Local Saito-Kurokawa A-packets and ℓ-adic cohomology of Rapoport-Zink tower for GSp(4): announcement

Yoichi Mieda

1 Introduction

This is an announcement of a recent joint work of Tetsushi Ito and the author on the ℓ-adic cohomology of the Rapoport-Zink tower for GSp ${ }_{4}$. The RapoportZink tower for GSp_{4} is a p-adic local counterpart of the Siegel threefold. Its ℓ-adic cohomology H_{RZ}^{i} is naturally equipped with actions of three groups; the Weil group of $\mathbb{Q}_{p}, \operatorname{GSp}_{4}\left(\mathbb{Q}_{p}\right)$ and a non-trivial inner form $J\left(\mathbb{Q}_{p}\right)$ of $\operatorname{GSp}_{4}\left(\mathbb{Q}_{p}\right)$. These actions are expected to be strongly related with the local Langlands correspondence, but they are not fully understood yet. In this work, we focus on a certain class of non-tempered local A-packets of $J\left(\mathbb{Q}_{p}\right)$, called the local Saito-Kurokawa A-packets. We determine how these A-packets and the associated L-packets contribute to the $\mathrm{GSp}_{4}\left(\mathbb{Q}_{p}\right)$-supercuspidal part of H_{RZ}^{i}. See Theorem 3.1 for the precise statement.

The outline of this article is as follows. In Section 2, we give a brief review of the local Langlands correspondence. We also recall the Lubin-Tate tower, which is essential to prove the local Langlands correspondence for GL_{n}. In Section 3, we introduce the Rapoport-Zink tower for GSp_{4}, which is a GSp_{4}-version of the LubinTate tower. After that, we state our main theorem and explain the ideas of the proof.

2 Local Langlands correspondence

Throughout this article, we fix a prime number p. In this section, we briefly recall the local Langlands correspondence. Let G be a connected reductive group over \mathbb{Q}_{p}. We assume that G is an inner form of a split group for simplicity. We write $\Pi(G)$ for the set of the isomorphism classes of irreducible smooth representations (over \mathbb{C}) of $G\left(\mathbb{Q}_{p}\right)$, and $\Phi(G)$ for the set of the \widehat{G}-conjugacy classes of L-parameters $W_{\mathbb{Q}_{p}} \times \mathrm{SL}_{2}(\mathbb{C}) \rightarrow \widehat{G}$. Here $W_{\mathbb{Q}_{p}}$ denotes the Weil group of \mathbb{Q}_{p}, and \widehat{G} denotes the dual group of G over \mathbb{C}. The local Langlands correspondence for G is a conjectural map LLC: $\Pi(G) \rightarrow \Phi(G)$ with finite fibers. The fiber Π_{ϕ}^{G} of $\phi \in \Phi(G)$ is called the L-packet of ϕ. The map LLC is expected to be surjective when G is split.

If $G=\mathrm{GL}_{n}$, then \widehat{G} equals $\mathrm{GL}_{n}(\mathbb{C})$, and an L-parameter $W_{\mathbb{Q}_{p}} \times \mathrm{SL}_{2}(\mathbb{C}) \rightarrow \widehat{G}$ is identified with an n-dimensional semisimple representation of $W_{\mathbb{Q}_{p}} \times \mathrm{SL}_{2}(\mathbb{C})$. The
local Langlands correspondence for GL_{n} has been proved by Harris-Taylor [HT01] (see also [Hen00] and [Sch13]). In this case, every L-packet is a singleton; in other words, the map LLC: $\Pi\left(\mathrm{GL}_{n}\right) \rightarrow \Phi\left(\mathrm{GL}_{n}\right)$ is bijective. Let us briefly recall the construction of $\operatorname{LLC}(\pi)$ for a supercuspidal $\pi \in \Pi\left(\mathrm{GL}_{n}\right)$. It is given by using the Lubin-Tate tower $\left\{M_{K}\right\}_{K \subset G L_{n}\left(\mathbb{Z}_{p}\right)}$, which is a projective system of rigid spaces over $\widehat{\mathbb{Q}}_{p}^{\text {ur }}$ indexed by compact open subgroups of $\mathrm{GL}_{n}\left(\mathbb{Z}_{p}\right)$. Here are basic geometric properties of the Lubin-Tate tower:

- $M_{\mathrm{GL}_{n}\left(\mathbb{Z}_{p}\right)}=\coprod_{\mathbb{Z}}\left((n-1)\right.$-dimensional open unit disk over $\left.\widehat{\mathbb{Q}}_{p}^{\mathrm{ur}}\right)$.
- $M_{K} / M_{\mathrm{GL}_{n}\left(\mathbb{Z}_{p}\right)}$ is a finite étale covering. In particular, each M_{K} is an $(n-$ 1)-dimensional smooth rigid space over $\widehat{\mathbb{Q}}_{p}^{\mathrm{ur}}$. If K is an open normal subgroup of $\mathrm{GL}_{n}\left(\mathbb{Z}_{p}\right)$, then $M_{K} / M_{\mathrm{GL}_{n}\left(\mathbb{Z}_{p}\right)}$ is a Galois covering with Galois group $\mathrm{GL}_{n}\left(\mathbb{Z}_{p}\right) / K$.
The group $\mathrm{GL}_{n}\left(\mathbb{Q}_{p}\right)$ acts on the projective system $\left\{M_{K}\right\}_{K \subset \mathrm{GL}_{n}\left(\mathbb{Z}_{p}\right)}$; it is a local analogue of the Hecke action. The group D^{\times}also acts on the tower, where D is the central division algebra over \mathbb{Q}_{p} with invariant $1 / n$. Now we fix a prime number ℓ and an isomorphism $\overline{\mathbb{Q}}_{\ell} \cong \mathbb{C}$. We put $H_{\mathrm{LT}}^{i}=\lim _{K} H_{c}^{i}\left(M_{K} \otimes_{\widehat{\mathbb{Q}}_{p}^{\text {ur }}} \mathbb{C}_{p}, \overline{\mathbb{Q}}_{\ell}\right)$. It is equipped with an action of $\mathrm{GL}_{n}\left(\mathbb{Q}_{p}\right) \times D^{\times} \times W_{\mathbb{Q}_{p}}$. Roughly speaking, the L-parameter $\operatorname{LLC}(\pi)$ for a supercuspidal $\pi \in \Pi\left(\mathrm{GL}_{n}\right)$ is constructed by using the irreducible decomposition of H_{LT}^{n-1}.

Theorem 2.1 ([Car86], [HT01], [Boy09]) Let π be an irreducible supercuspidal representation of $\mathrm{GL}_{n}\left(\mathbb{Q}_{p}\right)$. We put $\rho=J L(\pi)$, where $J L$ denotes the JacquetLanglands correspondence between $\mathrm{GL}_{n}\left(\mathbb{Q}_{p}\right)$ and D^{\times}. Then $\operatorname{LLC}(\pi)$ is a unique irreducible n-dimensional representation of $W_{\mathbb{Q}_{p}}$ (which is regarded as a representation of $W_{\mathbb{Q}_{p}} \times \mathrm{SL}_{2}(\mathbb{C})$ by the first projection) satisfying the following:

$$
\operatorname{Hom}_{D \times}\left(H_{\mathrm{LT}}^{n-1}, \rho\right)^{\mathrm{sm}} \cong \pi \boxtimes \operatorname{LLC}(\pi)\left(\frac{n-1}{2}\right)
$$

Here $(-)^{\mathrm{sm}}$ denotes the smooth part with respect to the $\mathrm{GL}_{n}\left(\mathbb{Q}_{p}\right)$-action, and $\left(\frac{n-1}{2}\right)$ denotes the Tate twist.

Remark 2.2 If $i \neq n-1$, we have $\operatorname{Hom}_{D \times}\left(H_{\mathrm{LT}}^{i}, \rho\right)^{\mathrm{sm}}=0$. See [Boy09].
The key of the proof of Theorem 2.1 is to relate $\left\{M_{K}\right\}_{K \subset G L_{n}\left(\mathbb{Z}_{p}\right)}$ to a certain Shimura variety. Let us explain it in the case $n=2$. In the following we write \mathbb{A} for the ring of adeles of \mathbb{Q}. For a compact open subgroup $K^{\prime} \subset \mathrm{GL}_{2}\left(\mathbb{A}^{\infty}\right)$, let $\mathrm{Sh}_{K^{\prime}}$ denote the modular curve over \mathbb{Q} with level K^{\prime}. We write $\mathrm{Sh}_{K^{\prime}, \widehat{\mathbb{Q}}_{p}^{\text {ur }}}^{\text {an }}$ for the rigid space over $\widehat{\mathbb{Q}}_{p}^{\text {ur }}$ associated with $\mathrm{Sh}_{K^{\prime}, \widehat{\mathbb{Q}_{p}^{u r}}}=\mathrm{Sh}_{K^{\prime}} \otimes_{\mathbb{Q}} \widehat{\mathbb{Q}}_{p}^{\mathrm{ur}}$. We fix a sufficiently small compact open subgroup K^{p} of $\mathrm{GL}_{2}\left(\mathbb{A}^{\infty, p}\right)$. We write $\mathrm{Sh}_{\mathrm{GL}_{2}\left(\mathbb{Z}_{p}\right) K^{p}, \widehat{\mathbb{Z}}_{p}^{\text {ur }}}$ for the integral modular curve over $\widehat{\mathbb{Z}}_{p}^{\mathrm{ur}}$ with level $\mathrm{GL}_{2}\left(\mathbb{Z}_{p}\right) K^{p}$. The supersingular locus of its mod p fiber $\operatorname{Sh}_{\mathrm{GL}_{2}\left(\mathbb{Z}_{p}\right) K^{p}, \overline{\mathbb{F}}_{p}}$ is denoted by $\operatorname{Sh}_{\mathrm{GL}_{2}\left(\mathbb{Z}_{p}\right) K^{p}, \overline{\mathbb{F}}_{p}}^{\mathrm{ss}}$. We have the specialization map sp: $\mathrm{Sh}_{\mathrm{GL}_{2}\left(\mathbb{Z}_{p}\right) K^{p}, \widehat{\mathbb{Q}}_{p}^{\mathrm{ur}}}^{\text {an }} \rightarrow \mathrm{Sh}_{\mathrm{GL}_{2}\left(\mathbb{Z}_{p}\right) K^{p}, \overline{\mathbb{F}}_{p}}$. Let $\mathrm{Sh}_{\mathrm{GL}_{2}\left(\mathbb{Z}_{p}\right) K^{p}, \widehat{\mathbb{Q}}_{p}^{\text {ur }}}^{\text {sser }}$ be the rigid analytic open
subset of $\mathrm{Sh}_{\mathrm{GL}_{2}\left(\mathbb{Z}_{p}\right) K^{p}, \widehat{\mathbb{Q}}_{p}^{\mathrm{ur}}}^{\text {an }}$ obtained as the inverse image of $\operatorname{Sh}_{\mathrm{GL}_{2}\left(\mathbb{Z}_{p}\right) K^{p}, \overline{\mathbb{F}}_{p}}^{\mathrm{ss}}$ (strictly speaking, we are in fact working in the framework of adic spaces, so we need to take the interior of the inverse image). The open subset $\operatorname{Sh}_{\mathrm{GL}_{2}\left(\mathbb{Z}_{p}\right) K^{p}, \widehat{\mathbb{Q}}_{P}^{\text {sur }}}^{\text {sers }}$ is called the supersingular reduction locus, since its classical point corresponds to an elliptic curve with good supersingular reduction. Finally, for a compact open subgroup K of $\mathrm{GL}_{2}\left(\mathbb{Z}_{p}\right)$, let $\mathrm{Sh}_{K K^{p}, \widehat{\mathbb{Q}}_{P}^{\text {ur }}}^{\text {ss-ers }}$. be the inverse image of $\mathrm{Sh}_{\mathrm{GL}_{2}\left(\mathbb{Z}_{p}\right) K^{p}, \widehat{\mathbb{Q}}_{P}^{\text {ur }}}^{\text {si-er }}$ in $\mathrm{Sh}_{K K^{p}, \widehat{\mathbb{Q}}_{P}^{\text {ur }}}^{\text {an }}$. Then the following holds:
Proposition 2.3 (\boldsymbol{p}-adic uniformization) We have an isomorphism

$$
\mathrm{Sh}_{K K^{p}, \widehat{\mathbb{Q}}_{p}^{\mathrm{Qr}}}^{\text {ss-red }} \cong \widetilde{D}^{\times} \backslash\left(M_{K} \times \mathrm{GL}_{2}\left(\mathbb{A}^{\infty, p}\right) / K^{p}\right)
$$

where \widetilde{D} is the quaternion division algebra over \mathbb{Q} which ramifies exactly at ∞ and p.

In this work, we use the local Langlands correspondence for $G=\mathrm{GSp}_{4}$ and its non-trivial inner form J. Both of the dual groups \widehat{G} and \widehat{J} are equal to $\mathrm{GSp}_{4}(\mathbb{C})$. The local Langlands correspondence for G and J are due to Gan-Takeda [GT11] and Gan-Tantono [GT14], respectively. Unlike the GL $_{n}$-case, no geometry is needed in the proofs of them. They used the local theta lifting to reduce the local Langlands correspondence for G and J to that for GL_{2} and GL_{4}. However, the author is still interested in how the local Langlands correspondence for these groups interacts with geometry.

Let $\phi: W_{\mathbb{Q}_{p}} \times \mathrm{SL}_{2}(\mathbb{C}) \rightarrow \mathrm{GSp}_{4}(\mathbb{C})$ be an element of $\Phi(G)=\Phi(J)$. The corresponding L-packets Π_{ϕ}^{G} and Π_{ϕ}^{J} are not necessarily singletons. We are particularly interested in the case where Π_{ϕ}^{G} contains a supercuspidal representation. Such L parameters are classified as follows:
Proposition 2.4 Let $r: \mathrm{GSp}_{4}(\mathbb{C}) \hookrightarrow \mathrm{GL}_{4}(\mathbb{C})$ denote the natural embedding. If Π_{ϕ}^{G} contains a supercuspidal representation, then one of the following holds:
(i) There exists a 4-dimensional irreducible representation ϕ_{0} of $W_{\mathbb{Q}_{p}}$ such that $r \circ \phi=\phi_{0} \boxtimes \mathbf{1}$, where $\mathbf{1}$ denotes the trivial representation of $\mathrm{SL}_{2}(\mathbb{C})$. In this case, each of Π_{ϕ}^{G} and Π_{ϕ}^{J} consists of one supercuspidal representation.
(ii) There exist distinct 2-dimensional irreducible representations ϕ_{0} and ϕ_{1} of $W_{\mathbb{Q}_{p}}$ such that $r \circ \phi=\left(\phi_{0} \boxtimes \mathbf{1}\right) \oplus\left(\phi_{1} \boxtimes \mathbf{1}\right)$. In this case, each of Π_{ϕ}^{G} and Π_{ϕ}^{J} consists of two supercuspidal representations.
(iii) There exist a 2-dimensional irreducible representation ϕ_{0} of $W_{\mathbb{Q}_{p}}$ and a character χ of $W_{\mathbb{Q}_{p}}$ such that $r \circ \phi=\left(\phi_{0} \boxtimes \mathbf{1}\right) \oplus(\chi \boxtimes \mathbf{S t d})$, where $\mathbf{S t d}$ denotes the standard representation of $\mathrm{SL}_{2}(\mathbb{C})$. In this case, each of Π_{ϕ}^{G} and Π_{ϕ}^{J} consists of one supercuspidal representation and one non-supercuspidal discrete series representation.
(iv) There exist distinct characters χ_{0}, χ_{1} of $W_{\mathbb{Q}_{p}}$ such that $r \circ \phi=\left(\chi_{0} \boxtimes \mathbf{S t d}\right) \oplus$ $\left(\chi_{1} \boxtimes \mathbf{S t d}\right)$. In this case, Π_{ϕ}^{G} consists of one supercuspidal representation and one non-supercuspidal discrete series representation, and Π_{ϕ}^{J} consists of two non-supercuspidal discrete series representations.

In this article we focus on the case (iii). We write $\pi_{\text {sc }}$ (resp. $\pi_{\text {disc }}$) for the supercuspidal (resp. non-supercuspidal) representation belonging to Π_{ϕ}^{G}. Similarly, we write $\rho_{\text {sc }}$ (resp. $\rho_{\text {disc }}$) for the supercuspidal (resp. non-supercuspidal) representation belonging to Π_{ϕ}^{J}.

We also need to consider the A-parameter ψ obtained as the composite of

$$
W_{\mathbb{Q}_{p}} \times \mathrm{SL}_{2}(\mathbb{C}) \times \mathrm{SL}_{2}(\mathbb{C}) \xrightarrow{\text { swap } \mathrm{SL}_{2} \text { factors }} W_{\mathbb{Q}_{p}} \times \mathrm{SL}_{2}(\mathbb{C}) \times \mathrm{SL}_{2}(\mathbb{C}) \xrightarrow{\phi \boxtimes \mathbf{1}} \mathrm{GSp}_{4}(\mathbb{C})
$$

Let Π_{ψ}^{G} (resp. Π_{ψ}^{J}) be the local A-packet attached to ψ. We should clarify what Π_{ψ}^{G} and Π_{ψ}^{J} mean, since local A-packets for J has not been fully constructed yet (see [GT19] for the construction of local A-packets for G). Recall that our ϕ satisfies $r \circ \phi=\left(\phi_{0} \boxtimes \mathbf{1}\right) \oplus(\chi \boxtimes \mathbf{S t d})$. This implies that $\operatorname{det} \phi_{0}=\chi^{2}$. Therefore, the A parameter $\psi^{\prime}=\psi \otimes \chi^{-1}$ factors through $\mathrm{Sp}_{4}(\mathbb{C}) \subset \mathrm{GSp}_{4}(\mathbb{C})$. Since $\mathrm{Sp}_{4}(\mathbb{C})=\widehat{\mathrm{SO}}_{5}$, ψ^{\prime} can be regarded as an A-parameter for both $G^{\text {ad }}=\mathrm{SO}_{5}\left(\mathbb{Q}_{p}\right)$ and $J^{\text {ad }}$. Local A-packets for $\mathrm{SO}_{5}\left(\mathbb{Q}_{p}\right)$ was fully constructed by Arthur [Art13]. In particular we have the local A-packet $\Pi_{\psi^{\prime}}^{\mathrm{SO}_{5}}$, which can be regarded as a subset of $\Pi(G)$. We put $\Pi_{\psi}^{G}=\left\{\pi^{\prime} \otimes(\chi \circ \operatorname{sim}) \mid \pi^{\prime} \in \Pi_{\psi^{\prime}}^{\mathrm{SO}_{5}}\right\}$, where sim: $G\left(\mathbb{Q}_{p}\right) \rightarrow \mathbb{Q}_{p}^{\times}$denotes the similitude character and χ is regarded as a character $\mathbb{Q}_{p}^{\times} \rightarrow \mathbb{C}^{\times}$by the local class field theory $W_{\mathbb{Q}_{p}}^{\text {ab }} \cong \mathbb{Q}_{p}^{\times}$. As for $J^{\text {ad }}$, the local A-packet $\Pi_{\psi^{\prime}}^{J^{\text {ad }}}$ for the particular A-parameter ψ^{\prime} was constructed in [Gan08]. Therefore we get the local A-packet Π_{ψ}^{J} in the same way as above.

We call Π_{ψ}^{G} and Π_{ψ}^{J} the local Saito-Kurokawa A-packets. The structure of them are as follows:

- Π_{ψ}^{G} consists of π_{sc} and a non-tempered representation π_{nt}.
- Π_{ψ}^{J} consists of a supercuspidal representation $\rho_{\mathrm{sc}}^{\prime}$ and a non-tempered representation ρ_{nt}. As a consequence of our main theorem, $\rho_{\mathrm{sc}}^{\prime}$ turns out to be equal to ρ_{sc} (see Remark 3.2 (ii)).

3 Main Theorem

We continue to write G for GSp_{4} and J for its unique non-trivial inner form over \mathbb{Q}_{p}. To state our main theorem, we introduce the (basic) Rapoport-Zink tower for GSp_{4}, which is the GSp_{4}-version of the Lubin-Tate tower. It is a projective system of rigid spaces over $\widehat{\mathbb{Q}}_{p}^{\text {ur }}$ indexed by compact open subgroups of $G\left(\mathbb{Z}_{p}\right)$. Here are basic geometric properties of the Rapoport-Zink tower for GSp_{4} :

- $M_{G\left(\mathbb{Z}_{p}\right)}$ is a 3-dimensional smooth rigid space over $\widehat{\mathbb{Q}}_{p}^{\mathrm{ur}}$ (unlike the Lubin-Tate case, we do not have an elementary expression of it).
- $M_{K} / M_{G\left(\mathbb{Z}_{p}\right)}$ is a finite étale covering. In particular, each M_{K} is a 3-dimensional smooth rigid space over $\widehat{\mathbb{Q}}_{p}^{\text {ur }}$. If K is an open normal subgroup of $G\left(\mathbb{Z}_{p}\right)$, then $M_{K} / M_{G\left(\mathbb{Z}_{p}\right)}$ is a Galois covering with Galois group $G\left(\mathbb{Z}_{p}\right) / K$.
As in the Lubin-Tate case, the tower $\left\{M_{K}\right\}_{K \subset G\left(\mathbb{Z}_{p}\right)}$ is equipped with an action of $G\left(\mathbb{Q}_{p}\right) \times J\left(\mathbb{Q}_{p}\right)$. We put $H_{\mathrm{RZ}}^{i}=\underset{\longrightarrow}{\lim _{K}} H_{c}^{i}\left(M_{K} \otimes_{\widehat{\mathbb{Q}}_{p}^{u r}} \mathbb{C}_{p}, \overline{\mathbb{Q}}_{\ell}\right)$, which is a representation of
$G\left(\mathbb{Q}_{p}\right) \times J\left(\mathbb{Q}_{p}\right) \times W_{\mathbb{Q}_{p}}$. For an irreducible smooth representation ρ of $J\left(\mathbb{Q}_{p}\right)$, we put $H_{\mathrm{RZ}}^{i, j}[\rho]:=\left(\operatorname{Ext}_{J\left(\mathbb{Q}_{p}\right)}^{j}\left(H_{\mathrm{RZ}}^{i}, \rho\right)^{\mathcal{D}_{c}-\mathrm{sm}}\right)_{\mathrm{sc}}$, where $(-)_{\mathrm{sc}}$ denotes the $G\left(\mathbb{Q}_{p}\right)$-supercuspidal part. For the definition of $(-)^{\mathcal{D}_{c} \text {-sm }}$, see [Mie14, Notation]. Note that $H_{\mathrm{RZ}}^{i, j}[\rho]$ is a representation of $G\left(\mathbb{Q}_{p}\right) \times W_{\mathbb{Q}_{p}}$. Since the split semisimple rank of J is 1 , we have $H_{\mathrm{RZ}}^{i, j}[\rho]=0$ for $j \geq 2$.

Let $\phi \in \Phi(G)$ be an L-parameter satisfying Proposition 2.4 (iii); namely, there exist a 2-dimensional irreducible representation ϕ_{0} of $W_{\mathbb{Q}_{p}}$ and a character χ of $W_{\mathbb{Q}_{p}}$ such that $r \circ \phi=\left(\phi_{0} \boxtimes \mathbf{1}\right) \oplus(\chi \boxtimes \mathbf{S t d})$. We use the same notation as in the previous section. We are interested in how $\Pi_{\phi}^{G}, \Pi_{\phi}^{J}, \Pi_{\psi}^{G}$ and Π_{ψ}^{J} contribute to H_{RZ}^{i}. Now we can state our main theorem:

Theorem 3.1 (joint work with Tetsushi Ito) We have the following:

$$
\begin{align*}
& H_{\mathrm{RZ}}^{i, 0}\left[\rho_{\mathrm{sc}}\right] \cong\left\{\begin{array}{ll}
\pi_{\mathrm{sc}} \boxtimes \phi_{0}\left(\frac{3}{2}\right) & i=3, \\
0 & i \neq 3,
\end{array} \quad H_{\mathrm{RZ}}^{i, 1}\left[\rho_{\mathrm{sc}}\right]=0,\right. \tag{i}\\
& H_{\mathrm{RZ}}^{i, 0}\left[\rho_{\mathrm{sc}}^{\prime}\right] \cong\left\{\begin{array}{ll}
\pi_{\mathrm{sc}} \boxtimes \phi_{0}\left(\frac{3}{2}\right) & i=3, \\
0 & i \neq 3,
\end{array} \quad H_{\mathrm{RZ}}^{i, 1}\left[\rho_{\mathrm{sc}}^{\prime}\right]=0 .\right.
\end{align*}
$$

(ii) $H_{\mathrm{RZ}}^{i, 0}\left[\rho_{\mathrm{disc}}\right] \cong\left\{\begin{array}{ll}\pi_{\mathrm{sc}} \boxtimes \chi(1) & i=3, \\ 0 & i \neq 3,\end{array} \quad H_{\mathrm{RZ}}^{i, 1}\left[\rho_{\mathrm{disc}}\right] \cong \begin{cases}\pi_{\mathrm{sc}} \boxtimes \chi(2) & i=4, \\ 0 & i \neq 4 .\end{cases}\right.$
(iii) $H_{\mathrm{RZ}}^{i, 0}\left[\rho_{\mathrm{nt}}\right] \cong\left\{\begin{array}{ll}\pi_{\mathrm{sc}} \boxtimes \chi(2) & i=4, \\ 0 & i \neq 4,\end{array} \quad H_{\mathrm{RZ}}^{i, 1}\left[\rho_{\mathrm{nt}}\right] \cong \begin{cases}\pi_{\mathrm{sc}} \boxtimes \chi(1) & i=3, \\ 0 & i \neq 3 .\end{cases}\right.$

Here are very rough summary of the main theorem:

- A piece of the local Langlands correspondence for G and J appears in H_{RZ}^{3}. This is similar to the Kottwitz conjecture (see [Rap95]).
- The non-tempered local A-packet Π_{ψ}^{J} contributes to H_{RZ}^{4}.
- There exists a supercuspidal representation of $G\left(\mathbb{Q}_{p}\right)$ appearing outside the middle degree. In fact, it happens only when its L-parameter has non-trivial $\mathrm{SL}_{2}(\mathbb{C})$-part (see Remark 3.2 (iv)).

Remark 3.2 (i) By working in a suitable derived category, we may also consider the derived version $H_{\mathrm{RZ}}^{*}[\rho]:=\left(\operatorname{Ext}_{J\left(\mathbb{Q}_{p}\right)}^{*}\left(R \Gamma_{\mathrm{RZ}}, \rho\right)^{\mathcal{D}_{c}-\mathrm{sm}}\right)_{\mathrm{sc}}$ of $H_{\mathrm{RZ}}^{i, j}[\rho]$. We can recover ϕ and ψ from the $W_{\mathbb{Q}_{p}}$-action and the Lefschetz operator on $H_{\mathrm{RZ}}^{*}\left[\rho_{\text {disc }}\right]$ and $H_{\mathrm{RZ}}^{*}\left[\rho_{\mathrm{nt}}\right]$, respectively ($c f$. [Dat12] in the GL_{n} case).
(ii) By using Theorem 3.1, we can prove that the semisimple L-parameters attached to $\pi_{\mathrm{sc}}, \rho_{\mathrm{sc}}$ and $\rho_{\mathrm{sc}}^{\prime}$ by Fargues-Scholze [FS] are equal to $\left.\phi\right|_{W_{\mathbb{Q}_{p}}}$. This implies that $\rho_{\mathrm{sc}} \cong \rho_{\mathrm{sc}}^{\prime}$.
(iii) By using recent results of Fargues-Scholze [FS], we can improve the theorem above. We will explain it elsewhere.
(iv) For the L-packets of type (i) and (ii) in Proposition 2.4, we can obtain similar results as Theorem 3.1 (i). On the other hand, up to now we cannot treat the
L-packets of type (iv) in Proposition 2.4. The reason is that the theory of local A-packets for J (or $J^{\text {ad }}$) is not available in this case.

The proof of Theorem 3.1 is given by combination of local and global methods. First we recall some results obtained from local geometry.

Theorem 3.3 ([IM]) Unless $2 \leq i \leq 4, H_{\mathrm{RZ}, \mathrm{sc}}^{i}=0$.
Here 2 (resp. 4) appears in the statement since it is equal to $\operatorname{dim} M_{G\left(\mathbb{Z}_{p}\right)}-\operatorname{dim} \mathcal{M}_{\text {red }}$ (resp. $\operatorname{dim} M_{G\left(\mathbb{Z}_{p}\right)}+\operatorname{dim} \mathcal{M}_{\text {red }}$), where \mathcal{M} is the natural formal model of $M_{G\left(\mathbb{Z}_{p}\right)}$. The equality $\operatorname{dim} \mathcal{M}_{\text {red }}=1$ is related to the fact that the supersingular locus of the Siegel threefold is 1-dimensional. The method of the proof of Theorem 3.3 is similar to the author's proof of $H_{\mathrm{LT}, \mathrm{sc}}^{i}=0$ for $i \neq n-1$ (see [Mie10]), but it is much more complicated, mainly because connected components of \mathcal{M} are not affine (even not quasi-compact).

Theorem 3.4 The representation $H_{\mathrm{RZ}, \mathrm{sc}}^{2}$ of $J\left(\mathbb{Q}_{p}\right)$ does not contain non-supercuspidal subquotient.

This is a consequence of Theorem 3.3 and the fact that $H_{\mathrm{RZ}, G\left(\mathbb{Q}_{p}\right) \text {-sc, } J\left(\mathbb{Q}_{p}\right) \text {-non-sc }}^{2}$ and $H_{\mathrm{RZ}, G\left(\mathbb{Q}_{p}\right) \text {-sc }, J\left(\mathbb{Q}_{p}\right) \text {-non-sc }}^{5}$ are related by the Zelevinsky involution (see [Mie]).
Theorem 3.5 ([Mie20]) Assume that the central character of π_{sc} is trivial on $p^{\mathbb{Z}} \subset \mathrm{GSp}_{4}\left(\mathbb{Q}_{p}\right)$ (we can always twist π_{sc} by a character so that it satisfies this condition). Then, the representation $\left(\underset{\longrightarrow}{\lim _{K}} H_{c}^{i}\left(\left(M_{K} / p^{\mathbb{Z}}\right) \otimes_{\widehat{\mathbb{Q}}_{p}^{\text {ur }}} \mathbb{C}_{p}, \overline{\mathbb{Q}}_{\ell}\right)\right)\left[\pi_{\mathrm{sc}}^{\vee}\right]$ of $J\left(\mathbb{Q}_{p}\right)$ has finite length.

This was proved by using the duality isomorphism between the Rapoport-Zink tower for G and that for J due to $[\mathrm{KW}]$ and [CFS].

Next we discuss the global aspect. As in the Lubin-Tate case, we use the relation between the Rapoport-Zink tower $\left\{M_{K}\right\}_{K \subset G\left(\mathbb{Z}_{p}\right)}$ and the Siegel threefold. For a compact open subgroup $K^{\prime} \subset G\left(\mathbb{A}^{\infty}\right)$, let $\mathrm{Sh}_{K^{\prime}}$ denote the Siegel threefold over \mathbb{Q} with level K^{\prime}. We put $H_{c}^{i}(\mathrm{Sh})=\underset{K^{\prime}}{\lim _{c}} H_{c}^{i}\left(\mathrm{Sh}_{K^{\prime}} \otimes_{\mathbb{Q}} \overline{\mathbb{Q}}, \overline{\mathbb{Q}}_{\ell}\right)$, which is a representation of $G\left(\mathbb{A}^{\infty}\right) \times \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$. This representation is rather understood by using the global Langlands correspondence for GSp_{4} (see [Tay93] and [Wei09]).

Let us fix a sufficiently small compact open subgroup $K^{p} \subset G\left(\mathbb{A}^{\infty, p}\right)$. As in Section 2, for a compact open subgroup $K \subset G\left(\mathbb{Q}_{p}\right)$ we can define a rigid analytic open subset $\mathrm{Sh}_{K K^{p}, \widehat{\mathbb{Q}_{r}^{u r}}}^{\text {ss-red }}$ of $\mathrm{Sh}_{K K^{p}, \widehat{\mathbb{Q}}_{r}^{\text {ur }}}^{\text {an }}$, which is called the supersingular reduction locus. The following is an analogue of Proposition 2.3:

Proposition 3.6 (p-adic uniformization, [RZ96]) We have an isomorphism

$$
\mathrm{Sh}_{K K^{p}, \widehat{\mathbb{Q}}_{P}^{\text {ur }}}^{\text {ss-red }} \cong \widetilde{J}(\mathbb{Q}) \backslash\left(M_{K} \times G\left(\mathbb{A}^{\infty, p}\right) / K^{p}\right),
$$

where \widetilde{J} is a suitable inner form of GSp_{4} over \mathbb{Q} such that $\widetilde{J} \otimes_{\mathbb{Q}} \mathbb{R}$ is anisotropic modulo center, $\widetilde{J} \otimes_{\mathbb{Q}} \mathbb{A}^{\infty, p} \cong G \otimes_{\mathbb{Q}} \mathbb{A}^{\infty, p}$ and $\widetilde{J} \otimes_{\mathbb{Q}} \mathbb{Q}_{p} \cong J$.

We put $\left.H^{i}\left(\mathrm{Sh}_{\widehat{\mathbb{Q}}_{p}^{\text {ur }}}^{\text {ssed }}\right)={\underset{\longrightarrow}{\text { im }}}^{\lim _{K, K^{p}} H^{i}\left(\mathrm{Sh}_{K K^{p}, \widehat{\mathbb{Q}}_{p}^{\text {ur }}}^{\text {ss-re }}\right.} \otimes_{\widehat{\mathbb{Q}}_{p}^{\text {ur }}} \mathbb{C}_{p}, \overline{\mathbb{Q}}_{\ell}\right)$, which is a representation of $G\left(\mathbb{Q}_{p}\right) \times W_{\mathbb{Q}_{p}}$. By Proposition 3.6, we have the Hochschild-Serre spectral sequence

$$
E_{2}^{r, s}=\operatorname{Ext}_{J\left(\mathbb{Q}_{p}\right)}^{r}\left(H_{\mathrm{RZ}}^{6-s}(3), \mathcal{A}(\widetilde{J})_{1}\right)_{\mathrm{sc}} \Rightarrow H^{r+s}\left(\mathrm{Sh}_{\widehat{\mathbb{Q}}_{p}^{\mathrm{ss}}}^{\mathrm{sp}-\mathrm{ed}}\right)_{\mathrm{sc}},
$$

which is due to $[\operatorname{Far} 04]$. Here $\mathcal{A}(\widetilde{J})_{\mathbf{1}}$ is the space of automorphic forms on $\widetilde{J}(\mathbb{A})$ which are trivial on $\widetilde{J}(\mathbb{R})$. By Boyer's trick and a result in [IM20] or [LS18], we have $H^{r+s}\left(\mathrm{Sh}_{\mathbb{Q}_{p}^{\mathrm{sr}}}^{\text {s-red }}\right)_{\mathrm{sc}} \cong H_{c}^{r+s}(\mathrm{Sh})_{\mathrm{sc}}$. Therefore we obtain:

Proposition 3.7 We have a spectral sequence

$$
E_{2}^{r, s}=\operatorname{Ext}_{J\left(\mathbb{Q}_{p}\right)}^{r}\left(H_{\mathrm{RZ}}^{6-s}(3), \mathcal{A}(\widetilde{J})_{\mathbf{1}}\right)_{\mathrm{sc}} \Rightarrow H_{c}^{r+s}(\mathrm{Sh})_{\mathrm{sc}}
$$

Now we are ready to sketch the proof of Theorem 3.1. The point is that we begin with $H_{\mathrm{RZ}}^{i, j}\left[\rho_{\mathrm{nt}}\right]$. By using Gan's result [Gan08], we can choose

- a cuspidal automorphic representation Π of $G(\mathbb{A})$
- and a cuspidal automorphic representation Σ of $\widetilde{J}(\mathbb{A})$
such that
- $\Pi_{p} \cong \pi_{\text {sc }}$ and Π^{∞} contributes to $H_{c}^{2}(\mathrm{Sh})$ and $H_{c}^{4}(\mathrm{Sh})$.
- if Π^{\prime} is an automorphic representation of $G(\mathbb{A})$ such that $\Pi_{v}^{\prime} \cong \Pi_{v}$ for all places $v \neq p, \infty$ and Π_{p}^{\prime} is supercuspidal, then $\Pi=\Pi^{\prime}$. It is a kind of the strong multiplicity one theorem.
$-\Sigma_{p} \cong \rho_{\mathrm{nt}}$ and $\Sigma_{\infty} \cong 1$.
- if Σ^{\prime} is an automorphic representation of $\widetilde{J}(\mathbb{A})$ such that $\Sigma_{v}^{\prime} \cong \Sigma_{v}$ for all places $v \neq p$, then $\Sigma=\Sigma^{\prime}$. It is a kind of the strong multiplicity one theorem.
$-\Pi^{\infty, p}=\Sigma^{\infty, p} ;$ recall that we have $G\left(\mathbb{A}^{\infty, p}\right)=\widetilde{J}\left(\mathbb{A}^{\infty, p}\right)$.
By taking the $\Pi^{\infty, p_{\text {-isotypic }} \text { part of the spectral sequence in Proposition 3.7, we get }}$ a short exact sequence

$$
0 \rightarrow H_{\mathrm{RZ}}^{i+1,1}\left[\rho_{\mathrm{nt}}\right] \rightarrow \pi_{\mathrm{sc}} \boxtimes H_{c}^{6-i}(\mathrm{Sh})\left[\Pi^{\infty}\right](3) \rightarrow H_{\mathrm{RZ}}^{i, 0}\left[\rho_{\mathrm{nt}}\right] \rightarrow 0
$$

By assumption, $H_{c}^{6-i}(\mathrm{Sh})\left[\Pi^{\infty}\right](3) \neq 0$ only if $i=2$, 4 . On the other hand, by Theorems 3.3 and 3.4 , we have $H_{\mathrm{RZ}}^{5,1}\left[\rho_{\mathrm{nt}}\right]=H_{\mathrm{RZ}}^{2,0}\left[\rho_{\mathrm{nt}}\right]=0$. Hence we conclude

$$
H_{\mathrm{RZ}}^{4,0}\left[\rho_{\mathrm{nt}}\right] \cong \pi_{\mathrm{sc}} \boxtimes H_{c}^{2}(\mathrm{Sh})\left[\Pi^{\infty}\right](3), \quad H_{\mathrm{RZ}}^{3,1}\left[\rho_{\mathrm{nt}}\right] \cong \pi_{\mathrm{sc}} \boxtimes H_{c}^{4}(\mathrm{Sh})\left[\Pi^{\infty}\right](3)
$$

Next we investigate $H_{\mathrm{RZ}}^{i, j}\left[\rho_{\text {disc }}\right]$. We choose Π and Σ similarly as above, but so that Π^{∞} contributes to $H_{c}^{3}(\mathrm{Sh})$. Then we get a short exact sequence

$$
0 \rightarrow H_{\mathrm{RZ}}^{4,1}\left[\rho_{\mathrm{disc}}\right] \rightarrow \pi_{\mathrm{sc}} \boxtimes H_{c}^{3}(\mathrm{Sh})\left[\Pi^{\infty}\right](3) \rightarrow H_{\mathrm{RZ}}^{3,0}\left[\rho_{\mathrm{disc}}\right] \rightarrow 0
$$

Since $H_{c}^{3}(\mathrm{Sh})\left[\Pi^{\infty}\right](3)$ is 2-dimensional indecomposable as a $W_{\mathbb{Q}_{p}}$-representation, it suffices to determine $\operatorname{dim} H_{\mathrm{RZ}}^{i, j}\left[\rho_{\mathrm{disc}}\right]\left[\pi_{\mathrm{sc}}\right]$. This is done by using the following facts:
$-\left[\rho_{\mathrm{nt}}\right]+\left[\rho_{\text {disc }}\right]=[$ induced $]$ in the Grothendieck group of finite length representations of $J\left(\mathbb{Q}_{p}\right)$.
$-\sum_{i=0}^{\infty}(-1)^{i} \operatorname{dim} \operatorname{Ext}_{J\left(\mathbb{Q}_{p}\right) / p^{\mathbb{Z}}}^{i}(V$, induced $)=0$ for every $J\left(\mathbb{Q}_{p}\right) / p^{\mathbb{Z}}$-representation
V of finite length $([S S 97])$.
To apply the second fact, we need the finiteness result in Theorem 3.5.
We can treat $H_{\mathrm{RZ}}^{i, j}\left[\rho_{\mathrm{sc}}\right]$ and $H_{\mathrm{RZ}}^{i, j}\left[\rho_{\mathrm{sc}}^{\prime}\right]$ in the same way. These cases are the simplest because $H_{\mathrm{RZ}}^{i, 1}\left[\rho_{\mathrm{sc}}\right]=H_{\mathrm{RZ}}^{i, 1}\left[\rho_{\mathrm{sc}}^{\prime}\right]=0$.

References

[Art13] J. Arthur, The endoscopic classification of representations: Orthogonal and symplectic groups, American Mathematical Society Colloquium Publications, vol. 61, American Mathematical Society, Providence, RI, 2013.
[Boy09] P. Boyer, Monodromie du faisceau pervers des cycles évanescents de quelques variétés de Shimura simples, Invent. Math. 177 (2009), no. 2, 239-280.
[Car86] H. Carayol, Sur les représentations l-adiques associées aux formes modulaires de Hilbert, Ann. Sci. École Norm. Sup. (4) 19 (1986), no. 3, 409-468.
[CFS] M. Chen, L. Fargues, and X. Shen, On the structure of some p-adic period domains, arXiv:1710.06935.
[Dat12] J.-F. Dat, Opérateur de Lefschetz sur les tours de Drinfeld et Lubin-Tate, Compos. Math. 148 (2012), no. 2, 507-530.
[Far04] L. Fargues, Cohomologie des espaces de modules de groupes p-divisibles et correspondances de Langlands locales, Astérisque (2004), no. 291, 1199, Variétés de Shimura, espaces de Rapoport-Zink et correspondances de Langlands locales.
[FS] L. Fargues and P. Scholze, Geometrization of the local Langlands correspondence, arXiv:2102.13459.
[Gan08] W. T. Gan, The Saito-Kurokawa space of PGSp_{4} and its transfer to inner forms, Eisenstein series and applications, Progr. Math., vol. 258, Birkhäuser Boston, Boston, MA, 2008, pp. 87-123.
[GT11] W. T. Gan and S. Takeda, The local Langlands conjecture for GSp(4), Ann. of Math. (2) 173 (2011), no. 3, 1841-1882.
[GT14] W. T. Gan and W. Tantono, The local Langlands conjecture for GSp(4), II: The case of inner forms, Amer. J. Math. 136 (2014), no. 3, 761-805.
[GT19] T. Gee and O. Taïbi, Arthur's multiplicity formula for GSp \mathbf{H}_{4} and restriction to $\mathbf{S p}_{4}$, J. Éc. polytech. Math. 6 (2019), 469-535.
[Hen00] G. Henniart, Une preuve simple des conjectures de Langlands pour GL(n) sur un corps p-adique, Invent. Math. 139 (2000), no. 2, 439-455.
[HT01] M. Harris and R. Taylor, The geometry and cohomology of some simple Shimura varieties, Annals of Mathematics Studies, vol. 151, Princeton

University Press, Princeton, NJ, 2001, With an appendix by Vladimir G. Berkovich.
[IM] T. Ito and Y. Mieda, Cuspidal representations in the ℓ-adic cohomology of the Rapoport-Zink space for $\operatorname{GSp}(4)$, preprint, arXiv:1005.5619.
[IM20] N. Imai and Y. Mieda, Potentially good reduction loci of Shimura varieties, Tunis. J. Math. 2 (2020), no. 2, 399-454.
[KW] T. Kaletha and J. Weinstein, On the Kottwitz conjecture for local Shimura varieties, arXiv:1709.06651.
[LS18] K.-W. Lan and B. Stroh, Nearby cycles of automorphic étale sheaves, Compos. Math. 154 (2018), no. 1, 80-119.
[Mie] Y. Mieda, Zelevinsky involution and ℓ-adic cohomology of the RapoportZink tower, preprint, arXiv:1401.5135.
[Mie10] , Non-cuspidality outside the middle degree of ℓ-adic cohomology of the Lubin-Tate tower, Adv. Math. 225 (2010), no. 4, 2287-2297.
[Mie14] , Geometric approach to the local Jacquet-Langlands correspondence, Amer. J. Math. 136 (2014), no. 4, 1067-1091.
[Mie20] , On irreducible components of Rapoport-Zink spaces, Int. Math. Res. Not. IMRN (2020), no. 8, 2361-2407.
[Rap95] M. Rapoport, Non-Archimedean period domains, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) (Basel), Birkhäuser, 1995, pp. 423-434.
[RZ96] M. Rapoport and Th. Zink, Period spaces for p-divisible groups, Annals of Mathematics Studies, vol. 141, Princeton University Press, Princeton, NJ, 1996.
[Sch13] P. Scholze, The Local Langlands correspondence for GL_{n} over p-adic fields, Invent. Math. 192 (2013), no. 3, 663-715.
[SS97] P. Schneider and U. Stuhler, Representation theory and sheaves on the Bruhat-Tits building, Inst. Hautes Études Sci. Publ. Math. (1997), no. 85, 97-191.
[Tay93] R. Taylor, On the l-adic cohomology of Siegel threefolds, Invent. Math. 114 (1993), no. 2, 289-310.
[Wei09] R. Weissauer, Endoscopy for GSp(4) and the cohomology of Siegel modular threefolds, Lecture Notes in Mathematics, vol. 1968, Springer-Verlag, Berlin, 2009.

Yoichi Mieda
Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8914, Japan
E-mail address: mieda@ms.u-tokyo.ac.jp

