy, Ly) 25 RTW(T, 7 Ly) % RU(T, RyALy) = RTo(Xa, Rrys RbLo)

adj

— RFC(XQ, Lg)

We can compose two cohomological correspondences. Let X3 be another scheme
which is separated of finite type over k and Lz € DY(X3,A). Let (v,c) be a
cohomological correspondence from Ly to L3. Consider the following diagram

pr %
[ xx, ' —2T"—2 X3

lpﬁ J'yi

r—2 X,

[

Xi.

Let 7" be the natural morphism I' x x, IV — X; x X3 and ¢’: ¥/*L; — R4 L
the composite of

1% 17 (c) R pr2

YLy = privily RN prj R72L2 be, Rpr2 YLy ——— RPTQ R”Y R’V”'L?n
where b.c. denotes the base change morphism. We call the cohomological corre-
spondence (7", ") the composite of (v,¢) and (7, ), and denote it by ¢ oc. It
is not difficult to see that if v, and ] are proper, then 7/ is also proper and
RT'.(c oc) = RI'.(c') o RT'.(c).

Let us recall some operations for cohomological correspondences. Let X7, X, X|
and X/ be schemes which are separated of finite type over k, and v: I' — X; x X,
and v": I — X{ x X} separated k-morphisms of finite type. Assume that the
following commutative diagram is given:

,Y/ ,_y/
X 1= X!

X1¢FL>X2.
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First assume that every vertical morphism is proper. Let L. be an object of D%( X!, A)
for each i = 1,2 and (v, ¢) a cohomological correspondence from L} to L},. Then
we can define the cohomological correspondence (v, a.c’) from Ray, L) to Ras, LY by

viRan, L) 2% Ray L 29 Ra, RAM L, = RaRALL,

2 RyLRas Ly, = RysRas, L.

The cohomological correspondence (7, a.c’) is called the push-forward of (7', ) by
a. It is easy to see that push-forward is compatible with composition. Moreover, we
have the following lemma whose proof is also immediate:

Lemma 6.1 In the above diagram, assume that X; = X, Xy = X}, ay = ay = id
and a is proper. Let L; be an object of D%(X;, ) for each i = 1,2 and (7/,¢) a
cohomological correspondence from Ly to Ly. Then we have R (a.c’) = RT ().

Next we assume that the right rectangle in the diagram above is cartesian. Let
L} and (v, ¢') be as above. Then we have the cohomological correspondence (7, a.c)
from Ra,,L) to Ras, L), by

viRan L, 2% Raoy L 2 Ra, RAELL 2% RAd Ras, L.

On the other hand, let L; be an object of D(X;, A) for each i = 1,2 and (v,c)
a cohomological correspondence from L; to L. Then we have the cohomological
correspondence (7, a*c) from afL; to a3Ls by

naily = a™viL O * Ry Ly L RyyazLa.

Finally assume that the left rectangle in the diagram above is cartesian. Let
L; and (7, c) be as above. Then we have the cohomological correspondence (v, a'c)
from Ra}L; to RayLy by

VRa Ly 2% Ra'yi L 29 Ra'RAL Ly = Ryl Rab L.

These constructions are also compatible with composition.

Next we recall the specialization of cohomological correspondences. Let S be the
spectrum of a strict henselian discrete valuation ring on which /¢ is invertible. For
an S-scheme X, we denote its special (resp. generic) fiber by X, (resp. X,,).

Let Xy, X5 be schemes which are separated of finite type over S and v: I' —
X x5 Xo a separated S-morphism of finite type. Let L; be an object of D%(X;,, A)
for each i = 1,2 and (+,, ¢) a cohomological correspondence from L; to L. Then
we have the cohomological correspondence (s, R (c)) from Ry L, to Ry Ly by

Rl/)(c

Vi sRYL1 — Ry~;, Ly —— RYR;, Ly — Ry, ;RipLo.
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It is easy to see that this construction is compatible with composition and proper
push-forward (c¢f. [Fuj97, Proposition 1.6.1]).

Now we will give the main result in this section. Let X;, v, L; be as above
and Y; (resp. Z;) a closed (resp. locally closed) subscheme of X;,. Assume that
Via(Y1) = 754(Y2) and 7;2(Z1) = 75.(Zs) as subschemes of Iy, and denote the
former by I'y and the latter by I';. Then we have the following diagrams whose
rectangles are cartesian:

Tv,1 Vy,2 Vz,1 2,2
Y ¢ I'y > Yo AR ' > Lo
lﬁ } llé le lj sz
71,s Y2,s T1,s Y2,s
Xis— Ty —— Xo, Xis— Iy —— X,

Therefore, for a cohomological correspondence (v, ¢) from Ly to Lo, the cohomolog-
ical correspondence i*j,j' Ri(c) from i* Rjy, Rji R Ly to i3 Rjs, Rjb Ry Lo is induced.
If moreover we assume that v; is proper, then we have

RT.(i*§.j'R(c)): RT (X1, i{Rj1, Rj\RYL,) — RT( Xy, i5Rja, Rjs R Ly).

Proposition 6.2 The morphism RT.(i.j.j Ri(c)) depends only on the cohomo-
logical correspondence (v,,c). More precisely, if another S-morphism v': I" —
X1 X g X5 has the same generic fiber as v and satisfies the conditions that %;1(1/1) =
Voo (Ya), %15 (Z1) = 45, (Z) and 7 is proper, then the morphism RT.(i"* j.j" Ri(c))
induced from «' is equal to RT(i*j,j'Ry(c)) (here i’ and j' are defined in the same
way as i and j ).

Proof. Since I" and I” have the same generic fiber, there is the “diagonal” in the
generic fiber of I' X x, « s x, I". Let I' be the closure of it in I' X x, x . x, [". Then I'” has
the same generic fiber as I'.. We have natural morphisms IV — I" and I — T,
which are proper since v and 7' are proper. Therefore v": I — X; xg X5 also
satisfies the same conditions as v and +/. By replacing 4’ by 7", we may assume
that there exists a proper morphism a: IV — I" such that yoa =«

Then, it is easy to see that the push-forward of the cohomological correspondence

NN

(7,5 5" Rap(c)) by as coincides with (vs,4*j,j' Rip(c)). Therefore the proposition
follows from Lemma 6.1.

Corollary 6.3 Let X, X, and X3 be schemes which are separated of finite type
over S, Y; (resp. Z;) a closed (resp. locally closed) subscheme of X;, and L; an object
of D%(X;,, A) for eachi =1,2,3. Let v: T — X xg Xz (resp. v': I — Xy x5 X3,
resp. ¥": " — X; xXg X3) be an S-morphism such that -, (resp. 7, resp. v/

is proper, and (v,,c) (resp. (y,,c'), resp. (7,,c")) a cohomological correspondence
from Ly to Ly (resp. from Ly to L, resp. from Ly to L3). Moreover we assume that

Y. (Y1) = 150 (Y2), 71.(Z1) = vaa(Za), 1L (Vo) = 750 (V3), 114 (Z2) = 15, (Zs),
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R (i*j.j' RY(c)): R
RT.(¢* j*j'Rw(c )): R

are induced. Assume that the composite of ('Ym
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v (Ys) and {1 (Z1) = 44,"(Zs). Then, as above, the morphisms

R (X1 1) 7 le*leRl/JLl) — RFC(XQ’S, Z;RJQ*R‘]'QRQﬂLQ),
T.(Xa, i3 Rjo, Rjy R Ly) — RTo(X3., 45 Rjs, RjsRYLs),
T.(X14 0} Rj1, Rjs ROLy) — RTo(Xs.,, i3 Rjs, Rjs Ry Ls)
c)

nd (v, c') coincides with (v, c").

a
Then we have RT.(i*j.j' R (c')) o RT.(i*j.j' Rip(c)) = RT (5.5 Rap ().

Proof. By Proposition 6.2, we may replace 7" by I' xx, [ — X; xg X3. Then
the equality is clear, since all the operations for cohomological correspondences are
compatible with composition.
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