Cuspidal representations in the ℓ-adic cohomology of the Rapoport-Zink space for GSp(4)

Tetsushi Ito and Yoichi Mieda

Abstract. In this paper, we study the ℓ-adic cohomology of the Rapoport-Zink tower for GSp(4). We prove that the smooth representation of $\text{GSp}_4(\mathbb{Q}_p)$ obtained as the ith compactly supported ℓ-adic cohomology of the Rapoport-Zink tower has no quasi-cuspidal subquotient unless $i = 2, 3, 4$. Our proof is purely local and does not require global automorphic methods.

1 Introduction

In [RZ96], M. Rapoport and Th. Zink introduced certain moduli spaces of quasi-isogenies of p-divisible groups with additional structures called the Rapoport-Zink spaces. They constructed systems of rigid analytic coverings of them which we call the Rapoport-Zink towers, and established the p-adic uniformization theory of Shimura varieties generalizing classical Čerednik-Drinfeld uniformization. These spaces uniformize the rigid spaces associated with the formal completion of certain Shimura varieties along Newton strata.

Using the ℓ-adic cohomology of the Rapoport-Zink tower, we can construct a representation of the product $G(\mathbb{Q}_p) \times J(\mathbb{Q}_p) \times W(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$, where G is the reductive group over \mathbb{Q}_p corresponding to the Shimura datum, J is an inner form of it, and $W(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$ is the Weil group of the p-adic field \mathbb{Q}_p. It is widely believed that this realizes the local Langlands and Jacquet-Langlands correspondences (cf. [Rap95]). Classical examples of the Rapoport-Zink spaces are the Lubin-Tate space and the Drinfeld upper half space; these spaces were extensively studied by many people and many important results were obtained (cf. [Dri76], [Car90], [Har97], [HT01], [Dat07], [Boy09] and references therein). However, very little was known about the ℓ-adic cohomology of other Rapoport-Zink spaces.

The aim of this paper is to study cuspidal representations in the ℓ-adic cohomology of the Rapoport-Zink tower for $\text{GSp}_4(\mathbb{Q}_p)$. Let us denote the Rapoport-Zink space for $\text{GSp}_4(\mathbb{Q}_p)$ by \mathcal{M}. It is a special formal scheme over $\mathbb{Z}_{p^\infty} = W(\overline{\mathbb{F}}_p)$ in the sense of Berkovich [Ber96]. Let \mathcal{M}^{rig} be the Raynaud generic fiber of \mathcal{M}, that is, the generic fiber of the adic space $t(\mathcal{M})$ associated with \mathcal{M}. Using level structures

2010 Mathematics Subject Classification. Primary: 14G35; Secondary: 22E50, 11F70.
Tetsushi Ito and Yoichi Mieda

at p, we can construct the Rapoport-Zink tower

$$
\cdots \to \mathcal{M}_{m+1} \to \mathcal{M}_m \to \cdots \to \mathcal{M}_2 \to \mathcal{M}_1 \to \mathcal{M}_0 = \mathcal{M}_{\text{rig}},
$$

where $\mathcal{M}_{m} \to \mathcal{M}_{m+1}$ is an étale Galois covering of rigid spaces with Galois group $\text{GSp}_4(\mathbb{Z}/p^m\mathbb{Z})$. We take the compactly supported ℓ-adic cohomology (in the sense of [Hub98]) and take the inductive limit of them. Then, on

$$
H^i_{\text{RZ}} := \lim_{\to} H^i_{\text{c}}(\mathcal{M}_m \otimes_{\mathbb{Q}_{p^\infty}} \overline{\mathbb{Q}}_{p^\infty}, \mathbb{Q}_{\ell})
$$

(here $\mathbb{Q}_{p^\infty} = \text{Frac} \, \mathbb{Z}_{p^\infty}$), we have an action of a product

$$
\text{GSp}_4(\mathbb{Q}_p) \times J(\mathbb{Q}_p) \times W(\overline{\mathbb{Q}}_p/\mathbb{Q}_p),
$$

where J is an inner form of GSp_4.

The main theorem of this paper is as follows:

Theorem 1.1 (Theorem 3.2) The $\text{GSp}_4(\mathbb{Q}_p)$-representation $H^i_{\text{RZ}} \otimes_{\mathbb{Q}_r} \overline{\mathbb{Q}}_{\ell}$ has no quasi-cuspidal subquotient unless $i = 2, 3, 4$.

For the definition of quasi-cuspidal representations, see [Ber84, 1.20]. Note that since \mathcal{M}_m is 3-dimensional for every $m \geq 0$, $H^0_{\text{RZ}} = 0$ unless $0 \leq i \leq 6$.

Our proof of this theorem is purely local. We do not use global automorphic methods. The main strategy of the proof is similar to that of [Mie10a], in which the analogous result for the Lubin-Tate tower is given; we construct the formal model \mathcal{M}_m of \mathcal{M}_{rig} by using Drinfeld level structures and consider the geometry of its special fiber. However, our situation is much more difficult than the case of the Lubin-Tate tower. In the Lubin-Tate case, the tower consists of affine formal schemes $\{\text{Spf} \, A_m\}_{m \geq 0}$, and we can associate it with the tower of affine schemes $\{\text{Spec} \, A_m\}_{m \geq 0}$. In [Mie10a], the second author defined the stratification on the special fiber of $\text{Spec} \, A_m$ by using the kernel of the universal Drinfeld level structure, and considered the local cohomology of the nearby cycle complex $R\psi \Lambda$ along the strata. On the other hand, our tower $\{\mathcal{M}_m\}_{m \geq 0}$ does not consist of affine formal schemes and there is no canonical way to associate it with a tower of schemes. To overcome this problem, we take a sheaf-theoretic approach. For each direct summand I of $(\mathbb{Z}/p^n\mathbb{Z})^4$, we will define the complex of sheaves $F_{m,I}$ on \mathcal{M}_{red} so that the cohomology $H^i((\mathcal{M}_m)_{\text{red}}, F_{m,I})$ substitutes for the local cohomology of $R\psi \Lambda$ along the strata defined by I in the Lubin-Tate case. For the definition of $F_{m,I}$, we use the p-adic uniformization theorem by Rapoport and Zink.

There is another difficulty; since a connected component of \mathcal{M} is not quasi-compact, the representation H^0_{RZ} of $\text{GSp}_4(\mathbb{Q}_p)$ is far from admissible. Therefore it is important to consider the action of $J(\mathbb{Q}_p)$ on H^0_{RZ}, though it does not appear in our main theorem. However, the cohomology $H^i((\mathcal{M}_m)_{\text{red}}, F_{m,I})$ has no apparent action of $J(\mathbb{Q}_p)$, since $J(\mathbb{Q}_p)$ does not act on the Shimura variety uniformized by
ℓ-adic cohomology of the Rapoport-Zink space for $\text{GSp}(4)$

We use the variants of formal nearby cycle introduced by the second author in [Mie10b] to endow it with an action of $J(\mathbb{Q}_p)$. Furthermore, to ensure the smoothness of this action, we use a property of finitely generated pro-p groups (Section 2). In fact, extensive use of the formalism developed in [Mie10b] make us possible to work mainly on the Rapoport-Zink tower itself and avoid the theory of p-adic uniformization except for proving that \mathcal{M}_m is locally algebraizable. However, for the reader’s convenience, the authors decided to make this article as independent of [Mie10b] as possible.

The authors expect that the converse of Theorem 1.1 also holds. Namely, we expect that $H^i_{\text{RZ}} \otimes \mathbb{Q}_\ell$ has a quasi-cuspidal subquotient if $i = 2, 3, 4$. We hope to investigate it in a future work.

The outline of this paper is as follows. In Section 2, we prepare a criterion for the smoothness of representations over \mathbb{Q}_ℓ. It is elementary but very powerful for our purpose. In Section 3, we give some basic definitions concerning with the Rapoport-Zink space for $\text{GSp}(4)$ and state the main theorem. Section 4 is devoted to introduce certain Shimura varieties related to our Rapoport-Zink tower and recall the theory of p-adic uniformization. The proof of the main theorem is accomplished in Section 5. The final Section 6 is an appendix on cohomological correspondences. The results in the section are used to define actions of $\text{GSp}_4(\mathbb{Q}_p)$ on various cohomology groups.

Acknowledgment The second author would like to thank Noriyuki Abe and Naoki Imai for the stimulating discussions.

Notation Let p be a prime number and take another prime ℓ with $\ell \neq p$. We denote the completion of the maximal unramified extension of \mathbb{Z}_p by \mathbb{Z}_p^{∞} and its fraction field by \mathbb{Q}_p^{∞}. Let $\text{Nilp} = \text{Nilp}_{\mathbb{Z}_p^{\infty}}$ be the category of \mathbb{Z}_p^{∞}-schemes on which p is locally nilpotent. For an object S of Nilp, we put $\overline{S} = S \otimes_{\mathbb{Z}_p^{\infty}} \overline{\mathbb{F}_p}$.

In this paper, we use the theory of adic spaces ([Hub94], [Hub96]) as a framework of rigid geometry. A rigid space over \mathbb{Q}_p^{∞} is understood as an adic space locally of finite type over $\text{Spa}(\mathbb{Q}_p^{\infty}, \mathbb{Z}_p^{\infty})$.

Every sheaf and cohomology are considered in the étale topology. Every smooth representation is considered over \mathbb{Q}_ℓ or $\overline{\mathbb{Q}_\ell}$. For a \mathbb{Q}_ℓ-vector space V, we put $V_{\overline{\mathbb{Q}_\ell}} = V \otimes_{\mathbb{Q}_\ell} \overline{\mathbb{Q}_\ell}$.

2 Preliminaries: smoothness of representations of profinite groups

Let G be a linear algebraic group over a p-adic field F. In this section, we give a convenient criterion for the smoothness of a $G(F)$-representation over \mathbb{Q}_ℓ. The following theorem is essential:

Theorem 2.1 Let K be a closed subgroup of $\text{GL}_n(\mathbb{Z}_p)$ and (π, V) a finite-dimensional representation over \mathbb{Q}_ℓ of K as an abstract group. Assume that there exists a K-stable \mathbb{Z}_ℓ-lattice Λ of V. Then this representation is automatically smooth.
In order to prove this theorem, we require several facts on pro-

Lemma 2.2 The pro-

Lemma 2.3 Every subgroup of finite index of K_1 is open.

Remark 2.4 More generally, every subgroup of finite index of a finitely generated

Lemma 2.5 Let G be a pro-\ell group. Then every homomorphism $f: K_1 \rightarrow G$ is trivial.

Proof. Let H be an open normal subgroup of G and denote the composite $K_1 \xrightarrow{f} G \twoheadrightarrow G/H$ by f_H. By Lemma 2.3, $\ker f_H$ is an open normal subgroup of K_1. Thus $K_1/\ker f_H$ is a finite p-group. On the other hand, G/H is a finite \ell-group. Since we have an injection $K_1/\ker f_H \hookrightarrow G/H$, we have $K_1/\ker f_H = 1$, in other words, $f_H = 1$. Therefore the composite $K_1 \xrightarrow{f} G \cong \varprojlim_H G/H$ is trivial. Hence we have $f = 1$, as desired.

Proof of Theorem 2.1. Since K_1 is an open subgroup of K, we may replace K by K_1. Take a K_1-stable \mathbb{Z}_p-lattice Λ of V. Then, $\Lambda/\ell \Lambda$ is a finite abelian group. Therefore, by Lemma 2.3, there exists an open subgroup U of K_1 which acts trivially on $\Lambda/\ell \Lambda$. In other words, the homomorphism $\pi: K_1 \twoheadrightarrow \text{GL}(\Lambda) \subset \text{GL}(V)$ maps U into the subgroup $1 + \ell \text{End}(\Lambda)$. Since U is a closed subgroup of $1 + pM_n(\mathbb{Z}_p)$ and $1 + \ell \text{End}(\Lambda)$ is a pro-\ell group, by Lemma 2.5, the homomorphism $\pi|_U: U \twoheadrightarrow 1 + \ell \text{End}(\Lambda)$ is trivial. Namely, $\pi|_U$ is a trivial representation.

Lemma 2.6 Let F be a p-adic field and G a linear algebraic group over F. Then every compact subgroup K of $G(F)$ can be realized as a closed subgroup of $\text{GL}_n(\mathbb{Z}_p)$ for some n.

Proof. Take an embedding $G \hookrightarrow \text{GL}_m$ defined over F. Since $G(F)$ is a closed subgroup of $\text{GL}_m(F)$, K is also a closed subgroup of $\text{GL}_m(F)$. Therefore we have a faithful continuous action of K on F^m. By taking a \mathbb{Q}_p-basis of F, we have a faithful continuous action of K on \mathbb{Q}_p^n for some n. Since K is compact, it is well-known that there is a K-stable \mathbb{Z}_p-lattice in \mathbb{Q}_p^n. Hence we have a continuous injection $K \hookrightarrow \text{GL}_n(\mathbb{Z}_p)$. Since K is compact, it is isomorphic to a closed subgroup of $\text{GL}_n(\mathbb{Z}_p)$.
Corollary 2.7 Let F and G be as in the previous proposition. Let I be a filtered ordered set and $\{K_i\}_{i \in I}$ be a system of compact open subgroups of $G(F)$ indexed by I.

Let (π, V) be a (not necessarily finite-dimensional) \mathbb{Q}_ℓ-representation of $G(F)$ as an abstract group. Assume that there exists an inductive system $\{V_i\}_{i \in I}$ of finite-dimensional \mathbb{Q}_ℓ-vector spaces satisfying the following:

1. For every $i \in I$, V_i is endowed with an action of K_i as an abstract group.
2. For every $i \in I$, V_i has a K_i-stable \mathbb{Z}_ℓ-lattice.
3. There exists an isomorphism $\lim_{\longrightarrow i \in I} V_i \cong V$ as \mathbb{Q}_ℓ-vector spaces such that the composite $V_i \longrightarrow \lim_{\longrightarrow i \in I} V_i \longrightarrow V$ is K_i-equivariant for every $i \in I$.

Then (π, V) is a smooth representation of $G(F)$.

Proof. Let us take $x \in V$ and show that $\text{Stab}_{G(F)}(x)$, the stabilizer of x in $G(F)$, is open. There exists an element $i \in I$ such that x lies in the image of $V_i \longrightarrow V$. Take $y \in V_i$ which is mapped to x. By Theorem 2.1 and Lemma 2.6, V_i is a smooth representation of K_i. Therefore $\text{Stab}_{K_i}(y)$ is open in K_i, hence is open in $G(F)$. Since $V_i \longrightarrow V$ is K_i-equivariant, we have $\text{Stab}_{K_i}(y) \subset \text{Stab}_{K_i}(x) \subset \text{Stab}_{G(F)}(x)$. Thus $\text{Stab}_{G(F)}(x)$ is open in $G(F)$, as desired.

Remark 2.8 Although we need the corollary above only for the case $F = \mathbb{Q}_p$, we proved it for a general p-adic field F for the completeness.

3 Rapoport-Zink space for $GSp(4)$

3.1 The Rapoport-Zink space for $GSp(4)$ and its rigid analytic coverings

In this subsection, we recall basic definitions concerning with Rapoport-Zink spaces. General definitions are given in [RZ96], but here we restrict them to our special case.

Let X be a 2-dimensional isoclinic p-divisible group over $\overline{\mathbb{F}}_p$ with slope $1/2$, and $\lambda_0 : X \cong X^\vee$ a (principal) polarization of X, namely, an isomorphism satisfying $\lambda_0^\vee = -\lambda_0$. Consider the contravariant functor $\mathcal{M} : \text{Nilp} \longrightarrow \text{Set}$ that associates S with the set of isomorphism classes of pairs (X, ρ) consisting of

1. a 2-dimensional p-divisible group X over S,
2. and a quasi-isogeny (cf. [RZ96, Definition 2.8]) $\rho : X \otimes_{\mathbb{F}_p} \overline{S} \longrightarrow X \otimes_S \overline{S}$,

such that there exists an isomorphism $\lambda : X \longrightarrow X^\vee$ which makes the following
Tetsushi Ito and Yoichi Mieda

Diagram commutative up to multiplication by \mathbb{Q}_p^\times:

$$
\begin{array}{ccc}
X \otimes_{\mathbf{T}_p} \mathcal{S} & \xrightarrow{\rho} & X \otimes_{\mathcal{S}} \mathcal{S} \\
\downarrow_{\lambda_0 \otimes \text{id}} & & \downarrow_{\lambda \otimes \text{id}} \\
X^\vee \otimes_{\mathbf{T}_p} \mathcal{S} & \xrightarrow{\rho^\vee} & X^\vee \otimes_{\mathcal{S}} \mathcal{S}.
\end{array}
$$

Note that such λ is uniquely determined by (X, ρ) up to multiplication by \mathbb{Z}_p^\times and gives a polarization of X. It is proved by Rapoport-Zink that \mathcal{M} is represented by a special formal scheme (cf. [Ber96]) over $\text{Spf} \mathbb{Z}_p^\infty$. Moreover, \mathcal{M} is separated over $\text{Spf} \mathbb{Z}_p^\infty$ [Far04, Lemme 2.3.23]. However, \mathcal{M} is neither quasi-compact nor p-adic.

We put $\mathcal{M} = \mathcal{M}_{\text{red}}$, which is a scheme locally of finite type and separated over \mathbb{F}_p. It is known that \mathcal{M} is 1-dimensional (for example, see [Vie08]) and every irreducible component of \mathcal{M} is projective over \mathbb{F}_p [RZ96, Proposition 2.32]. In particular, \mathcal{M} has a locally finite quasi-compact open covering.

Let $D(X)_\mathbb{Q} = (N, \Phi)$ be the rational Dieudonné module of X, which is a 4-dimensional isocrystal over \mathbb{Q}_p^∞. The fixed polarization λ_0 gives the alternating pairing $\langle \ , \ \rangle_{\lambda_0} : N \times N \longrightarrow \mathbb{Q}_p^\infty(1)$. We define the algebraic group J over \mathbb{Q}_p as follows: for a \mathbb{Q}_p-algebra R, the group $J(R)$ consists of elements $g \in \text{GL}(R \otimes_{\mathbb{Q}_p} N)$ such that

- g commutes with Φ,
- and g preserves the pairing $\langle \ , \ \rangle_{\lambda_0}$ up to scalar multiplication, i.e., there exists $c(g) \in R^\times$ such that $(gx, gy)_{\lambda_0} = c(g)(x, y)_{\lambda_0}$ for every $x, y \in R \otimes_{\mathbb{Q}_p} N$.

It is an inner form of $\text{GSp}(4)$, since $D(X)_\mathbb{Q}$ is the isocrystal associated with a basic Frobenius conjugacy class of $\text{GSp}(4)$.

In the sequel, we also denote $J(\mathbb{Q}_p)$ by J. Every element $g \in J$ naturally induces a quasi-isogeny $g : X \longrightarrow X$ and the following diagram is commutative up to \mathbb{Q}_p^\times-multiplication:

$$
\begin{array}{ccc}
X & \xrightarrow{g} & X \\
\downarrow_{\lambda_0} & & \downarrow_{\lambda_0} \\
X^\vee & \xleftarrow{g^\vee} & X^\vee.
\end{array}
$$

Therefore, we can define the left action of J on \mathcal{M} by $g : \mathcal{M}(S) \longrightarrow \mathcal{M}(S)$; $(X, \rho) \longmapsto (X, \rho \circ g^{-1})$.

We denote the Raynaud generic fiber of \mathcal{M} by \mathcal{M}^{rig}. It is defined as $t(\mathcal{M}) \setminus V(p)$, where $t(\mathcal{M})$ is the adic space associated with \mathcal{M} (cf. [Hub94, Proposition 4.1]). As \mathcal{M} is separated and special over \mathbb{Z}_p^∞, \mathcal{M}^{rig} is separated and locally of finite type over $\text{Spa}(\mathbb{Q}_p^\infty, \mathbb{Z}_p^\infty)$. Since \mathcal{M} has a locally finite quasi-compact open covering, \mathcal{M}^{rig} is taut by [Mie10b, Lemma 4.14]. Moreover, by using the period morphism [RZ96, Chapter 5], we can see that \mathcal{M}^{rig} is 3-dimensional and smooth over $\text{Spa}(\mathbb{Q}_p^\infty, \mathbb{Z}_p^\infty)$ (cf. [RZ96, Proposition 5.17]).
Next we will consider level structures. Let \tilde{X} be the universal p-divisible group over \mathcal{M} and \tilde{X}^{rig} be the associated p-divisible group over \mathcal{M}^{rig}. Note that X^{rig} is an étale p-divisible group. Let us fix a polarization $\tilde{\lambda}: \tilde{X} \to \tilde{X}^\vee$ which is compatible with λ_0, i.e., satisfies the condition in the definition of \mathcal{M}. Let S be a connected rigid space over \mathbb{Q}_p (i.e., a connected adic space locally of finite type over $\text{Spa}(\mathbb{Q}_p, \mathbb{Z}_p)$), $\mathcal{M} \to \mathcal{M}^{\text{rig}}$ a morphism over \mathbb{Q}_p and \tilde{X}_S^{rig} the pull-back of \tilde{X}^{rig}. Fix a geometric point \overline{x} of S and an isomorphism $T_p(\mu_{p^\infty}, x) = \mathbb{Z}_p(1) \cong \mathbb{Z}_p$. Then $\tilde{\lambda}$ induces an alternating bilinear form $\psi_\overline{x}$ on the $\pi_1(S, \overline{x})$-module $(T_p(\tilde{X})^{\text{rig}})_{\overline{x}}$.

$$\psi_\overline{x}: (T_p(\tilde{X})^{\text{rig}})_{\overline{x}} \times (T_p(\tilde{X})^{\text{rig}})_{\overline{x}} \to T_p(\mu_{p^\infty}, x) \cong \mathbb{Z}_p.$$

Fix a free \mathbb{Z}_p-module L of rank 4 and a perfect alternating bilinear form $\psi_0: L \times L \to \mathbb{Z}_p$. Put $K_0 = \text{GSp}(L, \psi_0)$, $V = L \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$ and $G = \text{GSp}(V, \psi_0)$. Let $T(S, \overline{x})$ be the set consisting of isomorphisms $\eta: L \to (T_p(\tilde{X})^{\text{rig}})_{\overline{x}}$ which map ψ_0 to \mathbb{Z}_p^\times-multiples of $\psi_\overline{x}$. It is independent of the choice of $\tilde{\lambda}$ and $T_p(\mu_{p^\infty}, x) \cong \mathbb{Z}_p$, since they are unique up to \mathbb{Z}_p^\times-multiplication. Obviously, the groups K_0 and $\pi_1(S, \overline{x})$ naturally act on $T(S, \overline{x})$.

For an open subgroup K of K_0, a K-level structure of \tilde{X}_S^{rig} means an element of $(T(S, \overline{x})/K)_{\pi_1(S, \overline{x})}$. Note that, if we change a geometric point \overline{x} to \overline{x}', the sets $(T(S, \overline{x})/K)_{\pi_1(S, \overline{x})}$ and $(T(S, \overline{x}')/K)_{\pi_1(S, \overline{x}')}^\text{rig}$ are naturally isomorphic. Thus the notion of K-level structures is independent of the choice of \overline{x}. The functor that associates S with the set of K-level structures of \tilde{X}_S^{rig} is represented by a finite Galois étale covering $\mathcal{M}_K^{\text{rig}} \to \mathcal{M}^{\text{rig}}$, whose Galois group is K_0/K. Since $T(S, \overline{x})$ is a K_0-torsor, $\mathcal{M}_K^{\text{rig}}$ coincides with \mathcal{M}^{rig}. If K' is an open subgroup of K, we have a natural morphism $p_{KK'}: \mathcal{M}_K^{\text{rig}} \to \mathcal{M}_{K'}^{\text{rig}}$. Therefore, we get the projective system of rigid spaces $\{\mathcal{M}_K^{\text{rig}}\}_K$ indexed by the filtered ordered set of open subgroups of K_0, which is called the Rapoport-Zink tower. Obviously, the group J acts on the projective system $\{\mathcal{M}_K^{\text{rig}}\}_K$.

Let g be an element of G and K an open subgroup of K_0 which is enough small so that $g^{-1}Kg \subset K_0$. Then we have a natural morphism $\mathcal{M}_K^{\text{rig}} \to \mathcal{M}_{g^{-1}Kg}^{\text{rig}}$ over \mathbb{Q}_p. If $g \in K_0$, then it is given by $\eta \mapsto \eta \circ g$; for other g, it is more complicated [RZ96, 5.34]. In any case, we get a right action of G on the pro-object $\varprojlim \mathcal{M}_K^{\text{rig}}$.

Definition 3.1 We put $H^\ell_{\text{RZ}} = \lim_K H^\ell_{\mathcal{M}}(\mathcal{M}_K^{\text{rig}} \otimes_{\mathbb{Q}_p} \mathbb{Q}_p, \mathbb{Q}_\ell)$.

Here $H^\ell_{\mathcal{M}}(\mathcal{M}_K^{\text{rig}} \otimes_{\mathbb{Q}_p} \mathbb{Q}_p, \mathbb{Q}_\ell)$ is the compactly supported ℓ-adic cohomology of $\mathcal{M}_K^{\text{rig}} \otimes_{\mathbb{Q}_p} \mathbb{Q}_p$ defined in [Hüb98]; note that $\mathcal{M}_K^{\text{rig}}$ is separated and taut. By the constructions above, $G \times J$ acts on H^ℓ_{RZ} on the left (the action of $j \in J$ is given by $(j^{-1})^*$). Obviously the action of G on H^ℓ_{RZ} is smooth. On the other hand, it is known that the action of J on H^ℓ_{RZ} is also smooth. This is due to Berkovich (see [Far04, Corollaire 4.4.7]); see also Remark 5.12, where we give another proof of the smoothness. Hence we get the smooth representation H^ℓ_{RZ} of $G \times J$.

Our main theorem is the following:
Theorem 3.2 (Non-cuspidality) The smooth representation H^i_{RZ, \overline{Q}_l} of G has no quasi-cuspidal subquotient unless $i = 2, 3, 4$.

For the definition of quasi-cuspidal representations, see [Ber84, 1.20]. Theorem 3.2 is proved in Section 5.

3.2 An integral model \mathcal{M}_m of $\mathcal{M}^{\text{rig}}_{K_m}$

For an integer $m \geq 1$, let K_m be the kernel of $GSp(L, \psi_0) \to GSp(L/p^m L, \psi_0)$. It is an open subgroup of K_0. We can describe the definition of K_m-level structures more concretely. As in the previous subsection, we fix a polarization λ of X^{rig} which is compatible with λ_0. It induces the alternating bilinear morphism between finite étale group schemes $\psi_0^{\lambda} : X^{\text{rig}}_S[p^m] \times X^{\text{rig}}_S[p^m] \to \mu_{p^m}$. Let $S \to \mathcal{M}^{\text{rig}}$ be as in the previous subsection. Then a K_m-level structure of X^{rig}_S naturally corresponds bijectively to an isomorphism $\eta : L/p^m L \cong X^{\text{rig}}_S[p^m]$ between finite étale group schemes such that there exists an isomorphism $\mathbb{Z}/p^m \mathbb{Z} \cong \mu_{p^m,S}$ which makes the following diagram commutative:

\[
\begin{array}{ccc}
L/p^m L \times L/p^m L & \xrightarrow{\psi_0} & \mathbb{Z}/p^m \mathbb{Z} \\
\eta \times \eta \downarrow \cong & & \downarrow \cong \\
X^{\text{rig}}_S[p^m] \times X^{\text{rig}}_S[p^m] & \xrightarrow{\psi_0^{\lambda}} & \mu_{p^m,S}.
\end{array}
\]

For simplicity, we write $\mathcal{M}^{\text{rig}}_m$ for $\mathcal{M}^{\text{rig}}_{K_m}$ and p_m for $p_{K_m K_n}$. In this subsection, we construct a formal model \mathcal{M}_m of $\mathcal{M}^{\text{rig}}_{K_m}$ by following [Man05, §6]. Let S be a formal scheme of finite type over \mathcal{M}^{rig} and denote by \tilde{X}_S the pull-back of \tilde{X} to S. A Drinfeld m-level structure of \tilde{X}_S is a morphism $\eta : L/p^m L \to \tilde{X}_S[p^m]$ satisfying the following conditions:

- the image of η gives a full set of sections of $\tilde{X}_S[p^m]$,
- and there exists a morphism $\mathbb{Z}/p^m \mathbb{Z} \to \mu_{p^m,S}$ which makes the following diagram commutative:

\[
\begin{array}{ccc}
L/p^m L \times L/p^m L & \xrightarrow{\psi_0} & \mathbb{Z}/p^m \mathbb{Z} \\
\eta \times \eta \downarrow & & \downarrow \\
\tilde{X}_S[p^m] \times \tilde{X}_S[p^m] & \xrightarrow{\psi_0^{\lambda}} & \mu_{p^m,S}.
\end{array}
\]

It is known that the functor that associates S with the set of Drinfeld m-level structures of \tilde{X}_S is represented by the formal scheme \mathcal{M}_m which is finite over \mathcal{M} (cf. [Man05, Proposition 15]). Note that, unlike the case of Lubin-Tate tower, \mathcal{M}_m is not necessarily flat over \mathcal{M}. It is easy to show that \mathcal{M}_m gives a formal model of
3.3 Compactly supported cohomology of \(\mathcal{M}_m \)

For \(m \geq 0 \), we denote the set of quasi-compact open subsets of \(\mathcal{M}_m \) by \(\mathcal{Q}_m \). It has a natural filtered order by inclusion.

Definition 3.3 For an object \(\mathcal{F} \) of \(D^b(\mathcal{M}_m, \mathbb{Z}_\ell) \) or \(D^b(\mathcal{M}_m, \mathbb{Q}_\ell) \), we put

\[
H^i_c(\mathcal{M}_m, \mathcal{F}) = \lim_{U \in \mathcal{Q}_m} H^i_c(U, \mathcal{F}|_U).
\]

Assume that \(\mathcal{F} \) has a \(J \)-equivariant structure, namely, for every \(g \in J \) an isomorphism \(\varphi_g \colon g^* \mathcal{F} \xrightarrow{\sim} \mathcal{F} \) is given such that \(\varphi_{gg'} = \varphi_{g'} \circ g^* \varphi_g \) for every \(g, g' \in J \). Then \(J \) naturally acts on \(H^i_c(\mathcal{M}_m, \mathcal{F}) \) on the right. Therefore we get a left action of \(J \) on \(H^i_c(\mathcal{M}_m, \mathcal{F}) \) by taking the inverse \(J \to J^\prime = J^{-1} \).

Theorem 3.4 Let \(\mathcal{F}^0 \) be an object of \(D^b_c(\mathcal{M}_m, \mathbb{Z}_\ell) \) and \(\mathcal{F} \) the object of \(D^b_c(\mathcal{M}_m, \mathbb{Q}_\ell) \) associated with \(\mathcal{F}^0 \). Assume that we are given a \(J \)-equivariant structure of \(\mathcal{F}^0 \) (thus \(\mathcal{F} \) also has a \(J \)-equivariant structure). Then \(H^i_c(\mathcal{M}_m, \mathcal{F}) \) is a finitely generated smooth \(J \)-representation.

Proof. Let \(U \) be an element of \(\mathcal{Q}_m \). By [Far04, Proposition 2.3.11], there exists a compact open subgroup \(K_U \) of \(J \) which stabilizes \(U \). Then \(H^i_c(U, \mathcal{F}|_U) \) is a finite-dimensional \(\mathbb{Q}_\ell \)-vector space endowed with the action of \(K_U \) and has the \(K_U \)-stable \(\mathbb{Z}_\ell \)-lattice \(\text{Im}(H^i_c(U, \mathcal{F}|_U) \to H^i_c(U, \mathcal{F}|_U)) \). Therefore \(H^i_c(\mathcal{M}_m, \mathcal{F}) \) is a smooth \(J \)-representation by Corollary 2.7.

To prove that \(H^i_c(\mathcal{M}_m, \mathcal{F}) \) is finitely generated, we may assume \(m = 0 \), for \(H^i_c(\mathcal{M}_m, \mathcal{F}) = H^i_c(\mathcal{M}_0, p_{0m*} \mathcal{F}) \). In this case, we can use the similar method as in [Far04, Proposition 4.4.13]. Let us explain the argument briefly. By [Far04, Théorème 2.4.13], there exists \(W \in \mathcal{Q}_0 \) such that \(\bigcup_{g \in J} gW = \mathcal{M}_0 \). We put \(K = \{ g \in J \mid gW = W \} \) and \(\Omega = \{ g \in J \mid gW \cap W \neq \emptyset \} \). As in the proof of [Far04, Proposition 4.4.13], \(K \) is a compact open subgroup of \(J \) and \(\Omega \) is a compact
subset of J. For $\alpha = ([g_1], \ldots, [g_n]) \in (J/K)^n$, we put $W_\alpha = g_1W \cap \cdots \cap g_nW$ and $K_\alpha = \bigcap_{j=1}^n g_jKg_j^{-1}$. For an open covering $\{gW\}_{g \in J/K}$, we can associate the Čech spectral sequence

$$E_1^{r,s} = \bigoplus_{\alpha \in (J/K)^{-r+1}} H_c^s(W_\alpha, \mathcal{F}|_{W_\alpha}) \implies H_c^{r+s}(\mathcal{M}_0, \mathcal{F}).$$

Consider the diagonal action of J on $(J/K)^{-r+1}$. The coset

$$J \setminus \{\alpha \in (J/K)^{-r+1} \mid W_\alpha \neq \emptyset\}$$

is finite; indeed, if $W_\alpha \neq \emptyset$ for $\alpha = ([g_1], \ldots, [g_{r-1}]) \in (J/K)^{-r+1}$, then $g_1^{-1} \alpha \in \{1\} \times \Omega/K \times \cdots \times \Omega/K$, which is a finite set.

Take a system of representatives $\alpha_1, \ldots, \alpha_n$ of the coset above. Then there is a natural isomorphism $\bigoplus_{\alpha \in J_\alpha} H_c^s(W_\alpha, \mathcal{F}|_{W_\alpha}) \cong \text{c-Ind}_{K_\alpha}^{J_\alpha} H_c^s(W_{\alpha_j}, \mathcal{F}|_{W_{\alpha_j}})$. Hence $E_1^{r,s} \cong \bigoplus_{j=1}^n \text{c-Ind}_{K_\alpha}^{J_\alpha} H_c^s(W_{\alpha_j}, \mathcal{F}|_{W_{\alpha_j}})$ is a finitely generated J-module, since the cohomology $H_c^s(W_{\alpha_j}, \mathcal{F}|_{W_{\alpha_j}})$ is finite-dimensional for each j. By this and the fact that a finitely generated smooth J-module is noetherian [Ber84, Remarque 3.12], we conclude that $H_c^i(\mathcal{M}_0, \mathcal{F})$ is finitely generated.

Lemma 3.5 Let \mathcal{F} be an object of $D_c^b(\mathcal{M}, \mathcal{Q}_\ell)$ with a K_0/K_m-equivariant structure. Let n be an integer with $0 \leq n \leq m$ and put $G = (p_{nm*}\mathcal{F})_{K_n/K_m}$. Then we have $H^i_c(\mathcal{M}, \mathcal{F})_{K_n/K_m} = H^i_c(\mathcal{M}, \mathcal{G})$.

Proof. Since the cardinality of K_n/K_m is prime to ℓ, $(-)_{K_n/K_m}$ commutes with H^i_c. Therefore, we have

$$H^i_c(\mathcal{M}, \mathcal{F})_{K_n/K_m} = \lim_{U \in \mathcal{Q}_m} H^i_c(U, \mathcal{F}|_U)_{K_n/K_m} = \lim_{V \in \mathcal{Q}_n} H^i_c(p_{nm}^{-1}(V), \mathcal{F}|_{p_{nm}^{-1}(V)})_{K_n/K_m} = \lim_{V \in \mathcal{Q}_n} H^i_c(V, (p_{nm*}\mathcal{F}|_{p_{nm}^{-1}(V)})_{K_n/K_m}) = H^i_c(V, G|_V) = H^i_c(\mathcal{M}, \mathcal{G}).$$

Definition 3.6 A system of coefficients over the tower $\{\mathcal{M}_m\}_{m \geq 0}$ is the data $\mathcal{F} = \{\mathcal{F}_m\}_{m \geq 0}$ where \mathcal{F}_m is an object of $D_c^b(\mathcal{M}_m, \mathcal{Q}_\ell)$ with a K_0/K_m-equivariant structure such that $(p_{nm*}\mathcal{F})_{K_n/K_m} = \mathcal{F}_n$ for every integers m, n with $0 \leq n \leq m$. Then, by Lemma 3.5, we have $H^i_c(\mathcal{M}, \mathcal{F}_m)_{K_n/K_m} = H^i_c(\mathcal{M}, \mathcal{F}_n)$. We put $H^i_c(\mathcal{M}_\infty, \mathcal{F}) = \lim_{m \to \infty} H^i_c(\mathcal{M}_m, \mathcal{F}_m)$.

If each \mathcal{F}_m is endowed with a J-equivariant structure which commutes with the given K_0/K_m-equivariant structure, and for every $0 \leq n \leq m$ the J-equivariant structures on \mathcal{F}_m and \mathcal{F}_n are compatible under the identification $(p_{nm*}\mathcal{F}_m)_{K_n/K_m} = \mathcal{F}_n$, then we say that we have a J-equivariant structure on \mathcal{F}. Such a structure naturally induces the action of J on $H^i_c(\mathcal{M}_\infty, \mathcal{F})$.

By replacing “$D_c^b(\mathcal{M}_m, \mathcal{Q}_\ell)$” with “$D_c^b(\mathcal{M}, \mathcal{Z}_\ell)$”, we may also define a system of integral coefficients \mathcal{F} over $\{\mathcal{M}_m\}_{m \geq 0}$, the cohomology $H^i_c(\mathcal{M}_\infty, \mathcal{F})$ and a J-equivariant structure on \mathcal{F}.

10
\[\ell \text{-adic cohomology of the Rapoport-Zink space for } \operatorname{GSp}(4) \]

Corollary 3.7 Let \(\mathcal{F}^{\circ} \) be a system of integral coefficients over \(\{ \mathcal{M}_m \}_{m \geq 0} \) with a \(J \)-equivariant structure and \(\mathcal{F} \) the system of coefficients associated with \(\mathcal{F}^{\circ} \). Then \(H^i_c(\mathcal{M}_\infty, \mathcal{F}) \) is a smooth \(K_0 \times J \)-representation and \(H^i_c(\mathcal{M}_\infty, \mathcal{F})^{K_m} \) is a finitely generated smooth \(J \)-representation for every integer \(m \geq 0 \).

Proof. The smoothness is clear from Theorem 3.4 and the definition of \(H^i_c(\mathcal{M}_\infty, \mathcal{F}) \). Since \(H^i_c(\mathcal{M}_\infty, \mathcal{F})^{K_m} = H^i_c(\mathcal{M}_m, \mathcal{F}_m) \), the second assertion also follows from Theorem 3.4.

\[\square \]

4 Shimura variety and \(p \)-adic uniformization

In this section, we introduce certain Shimura varieties (Siegel threefolds) related to our Rapoport-Zink tower. Let us fix a 4-dimensional \(\mathbb{Q} \)-vector space \(V' \) and an alternating perfect pairing \(\psi': V' \times V' \rightarrow \mathbb{Q} \). For an integer \(m \geq 0 \) and a compact open subgroup \(K^p \subset \operatorname{GSp}(V'_{\mathfrak{p},p}) = \operatorname{GSp}(\mathbb{Q}_p^\times, \mathbb{Q}_p^\times) \), consider the functor \(\operatorname{Sh}_{m,K^p} \) from the category of locally noetherian \(\mathbb{Z}_p \)-schemes to the category of sets that associates \(S \) with the set of isomorphism classes of quadruples \((A, \lambda, \eta^p, \eta_p)\) where

- \(A \) is a projective abelian surface over \(S \) up to prime-to-\(p \) isogeny,
- \(\lambda: A \rightarrow A^{\vee} \) is a prime-to-\(p \) polarization,
- \(\eta^p \) is a \(K^p \)-level structure of \(A \),
- and \(\eta_p: \mathbb{L}/p^m \mathbb{L} \rightarrow A[p^m] \) is a Drinfeld \(m \)-level structure

(for the detail, see [Kot92, §5]). Two quadruples \((A, \lambda, \eta^p, \eta_p)\) and \((A', \lambda', \eta'^p, \eta'_p)\) are said to be isomorphic if there exists a prime-to-\(p \) isogeny from \(A \) to \(A' \) which carries \(\lambda \) to a \(\mathbb{Z}_p^\times \)-multiple of \(\lambda' \), \(\eta^p \) to \(\eta'^p \) and \(\eta_p \) to \(\eta'_p \). We put \(\operatorname{Sh}_{K^p} = \operatorname{Sh}_{0,K^p} \). It is known that if \(K^p \) is sufficiently small, \(\operatorname{Sh}_{m,K^p} \) is represented by a quasi-projective scheme over \(\mathbb{Z}_p \) with smooth generic fiber. In the sequel, we always assume that \(K^p \) is enough small so that \(\operatorname{Sh}_{m,K^p} \) is representable. We denote the special fiber of \(\operatorname{Sh}_{m,K^p} \) (resp. \(\operatorname{Sh}_{K^p} \)) by \(\overline{\operatorname{Sh}}_{m,K^p} \) (resp. \(\overline{\operatorname{Sh}}_{K^p} \)).

For a compact open subgroup \(K^p \) contained in \(K^p \) and an integer \(m' \geq m \), we have the natural morphism \(\operatorname{Sh}_{m',K^p} \rightarrow \operatorname{Sh}_{m,K^p} \). This is a finite morphism and is moreover étale if \(m' = m \).

Next we recall the \(p \)-adic uniformization theorem, which gives a relation between \(\mathbf{\mathcal{M}} \) and \(\operatorname{Sh}_{K^p} \). Let us fix a polarized abelian surface \((A_0, \lambda_{A_0})\) over \(\overline{\mathbb{F}}_p \) such that \(A_0[p^\infty] \) is an isoclinic \(p \)-divisible group with slope \(1/2 \). Note that such \((A_0, \lambda_{A_0})\) exists; for example, we can take \((A_0, \lambda_{A_0}) = (E^2, \lambda_E^2)\), where \(E \) is a supersingular elliptic curve over \(\overline{\mathbb{F}}_p \) and \(\lambda_E \) is a polarization of \(E \). By definition, the rational Dieudonné module \(D(A_0[p^\infty])_\mathbb{Q} \) is isomorphic to \(D(X)_\mathbb{Q} \). Thus, by the subsequent lemma, there is an isomorphism of isocrystals \(D(A_0[p^\infty])_\mathbb{Q} \cong D(X)_\mathbb{Q} \) which preserves the natural polarizations.

Lemma 4.1 We use the notation in [RR96, §1]. Let \(d \geq 1 \) be an integer.

i) Let \(b \) be an element of \(B(\operatorname{GSp}_{2d}) \) and \(b' \) the image of \(b \) under the natural map \(B(\operatorname{GSp}_{2d}) \rightarrow B(\operatorname{GL}_{2d}) \). Then \(b \) is basic if and only if \(b' \) is basic.
Tetsushi Ito and Yoichi Mieda

ii) The map \(B(\text{GSp}_{2d})_{\text{basic}} \to B(\text{GL}_{2d})_{\text{basic}} \) induced from i) is an injection.

Proof. Note that the center of \(\text{GSp}_{2d} \) coincides with that of \(\text{GL}_{2d} \). Thus i) is clear, since \(b \) (resp. \(b' \)) is basic if and only if the slope morphism \(\nu_b: \mathbb{D} \to \text{GSp}_{2d} \) (resp. \(\nu_{b'}: \mathbb{D} \to \text{GL}_{2d} \)) factors through the center of \(\text{GSp}_{2d} \) (resp. \(\text{GL}_{2d} \)).

We prove ii). By [RR96, Theorem 1.15], it suffices to show that the natural map \(\pi_1(\text{GSp}_{2d}) \to \pi_1(\text{GL}_{2d}) \) is injective. Take a maximal torus \(T \) (resp. \(T' \)) of \(\text{GSp}_{2d} \) (resp. \(\text{GL}_{2d} \)) such that \(T \subset T' \). Then, since \(\text{Sp}_{2d} \) (resp. \(\text{SL}_{2d} \)) is simply connected, \(\pi_1(\text{GSp}_{2d}) \) (resp. \(\pi_1(\text{GL}_{2d}) \)) can be identified with the quotient of \(X_s(T) \) (resp. \(X_s(T') \)) induced by \(c: T \to \mathbb{G}_m \) (resp. \(\det: T' \to \mathbb{G}_m \)), where \(c \) denotes the similitude character of \(\text{GSp}_{2d} \). In particular, both \(\pi_1(\text{GSp}_{2d}) \) and \(\pi_1(\text{GL}_{2d}) \) are isomorphic to \(\mathbb{Z} \).

The commutative diagram

\[
\begin{array}{ccc}
\text{GSp}_{2d} & \xrightarrow{c} & \mathbb{G}_m \\
\downarrow & & \downarrow z \mapsto z^d \\
\text{GL}_{2d} & \xrightarrow{\det} & \mathbb{G}_m
\end{array}
\]

induces the commutative diagram

\[
\begin{array}{ccc}
X_s(T) & \xrightarrow{\times d} & X_s(\mathbb{G}_m) \\
\downarrow & & \downarrow \\
X_s(T') & \xrightarrow{\times d} & X_s(\mathbb{G}_m)
\end{array}
\]

In particular, the natural map \(\pi_1(\text{GSp}_{2d}) \to \pi_1(\text{GL}_{2d}) \) is injective.

Therefore, there is a quasi-isogeny \(X \to A[p^{\infty}] \) preserving polarizations. If we replace \((X, \lambda_0) \) by the polarized \(p \)-divisible group \((A_0[p^{\infty}], \lambda_{A_0}) \) associated with \((A_0, \lambda_{A_0}) \), the \(G \)-representation \(H_{KZ} \) remains unchanged. Thus, in order to prove Theorem 3.2, we may assume that \((X, \lambda_0) = (A_0[p^{\infty}], \lambda_{A_0}) \). In the remaining part of this article, we always assume it. Moreover, we fix an isomorphism \(H_1(A_0, A_{\infty,p}) \cong V_{\lambda_{A_0}} \) preserving alternating pairings.

Denote the isogeny class of \((A_0, \lambda_{A_0}) \) by \(\phi \) and put \(I^\phi = \text{Aut}(\phi) \). We have natural group homomorphisms \(I^\phi \to J \) and \(I^\phi \to \text{Aut}(H_1(A_0, A_{\infty,p})) = \text{GSp}(V_{\lambda_{A_0}}) \). These are injective.

Let \(Y_{K^p} \) be the reduced closed subscheme of \(\text{Sh}_{K^p} \) such that \(Y_{K^p}(\mathbb{F}_p) \) consists of triples \((A, \lambda, \eta^p) \) where the \(p \)-divisible group associated with \((A, \lambda) \) is isogenous to \((X, \lambda) \). It is the basic (or supersingular) stratum in the Newton stratification of \(\text{Sh}_{K^p} \). Note that \((A, \lambda, \eta^p) \in \text{Sh}_{K^p}(\mathbb{F}_p) \) belongs to \(Y_{K^p}(\mathbb{F}_p) \) if and only if \((A, \lambda) \in \phi \) ([Far04, Proposition 3.1.8], [Kot92, §7]). We denote the formal completion of \(\text{Sh}_{K^p} \) along \(Y_{K^p} \) by \((\text{Sh}_{K^p})'_{Y_{K^p}} \).

Now we can state the \(p \)-adic uniformization theorem:
\section{\textit{ℓ-adic cohomology of the Rapoport-Zink space for $\text{GSp}(4)$}}

Theorem 4.2 ([RZ96, Theorem 6.30]) There exists a natural isomorphism of formal schemes:

\[
\theta_{K^p} : I^\phi \big(\tilde{\mathcal{M}} \times \text{GSp}(V'_{k_{\infty,p}})/K^p \big) \xrightarrow{\cong} (\text{Sh}_{K^p})_{/Y_{K^p}}.
\]

In the left hand side, I^ϕ acts on $\tilde{\mathcal{M}}$ through $I^\phi \hookrightarrow J$ and acts on $\text{GSp}(V'_{k_{\infty,p}})/K^p$ through $I^\phi \hookrightarrow \text{GSp}(V'_{k_{\infty,p}})$.

The isomorphisms $\{\theta_{K^p}\}_{K^p}$ are compatible with change of K^p. (It is also compatible with the Hecke action of $\text{GSp}_4(V'_{k_{\infty,p}})$, but we do not use it.)

Let us briefly recall the construction of the isomorphism θ_{K^p}. Take a lift $(\tilde{X}, \tilde{\lambda}_0)$ of (X, λ_0) over $\mathbb{Z}_{p\infty}$ (such a lift is unique up to isomorphism). Then, by the Serre-Tate theorem, the lift $(\tilde{A}_0, \tilde{\lambda}_{A_0})$ of (A_0, λ_{A_0}) is canonically determined. Let S be an object of $\text{Nilp}_p(A, \rho) \in \tilde{\mathcal{M}}(S)$ and $[g] \in \text{GSp}(V'_{k_{\infty,p}})/K^p$. Then ρ extends uniquely to the quasi-isogeny $\tilde{\rho} : \tilde{X} \times_{\mathbb{Z}_{p\infty}} S \rightarrow X$. We can see that there exist a polarized abelian variety (A, λ) and a p-quasi-isogeny $\tilde{A}_0 \times_{\mathbb{Z}_{p\infty}} S \rightarrow A$ preserving polarizations, such that the associated quasi-isogeny $\tilde{A}_0[p^\infty] \times_{\mathbb{Z}_{p\infty}} S \rightarrow A[p^\infty]$ coincides with $\tilde{\rho}$. The fixed isomorphism $H_1(A_0, \mathbb{A}^\infty) \cong V'_{k_{\infty,p}}$ naturally induces a K^p-level structure η of A. The morphism θ_{K^p} is given by $\theta_{K^p}((X, \rho), [g]) = (A, \lambda, \eta \circ g)$.

By composing the morphism $\tilde{\mathcal{M}} \rightarrow \tilde{\mathcal{M}} \times \text{GSp}(V'_{k_{\infty,p}})/K^p$; $x \mapsto (x, [id])$, we get a morphism $\tilde{\mathcal{M}} \rightarrow (\text{Sh}_{K^p})_{/Y_{K^p}}$, which is also denoted by θ_{K^p}. For $U \in \mathcal{Q}_0$, we denote the image of U under θ_{K^p} by $Y_{K^p}(U)$. It is an open subset of Y_{K^p}.

Proposition 4.3 Let U be an element of \mathcal{Q}_0. Then for a sufficiently small compact open subgroup K^p of $\text{GSp}(V'_{k_{\infty,p}})$, θ_{K^p} induces an isomorphism $U \cong Y_{K^p}(U)$.

Moreover, if we denote the open formal subscheme of $\tilde{\mathcal{M}}$ (resp. $(\text{Sh}_{K^p})_{/Y_{K^p}}$) whose underlying topological space is U (resp. $Y_{K^p}(U)$) by $\tilde{\mathcal{M}}_{/U}$ (resp. $(\text{Sh}_{K^p})_{/Y_{K^p}(U)}$), then θ_{K^p} induces an isomorphism $\theta_{K^p} : \tilde{\mathcal{M}}_{/U} \cong (\text{Sh}_{K^p})_{/Y_{K^p}(U)}$.

Proof. The proof is similar to [Far04, Corollaire 3.1.4]. Put $\Gamma_{K^p} = I^\phi \cap K^p$, where the intersection is taken in $\text{GSp}(V'_{k_{\infty,p}})$. It is known that Γ_{K^p} is discrete and torsion-free [RZ96]. By Theorem 4.2, θ_{K^p} gives an isomorphism from $\Gamma_{K^p} \setminus \tilde{\mathcal{M}}$ to an open and closed formal subscheme of $(\text{Sh}_{K^p})_{/Y_{K^p}}$. By the same method as in [Far04, Lemme 3.1.2, Proposition 3.1.3], we can see that every element $\gamma \in \Gamma_{K^p}$ other than 1 satisfies $\gamma \cdot U \cup U = \emptyset$ if K^p is sufficiently small. For such K^p, the natural morphism $\tilde{\mathcal{M}}_{/U} \rightarrow \Gamma_{K^p} \setminus \tilde{\mathcal{M}}$ is an open immersion. Thus we have an open immersion $\tilde{\mathcal{M}}_{/U} \hookrightarrow \Gamma_{K^p} \setminus \tilde{\mathcal{M}} \xrightarrow{\theta_{K^p}} (\text{Sh}_{K^p})_{/Y_{K^p}(U)}$, whose image is $(\text{Sh}_{K^p})_{/Y_{K^p}(U)}$.

Next we consider the case with Drinfeld level structures at p. Let Y_{m,K^p} be the closed subscheme of Sh_{m,K^p} obtained as the inverse image of Y_{K^p} under $\text{Sh}_{m,K^p} \hookrightarrow \text{Sh}_{K^p}$. By the construction of θ_{K^p} described above, we have the following result:
Corollary 4.4 Let \(m \geq 0 \) be an integer. We can construct naturally a morphism \(\theta_{m,K^p} : \mathcal{M}_m \rightarrow (\text{Sh}_{m,K^p})^h_{/Y_{m,K^p}} \) which makes the following diagram cartesian:

\[
\begin{align*}
\mathcal{M}_m & \xrightarrow{\theta_{m,K^p}} (\text{Sh}_{m,K^p})^h_{/Y_{m,K^p}} \\
\mathcal{M}_m & \xrightarrow{\theta_{m,K^p}} (\text{Sh}_{K^p})^h_{/Y_{K^p}}.
\end{align*}
\]

In particular, the similar result as Proposition 4.3 holds for \(\theta_{m,K^p} \); that is, for \(U \in \mathcal{Q}_m \), \(\theta_{m,K^p} \) induces \((\mathcal{M}_m)_{/U} \xrightarrow{\cong} (\text{Sh}_{m,K^p})^h_{/Y_{m,K^p}(U)} \) if \(K^p \) is sufficiently small.

5 Proof of the non-cuspidality result

5.1 The system of coefficients \(\mathcal{F}^{[h]}, \mathcal{F}^{(h)} \)

Definition 5.1 Let \(m \geq 1 \) and \(0 \leq h \leq 2 \) be integers. We denote by \(S_{m,h} \) the set of direct summands of \(L/p^m L \) of rank \(4 - h \), and by \(S_{m,h}^{\text{coi}} \) the subset of \(S_{m,h} \) consisting of coisotropic direct summands (recall that \(I \in S_{m,h} \) is said to be coisotropic if \(I^\perp \subset I \)).

For \(I \in S_{m,h} \), let \(\overline{\text{Sh}}_{m,K^p,[I]} \) be the \(\overline{\mathbb{F}}_p \)-scheme defined by

\[
\overline{\text{Sh}}_{m,K^p,[I]}(S) = \{ (A, \lambda, \eta^p, \eta_p) \in \overline{\text{Sh}}_{m,K^p,[I]}(S) \mid I \subset \text{Ker} \eta_p \}.
\]

Clearly it is a closed subscheme of \(\overline{\text{Sh}}_{m,K^p} \). Similarly, we can define the closed formal subscheme \(\mathcal{M}_{m,[I]} \) of \(\mathcal{M}_m \otimes_{\mathbb{Z}_p} \overline{\mathbb{F}}_p \). Obviously, \(\mathcal{M}_{m,[I]} \) is stable under the action of \(J \) on \(\mathcal{M}_m \).

We denote by \(Y_{m,K^p,[I]} \) the closed subscheme of \(\overline{\text{Sh}}_{m,K^p,[I]} \) obtained as the inverse image of \(Y_{m,K^p} \). As Corollary 4.4, we have the following cartesian diagram of formal schemes:

\[
\begin{align*}
\mathcal{M}_{m,[I]} & \xrightarrow{\theta_{m,K^p}} (\overline{\text{Sh}}_{m,K^p,[I]})^h_{/Y_{m,K^p,[I]}} \\
\mathcal{M}_m & \xrightarrow{\theta_{m,K^p}} (\text{Sh}_{m,K^p})^h_{/Y_{m,K^p}}.
\end{align*}
\]

Definition 5.2 For \(I \in S_m \), we put

\[
\overline{\text{Sh}}_{m,K^p,(I)} = \overline{\text{Sh}}_{m,K^p,[I]} \setminus \bigcup_{I' \in S_m, I \subseteq I'} \overline{\text{Sh}}_{m,K^p,[I']},
\]

which is an open subscheme of \(\overline{\text{Sh}}_{m,K^p,[I]} \), and thus is a subscheme of \(\overline{\text{Sh}}_{m,K^p} \). Moreover, for an integer \(h \) with \(0 \leq h \leq 2 \), we put \(\overline{\text{Sh}}_{m,K^p}^{[h]} = \bigcup_{I \in S_m} \overline{\text{Sh}}_{m,K^p,[I]}^{[h]} \) and
\(\text{\`etale inclusion is clear.}\)

\[\text{The latter part of iii) in Lemma 5.3 is the only place where the same}\]

\[\text{Remark 5.4} \quad \text{De} \text{\`e} \text{finition 5.5}\]

\[\text{It is clear from}\]

\[\text{Proof. Let us prove i). Put}\]

\[\text{immediate.}\]

\[\text{isogeny}\]

\[\text{nor slope 1 part, then it is a line of slope 1}\]

\[\text{Lemma 5.3}\]

\[\text{We have}\]

\[\text{For every integer}\]

\[\text{Let}\]

\[\text{has no multiplicative part. Therefore}\]

\[\text{rank}\]

\[\text{We define}\]

\[\text{with}\]

\[\text{We have}\]

\[\text{Proof.}\]

\[\text{By i),}\]

\[\text{\`etale part by i). Since}\]

\[\text{X}^\flat \cong \text{X}, \text{X has no multiplicative part. Therefore}\]

\[\text{is isoclinic of slope 1}\]

\[\text{indeed, if a Newton polygon with the terminal point (4, 2) has neither slope 0 part}\]

\[\text{nor slope 1 part, then it is a line of slope 1/2. Thus, by Lemma 4.1, there is a quasi-}\]

\[\text{isogeny}\]

\[\text{X} \longrightarrow \text{X preserving polarizations; namely,}\]

\[\text{The opposite inclusion is clear.}\]

\[\text{Remark 5.4}\]

\[\text{The latter part of iii) in Lemma 5.3 is the only place where the same}\]

\[\text{algorithm does not work in the case GSp(2d) with}\]

\[\text{Definition 5.5}\]

\[\text{Let}\]

\[\text{For}\]

\[\text{by}\]

\[\text{For an integer}\]

\[\text{For a}\]

\[\text{as}\]

\[\text{We define}\]

\[\text{and}\]

\[\text{as follows:}\]

\[\text{We define}\]

\[\text{as follows:}\]
Here $\theta_m: \mathcal{M}_m \to Y_{m,K^p}$ is the morphism induced from θ_{m,K^p} in Corollary 4.4.

These are independent of the choice of K^p; indeed, for another compact open subgroup K'^p contained in K^p, the natural map $\text{Sh}_{m,K^p} \to \text{Sh}_{m,K'^p}$ is étale.

Proposition 5.6 Let h be an integer with $1 \leq h \leq 2$.

i) We have the following distinguished triangle:

$$\mathcal{F}^{[h-1]}_m \to \mathcal{F}^h_m \to \mathcal{F}^{[h]}_m \to \mathcal{F}^{[h-1]}_m[1].$$

ii) We have $\mathcal{F}^{(h)}_m = \bigoplus_{I \in S_{m,h}} \mathcal{F}_{m,I}$.

Proof. By the definition, i) is clear. ii) is also clear from Lemma 5.3 ii). □

Proposition 5.7 For $I \in S_{m,h} \setminus S_{m,h}^{\text{coll}}$, we have $\mathcal{F}^o_{m,I} = \mathcal{F}_{m,I} = 0$.

Proof. We will prove that $Rj^1_{m,I}R\psi^1\mathbb{Z}_t = 0$. Since the dual of $Rj^1_{m,I}R\psi^1\mathbb{Z}_t$ is isomorphic to $j^1_{m,I}R\psi^1\mathbb{Z}_t(3)[6]$, it suffices to show that, for every $x \in \overline{\text{Sh}}_{m,K^p,(I)}(\mathbb{F}_p)$, no point on the generic fiber of Sh_{m,K^p} specializes to x. In other words, for every complete discrete valuation ring R with residue field \mathbb{F}_p which is a flat \mathbb{Z}_p-algebra, and every \mathbb{Z}_p^\times-morphism $\bar{x}: \text{Spec} R \to \text{Sh}_{m,K^p}$, the image of the closed point of $\text{Spec} R$ under \bar{x} does not lie in $\overline{\text{Sh}}_{m,K^p,(I)}$. This is a consequence of the following lemma. □

Lemma 5.8 Let R be a complete discrete valuation ring with perfect residue field k and with mixed characteristic $(0,p)$, and (X, λ) a polarized p-divisible group over R. We denote the generic (resp. special) fiber of X by X_g (resp. X_s). Then, for every $m \geq 1$, the kernel of the specialization map $X_g[p^m] \to X_s[p^m]$ is a coisotropic direct summand of $X_g[p^m]$.

Proof. We shall prove that the kernel of the specialization map $T_pX_g \to T_pX_s$ is a coisotropic direct summand of T_pX_g. Consider the exact sequence $0 \to X_g \to X_s \to X_{s,\text{ét}} \to 0$ over k. It is canonically lifted to the exact sequence $0 \to X_0 \to X \to X_{\text{ét}} \to 0$ over R, where $X_{\text{ét}}$ is an étale p-divisible group (cf. [Mes72, p. 76]). Thus we have the following commutative diagram, whose rows are exact:

$$
\begin{array}{cccccc}
0 & \to & T_pX_0 & \to & T_pX_g & \to & T_pX_{s,\text{ét}} & \to & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \cong & & \\
0 & \to & 0 & \to & T_pX_s & \to & T_pX_{s,\text{ét}} & \to & 0.
\end{array}
$$

Hence the kernel of $T_pX_g \to T_pX_s$ coincides with $T_pX_{0,g}$. Therefore it suffices to show that the composite $(T_pX_{0,g})^\perp \to T_pX_g \to T_pX_{s,\text{ét}}$ is 0.

On the other hand, by the polarization $T_pX_g \cong (T_pX_{0,g})^\vee(1)$, $(T_pX_{0,g})^\perp$ corresponds to $(T_pX_{s,\text{ét},g})^\vee(1) \cong T_pX_{s,\text{ét},g}^\vee$. Thus it suffices to prove that every Galois-equivariant homomorphism $T_pX_{s,\text{ét},g}^\vee \to T_pX_{s,\text{ét},g}$ is 0. For this, we may replace the
Tate modules $T_p^\vee X_{s,\text{ét},q}$ and $T_p X_{s,\text{ét},q}$ by the rational Tate modules $V_p^\vee X_{s,\text{ét},q}$ and $V_p X_{s,\text{ét},q}$. These are crystalline representations and the corresponding filtered φ-modules are the rational Dieudonné modules $D(X_{s,\text{ét}}^\vee)_Q$ and $D(X_{s,\text{ét}})_Q$, respectively. Since the slope of the former is 1 and that of the latter is 0, there is no φ-homomorphism other than 0 from $D(X_{s,\text{ét}}^\vee)_Q$ to $D(X_{s,\text{ét}})_Q$. This completes the proof.

The following corollary is immediate from Proposition 5.6 ii) and Proposition 5.7.

Corollary 5.9 For h with $1 \leq h \leq 2$, we have $\mathcal{F}_m^{(h)} = \bigoplus_{I \in \mathcal{S}_m} \mathcal{F}_{m, I}$.

Let us consider the action of K_0. Since K_0/K_m naturally acts on $\text{Sh}_{m,K}$ and the action of $g \in K_0/K_m$ maps $\text{Sh}_{m,K}^{[l]}$ to $\text{Sh}_{m,K}^{[g^{-1}l]}$, the complexes $\text{Sh}_{m,K}$ and $\text{Sh}_{m,K}^{[h]}$ are preserved by the action of K_0/K_m. Therefore $\mathcal{F}_m^{[h]}$, \mathcal{F}_m, $\mathcal{F}_m^{(h)}$ and $\mathcal{F}_m^{(h)}$ have natural K_0/K_m-equivariant structures. Moreover, in the same way as in [Mie10a, Proposition 2.5], we can observe that $\mathcal{F}_m^{[h]} \{ \mathcal{F}_m^{[h]} \}_{m \geq 1}$ and $\mathcal{F}_m^{(h)} \{ \mathcal{F}_m^{(h)} \}_{m \geq 1}$ form systems of coefficients (resp. integral coefficients) over $\{ \mathcal{M}_m \}_{m \geq 1}$.

Thanks to [Mie10b], we can define J-equivariant structures on the systems of coefficients introduced above.

Proposition 5.10 The complexes \mathcal{F}_m^0, $\mathcal{F}_m^{[h]}$, $\mathcal{F}_m^{(h)}$, \mathcal{F}_m, $\mathcal{F}_m^{[h]}$ and $\mathcal{F}_m^{(h)}$ have natural J-equivariant structures. These structures are compatible with the distinguished triangles and the direct sum decompositions in Proposition 5.6.

Proof. We will prove the proposition for $\mathcal{F}_m^{(h)}$; other cases are similar. Put

$$\text{Sh}_{m,K}^{[h]} = (\text{Sh}_{m,K})^{[h]} \times \text{Sh}_{m,K}^{[h]} \times \text{Sh}_{m,K}^{[h]} \times \text{Sh}_{m,K}^{[h]} \times (\text{Sh}_{m,K}^{[h]} \times \text{Sh}_{m,K}^{[h]} \times \text{Sh}_{m,K}^{[h]}),$$

$$\mathcal{M}_m^{[h]} = \mathcal{M}_m \times (\text{Sh}_{m,K}^{[h]})^{[h]} \times \text{Sh}_{m,K}^{[h]} \times \text{Sh}_{m,K}^{[h]} \times \mathcal{M}_m^{[h]}.$$

Then, by [Mie10b, Proposition 3.11], we have the canonical isomorphism

$$(R_{j_m^{(h)}} R_{j_m^{[h]}} R_{\Psi,Q_\ell})|_{Y_m,K} \cong R_{(\text{Sh}_{m,K})^{[h]} \times \text{Sh}_{m,K}^{[h]} \times \text{Sh}_{m,K}^{[h]}} Q_\ell.$$

Moreover, since $\theta_{m,K}$ is étale (cf. Corollary 4.4), by [Mie10b, Proposition 3.14], we have the canonical isomorphism

$$\mathcal{F}_m^{(h)} \cong R_{\mathcal{M}_m^{[h]} \times \mathcal{M}_m^{(h)}} Q_\ell.$$

Since the action of J on \mathcal{M}_m preserves the closed formal subscheme $\mathcal{M}_m^{[h]}$ for every $I \in \mathcal{S}_m$, it also preserves the closed formal subscheme $\mathcal{M}_m^{(h)}$ for every h. Thus, by the functoriality [Mie10b, Proposition 3.7], $R_{\mathcal{M}_m^{[h]} \times \mathcal{M}_m^{(h)}} Q_\ell$ has a natural J-equivariant structure. We may import the structure into $\mathcal{F}_m^{(h)}$ by the isomorphism above.

The compatibilities with the exact sequence and the direct sum decomposition are clear from the construction (cf. [Mie10b, Remark 3.8]).
It is easy to see that the actions defined in the previous proposition give J-equivariant structures on the systems of (integral) coefficients $\mathcal{F}^{[h]}$, $\mathcal{F}^{[0]}$, $\mathcal{F}^{[h]}$ and $\mathcal{F}^{[h]}$. Thus we get the smooth representations $H_c^i(\mathcal{M}_\infty, \mathcal{F}^{[h]})$ and $H_c^i(\mathcal{M}_\infty, \mathcal{F}^{[h]})$ of $K_0 \times J$ (cf. Corollary 3.7).

Proposition 5.11 There exists an isomorphism $H_c^i(\mathcal{M}_\infty, \mathcal{F}^{[0]}) \cong H_{RZ}^i$, which is compatible with the action of $K_0 \times J$.

Proof. Let $m \geq 1$ be an integer and $U \in \mathcal{O}_m$. Then, by [Mie10b, Corollary 4.40] and Proposition 4.3, we have the J-equivariant isomorphism

$$H_c^i(U, \mathcal{F}^{[0]}|_U) \cong H_c^i((\mathcal{M}_m)^{rig} \otimes_{\mathbb{Q}_p} \overline{\mathbb{Q}}_p^\infty, \mathbb{Q}_\ell).$$

Since this isomorphism is functorial, we have $K_0 \times J$-equivariant isomorphisms

$$H_c^i(\mathcal{M}_m, \mathcal{F}^{[0]}) \cong \lim_{U \subset \mathcal{M}_m} H_c^i((\mathcal{M}_m)^{rig} \otimes_{\mathbb{Q}_p} \overline{\mathbb{Q}}_p^\infty, \mathbb{Q}_\ell) \cong H_c^i(\mathcal{M}_m^{rig} \otimes_{\mathbb{Q}_p} \overline{\mathbb{Q}}_p^\infty, \mathbb{Q}_\ell).$$

For the isomorphy of (*), we need [Hub98, Proposition 2.1 (iv)] and [Mie10b, Lemma 4.14].

Remark 5.12 We can deduce from Proposition 5.11 and Corollary 3.7 that the action of $K_0 \times J$ on H_{RZ}^i is smooth.

5.2 G-action on $H_c^i(\mathcal{M}_\infty, \mathcal{F}^{[h]})$, $H_c^i(\mathcal{M}_\infty, \mathcal{F}^{[h]})$

In this subsection, we define actions of G on $H_c^i(\mathcal{M}_\infty, \mathcal{F}^{[h]})$ and $H_c^i(\mathcal{M}_\infty, \mathcal{F}^{[h]})$ by using the method in [Man05, §6]. Put $G^+ = \{ g \in G \mid g^{-1}L \subset L \}$, which is a submonoid of G. For $g \in G^+$, let $e(g)$ be the minimal non-negative integer such that $\text{Ker}(g^{-1}: V/L \rightarrow V/L)$ is contained in $p^{-e(g)}L/L$. Since $\text{Ker} g^{-1} = (gL+L)/L$, we have $gL \subset p^{-e(g)}L$.

In the sequel, we fix a compact open subgroup K^p of $\text{GSp}(V^{\infty,p})$ and denote Sh_{m,K^p}, $\overline{\text{Sh}}_{m,K^p}$, $\overline{\text{Sh}}_{m,K^p,[l]}$, \ldots by Sh_m, $\overline{\text{Sh}}_m$, $\overline{\text{Sh}}_{m,[l]}$, \ldots, respectively. Moreover, we fix $g \in G^+$ and denote $e(g)$ by e for simplicity.

Assume that $m \geq e$. Let us consider the \mathbb{Z}_p^∞-scheme $\text{Sh}_{m,g}$ such that for a \mathbb{Z}_p^∞-scheme S, the set $\text{Sh}_{m,g}(S)$ consists of isomorphism classes of quintuples $(A, \lambda, \eta^p, \eta_p, \mathcal{E})$ satisfying the following.

- The quadruple $(A, \lambda, \eta^p, \eta_p)$ gives an element of $\text{Sh}_m(S)$.
- $\mathcal{E} \subset X[p^c]$ is a finite flat subgroup scheme of order $p^{e_p(\det g^{-1})}$, where we put $X = A[p^\infty]$. It is self-dual with respect to λ, and satisfies $\eta_p(\text{Ker} g^{-1}) \subset \mathcal{E}(S)$, where η_p denotes the composite $p^{-m}L/L \times_{p^m} L/p^mL \rightarrow X[p^m]$.

18
ℓ-adic cohomology of the Rapoport-Zink space for $\text{GSp}(4)$

- For E as above, we have the following commutative diagram:

$$
\begin{array}{ccc}
p^{-m}L/L & \xrightarrow{\eta'_p} & X[p^m]/\mathcal{E} \\
\downarrow{g^{-1}} & & \downarrow{g^{-1}} \\
p^{-m}g^{-1}L/L & \xrightarrow{\eta'_p} & X[p^m]/\mathcal{E} \\
\uparrow{\Phi} & & \uparrow{\Phi} \\
L/p^{m+e}L & \xrightarrow{\sim} & p^{-m+e}L/L \\
\end{array}
$$

We denote the composite of the lowest row by $\eta_p \circ g$ and assume that it gives a Drinfeld $(m - e)$-level structure.

We have the two natural morphisms

$$
\text{pr}: \text{Sh}_{m,g} \longrightarrow \text{Sh}_m; (A, \lambda, \eta^p, \eta_p, \mathcal{E}) \longrightarrow (A, \lambda, \eta^p, \eta_p),
$$

$$
[g]: \text{Sh}_{m,g} \longrightarrow \text{Sh}_{m-e}; (A, \lambda, \eta^p, \eta_p, \mathcal{E}) \longrightarrow (A/\mathcal{E}, \lambda, \eta^p, \eta_p \circ g).
$$

It is known that these are proper morphisms, pr induces an isomorphism on the generic fibers, and $[g]$ induces the action of g on the generic fibers [Man05, Proposition 16, Proposition 17].

We can easily see that $\{\text{Sh}_{m,g}\}_{m \geq e}$ form a projective system whose transition maps are finite. Obviously, pr and $[g]$ are compatible with change of m.

Similarly we can define the formal scheme $\hat{M}_{m,g}$ and the morphisms $\text{pr}: \hat{M}_{m,g} \longrightarrow \hat{M}_m$ and $[g]: \hat{M}_{m,g} \longrightarrow \hat{M}_{m-e}$. The former morphism induces an isomorphism on the Raynaud generic fibers and the composite $[g]^{\text{rig}} \circ (\text{pr}^{\text{rig}})^{-1}$ coincides with the action of g. The group J naturally acts on $\hat{M}_{m,g}$ and two morphisms pr and $[g]$ are compatible with the action of J. Moreover, if we denote by $Y_{m,g}$ the inverse image of $Y_m \subset \text{Sh}_m$ under $\text{pr}: \text{Sh}_{m,g} \longrightarrow \text{Sh}_m$, then we can construct a morphism $\theta_{m,g}: \hat{M}_{m,g} \longrightarrow (\text{Sh}_{m,g})^{\wedge}_{Y_{m,g}}$ which makes the following diagrams cartesian:

$$
\begin{array}{ccc}
\hat{M}_{m,g} & \xrightarrow{\theta_{m,g}} & (\text{Sh}_{m,g})^{\wedge}_{Y_{m,g}} \\
\downarrow{\text{pr}} & & \downarrow{\text{pr}} \\
\hat{M}_m & \xrightarrow{\theta_{m}} & (\text{Sh}_m)^{\wedge}_{Y_m}. \\
\end{array}
$$

$$
\begin{array}{ccc}
\hat{M}_{m,g} & \xrightarrow{\theta_{m,g}} & (\text{Sh}_{m,g})^{\wedge}_{Y_{m-g}} \\
\downarrow{[g]} & & \downarrow{[g]} \\
\hat{M}_{m-e} & \xrightarrow{\theta_{m-e}} & (\text{Sh}_{m-e})^{\wedge}_{Y_{m-e}}. \\
\end{array}
$$

Now let h be an integer with $1 \leq h \leq 2$ and $I \in S_{m,h}$. Then we can define the subschemes $\overline{\text{Sh}}_{m,g,I}$, $\overline{\text{Sh}}_{m,g,I}$, $\overline{\text{Sh}}_{m,g}^{[h]}$ and $\overline{\text{Sh}}_{m,g}^{(h)}$ of $\text{Sh}_{m,g}$ in the same way as $\overline{\text{Sh}}_{m,I}$, $\overline{\text{Sh}}_{m,I}$, $\overline{\text{Sh}}_{m}^{[h]}$ and $\overline{\text{Sh}}_{m}^{(h)}$. The following proposition is obvious:

Proposition 5.13 We have the commutative diagrams below:

$$
\begin{array}{ccc}
\overline{\text{Sh}}_{m,g,I} & \longrightarrow & \overline{\text{Sh}}_{m,g,I} \\
\downarrow{\text{pr}} & & \downarrow{\text{pr}} \\
\overline{\text{Sh}}_{m,I} & \longrightarrow & \overline{\text{Sh}}_{m,I} \\
\end{array}
$$

$$
\begin{array}{ccc}
\overline{\text{Sh}}_{m,g}^{[h]} & \longrightarrow & \overline{\text{Sh}}_{m,g}^{[h]} \\
\downarrow{\text{pr}} & & \downarrow{\text{pr}} \\
\overline{\text{Sh}}_{m}^{[h]} & \longrightarrow & \overline{\text{Sh}}_{m}^{[h]} \\
\end{array}
$$

$$
\begin{array}{ccc}
\overline{\text{Sh}}_{m,g}^{(h)} & \longrightarrow & \overline{\text{Sh}}_{m,g}^{(h)} \\
\downarrow{\text{pr}} & & \downarrow{\text{pr}} \\
\overline{\text{Sh}}_{m}^{(h)} & \longrightarrow & \overline{\text{Sh}}_{m}^{(h)} \\
\end{array}
$$

19
The rectangles in the left diagram is cartesian. The rectangles in the right diagram is cartesian up to nilpotent elements (namely, \(\overline{\text{Sh}}_{m,g}^{[I]} \rightarrow \overline{\text{Sh}}_{m}^{[I]} \times \overline{\text{Sh}}_{m,g} \) induces a homeomorphism on the underlying topological spaces, and so on).

Let us consider how \(\overline{\text{Sh}}_{m,g,[I]} \) are mapped by \([g]: \text{Sh}_{m,g} \rightarrow \text{Sh}_{m-e} \). For this purpose, let us introduce some notation.

Definition 5.14 We denote by \(S_{\infty,h} \) the set of direct summands of \(L \) of rank \(4-h \) and by \(S_{\infty,h}^{\text{coi}} \) the subset of \(S_{\infty,h} \) consisting of coisotropic direct summands. We can identify \(S_{\infty,h} \) with the set of direct summands of \(V \) of rank \(4-h \); thus \(G \) naturally acts on \(S_{\infty,h} \) and \(S_{\infty,h}^{\text{coi}} \). Let \(g^{-1}: S_{m,h} \rightarrow S_{m-e,h} \) be the unique map which makes the following diagram commutative:

\[
\begin{array}{ccc}
S_{\infty,h} & \rightarrow & S_{m,h} \\
\downarrow g^{-1} & & \downarrow g^{-1} \\
S_{\infty,h} & \rightarrow & S_{m-e,h}.
\end{array}
\]

The existence of such \(g^{-1} \) follows from \(p^m L \subseteq p^e L \subseteq g^{-1}L \subseteq L \). Indeed, for direct summands \(I, I' \) of \(V \), we have

\[
I \cap L + p^m L = I' \cap L + p^m L \implies g^{-1}I \cap g^{-1}L + p^m L = g^{-1}I' \cap g^{-1}L + p^m L \\
\implies g^{-1}I \cap g^{-1}L \cap p^e L + p^m L = g^{-1}I' \cap g^{-1}L \cap p^e L + p^m L \\
\iff g^{-1}I \cap L + p^{m-e} L = g^{-1}I' \cap L + p^{m-e} L.
\]

Obviously \(g^{-1}: S_{m,h} \rightarrow S_{m-e,h} \) induces a map from \(S_{m,h}^{\text{coi}} \) to \(S_{m-e,h}^{\text{coi}} \).

Proposition 5.15

i) For \(h \in \{1,2\} \) and \(I \in S_{m,h} \), \([g]\) induces morphisms

\[
\begin{align*}
\text{Sh}_{m,g,[I]} & \rightarrow \text{Sh}_{m-e,[g^{-1}I]}, \\
\text{Sh}_{m,g}^{[h]} & \rightarrow \text{Sh}_{m-e}^{[h]}, \\
\text{Sh}_{m,g}^{[h]} & \rightarrow \text{Sh}_{m-e}^{[h]}.
\end{align*}
\]

ii) The rectangles of the following commutative diagram is cartesian up to nilpotent elements:

\[
\begin{array}{ccc}
\text{Sh}_{m,g}^{[h]} & \rightarrow & \text{Sh}_{m,g}^{[h]} \\
\downarrow & & \downarrow \quad [g] \\
\text{Sh}_{m-e}^{[h]} & \rightarrow & \text{Sh}_{m-e}^{[h]}
\end{array}
\]

Proof. By the definition of \([g]\), it is clear that \([g]\) induces a morphism \(\text{Sh}_{m,g,[I]} \rightarrow \text{Sh}_{m-e,[g^{-1}I]} \) for \(I \in S_{m,h} \), and thus induces a morphism \(\text{Sh}_{m,g}^{[h]} \rightarrow \text{Sh}_{m-e}^{[h]} \). On the other hand, note that, for every \((A,\lambda,\eta^p,\eta_p,E) \in \text{Sh}_{m,g}(\overline{\mathbb{F}}_p)\), the \(p \)-divisible groups \(A[p^\infty] \) and \(A[p^\infty]/E \) are isogenous, and thus have the same \(\acute{e} \text{tale heights.} \)
η-adic cohomology of the Rapoport-Zink space for $\text{GSp}(4)$

Therefore, by Lemma 5.3 i), the inverse image of $\overline{\text{Sh}}_{m-e}^{[h]}$ (resp. $\overline{\text{Sh}}_{m-e}^{(h)}$) under $[g]$ coincides with $\overline{\text{Sh}}_{m-g}^{[h]}$ (resp. $\overline{\text{Sh}}_{m-g}^{(h)}$) as sets. Therefore a morphism $\overline{\text{Sh}}_{m-g}^{(h)} \rightarrow \overline{\text{Sh}}_{m-e}^{(h)}$ is naturally induced and the rectangles in the diagram above are cartesian up to nilpotent elements. Finally, since $\overline{\text{Sh}}_{m-g,[I]} = \overline{\text{Sh}}_{m,g,[I]} \cap \overline{\text{Sh}}_{m-g}^{(h)}$ and $\overline{\text{Sh}}_{m-e,(g-1)[I]} = \overline{\text{Sh}}_{m-e,[g-1]I} \cap \overline{\text{Sh}}_{m-e}^{(h)}$, $[g]$ induces a morphism $\overline{\text{Sh}}_{m,g,[I]} \rightarrow \overline{\text{Sh}}_{m-e,(g-1)[I]}$.

By Proposition 5.13 and Proposition 5.15, we have the natural cohomological correspondence γ_g from $\mathcal{F}_{m-e}^{[h]}$ (resp. $\mathcal{F}_{m-e}^{(h)}$) to $\mathcal{F}_m^{[h]}$ (resp. $\mathcal{F}_{m}^{(h)}$); see §6. This cohomological correspondence induces a homomorphism γ_g from $H_c^j(\overline{\mathcal{M}}_{m-e}, \mathcal{F}_{m-e}^{[h]})$ (resp. $H_c^j(\overline{\mathcal{M}}_{m-e}, \mathcal{F}_{m-e}^{(h)})$) to $H_c^j(\mathcal{M}, \mathcal{F}_m^{[h]})$ (resp. $H_c^j(\mathcal{M}, \mathcal{F}_m^{(h)})$). Indeed, for $U \in \mathcal{Q}_{m-e}$, we can take $U' \in \mathcal{Q}_{m}$ which contains $\text{pr}(\overline{\mathcal{M}}_{m-e})$. Then γ_g induces $H_c^j(U, \mathcal{F}_{m-e}^{[h]}) \rightarrow H_c^j(U', \mathcal{F}_m^{[h]})$, and therefore induces $H_c^j(\mathcal{M}_{m-e}, \mathcal{F}_{m-e}^{[h]}) \rightarrow H_c^j(\mathcal{M}, \mathcal{F}_m^{[h]})$. It is easy to see that this homorphism is compatible with change of m; hence we get the endomorphism γ_g on $H_c^j(\mathcal{M}, \mathcal{F}_m^{[h]})$ and $H_c^j(\mathcal{M}, \mathcal{F}_m^{(h)})$.

Lemma 5.16 The endomorphism γ_g commutes with the action of J on $H_c^j(\mathcal{M}, \mathcal{F}_m^{[h]})$ and $H_c^j(\mathcal{M}, \mathcal{F}_m^{(h)})$.

Proof. We will only consider γ_g on $H_c^j(\mathcal{M}, \mathcal{F}_m^{[h]})$, since the other case is similar. Let $U \in \mathcal{Q}_{m-e}$ and $U' \in \mathcal{Q}_m$ be as above and put $W = [g]^{-1}(U)$, $W' = \text{pr}^{-1}(U')$. It suffices to show the commutativity of the following diagram for $j \in J$:

\[
\begin{array}{ccc}
H_c^j(U, \mathcal{F}_{m-e}^{[h]}) & \xrightarrow{[g]^*} & H_c^j(W, \mathcal{F}_m^{[h]}) \\
\downarrow j & & \downarrow j \\
H_c^j(U', \mathcal{F}_{m-e}^{[h]}) & \xrightarrow{[g]^*} & H_c^j(W', \mathcal{F}_m^{[h]})
\end{array}
\]

By the construction of the J-actions, the left and the middle rectangles are commutative. On the other hand, since pr is proper and induces an isomorphism on the generic fiber, pr^* is an isomorphism and its inverse is pr^*. As pr^* commutes with the J-action, the right rectangle above is also commutative. This concludes the proof.

Lemma 5.17 i) For $g, g' \in G^+$, $\gamma_{gg'} = \gamma_g \circ \gamma_{g'}$.

ii) For $g \in K_0$, γ_g coincides with the action of K_0 on $H_c^j(\mathcal{M}, \mathcal{F}_m^{[h]})$ or $H_c^j(\mathcal{M}, \mathcal{F}_m^{(h)})$, which we already introduced.

iii) The endomorphism $\gamma_{[p^{-1}]^* \text{id}}$ an isomorphism (in fact, it coincides with the action of $p^{-1} \cdot \text{id} \in J$).

Proof. i) follows from Corollary 6.3. ii) and iii) are consequences of [Man05, Proposition 16, Proposition 17] and the analogous properties for the Rapoport-Zink spaces (cf. [Man04, Proposition 7.4 (4), (5)]).
Note that G is generated by G^+ and $p \cdot \text{id}$ as a monoid. Therefore, by the lemma above, we can extend the actions of K_0 on $H^i_c(\mathcal{M}_\infty, \mathcal{F}^{[h]})$ and $H^i_c(\mathcal{M}_\infty, \mathcal{F}^{[h]})$ to whole G. Together with Lemma 5.16, we have a smooth $G \times J$-module structures on $H^i_c(\mathcal{M}_\infty, \mathcal{F}^{[h]})$ and $H^i_c(\mathcal{M}_\infty, \mathcal{F}^{[h]})$. We can observe without difficulty that the isomorphism in Proposition 5.11 is in fact compatible with the action of G:

Proposition 5.18 The isomorphism $H^i_c(\mathcal{M}_\infty, \mathcal{F}^{[0]}) \cong H^i_{R\mathbb{Z}}$ in Proposition 5.11 is an isomorphism of $G \times J$-modules.

Next we investigate the G-module structure of $H^i_c(\mathcal{M}_\infty, \mathcal{F}^{[h]})$ for $h \in \{1, 2\}$. Let us fix an element $\tilde{I}(h)$ of $S^\text{col}_{\infty,h}$ and denote its image under the natural map $S^\text{col}_{\infty,h} \rightarrow S^\text{col}_{m,h}$ by $\tilde{I}(h)_m$. Put $P_h = \text{Stab}_G(\tilde{I}(h))$, which is a maximal parabolic subgroup of G. Then we can identify $S_{\infty,h}$ with $G/P_h = K_0/(P_h \cap K_0)$ and $S_{m,h}$ with $K_m \backslash G/P_h = K_m \backslash K_0/(P_h \cap K_0)$. For $g \in G^+$ and an integer m with $m \geq e := e(g)$, $g^{-1}: S_{m,h} \rightarrow S_{m-e,h}$ is identified with the map $K_m \backslash G/P_h \rightarrow K_{m-e} \backslash G/P_h$.

Definition 5.19 We put $H^i_c(\mathcal{M}_\infty, \mathcal{F}_{\tilde{I}(h)_m}) = \lim_{\rightarrow m} H^i_c(\mathcal{M}_m, \mathcal{F}_m, \tilde{I}(h)_m)$. Here the transition maps are given as follows: for integers $1 \leq m \leq m'$,

$H^i_c(\mathcal{M}_m, \mathcal{F}_m, \tilde{I}(h)_m) \rightarrow H^i_c(\mathcal{M}_{m'}, \mathcal{F}_{m'}, \tilde{I}(h)_m) \rightarrow \bigoplus_{I' \in S^\text{col}_{m',h}} H^i_c(\mathcal{M}_{m'}, \mathcal{F}_{m', I'})$,

$\rightarrow H^i_c(\mathcal{M}_{m'}, \mathcal{F}_{m', \tilde{I}(h)_{m'}})$.

It is easy to see that $H^i_c(\mathcal{M}_\infty, \mathcal{F}_{\tilde{I}(h)})$ has a structure of a smooth $P_h \times J$-module (use Theorem 3.4 and Proposition 5.15 i)). For each $m \geq 1$ we have the homomorphism

$H^i_c(\mathcal{M}_m, \mathcal{F}^{[h]}) = \bigoplus_{I \in S^\text{col}_{m,h}} H^i_c(\mathcal{M}_m, \mathcal{F}_m, I) \rightarrow H^i_c(\mathcal{M}_m, \mathcal{F}_m, \tilde{I}(h)_m)$,

which induces the homomorphism $H^i_c(\mathcal{M}_\infty, \mathcal{F}^{[h]}) \rightarrow H^i_c(\mathcal{M}_\infty, \mathcal{F}_{\tilde{I}(h)})$. By Proposition 5.15 i), we can prove that this is a homomorphism of $P_h \times J$-modules.

Proposition 5.20 We have an isomorphism $H^i_c(\mathcal{M}_\infty, \mathcal{F}^{[h]}) \cong \text{Ind}_{P_h}^G H^i_c(\mathcal{M}_\infty, \mathcal{F}_{\tilde{I}(h)})$ of $G \times J$-modules.

Proof. By the Frobenius reciprocity, we have a G-homomorphism $H^i_c(\mathcal{M}_\infty, \mathcal{F}^{[h]}) \rightarrow \text{Ind}_{P_h}^G H^i_c(\mathcal{M}_\infty, \mathcal{F}_{\tilde{I}(h)})$. We shall observe that this is bijective. For an integer $m \geq 1$, we have

$H^i_c(\mathcal{M}_m, \mathcal{F}^{[h]}) = \bigoplus_{I \in S^\text{col}_{m,h}} H^i_c(\mathcal{M}_m, \mathcal{F}_m, I) = \bigoplus_{g \in K_0/K_0}(P_h \cap K_0) H^i_c(\mathcal{M}_m, \mathcal{F}_m, g^{-1}\tilde{I}(h)_m)$

$\cong \text{Ind}_{(P_h \cap K_0)/(P_h \cap K_0)}^{K_0/K_0} H^i_c(\mathcal{M}_m, \mathcal{F}_m, \tilde{I}(h)_m)$.
ℓ-adic cohomology of the Rapoport-Zink space for GSp(4)

where the last isomorphism, due to [Boy99, Lemme 13.2], is an isomorphism as K_0-modules. By taking the inductive limit, we have isomorphisms

$$H^i_c(\mathcal{M}_\infty, \mathcal{F}^{(h)}) \cong \text{Ind}_{P_h \cap K_0}^{K_0} H^i_c(\mathcal{M}_\infty, \mathcal{F}_{\tilde{I}(h(m))})$$

(the second isomorphism follows from the Iwasawa decomposition $G = P_h K_0$). By the proof of [Boy99, Lemme 13.2], it is easy to see that the first isomorphism above is nothing but the K_0-homomorphism obtained by the Frobenius reciprocity for $P_h \cap K_0 \subset K_0$. Therefore the composite of the two isomorphisms above coincides with the G-homomorphism introduced at the beginning of this proof. Thus we conclude the proof.

5.3 Proof of the main theorem

We begin with the following result on non-cuspidality:

Theorem 5.21 For every $i \in \mathbb{Z}$ and $h \in \{1, 2\}$, the G-module $H^i_c(\mathcal{M}_\infty, \mathcal{F}^{(h)})_{\overline{\mathbb{Q}_\ell}}$ has no quasi-cuspidal subquotient.

By Proposition 5.20 and [Ber84, 2.4], it suffices to show the following proposition:

Proposition 5.22 Let $h \in \{1, 2\}$. The unipotent radical U_h of P_h acts trivially on $H^i_c(\mathcal{M}_\infty, \mathcal{F}_{\tilde{I}(h)})_{\overline{\mathbb{Q}_\ell}}$.

To prove Proposition 5.22, we need some preparations. In the sequel, let G and H be connected reductive groups over \mathbb{Q}_p, P a parabolic subgroup of G and U the unipotent radical of P. We put $P = P(\mathbb{Q}_p)$, $H = H(\mathbb{Q}_p)$ and $U = U(\mathbb{Q}_p)$.

Lemma 5.23 Let A be a noetherian \mathbb{Q}-algebra and V an A-module with a smooth P-action. Assume that V is A-admissible in the sense of [Ber84, 1.16]. Then U acts on V trivially.

Proof. First assume that A is Artinian. Then we can prove the lemma in the same way as [Boy99, Lemme 13.2.3] (we use length in place of dimension).

For the general case, we use noetherian induction. Assume that the lemma holds for every proper quotient of A. Take a minimal prime ideal \mathfrak{p} of A. Then $A_\mathfrak{p}$ is Artinian and $V_\mathfrak{p}$ is an $A_\mathfrak{p}$-admissible representation of P (note that $(V_\mathfrak{p})^K = (V^K)_\mathfrak{p}$ for every compact open subgroup K of P). Therefore U acts on $V_\mathfrak{p}$ trivially. Let V' (resp. V'') be the kernel (resp. image) of $V \rightarrow V_\mathfrak{p}$. Note that V' and V'' are A-admissible representations of P, for A is noetherian.

Consider the following commutative diagram:

$$
\begin{array}{cccccc}
0 & \rightarrow & V' & \rightarrow & V & \rightarrow & V'' & \rightarrow & 0 \\
& & (1) & & (2) & & (3) \\
0 & \rightarrow & V'_U & \rightarrow & V_U & \rightarrow & (V_\mathfrak{p})_U. \\
\end{array}
$$

23
It is well-known that the functor taking U-coinvariant $V \mapsto V_U$ is an exact functor; thus the lower row in the diagram above is exact. On the other hand, the arrow labeled (3) is injective, since it is the composite of $V'' \hookrightarrow V_p \xrightarrow{\cong} (V_p)_U$. Therefore, by the snake lemma, the injectivity of (2) is equivalent to that of (1). In other words, we have only to prove that the action of U on V' is trivial.

On the other hand, by the definition, V' is the union of $V_s := \{x \in V \mid sx = 0\}$ for $s \in A \setminus p$. Since V_s can be regarded as an admissible $A/(s)$-representation, U acts on V_s trivially by the induction hypothesis. Hence U acts on V' trivially.

Proposition 5.24 Let V be a smooth representation of $P \times H$ over $\overline{\mathbb{Q}}_l$ and assume that for every compact open subgroup K of P, V^K is a finitely generated H-module. Then U acts on V' trivially.

Proof. Since $\overline{\mathbb{Q}}_l$ and \mathbb{C} are isomorphic as fields, we may replace $\overline{\mathbb{Q}}_l$ in the statement by \mathbb{C}. Let \mathfrak{Z} be the Bernstein center of H [Ber84]. It is decomposed as $\mathfrak{Z} = \prod_{\theta \in \Theta} \mathfrak{Z}_\theta$, where Θ denotes the set of connected components of the Bernstein variety of H. For $\theta \in \Theta$, we denote the θ-part of V by V_θ. Then we have the canonical decomposition $V = \bigoplus_{\theta \in \Theta} V_\theta$, which is compatible with the action of $P \times H$. Therefore, by replacing V with V_θ, we may assume that the action of \mathfrak{Z} on V factors through \mathfrak{Z}_θ for some $\theta \in \Theta$.

By the assumption and [Ber84, Proposition 3.3], for every compact open subgroup K of P, V^K is a \mathfrak{Z}_θ-admissible H-module. Namely, for every compact open subgroup K (resp. K') of P (resp. H), $V^K \times K'$ is a finitely generated \mathfrak{Z}_θ-module. In other words, for every compact open subgroup K' of H, V^K is a \mathfrak{Z}_θ-admissible P-module. Since \mathfrak{Z}_θ is a finitely generated \mathbb{C}-algebra, U acts trivially on V^K by Lemma 5.23. Therefore U acts trivially on V also.

Proof of Proposition 5.24. By Proposition 5.24, we have only to prove that, for every $m \geq 1$, $H^i_c(\mathcal{M}_\infty, \mathcal{F}_{(h)})^P_h \cap K_m$ is a finitely generated J-module (recall that a finitely generated J-module is noetherian [Ber84, Remarque 3.12]). As a J-module, it is a direct summand of $\text{Ind}_{P_h}^G H^2_c(\mathcal{M}_\infty, \mathcal{F}_{(h)})^{K_m} \cong H^2_c(\mathcal{M}_\infty, \mathcal{F}^{(h)})^{K_m}$. On the other hand, by Corollary 3.7, $H^2_c(\mathcal{M}_\infty, \mathcal{F}^{(h)})^{K_m}$ is a finitely generated J-module. Thus $H^i_c(\mathcal{M}_\infty, \mathcal{F}_{(h)})^P_h \cap K_m$ is also finitely generated.

Proposition 5.25 Let i be an integer. If $i \geq 5$, then $H^i_c(\mathcal{M}_\infty, \mathcal{F}^{[2]}) = 0$. On the other hand, if $i \leq 1$, then $H^i_c(\mathcal{M}_\infty, \mathcal{F}^{[0]}) = 0$.

Proof. By the definition, it suffices to show that for every $m \geq 1$ and every $U \in \mathcal{Q}_m$ we have $H^0_c(U, \mathcal{F}^{[2]}_m|_U) = 0$ for $i \geq 5$ and $H^0_c(U, \mathcal{F}^{[0]}_m|_U) = 0$ for $i \leq 1$. Thus the claim is reduced to the following lemma.

Lemma 5.26 Let S be the spectrum of a strict henselian discrete valuation ring and X a separated S-scheme of finite type. We denote its special (resp. generic)
fiber by X_s (resp. X_{η}). Let Z be a closed subscheme of X_s and denote the natural closed immersion $Z \longrightarrow X$ by i. Assume that X_{η} is smooth of pure dimension d and Z is purely d'-dimensional.

Then we have $H^n(Z, i^* R^k \psi_X \mathbb{Q}_\ell) = H^n_c(Z, i^* R^k \psi_X \mathbb{Q}_\ell) = 0$ for $n > d + d'$ and $H^n_c(Z, R^\ell i^! R^\psi_X \mathbb{Q}_\ell) = 0$ for $n < d - d'$.

Proof. First note that $H^n(Z, i^* R^k \psi_X \mathbb{Q}_\ell) = H^n_c(Z, i^* R^k \psi_X \mathbb{Q}_\ell) = 0$ if $n > 2 \dim Z$ or $n > 2 \dim (\text{supp } R^k \psi_X \mathbb{Q}_\ell)$. By [BBD82, Proposition 4.4.2], for each $k \geq 0$ we have $\dim (\text{supp } R^k \psi_X \mathbb{Q}_\ell) \leq d - k$; therefore if $n + k > d + d'$ then we have

$$n > d' + (d - k) \geq \dim Z + \dim (\text{supp } R^k \psi_X \mathbb{Q}_\ell)$$

and thus $H^n(Z, i^* R^k \psi_X \mathbb{Q}_\ell) = H^n(Z, i^* R^k \psi_X \mathbb{Q}_\ell) = 0$. By the spectral sequence, we have $H^n(Z, i^* R^k \psi_X \mathbb{Q}_\ell) = H^n_c(Z, i^* R^k \psi_X \mathbb{Q}_\ell) = 0$ for $n > d + d'$.

On the other hand, by the Poincaré duality, we have

$$H^n_c(Z, R^\ell i^! R^\psi_X \mathbb{Q}_\ell) = H^{-n}(Z, D_Z(R^\ell i^! R^\psi_X \mathbb{Q}_\ell))^{\vee} = H^{-n}(Z, i^* R^\psi_X D_X, \mathbb{Q}_\ell)^{\vee} = H^{-n}(Z, i^* R^\psi_X \mathbb{Q}_\ell(d)[2d])^{\vee} = H^{2d-n}(Z, i^* R^\psi_X \mathbb{Q}_\ell)^{\vee}(-d),$$

where D_Z (resp. $D_{X_{\eta}}$) denotes the dualizing functor with respect to Z (resp. X_{η}). Therefore it vanishes if $2d - n > d + d'$, namely, $n < d - d'$.

Now we can prove our main theorem.

Proof of Theorem 3.2. By Proposition 5.11 and Proposition 5.25, we have $H^i_{RZ} = 0$ for $i \leq 1$. Therefore we may assume that $i \geq 5$.

By Proposition 5.6 i), we have the exact sequence of smooth G-modules

$$H^{i-1}_c(\mathcal{M}_\infty, F^{[h]})_{\mathbb{Q}_\ell} \longrightarrow H^i_c(\mathcal{M}_\infty, F^{[h-1]})_{\mathbb{Q}_\ell} \longrightarrow H^i_c(\mathcal{M}_\infty, F^{[h]})_{\mathbb{Q}_\ell}$$

for every h with $1 \leq h \leq 2$. Moreover, $H^1_c(\mathcal{M}_\infty, F^{[0]})_{\mathbb{Q}_\ell} = 0$ (Proposition 5.25), we can inductively prove that $H^i_c(\mathcal{M}_\infty, F^{[h]})_{\mathbb{Q}_\ell}$ has no quasi-cuspidal subquotient; indeed, the property that a representation has no quasi-cuspidal subquotient is stable under sub, quotient and extension (use the canonical decomposition in [Ber84, 2.3.1]). In particular, $H^1_c(\mathcal{M}_\infty, F^{[0]})_{\mathbb{Q}_\ell} \cong H^1_{RZ, \mathbb{Q}_\ell}$ (cf. Proposition 5.18) has no quasi-cuspidal subquotient. This completes the proof.

6 Appendix: Complements on cohomological correspondences

In this section, we recall the notion of cohomological correspondences (cf. [SGA5, Exposé III], [Fuj97]) and give some results on them. These are used to define the action of G on $H^{i}_c(\mathcal{M}_\infty, F^{[h]})$ and $H^i_c(\mathcal{M}_\infty, F^{[h]}).$
In this section, we change our notation. Let k be a field and ℓ a prime number which is invertible in k. We denote one of $\mathbb{Z}/\ell^n\mathbb{Z}$ or \mathbb{Q}_ℓ by Λ. Let X_1 and X_2 be schemes which are separated of finite type over k, and L_i an object of $D^b_c(X_i, \Lambda)$ for $i = 1, 2$ respectively. A cohomological correspondence from L_1 to L_2 is a pair (γ, c) consisting of a separated k-morphism of finite type $\gamma: \Gamma \longrightarrow X_1 \times X_2$ and a morphism $c: \gamma_1^* L_1 \longrightarrow R\gamma_2^! L_2$ in the category $D^b_c(\Gamma, \Lambda)$, where we denote $\text{pr}_i \circ \gamma$ by γ_i. For simplicity, we also write c for (γ, c), if there is no risk of confusion. If we are given a cohomological correspondence (γ, c) where γ_1 is proper, then we have the associated morphism $R\Gamma_c(c): R\Gamma_c(X_1, L_1) \longrightarrow R\Gamma_c(X_2, L_2)$ by composing

$$
R\Gamma_c(X_1, L_1) \xrightarrow{\gamma_1} R\Gamma_c(\Gamma, \gamma_1^* L_1) \xrightarrow{R\Gamma_c(c)} R\Gamma_c(\Gamma, R\gamma_2^! L_1) = R\Gamma_c(X_2, R\gamma_2^* R\gamma_2^! L_2) \xrightarrow{\text{adj}} R\Gamma_c(X_2, L_2).
$$

We can compose two cohomological correspondences. Let X_3 be another scheme which is separated of finite type over k and $L_3 \in D^b_c(X_3, \Lambda)$. Let (γ', c') be a cohomological correspondence from L_2 to L_3. Consider the following diagram

$$
\begin{array}{ccc}
\Gamma \times_{X_2} \Gamma' & \xrightarrow{\text{pr}_2} & \Gamma' \\
\text{pr}_1 \downarrow & & \downarrow \gamma_1' \downarrow \\
\Gamma & \xrightarrow{\gamma_2} & X_2 \\
\downarrow \gamma_1 & & \\
X_1,
\end{array}
$$

Let γ'' be the natural morphism $\Gamma \times_{X_2} \Gamma' \longrightarrow X_1 \times X_3$ and $c'': \gamma''_1^* L_1 \longrightarrow R\gamma_2''^! L_3$ the composite of

$$
\gamma''_1^* L_1 = \text{pr}_1^* \gamma_1^* L_1 \xrightarrow{\text{pr}_1(c)} \text{pr}_1^* R\gamma_2^! L_2 \xrightarrow{\text{b.c.}} R\text{pr}_2^* \gamma_1^* L_2 \xrightarrow{R\text{pr}_2^! (c')} R\text{pr}_2^* R\gamma_2^! L_3 = R\gamma_2''^! L_3,
$$

where b.c. denotes the base change morphism. We call the cohomological correspondence (γ'', c'') the composite of (γ, c) and (γ', c'), and denote it by $c' \circ c$. It is not difficult to see that if γ_1 and γ_1' are proper, then γ''_1 is also proper and $R\Gamma_c(c' \circ c) = R\Gamma_c(c') \circ R\Gamma_c(c)$.

Let us recall some operations for cohomological correspondences. Let X_1, X_2, X_1' and X_2' be schemes which are separated of finite type over k, and $\gamma: \Gamma \longrightarrow X_1 \times X_2$ and $\gamma': \Gamma' \longrightarrow X'_1 \times X'_2$ separated k-morphisms of finite type. Assume that the following commutative diagram is given:

$$
\begin{array}{ccc}
X_1 & \xleftarrow{\gamma_1} & \Gamma' \xrightarrow{\gamma_2} X_2' \\
\downarrow a_1 & & \downarrow a \\
X_1 & \xleftarrow{\gamma_1} & \Gamma \xrightarrow{\gamma_2} X_2.
\end{array}
$$

26
First assume that every vertical morphism is proper. Let L'_i be an object of $D^b_c(X_i, \Lambda)$ for each $i = 1, 2$ and (γ', c') a cohomological correspondence from L'_1 to L'_2. Then we can define the cohomological correspondence (γ, a, c') from Ra_1, L'_1 to Ra_2, L'_2 by

$$\gamma'^*_1Ra_1, L'_1 \xrightarrow{\text{b.c.}} Ra_1, \gamma'^*_1L'_1 \xrightarrow{Ra_1, (c')} Ra_1, R\gamma'_2L'_2 = Ra_1, R\gamma_2^a, L'_2$$

The cohomological correspondence (γ, a, c') is called the push-forward of (γ', c') by a. It is easy to see that push-forward is compatible with composition. Moreover, we have the following lemma whose proof is also immediate:

Lemma 6.1 In the above diagram, assume that $X_1 = X'_1$, $X_2 = X'_2$, $a_1 = a_2 = \text{id}$ and a is proper. Let L_i be an object of $D^b_c(X_i, \Lambda)$ for each $i = 1, 2$ and (γ', c') a cohomological correspondence from L_1 to L_2. Then we have $R\Gamma_c(a, c') = R\Gamma_c(c')$.

Next we assume that the right rectangle in the diagram above is cartesian. Let L'_i and (γ', c') be as above. Then we have the cohomological correspondence (γ, a, c') from Ra_1, L'_1 to Ra_2, L'_2 by

$$\gamma'^*_1Ra_1, L'_1 \xrightarrow{\text{b.c.}} Ra_1, \gamma'^*_1L'_1 \xrightarrow{Ra_1, (c')} Ra_1, R\gamma_2^b, L'_2 \xrightarrow{\text{b.c.}} R\gamma_2^b, Ra_2, L'_2.$$

On the other hand, let L_i be an object of $D^b_c(X_i, \Lambda)$ for each $i = 1, 2$ and (γ, c) a cohomological correspondence from L_1 to L_2. Then we have the cohomological correspondence (γ, a^c) from $a^*_1L_1$ to $a^*_2L_2$ by

$$\gamma'^*_1a^*_1L_1 = a^*\gamma'^*_1L_1 \xrightarrow{a^*(c')} a^*R\gamma_2^b, L_2 \xrightarrow{\text{b.c.}} R\gamma_2^b, a^*_2L_2.$$

Finally assume that the left rectangle in the diagram above is cartesian. Let L_i and (γ, c) be as above. Then we have the cohomological correspondence (γ, a^c) from $Ra^*_1L_1$ to $Ra^*_2L_2$ by

$$\gamma'^*_1Ra^*_1L_1 \xrightarrow{\text{b.c.}} Ra^*_1, \gamma'^*_1L_1 \xrightarrow{Ra^*_1, (c')} Ra^*_1, R\gamma_2^b, L_2 = R\gamma_2^b, Ra^*_2L_2.$$

These constructions are also compatible with composition.

Next we recall the specialization of cohomological correspondences. Let S be the spectrum of a strict henselian discrete valuation ring on which ℓ is invertible. For an S-scheme X, we denote its special (resp. generic) fiber by X_s (resp. X_η).

Let X_1, X_2 be schemes which are separated of finite type over S and $\gamma : \Gamma \to X_1 \times_S X_2$ a separated S-morphism of finite type. Let L_i be an object of $D^b_c(X_i, \Lambda)$ for each $i = 1, 2$ and (γ, c) a cohomological correspondence from L_1 to L_2. Then we have the cohomological correspondence $(\gamma_s, R\psi(c))$ from $R\psi L_1$ to $R\psi L_2$ by

$$\gamma'^*_1, R\psi L_1 \xrightarrow{R\psi} R\psi, \gamma'^*_1, L_1 \xrightarrow{R\psi, (c')} R\psi, R\gamma_2^b, L_2 \xrightarrow{R\gamma_2^b, R\psi} R\gamma_2^b, R\psi L_2.$$

27
It is easy to see that this construction is compatible with composition and proper push-forward (cf. [Fuj97, Proposition 1.6.1]).

Now we will give the main result in this section. Let X_i, γ_i, L_i be as above and Y_i (resp. Z_i) a closed (resp. locally closed) subscheme of X_i, s. Assume that $\gamma_i^{-1}(Y_i) = \gamma_{2,s}^{-1}(Y_2)$ and $\gamma_i^{-1}(Z_i) = \gamma_{2,s}^{-1}(Z_2)$ as subschemes of Γ_s, and denote the former by Γ_Y and the latter by Γ_Z. Then we have the following diagrams whose rectangles are cartesian:

\[
\begin{array}{ccc}
Y_1 & \xleftarrow{\gamma_{Y,1}} & \Gamma_Y & \xrightarrow{\gamma_{Y,2}} & Y_2 \\
| & s & | & s & |
\downarrow & & \downarrow & & \downarrow \\
X_1, s & \xleftarrow{\gamma_{1,s}} & \Gamma_s & \xrightarrow{\gamma_{2,s}} & X_{2,s}, \\
\end{array}
\quad
\begin{array}{ccc}
Z_1 & \xleftarrow{\gamma_{Z,1}} & \Gamma_Z & \xrightarrow{\gamma_{Z,2}} & Z_2 \\
| & s & | & s & |
\downarrow & & \downarrow & & \downarrow \\
X_1, s & \xleftarrow{\gamma_{1,s}} & \Gamma_s & \xrightarrow{\gamma_{2,s}} & X_{2,s}. \\
\end{array}
\]

Therefore, for a cohomological correspondence (γ_{η}, c) from L_1 to L_2, the cohomological correspondence $i^* j_* j^! R\psi(c)$ from $i^* Rj_{11}^! R\psi L_1$ to $i^* Rj_{21}^! R\psi L_2$ is induced. If moreover we assume that γ_1 is proper, then we have

\[
R\Gamma_c(i^* j_* j^! R\psi(c)) : R\Gamma_c(X_{1,s}, i^* Rj_{11}^! R\psi L_1) \longrightarrow R\Gamma_c(X_{2,s}, i^* Rj_{21}^! R\psi L_2).
\]

Proposition 6.2 The morphism $R\Gamma_c(i^* j_* j^! R\psi(c))$ depends only on the cohomological correspondence (γ_{η}, c). More precisely, if another S-morphism $\gamma' : \Gamma' \longrightarrow X_1 \times_S X_2$ has the same generic fiber as γ and satisfies the conditions that $\gamma_{1,s}^{-1}(Y_1) = \gamma_{2,s}^{-1}(Y_2)$, $\gamma_{1,s}^{-1}(Z_1) = \gamma_{2,s}^{-1}(Z_2)$ and γ_1' is proper, then the morphism $R\Gamma_c(i^* j_* j^! R\psi(c))$ induced from γ' is equal to $R\Gamma_c(i^* j_* j^! R\psi(c))$ (here i' and j' are defined in the same way as i and j).

Proof. Since Γ and Γ' have the same generic fiber, there is the “diagonal” in the generic fiber of $\Gamma \times X_1 \times_S X_2 \Gamma'$. Let Γ'' be the closure of it in $\Gamma \times X_1 \times_S X_2 \Gamma'$. Then Γ'' has the same generic fiber as Γ. We have natural morphisms $\Gamma'' \longrightarrow \Gamma$ and $\Gamma'' \longrightarrow \Gamma'$, which are proper since γ and γ' are proper. Therefore $\Gamma'' : \Gamma'' \longrightarrow X_1 \times_S X_2$ also satisfies the same conditions as γ and γ'. By replacing γ' by γ'', we may assume that there exists a proper morphism $a : \Gamma' \longrightarrow \Gamma$ such that $\gamma \circ a = \gamma'$.

Then, it is easy to see that the push-forward of the cohomological correspondence $(\gamma_{\eta}', i'^* j_* j'^! R\psi(c))$ by a coincides with $(\gamma_{\eta}, i^* j_* j^! R\psi(c))$. Therefore the proposition follows from Lemma 6.1. □

Corollary 6.3 Let X_1, X_2 and X_3 be schemes which are separated of finite type over S, Y_i (resp. Z_i) a closed (resp. locally closed) subscheme of X_i, and L_i an object of $D_c^b(X_i, \eta, \Lambda)$ for each $i = 1, 2, 3$. Let $\gamma_i : \Gamma_i \longrightarrow X_1 \times_S X_2$ (resp. $\gamma' : \Gamma' \longrightarrow X_2 \times_S X_3$, resp. $\gamma'' : \Gamma'' \longrightarrow X_1 \times_S X_3$) be an S-morphism such that γ_1 (resp. γ'_1, resp. γ''_1) is proper, and (γ_{η}, c) (resp. (γ'_{η}, c'), resp. (γ''_{η}, c'')) a cohomological correspondence from L_1 to L_2 (resp. from L_2 to L_3, resp. from L_1 to L_3). Moreover we assume that $\gamma_{1,s}^{-1}(Y_1) = \gamma_{2,s}^{-1}(Y_2)$, $\gamma_{1,s}(Z_1) = \gamma_{2,s}(Z_2)$, $\gamma_{1,s}(Y_2) = \gamma_{2,s}(Y_3)$, $\gamma_{1,s}(Z_2) = \gamma_{2,s}(Z_3)$,
ℓ-adic cohomology of the Rapoport-Zink space for GSp(4)

Then, as above, the morphisms

\[R\Gamma_c(i^* j_* j! R\psi(c)) : R\Gamma_c(X_{1,s}, i_1^* Rj_1^* Rj_1^! R\psi L_1) \to R\Gamma_c(X_{2,s}, i_2^* Rj_2^* Rj_2^! R\psi L_2), \]

\[R\Gamma_c(i^* j_* j! R\psi(c')) : R\Gamma_c(X_{2,s}, i_2^* Rj_2^* Rj_2^! R\psi L_2) \to R\Gamma_c(X_{3,s}, i_3^* Rj_3^* Rj_3^! R\psi L_3), \]

\[R\Gamma_c(i^* j_* j! R\psi(e'')) : R\Gamma_c(X_{1,s}, i_1^* Rj_1^* Rj_1^! R\psi L_1) \to R\Gamma_c(X_{3,s}, i_3^* Rj_3^* Rj_3^! R\psi L_3) \]

are induced. Assume that the composite of \((\gamma_\eta, c)\) and \((\gamma'_\eta, c')\) coincides with \((\gamma''_\eta, c'')\). Then we have

\[R\Gamma_c(i^* j_* j! R\psi(c')) \circ R\Gamma_c(i^* j_* j! R\psi(c)) = R\Gamma_c(i^* j_* j! R\psi(c'')). \]

Proof. By Proposition 6.2, we may replace \(\gamma''\) by \(\Gamma \times X_2 \Gamma' \to X_1 \times_S X_3\). Then the equality is clear, since all the operations for cohomological correspondences are compatible with composition.

\[\square \]

References

Tetsushi Ito and Yoichi Mieda

ℓ-adic cohomology of the Rapoport-Zink space for GSp(4)

Tetsushi Ito
Department of Mathematics, Faculty of Science, Kyoto University, Kyoto, 606–8502, Japan
E-mail address: tetsushi@math.kyoto-u.ac.jp

Yoichi Mieda
Faculty of Mathematics, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819–0395, Japan
E-mail address: mieda@math.kyushu-u.ac.jp