Toward generalization of the non-abelian Lubin-Tate theory

Yoichi Mieda

The Hakubi Center for Advanced Research / Department of Mathematics, Kyoto University

September 18, 2012

Outline

- The Lubin-Tate theory = Geometric realization of the maximal abelian extension of a *p*-adic field (= local class field theory) Use a 1-dimensional formal group with height 1
- The non-abelian Lubin-Tate theory =
 Geometric realization of the local Langlands correspondence for GL_n
 Use the universal deformation space of a 1-dimensional formal group with height n (Lubin-Tate space)
- Generalization of the non-abelian Lubin-Tate theory = Geometric realization of the local Langlands correspondence for *p*-adic reductive groups Use Rapoport-Zink spaces

Notation on Galois groups

- p: prime number
- $\Gamma = \operatorname{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$: the absolute Galois group

$$1 \longrightarrow I \longrightarrow \Gamma \xrightarrow{(*)} \operatorname{Gal}(\overline{\mathbb{F}}_p/\mathbb{F}_p) \longrightarrow 1$$

- Frob \in Gal $(\overline{\mathbb{F}}_p/\mathbb{F}_p)$: the geometric Frobenius element $(x \longmapsto x^{1/p})$
- W ⊂ Γ: the inverse image of Frob^Z ⊂ Gal(F_ρ/F_ρ) under (*) (the Weil group for Q_ρ)

The local Langlands correspondence for GL_n

Theorem (LLC for GL_n, Harris-Taylor, Henniart)

There is a natural bijection between

- irreducible smooth representations of $GL_n(\mathbb{Q}_p)$, and
- Frobenius-semisimple Weil-Deligne representations

 φ: W × SL₂(ℂ) → GL_n(ℂ)
- A representation (π, V) of a topological group H is said to be smooth if for every x ∈ V, Stab_H(x) = {h ∈ H | hx = x} is open in H.
- A Weil-Deligne representation φ is said to be Frobenius-semisimple if for every w ∈ W, φ(w) is semisimple.
- For a prime number ℓ ≠ p, Weil-Deligne representations are in bijection with continuous ℓ-adic representations W → GL_n(Q_ℓ). (Grothendieck's monodromy theorem) Denote by WD(σ) the Weil-Deligne representation corresponding to a continuous ℓ-adic representation σ.

Example of LLC for GL_n

Example (n = 1)

Art: $\mathbb{Q}_p^{\times} \xrightarrow{\cong} W^{ab}$: isomorphism of local class field theory

$$\chi: \operatorname{GL}_1(\mathbb{Q}_p) = \mathbb{Q}_p^{\times} \longrightarrow \mathbb{C}^{\times}$$
 corresponds to $W \longrightarrow W^{\operatorname{ab}} \xrightarrow{\chi \circ \operatorname{Art}^{-1}} \mathbb{C}^{\times}$

Example (general *n*)

- trivial rep. of $\operatorname{GL}_n(\mathbb{Q}_p) \longleftrightarrow n$ -dim. trivial rep. of $W \times \operatorname{SL}_2(\mathbb{C})$
- Steinberg rep. $\mathbf{St}_n \longleftrightarrow \phi$: irred., $\phi|_W = \mathbf{1}$ (write \mathbf{Sp}_n for such ϕ) \mathbf{St}_n : irred. quotient of $\operatorname{Ind}_B^{\operatorname{GL}_n(\mathbb{Q}_p)} \mathbf{1}$ (B: upper triangular matrices)

• supercuspidal rep. $\longleftrightarrow \phi$: irred., $\phi|_{\mathsf{SL}_2(\mathbb{C})} = \mathbf{1}$

Supercuspidal representation is a representation which does not appear in a subquotient of any proper parabolic induction.

LLC for *p*-adic reductive groups

G: connected reductive group over \mathbb{Q}_p . For simplicity assume *G* is split. \widehat{G} : the dual group of *G* (the algebraic group over \mathbb{C} obtained by changing roots and coroots of *G*)

LLC for G is not bijective in general!

Conjecture (LLC for G)

(1) There is a natural surjection with finite fibers

- from isom. classes of irred. smooth rep. of $G(\mathbb{Q}_p)$ to
- $\widehat{G}(\mathbb{C})$ -conjugacy classes of *L*-parameters $\phi \colon W \times SL_2(\mathbb{C}) \longrightarrow \widehat{G}(\mathbb{C})$ The fiber Π_{ϕ}^G of ϕ is called *L*-packet.

(2) Put
$$\mathcal{S}_{\phi} = \pi_0 (\operatorname{Cent}_{\widehat{\mathcal{G}}(\mathbb{C})}(\phi)).$$

Then there is a natural bijection $Irr(\mathcal{S}_{\phi}) \cong \Pi_{\phi}^{\mathcal{G}}$.

- Known for some smaller groups (e.g. SL_2 , U(3))
- Recent progress for classical groups (cf. Arthur's book)

LLC for $G = GSp_4$

 $G = GSp_4 \rightsquigarrow \widehat{G} = GSpin_5 = GSp_4$ In this case, there is a candidate for LLC by Gan-Takeda.

Classification of *L*-packets

 $r: \operatorname{GSp}_4 \hookrightarrow \operatorname{GL}_4$: natural embedding $\phi: W \times SL_2(\mathbb{C}) \longrightarrow GSp_4(\mathbb{C}):$ *L*-parameter $\rightsquigarrow r \circ \phi$: Weil-Deligne rep. Assume that Π^{G}_{ϕ} contains a supercuspidal rep. of $G(\mathbb{Q}_{p})$ (I) $(r \circ \phi)|_{\mathsf{SL}_2(\mathbb{C})} = \mathbf{1}, r \circ \phi$: irred. $\rightsquigarrow \Pi_{\phi}^{\mathsf{G}} = \{\pi\}$ (II) $(r \circ \phi)|_{\mathsf{SL}_2(\mathbb{C})} = \mathbf{1}, r \circ \phi = \varphi_1 \oplus \varphi_2 \ (\varphi_i: \text{ irred.}, \varphi_1 \ncong \varphi_2, \dim \varphi_i = 2)$ $\rightsquigarrow \Pi_{\phi}^{G} = \{\pi_1, \pi_2\}, \pi_1, \pi_2$ are supercuspidal (III) $r \circ \phi = \varphi \oplus (\chi \otimes \mathbf{Sp}_2), \varphi|_{\mathsf{SL}_2(\mathbb{C})} = \mathbf{1}, \varphi$: irred. $\rightsquigarrow \Pi_{\phi}^{\mathcal{G}} = \{\pi_1, \pi_2\}, \pi_1$ is supercuspidal, π_2 is not supercuspidal (IV) $r \circ \phi = (\chi_1 \otimes \mathbf{Sp}_2) \oplus (\chi_2 \otimes \mathbf{Sp}_2)$ $(\chi_1 \neq \chi_2)$ $\rightsquigarrow \Pi_{\phi}^{G} = \{\pi_1, \pi_2\}, \pi_1$ is supercuspidal, π_2 is not supercuspidal

LLC for GU(2, D)

D: quaternion div. alg. over \mathbb{Q}_p , J = GU(2, D): inner form of $GSp_4(\mathbb{Q}_p)$ In this case, there is a candidate for LLC by Gan-Tantono. $\phi \colon W \times SL_2(\mathbb{C}) \longrightarrow GSp_4(\mathbb{C}) \longrightarrow \Pi_{\phi}^J$: L-packet Π_{ϕ}^J can be empty. $\Pi_{\phi}^J \neq \emptyset$ if ϕ is discrete.

Classification of *L*-packets

 $\phi \colon W \times SL_2(\mathbb{C}) \longrightarrow GSp_4(\mathbb{C}) \colon L$ -parameter. Assume that $\Pi_{\phi}^{\mathcal{G}}$ contains a supercuspidal rep. Then, for previous cases (I)–(IV), we have

(I)
$$\Pi_{\phi}^{J} = \{\rho\}, \rho$$
 is supercuspidal

(II)
$$\Pi_{\phi}^{J} = \{\rho_{1}, \rho_{2}\}, \rho_{1}, \rho_{2}$$
 are supercuspidal

(III) $\Pi_{\phi}^{J} = \{\rho_{1}, \rho_{2}\}, \rho_{1}$ is supercuspidal, ρ_{2} is not supercuspidal

(IV) $\Pi_{\phi}^{J} = \{\rho_1, \rho_2\}, \rho_1, \rho_2$ are not supercuspidal

What we want to know

- Geometric reason why L-packets naturally appear.
- Characterization of *L*-packets of type (I)–(IV) from geometric viewpoint.
- These are new problems which does not appear in the case of GL_n .

Rapoport-Zink space for GSp_{2n}

- X: an *n*-dimensional *p*-divisible group over F
 _p with slope 1/2 (e.g. E: a supersingular elliptic curve over F
 _p, X = E[p[∞]]^{⊕n}) λ₀: X → X[∨]: a polarization (λ[∨]₀ = −λ₀)
- Nilp: the category of $\widehat{\mathbb{Z}}_p^{ur}$ -algebras A in which p is unipotent

Definition (Rapoport-Zink space)

Define a functor $\mathcal{M} \colon \mathbf{Nilp} \longrightarrow \mathbf{Set}$ as follows:

$$\mathcal{M}(A) = \{(X, \lambda, \rho)\}/\cong$$

- X: p-divisible group over A, λ : polarization of X
- $\rho \colon \mathbb{X} \otimes_{\overline{\mathbb{F}}_n} A/pA \longrightarrow X \otimes_A A/pA$: quasi-isogeny $(= p^{-m} \circ isogeny)$

•
$$\rho^{-1} \circ (\lambda \mod p) \circ \rho \in \mathbb{Q}_p^{\times} \cdot \lambda_0$$

 ${\mathcal M}$ is represented by a formal scheme over $\widehat{\mathbb Z}_p^{\rm ur}$ called the Rapoport-Zink space.

 $\ensuremath{\mathcal{M}}$ is a very large formal scheme.

- Countably many connected components (corresponding to deg ρ)
- Each connected component is not quasi-compact. If n = 2, M^{red} is a chain of infinitely many P¹'s.

Group action on $\ensuremath{\mathcal{M}}$

 $J = \operatorname{Qlsog}(\mathbb{X}, \lambda_0)$: the group of self-quasi-isogenies $\rightsquigarrow J = GU(n, D)$ $\mathcal{M} \curvearrowleft J$ (right action): $(X, \lambda, \rho) \cdot h = (X, \lambda, \rho \circ h)$

Relation to Shimura varieties (p-adic uniformization)

Sh: Shimura variety for GSp_{2n} (the moduli space of principally polarized *n*-dimensional abelian varieties) Sh^{ss} \subset Sh_{\mathbb{F}_p}: supersingular locus, Sh $|_{\operatorname{Sh}^{ss}}^{\wedge}$: formal completion along Sh^{ss} \rightsquigarrow Sh $|_{\operatorname{Sh}^{ss}}^{\wedge}$ is uniformized by \mathcal{M} : Sh $|_{\operatorname{Sh}^{ss}}^{\wedge} = \coprod_{i=1}^{k} \mathcal{M} / \Gamma_i$ ($\Gamma_i \subset J$)

Rapoport-Zink tower for GSp_{2n}

$M = \operatorname{rigid}$ generic fiber of \mathcal{M} (rigid space over $\widehat{\mathbb{Q}}_p^{\mathsf{ur}}$)

Rapoport-Zink tower

 $\{M_{\mathcal{K}}\}_{\mathcal{K}}$: proj. system of étale coverings of M (the Rapoport-Zink tower)

- K runs through compact open subgroups of $\operatorname{GSp}_{2n}(\mathbb{Z}_p)$
- Defined by using K-level str. of the universal polarized p-div. group

•
$$M_{\operatorname{GSp}_{2n}(\mathbb{Z}_p)} = M$$

 If K is a congruence subgp K_m = Ker(GSp_{2n}(ℤ_p) → GSp_{2n}(ℤ/p^mℤ)), K_m-level str. = trivialization of p^m-torsion points (preserving pol.)

Group actions on Rapoport-Zink tower

- J acts on M_K (preserve levels)
- $G = \operatorname{GSp}_{2n}(\mathbb{Q}_p)$ acts on the tower $\{M_K\}_K$ (doesn't preserve levels) $g \in G \rightsquigarrow M_K \longrightarrow M_{g^{-1}Kg}$ (Hecke action)

Relation to Shimura varieties

 $\mathrm{Sh}^{[\mathrm{ss}]} \subset \mathrm{Sh}_{\widehat{\mathbb{Q}}_p^{\mathrm{ur}}}$: locus consisting of abelian varieties with supersingular reduction (rigid locally closed subset) $\mathrm{Sh}_{K,\widehat{\mathbb{Q}}_p^{\mathrm{ur}}}$: Sh. var. with *K*-level str., $\mathrm{Sh}_{K}^{[\mathrm{ss}]} \subset \mathrm{Sh}_{K,\widehat{\mathbb{Q}}_p^{\mathrm{ur}}}$: inv. image of $\mathrm{Sh}^{[\mathrm{ss}]}$ $\rightsquigarrow \mathrm{Sh}_{K}^{[\mathrm{ss}]}$ is uniformized by M_K

$\ell\text{-adic}$ étale cohomology of the Rapoport-Zink tower

$$\begin{split} \ell &: \text{ prime number different from } p \\ H^i_{\mathsf{RZ}} &:= \varinjlim_{\mathcal{K}} H^i_c(M_{\mathcal{K}} \otimes_{\widehat{\mathbb{Q}}_p^{\mathrm{ur}}} \widehat{\mathbb{Q}}_p^{\mathrm{ac}}, \overline{\mathbb{Q}}_\ell) \text{: rep. of } W \times \mathcal{G} \times \mathcal{J} \end{split}$$

<u>Goal</u>: describe H_{RZ}^i via LLC for G and J

The case of GL_n

Change the definition of the Rapoport-Zink space as follows:

- X: 1-dim. *p*-div. group (\coloneqq formal group) over $\overline{\mathbb{F}}_p$ with slope 1/n
- forget all "polarizations"

 \rightarrow the Lubin-Tate space, the Lubin-Tate tower, cohomology H_{LT}^{i}

•
$$G = \operatorname{GL}_n(\mathbb{Q}_p), \ J = D_n^{\times}$$

(D_n is the central division algebra over \mathbb{Q}_p with inv $D_n = 1/n$)

Theorem (non-abelian Lubin-Tate theory, Harris-Taylor)

 π : supercuspidal rep. of $\operatorname{GL}_n(\mathbb{Q}_p)$, ϕ : Weil-Deligne rep. s.t. $\Pi_{\phi}^{\operatorname{GL}_n} = \{\pi\}$ $\Pi_{\phi}^{D_n^{\times}} = \{\rho\} \ (\pi \longleftrightarrow \rho: \text{ Jacquet-Langlands correspondence})$ $\sigma: W \longrightarrow \operatorname{GL}_n(\overline{\mathbb{Q}}_\ell): \ell\text{-adic rep. s.t. } \operatorname{WD}(\sigma) = \phi$

$$\operatorname{Hom}_{\operatorname{\mathsf{GL}}_n(\mathbb{Q}_p)}(H^i_{\operatorname{\mathsf{LT}}},\pi) = \begin{cases} \sigma(\frac{1-n}{2}) \otimes \rho & (i=n-1) \\ 0 & (i\neq n-1) \end{cases}$$

The case of GSp₄

(joint work with Tetsushi Ito)

•
$$G = \operatorname{GSp}_4(\mathbb{Q}_p), J = GU(2, D)$$

- φ: W × SL₂(ℂ) → GSp₄(ℂ): L-parameter
 Assume that Π^G_φ contains a supercuspidal rep.
- For $\rho \in \Pi_{\phi}^{J}$, put $H_{\mathsf{RZ}}^{i}[\rho] := \mathsf{Hom}_{J}(H_{\mathsf{RZ}}^{i}, \rho)^{G\operatorname{-sm}}$ (rep. of $W \times G$)
- $H^i_{\rm RZ}[\rho]_{\rm cusp}$: the supercuspidal part of $H^i_{\rm RZ}[\rho]$

Classification of L-parameters (again)

 $r: \operatorname{GSp}_4 \hookrightarrow \operatorname{GL}_4$: natural embedding

(I) $(r \circ \phi)|_{\mathsf{SL}_2(\mathbb{C})} = \mathbf{1}, r \circ \phi$: irred.

(II)
$$(r \circ \phi)|_{\mathsf{SL}_2(\mathbb{C})} = \mathbf{1}, r \circ \phi = \varphi_1 \oplus \varphi_2 \ (\varphi_i: \text{ irred.}, \varphi_1 \ncong \varphi_2, \dim \varphi_i = 2)$$

(III)
$$r \circ \phi = \varphi \oplus (\chi \otimes \mathbf{Sp}_2), \ \varphi|_{\mathsf{SL}_2(\mathbb{C})} = \mathbf{1}, \ \varphi$$
: irred.

(IV) $r \circ \phi = (\chi_1 \otimes \mathbf{Sp}_2) \oplus (\chi_2 \otimes \mathbf{Sp}_2) \quad (\chi_1 \neq \chi_2)$

The case of GSp_4 (when $\phi|_{\mathsf{SL}_2(\mathbb{C})} = \mathbf{1}$)

Consider the case where $\phi|_{\mathsf{SL}_2(\mathbb{C})} = \mathbf{1}$ (i.e. type (I) or (II))

Main theorem A

$$\phi: \text{ type (I) or (II), } \rho \in \Pi_{\phi}^{J}: \text{ supercuspidal rep.}$$

$$(1) \text{ If } i \neq 3, \text{ then } H^{i}_{\mathsf{RZ}}[\rho]_{\mathsf{cusp}} = 0.$$

$$(2) H^{3}_{\mathsf{RZ}}[\rho]_{\mathsf{cusp}} = \bigoplus_{\pi \in \Pi_{\phi}^{G}} \sigma_{\pi} \otimes \pi$$

$$\sigma_{\pi}: \text{ irred. } \ell\text{-adic rep. of } W \text{ s.t. } \bigoplus_{\pi \in \Pi_{\phi}^{G}} \mathsf{WD}(\sigma_{\pi}) = r \circ \phi$$

- If φ is type (II), we can determine which of φ₁ or φ₂ is equal to WD(σ_π).
- The above theorem is a precise version of Kottwitz's conjecture for $\sum_{i}(-1)^{i}H_{\text{RZ}}^{i}$.

The case of GSp_4 (when $\phi|_{\mathsf{SL}_2(\mathbb{C})} \neq \mathbf{1}$)

Consider the case where $\phi|_{\mathsf{SL}_2(\mathbb{C})} \neq \mathbf{1}$ (i.e. type (III) or (IV))

Main theorem A'

$$\phi: \text{ type (III), i.e. } r \circ \phi = \varphi \oplus (\chi \otimes \mathbf{Sp}_2) \rho \in \Pi_{\phi}^J: \text{ supercuspidal rep. (unique)} (1) If $i \neq 3$, then $H_{\mathsf{RZ}}^i[\rho]_{\mathsf{cusp}} = 0. (2) H_{\mathsf{RZ}}^3[\rho]_{\mathsf{cusp}} = \sigma_\pi \otimes \pi \pi \in \Pi_{\pi}^G: \text{ supercuspidal rep. (unique), WD}(\sigma_\pi) = \varphi$$$

Main theorem B

 ϕ : type (III) or (IV), $\pi \in \Pi_{\phi}^{G}$: supercuspidal rep. (unique) Then π appears as a subquotient of H_{RZ}^{4} .

The case of GSp_4 (when $\phi|_{\mathsf{SL}_2(\mathbb{C})} \neq \mathbf{1}$)

Our more precise expectation is the following (in progress)

Expectation

$$\phi$$
: type (III) or (IV), $\chi \otimes \mathbf{Sp}_2 \subset r \circ \phi$

- $\pi \in \Pi_{\phi}^{G}$: supercuspidal rep. (unique), $\rho \in \Pi_{\phi}^{J}$: non-supercuspidal rep.
 - $\chi \otimes \pi^{\vee} \otimes \rho$ occurs in $H^3_{\rm RZ}$.
 - χ ⊗ π[∨] ⊗ Zel(ρ)[∨] occurs in H⁴_{RZ}. (Zel: Zelevinsky involution, Zel(ρ)[∨]: non-tempered rep.)

• We hope
$$H_{\rm RZ}^2 = 0$$
.

• If $\Pi_{\phi}^{J} = \{\rho, \rho'\}$, then $\{\rho', \operatorname{Zel}(\rho)^{\vee}\}$ is a non-tempered A-packet of J.

We explain the outline of our proof of main theorem B.

Main theorem B (again)

 ϕ : type (III) or (IV), $\pi \in \Pi_{\phi}^{G}$: supercuspidal rep. Then π appears as a subquotient of H_{RZ}^{4} .

Relate H_{RZ}^i to the cohomology of the Shimura variety. Sh_K^[ss] is uniformized by $M_K \rightsquigarrow$ the Hochschild-Serre spectral sequence

Hochschild-Serre spectral sequence (Harris, Fargues)

$$\mathsf{E}_{2}^{i,j} = \mathsf{Ext}_{J\mathsf{-sm}}^{j}(\mathsf{H}^{\mathsf{6}-j}_{\mathsf{RZ}},\mathcal{A})(-3) \Longrightarrow \varinjlim_{K} \mathsf{H}^{i+j}(\mathsf{Sh}^{\mathsf{[ss]}}_{K},\overline{\mathbb{Q}}_{\ell})$$

 \mathcal{A} : space of automorphic forms on $\mathsf{GSp}_4(\mathbb{A}^{\infty,\rho}) imes J$

 $H^{i}(\mathrm{Sh}_{\infty}^{[\mathrm{ss}]}) := \varinjlim_{\mathcal{K}} H^{i+j}(\mathrm{Sh}_{\mathcal{K}}^{[\mathrm{ss}]}, \overline{\mathbb{Q}}_{\ell})$

 $Sh_{K}^{[ss]}$: supersingular reduction locus $Sh_{K}^{[good]}$: good reduction locus

$$\begin{split} & \mathsf{Sh}_{\mathcal{K}}^{[\mathsf{ss}]} \subset \mathsf{Sh}_{\mathcal{K}}^{[\mathsf{good}]} \subset \mathsf{Sh}_{\mathcal{K}} \\ & \rightsquigarrow \mathit{IH}^{i}(\mathsf{Sh}_{\infty})_{\mathsf{cusp}} \xrightarrow{\cong} \mathit{H}^{i}(\mathsf{Sh}_{\infty})_{\mathsf{cusp}} \xrightarrow{\cong} \mathit{H}^{i}(\mathsf{Sh}_{\infty}^{[\mathsf{good}]})_{\mathsf{cusp}} \xrightarrow{\cong} \mathit{H}^{i}(\mathsf{Sh}_{\infty}^{[\mathsf{ss}]})_{\mathsf{cusp}} \end{split}$$

- (1) Use the minimal compactification over $\mathbb{C}.$ True for every Shimura variety.
- (2) Joint work with Naoki Imai. True for fairly general Shimura varieties.
- (3) Boyer's trick. Only valid for GSp_4 . (proof is not applicable to GSp_{2n} with $n \ge 3$)

Another key is:

Theorem (non-cuspidality)

If $i \neq 2, 3, 4$, no supercuspidal rep. appears as a subquotient of H_{RZ}^i .

• Since dim M = 3, $H_{RZ}^i = 0$ unless $0 \le i \le 6$.

• $2 = 3 - 1 = \dim M - \dim \mathcal{M}^{\text{red}}$, $4 = 3 + 1 = \dim M + \dim \mathcal{M}^{\text{red}}$

- This theorem is proved by a purely local method.
- The method is similar to our purely local proof of non-cuspidality for the Lubin-Tate tower. However, we encounter many new difficulties since \mathcal{M} is very large.
- For a proof, we introduce variants of formal nearby cycle functor. (in order to capture "invisible boundaries")

Main theorem B (again)

 ϕ : type (III) or (IV), $\pi \in \Pi_{\phi}^{G}$: supercuspidal rep. (unique) Then π appears as a subquotient of H_{RZ}^{4} .

Proof of main theorem B

Take a cuspidal automorphic rep. Π of $\mathsf{GSp}_4(\mathbb{A})$ s.t.

• Π occurs in $I\!H^2(\mathsf{Sh}_\infty)$ (a condition on $\Pi_\infty)$

•
$$\Pi_p \cong \pi^{\vee}$$

(Need the assumption that ϕ is type (III) or (IV))

By the Hochschild-Serre spectral sequence, there are *i*, *j* with i + j = 2 s.t. Π_p contributes to $\operatorname{Ext}^{i}_{J-\operatorname{sm}}(H^{6-j}_{\mathsf{RZ}}, \mathcal{A})$.

By the non-cuspidality, we have $6 - j \neq 5, 6$. So Π_p appears in Hom_J(H_{RZ}^4, A), and thus π appears in H_{RZ}^4 .

Our proof of main theorems A, A' is similar. Need to globalize π and ρ carefully.

Take a cuspidal automorphic rep. Π of $\mathsf{GSp}_4(\mathbb{A})$ s.t.

- Π occurs in $IH^3(Sh_{\infty})$ (a condition on Π_{∞})
- $\Pi_p \cong \pi$
- Π satisfies the strong multiplicity one theorem at p. Namely, an autom. rep. Π' of GSp₄(A) with Π^p = (Π')^p coincides with Π.

(cf. Arthur's multiplicity conjecture)

Globalize ρ to Π^J so that similar conditions and $\Pi^{\infty,\rho} = (\Pi^J)^{\infty,\rho}$ are satisfied.

Take " $\Pi^{\infty,p}$ -parts" of the Hochschild-Serre spectral sequence.

Local method

Global method cannot answer our question why *L*-packets naturally appear. Another purely local method is usage of Lefschetz trace formula for open rigid (or adic) spaces.

Theorem (Lefschetz trace formula for open rigid spaces)

- X: quasi-compact smooth adic space over $\widehat{\mathbb{Q}}_{p}^{\mathsf{ac}}$
- $X \subset \overline{X}$: compactification

 $f: X \longrightarrow X$: proper morphism, assumed to be extended to $\overline{f}: \overline{X} \longrightarrow \overline{X}$ Assume that for every $x \in \overline{X} \setminus X$, x and $\overline{f}(x)$ can be separated by closed constructible subsets of \overline{X} . Then,

$$\sum_{i} (-1)^{i} \operatorname{Tr}(f^{*}; H_{c}^{i}(X, \overline{\mathbb{Q}}_{\ell})) = \# \operatorname{Fix}(f)$$

Apply this formula to quasi-compact open subsets of M_K .

Theorem

 $\phi \colon W \times SL_2(\mathbb{C}) \longrightarrow GSp_4(\mathbb{C}) \colon$ *L*-parameter of type (I) or (II)

Assume the character relation between Π^G_φ and Π^J_φ.
 (It is expected to be proved by the stable trace formula. It has been proved in some cases, e.g. φ is a TRSELP.)

• Assume that $H^{i}_{\mathsf{RZ}}[\rho]$ is a finitely generated *G*-module for $\rho \in \Pi^{J}_{\phi}$. Then, for every elliptic regular semisimple element $g \in G$,

$$\sum_{
ho\in \Pi_{\phi}^{J}} heta_{\mathcal{H}_{\mathsf{RZ}}[
ho]}(g) = 4 \sum_{\pi\in \Pi_{\phi}^{G}} heta_{\pi}(g) \, .$$

- $H_{\mathsf{RZ}}[\rho] = \sum_{i} (-1)^{i} H^{i}_{\mathsf{RZ}}[\rho]$
- $\theta_{H_{RZ}[\rho]}$, θ_{π} : distribution characters. They are locally constant functions over the set of regular semisimple elements of *G*.

Yoichi Mieda (Kyoto University)

Local method

- For GL_n, there are preceding works by Faltings and Strauch.
- By this method, we get no information on the action of W.
- To count fixed points in M_K , we use the *p*-adic period map (the map attaching the Hodge filtration of the Dieudonné module to a *p*-divisible group)

 \leadsto by p-adic Hodge theory, stable conjugacy classes and their transfers naturally appear.

(these are closely related to *L*-packets)

• With more precise study, we expect to show

$$heta_{\mathcal{H}_{\mathsf{RZ}}[
ho]}(g) = rac{4}{\#\Pi_{\phi}^{G}}\sum_{\pi\in\Pi_{\phi}^{G}} heta_{\pi}(g)$$

Comments on other groups

- Similar methods are applicable to GU(2,1), and GL_4 with slope 1/2.
- Boyer's trick is valid for GU(n − 1, 1) (Mantovan, Shen)
 → similar results for the alternating sum of Hⁱ_{RZ} might be possible.
 Proof of the non-cuspidality doesn't work in this case.
- It seems important to consider the case of GU(2, D) (the "dual tower" for GSp₄) simultaneously (cf. Faltings isomorphism)