特筆 無線型熱方程式の解の爆発とくわえて

儀我美一 名大理

次の無線型熱方程式の初期値-境界値問題を \(\mathbb{R}^n \) の有界領域 \(\Omega \) で考えよう。

\[
\begin{align*}
 u_t - \Delta u - u^p &= 0, & u|_{\partial \Omega} &= 0 \\
 u(x,0) &= u_0(x) \geq 0
\end{align*}
\]

ここで \(p > 1 \) とし、\(u_0 \) は十分滑らかとした。この方程式の特徴は、自己增殖効果 \(u^p \) と拡散効果 \(\Delta u \) が競合することにある。解の存在・非存在の立場からみると、大域解が存在しないと無線型拡散方程式のことも簡単方的に近れている。したがって \(\Gamma(t) = \{ x \in \mathbb{R}^n : u > 0 \} \) と \(\Gamma(0) = \Omega \) としたとき \(\Gamma(t) \) が十分大きければ、ある有限時間 \(T \) で、局所解がそれ以降一定で解の延長でできなくなる。より詳しくは、

\[
\lim_{t \to T^-} \sup_{x \in \Gamma(t)} u(x, t) = \infty,
\]
つまり解が一定で解の時刻 \(T \) で爆発するのである、この \(T \) のことを爆発時刻という。

爆発の存在は従来より知られられているが、爆発の様子についてはごく最近になって注目されるようにな
った。ここでは、ひとつつの定量的表現として、どのよう
なノルムが、爆発するかということに焦点をあててみよ
う。特にノルムが大きいものは次のように
で無限大になる、ある関数を下から評価されている。

命題 1 に拡張実数 C > 0 があるとき

(i) \[\| u \|_{L^2}(t) \geq C/(T-t)^{\frac{1}{2}} \]

(ii) \[\| u \|_{L^2}(t) \geq C/(T-t)^{\frac{1}{2}} \]

但し \[t > \max \{ t_0, \sqrt{2} / \lambda \} \] とする。

これらは局所存在定理を読む。例えば \[\| u \|_{L^2} \] が爆発しない
したがって結合に小さければ局所存在定理よりしてもこえて
持続して存在するという意味で (i) がいえる。詳しくは [W2]
[G1] を参照せよ。

ここで \[L^2 \] ノルムで \[V < 1 \text{ または } 0 \] そとは爆発するであろう
が、以後、特に場合に限定して考える。まず
半径 \[R \] で原点を中心にした球 \(B(R) \) とする。 \(
\| u \|_{L^2} \) をみ
による関数とし \[\frac{1}{2} R < C \text{ かつ } \sqrt{2} R \geq 0 \] を仮定する。このは
解の爆発は原点を中心にすることから \(\square \) が
予め \(\text{実際正しく Weisss} \) [W2] により特別な場合で示され
後に Friedman-Melcho [FM] により一般化された、[MW] を参
照のこと。以下の命題は [FM] に従う。
命題3 (i) ある定数 $M = M(x, \varepsilon)$ と存在する T

\[u(x, T) \leq \frac{M}{|x|}, \quad \varepsilon > \frac{2}{\rho - 1}, \quad \varepsilon < T \]

(ii) 特異爆発点以外でのみが $u < \infty$ である (single point blow-up)

\[\lim_{T \to T} u(x, T) < \infty, \quad x \neq c. \]

(iii) より一般に $r < \frac{\rho}{(\rho - 1)} \frac{2}{\varepsilon} \sup \|u\|_{L^\infty} \lt \infty$

特に $r < 1$ および $c \in \mathbb{R}$ によっては点的に有限化され、爆発が発生する点を有限化点とする。

(iii) に問題があるのは、元の L^p ノルムがどうなるか

\[u(x, T) \leq \frac{M}{|x|} \]

という評価をもつ点である。

i については Weierstrass [W3] が L^p 空間で発散しないことの仮定のもとに爆発をもつしている。しかしこれでは H がなりたたかどうかの答になるだろう。ここでは爆発点における解の特異性の結果 [GK1] [GK2] によっては (i) の不可能性という。

補題 [GK2] 次の収束を $(\varepsilon \to 0)$ について可微分性をもつ。

\[\lim_{\varepsilon \to 0} u(y, s) - u(x, t) = \varepsilon \quad \text{as} \qquad \varepsilon \to 0 \]

とし $(x-2\varepsilon < y < x+2\varepsilon)$ である。

証明の一部で、次の性質の考察により直接は爆発が起こらないことになる。

特に、実数で非負な条件で爆発のおそれと考えられ、その微分の解を求めるために、零点のび
にならなければ、爆発点でないことをあらかじめしていると予想されたが、証明はされていない。また、$m > 0$ のときには、何がかかる。いない。

この補題を使って、(\mathcal{H}) の不可能性が示すと、まずローレンツ空間の定義から、$f \in L^p(\mathbb{R})$ とし

$$
\left\| f \right\|_{L^p} = \sup_{x \in \mathbb{R}} \left(\int_{-\infty}^{\infty} \left| f(x-y) \right|^p dy \right)^{1/p} < \infty
$$

が有限のときである。すなわち、$f \in L^p(\mathbb{R})$ かつ

$$
\frac{1}{n} \in L^t(\mathbb{R}), \quad \text{対数に} \quad \frac{1}{n} \in L^{'t}(\mathbb{R}) \quad \text{で} \quad \frac{1}{n} \in L^{\nu}(\mathbb{R})
$$

定理によると、もし $(m-2)p < n+2 \quad \text{ならば}$

(i) \quad \lim_{t \to \infty} \left\| f \right\|_{L^p} = \infty

(ii) \quad \lim_{t \to \infty} \left\| f \right\|_{L^p} (T-t)^{\frac{n-p}{2p}} = \infty, \quad \delta > \frac{m(p-1)}{2}

(iii) 特に、(i) は クライスレース不可能である。

証明の要は次のとおり、$\lambda \leq \nu$ で経験を積み重ねて、このこともありよく不

でいないことがあらかじめいえる。あとは、ただ目の黒

のしわを伸ばすのがよい、定数を $\frac{\nu}{\nu}(\mathbb{R})$ に添加す

れば容易である。

以上により、最初にあげた、ν の爆発状況について特別な関

を示す。一般に、この事実から、ν の補題の除去不可能性は、

(存在がいない) といえる。こうなるだろうか。さて、ここで扱いやすい。
爆発する量の上から評価は最近注目されている。例えば命題11の逆の型の不等式が (m-2)p<2 のときで
方達の数式の大域的の有限性 [G2] と結びつ
いている。命題11の逆の型の不等式は定理2より不等
到達である。ただ とのときは わからないことが
く。いいのがルールについて

\[S \leq \frac{1}{\kappa} \]

かという問題は おもしろい。この問題は おもしろい相似形
の問題に関連していることに注目が [G2, 94]。なお
非線形の一般化については [GK2] で多角試みられている。他
の方法との関係 記載についても [GK2] はもと [G2] を参考と
される。からも先行がでかかわれている。

References

[FM] A. Friedman and B. Mcleod, Blowup of positive solution of
425-447.

[FG] A. Friedman and Y. Giga, A single point blow-up for
solutions of semilinear parabolic system, preprint.

