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Abstract. By means of a description of the solutions of the KZ equation using
hypergeometric integrals we show that the homological representations of the
braid groups studied by Lawrence, Krammer and Bigelow are equivalent at generic
complex values to the monodromy of the KZ equation with values in the space of
null vectors in the tensor product of Verma modules of sl2(C).

1. Introduction

The purpose of this paper is to clarify the relation between the Lawrence-Krammer-
Bigelow (LKB) representations of the braid groups and the monodromy representa-
tions of the Knizhnik-Zamolodchikov (KZ) connection.

The LKB representations of the braid groups were studied by Lawrence [13] in
relation with Hecke algebra representations of the braid groups and were extensively
investigated by Bigelow [3] and Krammer [12].

On the other hand, it was shown by Schectman-Varchenko [16] and others that
the solutions of the KZ equation are expressed by hypergeometric integrals. From
the expression of the integrals over homology cycles with coefficients in local systems
it is clear that the LKB representation can be expressed as the monodromy repre-
sentation of the KZ equation, however, I think it is worthwhile to state a precise
relation between them.

There are two parameters λ and κ, which are related to the highest weight and the
KZ connection respectively. We consider the KZ equation with values in the space
of null vectors in the tensor product of Verma modules of sl2(C) and show that a
specialization of the LKB representation is equivalent to the monodromy represen-
tation of such KZ equation for a generic parameter λ and κ. A complete statement
is given in Theorem 6.1. We describe a sufficient condition for the parameters to be
generic so that the statement of the theorem holds. This result was announced in
[11] and the present paper is a more detailed account for this subject.

There is other approach due to Marin [14] expressing representations of the braid
groups and their generalizations such as Artin groups as the monodromy of inte-
grable connections by an infinitesimal method. Our approach depends on integral
representations of the solutions of the KZ equation and is different from Marin’s
method.

In this article we will treat the case when the parameters are generic, but the case
of special parameters are important from the viewpoint of conformal field theory
(see [7], [17] and [19]). We will deal with this subject in a separate paper.

The paper is organized in the following way. In Section 2 we recall basic definitions
for the LKB representations. In Section 3 we deal with the homology of local systems
over the complement of a discriminantal arrangement. We recall the definition of
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the KZ equation in Section 4 and describe its solutions by hypergeometric integrals
in Section 5. Section 6 is devoted to the statement of the main theorem and its
proof.

2. Lawrence-Krammer-Bigelow representations

We denote by Bn the braid group with n strands. We fix a positive integer n and
a set of distinct n points in R2 as

Q = {(1, 0), · · · , (n, 0)},

where we set p` = (`, 0), ` = 1, · · · , n. We take a 2-dimensional disk in R2 containing
Q in the interior. We fix a positive integer m and consider the configuration space
of ordered distinct m points in Σ = D \ Q defined by

Fm(Σ) = {(t1, · · · , tm) ∈ Σ ; ti 6= tj if i 6= j},

which is also denoted by Fn,m(D). The symmetric group Sm acts freely on Fm(Σ)
by the permutations of distinct m points. The quotient space of Fm(Σ) by this
action is by definition the configuration space of unordered distinct m points in Σ
and is denoted by Cm(Σ). We also denote this configuration space by Cn,m(D).

In the original papers by Bigelow [3], [4] and by Krammer [12] the case m = 2
was extensively studied, but for our purpose it is convenient to consider the case
when m is an arbitrary positive integer such that m ≥ 2.

We identify R2 with the complex plane C. The quotient space Cm/Sm defined
by the action of Sm by the permutations of coordinates is analytically isomorphic
to Cm by means of the elementary symmetric polynomials. Now the image of the
hyperplanes defined by ti = p`, ` = 1, · · · , n, and the diagonal hyperplanes ti = tj ,
1 ≤ i ≤ j ≤ m, are complex codimension one irreducible subvarieties of the quotient
space Dm/Sm. This allows us to give a description of the first homology group of
Cn,m(D) as

(2.1) H1(Cn,m(D);Z) ∼= Z⊕n ⊕ Z

where the first n components correspond to meridians of the images of hyperplanes
ti = p`, ` = 1, · · · , n, and the last component corresponds to the meridian of the
image of the diagonal hyperplanes ti = tj , 1 ≤ i ≤ j ≤ m, namely, the discriminant
set. We consider the homomorphism

(2.2) α : H1(Cn,m(D);Z) −→ Z ⊕ Z

defined by α(x1, · · · , xn, y) = (x1 + · · ·+ xn, y). Composing with the abelianization
map π1(Cn,m(D), x0) → H1(Cn,m(D);Z), we obtain the homomorphism

(2.3) β : π1(Cn,m(D), x0) −→ Z ⊕ Z.

Let π : C̃n,m(D) → Cn,m(D) be the covering corresponding to Ker β. Now the group
Z ⊕ Z acts as the deck transformations of the covering π and the homology group
H∗(C̃n,m(D);Z) is considered to be a Z[Z ⊕ Z]-module. Here Z[Z ⊕ Z] stands for
the group ring of Z ⊕ Z. We express Z[Z ⊕ Z] as the ring of Laurent polynomials
R = Z[q±1, t±1]. We consider the homology group

Hn,m = Hm(C̃n,m(D);Z)

as an R-module by the action of the deck transformations.
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As is explained in the case of m = 2 in [3] it can be shown that Hn,m is a free
R-module of rank

(2.4) dn,m =
(

m + n − 2
m

)
.

A basis of Hn,m as a free R-module is discussed in relation with the homology of
local systems in the next sections. Let M(D,Q) denote the mapping class group
of the pair (D,Q), which consists of the isotopy classes of homeomorphisms of D
fixing Q setwise and fixing the boundary ∂D pointwise. The braid group Bn is nat-
urally isomorphic to the mapping class group M(D,Q). Now a homeomorphism f

representing a class in M(D,Q) induces a homeomorphism f̃ : Cn,m(D) → Cn,m(D),
which is uniquely lifted to a homeomorphism of C̃n,m(D). This homeomorpshim
commutes with the deck transformations.

Therefore, for m ≥ 2 we obtain a representation of the braid group

(2.5) ρn,m : Bn −→ AutR Hn,m

which is called the homological representation of the braid group or the Lawrence-
Krammer-Bigelow (LKB) representation. Let us remark that in the case m = 1 the
above construction gives the reduced Burau representation over Z[q±1].

3. Discriminantal arrangements

First, we recall some basic definition for local systems. Let M be a smooth mani-
fold and V a complex vector space. Given a linear representation of the fundamental
group

r : π1(M,x0) −→ GL(V )
there is an associated flat vector bundle E over M . The local system L associated
to the representation r is the sheaf of horizontal sections of the flat bundle E. Let
π : M̃ → M be the universal covering. We denote by Zπ1 the group ring of the
fundamental group π1(M,x0). We consider the chain complex

C∗(M̃) ⊗Zπ1 V

with the boundary map defined by ∂(c ⊗ v) = ∂c ⊗ v. Here Zπ1 acts on C∗(M̃) via
the deck transformations and on V via the representation r. The homology of this
chain complex is called the homology of M with coefficients in the local system L
and is denoted by H∗(M,L).

Let A = {H1, · · · , HN} be a set of affine hyperplanes in the complex vector
space Cn. We call the set A a complex hyperplane arrangement. We consider the
complement

M(A) = Cn \
⋃

H∈A
H.

Let L be a complex rank one local system over M(A) associated with a represen-
tation of the fundamental group

r : π1(M(A), x0) −→ C∗.

We shall investigate the homology of M(A) with coefficients in the local system L.
For our purpose the homology of locally finite chains H lf

∗ (M(A),L) also plays an
important role.
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We briefly summarize basic properties of the above homology groups. For a com-
plex hyperplane arrangement A we choose a smooth compactification i : M(A) −→
X with normal crossing divisors. We shall say that the local system L is generic if
and only if there is an isomorphism

(3.1) i∗L ∼= i!L

holds, where i∗ is the direct image and i! is the extension by 0. This means that
the monodromy of L along any divisor at infinity is not equal to 1. The following
theorem was shown in [9].

Theorem 3.1. If the local system L is generic in the above sense, then there is an
isomorphism

H∗(M(A),L) ∼= H lf
∗ (M(A),L).

Moreover, we have Hk(M(A),L) = 0 for any k 6= n.

Proof. In general we have isomorphisms

H∗(X, i∗L) ∼= H∗(M(A),L), H∗(X, i!L) ∼= H∗
c (M(A),L)

where Hc denotes cohomology with compact supports.
There are Poincaré duality isomorphisms:

H lf
k (M(A),L) ∼= H2n−k(M(A),L)

Hk(M(A),L) ∼= H2n−k
c (M(A),L).

By the hypothesis i∗L ∼= i!L we obtain an isomorphism

H lf
k (M(A),L) ∼= Hk(M(A),L).

It follows from the above Poincaré duality isomorpshims and the fact that M(A)
has a homotopy type of a CW complex of dimension at most n we have

H lf
k (M(A),L) ∼= 0, k < n

Hk(M(A),L) ∼= 0, k > n.

Therefore we obtain Hk(M(A),L) = 0 for any k 6= n. ¤

Let us consider the configuration space of ordered distinct n points in the complex
plane defined by

(3.2) Xn = {(z1, · · · , zn) ∈ Cn ; zi 6= zj if i 6= j}.

The fundamental group of Xn is the pure braid group with n strands denoted by
Pn. For a positive integer m we consider the projection map

(3.3) πn,m : Xn+m −→ Xn

given by πn,m(z1, · · · , zn, t1, · · · , tm) = (z1, · · · , zn), which defines a fiber bundle over
Xn. For p ∈ Xn the fiber π−1

n,m(p) is denoted by Xn,m. We denote by (p1, · · · , pn)
the coordinates for p. Then, Xn,m is the complement of hyperplanes defined by

(3.4) ti = p`, 1 ≤ i ≤ m, 1 ≤ ` ≤ n, ti = tj , 1 ≤ i < j ≤ m.

Such arrangement of hyperplanes is called a discriminantal arrangement. The sym-
metric group Sm acts on Xn,m by the permutations of the coordinates functions
t1, · · · , tm. We put Yn,m = Xn,m/Sm.
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Identifying R2 with the complex plane C, we have the inclusion map

(3.5) ι : Fn,m(D) −→ Xn,m,

which is a homotopy equivalence. By taking the quotient by the action of the
symmetric group Sm, we have the inclusion map

(3.6) ι : Cn,m(D) −→ Yn,m,

which is also a homotopy equivalence.
We take p = (1, 2, · · · , n) as a base point. We consider a local system over Xn,m

defined in the following way. Let ξi` and ηij be normal loops around the hyperplanes
ti = p` and ti = tj respectively. We fix complex numbers α`, 1 ≤ ` ≤ n, and γ and
by the correspondence

ξi` 7→ e2π
√
−1α` , ηij 7→ e4π

√
−1γ

we obtain the representation

r : π1(Xn,m, x0) −→ C∗.

We denote by L the associated rank one local system on Xn,m.
Let us consider the embedding

(3.7) i0 : Xn,m −→ (CP 1)m = CP 1 × · · · × CP 1︸ ︷︷ ︸
m

.

Then we take blowing-ups at multiple points π : ̂(CP 1)m −→ (CP 1)m and obtain a
smooth compactification i : Xn,m → ̂(CP 1)m with normal crossing divisors. We are
able to write down the condition i∗L ∼= i!L explicitly by computing the monodromy
of the local system L along divisors at infinity.

Examples. (1) In the case m = 1 the local system L is generic if and only if

α` /∈ Z, 1 ≤ ` ≤ n, α1 + · · · + αn /∈ Z.

(2) In the case m = 2 the local system L is generic if and only if

α` /∈ Z, 1 ≤ ` ≤ n, 2γ /∈ Z,

2(α` + γ) /∈ Z, 1 ≤ ` ≤ n,

2(α1 + · · · + αn + γ) /∈ Z.

The local system L on Xn,m is invariant under the action of the symmetric group
Sm and induces the local system L on Yn,m.

We will deal with the case α1 = · · · = α` = α. In this case we have the following
proposition.

Proposition 3.1. There is an open dense subset V in C2 such that for (α, γ) ∈ V
the associated local system L on Yn,m satisfies

H∗(Yn,m,L) ∼= H lf
∗ (Yn,m,L)

and Hk(Yn,m,L) = 0 for any k 6= m. Moreover, we have

(3.8) dimHm(Yn,m,L∗) = dn,m,

where we use the same notation as in equation (2.4) for dn,m.
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Proof. We see that Yn,m is the complement of hypersurfaces in Cm. We consider
the embedding

(3.9) i0 : Yn,m −→ SmCP 1

where SmCP 1 is the symmetric product defined as (CP 1)m/Sm. We observe that
SmCP 1 is a smooth complex manifold. Now by taking blowing-ups we have a
smooth compactification

(3.10) i : Yn,m −→ ̂SmCP 1

with normal crossing divisors. Let us remark that the argument of the proof of The-
orem 3.1 can be applied to this situation and we have an isomorphism H∗(Yn,m,L) ∼=
H lf

∗ (Yn,m,L) and the vanishing Hk(Yn,m,L) = 0 for k 6= m if the condition i∗L ∼= i!L
is satisfied. Actually, by the Lefschetz hyperplane section theorem it is enough to
verify the condition for a generic 2 dimensional section. In this case by expressing
the monodromy along divisors with normal crossings at infinity by the parameter
(α, γ) we can verify that the condition i∗L ∼= i!L is satisfied for (α, γ) ∈ C2 in an
open dense subset of C2. The dimension formula for Hm(Yn,m,L∗) follows from the
calculation of the Euler-Poincaré characteristic of Yn,m. ¤

Remark. It was shown by Andreotti [1] that the above m-fold symmetric product
SmCP 1 is actually biholomorphically equivalent to CPm.

For the purpose of describing the homology group H lf
m (Xn,m,L) and H lf

m (Yn,m,L)
we introduce the following notation. We fix the base point p = (1, · · · , n). For non-
negative integers m1, · · · ,mn−1 satisfying

(3.11) m1 + · · · + mn−1 = m

we define a bounded chamber ∆m1,··· ,mn−1 in Rm by

1 < t1 < · · · < tm1 < 2
2 < tm1+1 < · · · < tm1+m2 < 3
· · ·
n − 1 < tm1+···+mn−2+1 + · · · + tm < n.

We put M = (m1, · · · ,mn−1) and we write ∆M for ∆m1,··· ,mn−1 . We denote by
∆M the image of ∆M by the projection map πn,m. The bounded chamber ∆M

defines a homology class [∆M ] ∈ H lf
m (Xn,m,L) and its image ∆M defines a homology

class [∆M ] ∈ H lf
m (Yn,m,L). We shall show in Section 6 that under certain generic

conditions [∆M ] for M = (m1, · · · ,mn−1) with m1 + · · · + mn−1 = m form a basis
of H lf

m (Yn,m,L).
As we have shown in Theorem 3.1 there is an isomorphism Hm(Xn,m,L) ∼=

H lf
m (Xn,m,L) if the condition i∗L ∼= i!L is satisfied. In this situation we denote

by [∆̃M ] the homology class in Hm(Xn,m,L) corresponding to [∆M ] in the above
isomorphism and call [∆̃M ] the regularized cycle for [∆M ].

Example. Let us consider the case n = 2,m = 1. The bounded chamber ∆1 is
the open unit interval (0, 1). We suppose the condition i∗L ∼= i!L is satisfied. The
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Pochhammer double loop Γ as depicted in Figure 1 is related to [∆̃1] by

[∆̃1] =
1

(1 − e2π
√
−1α1)(1 − e2π

√
−1α2)

[Γ].

∆1
Γ

Figure 1. Pochhammer double loop

In general regularized cycles can be constructed by means of the boundary of the
tubular neighborhood of divisors at infinity. We refer the reader to [2] for more
details about this subject.

4. KZ connection

Let g be a complex semi-simple Lie algebra and {Iµ} be an orthonormal basis of
g with respect to the Cartan-Killing form. We set Ω =

∑
µ Iµ ⊗ Iµ. Let ri : g →

End(Vi), 1 ≤ i ≤ n, be representations of the Lie algebra g. We denote by Ωij the
action of Ω on the i-th and j-th components of the tensor product V1 ⊗ · · · ⊗ Vn. It
is known that the Casimir element c =

∑
µ Iµ · Iµ lies in the center of the universal

enveloping algebra Ug. Let us denote by ∆ : Ug → Ug⊗Ug be the coproduct, which
is defined to be the algebra homomorphism determined by ∆(x) = x⊗ 1 + 1⊗ x for
x ∈ g. Since Ω is expressed as Ω = 1

2 (∆(c) − c ⊗ 1 + 1 ⊗ c) we have the relation

(4.1) [Ω, x ⊗ 1 + 1 ⊗ x] = 0

for any x ∈ g in the tensor product Ug⊗Ug. By means of the above relation it can
be shown that the infinitesimal pure braid relations:

[Ωik, Ωij + Ωjk] = 0, (i, j, k distinct),(4.2)

[Ωij , Ωk`] = 0, (i, j, k, ` distinct)(4.3)

hold. Let us briefly explain the reason why we have the above infinitesimal pure
braid relations. For the first relation it is enough to show the case i = 1, j = 3, k = 2.
Since we have

[Ω ⊗ 1, (Iµ ⊗ 1 + 1 ⊗ Iµ) ⊗ Iµ] = 0
by the equation (4.1) we obtained the desired relation. The equation (4.3) in the
infinitesimal pure braid relations is clear from the definition of Ω on the tensor
product.

We define the Knizhnik-Zamolodchikov (KZ) connection as the 1-form

(4.4) ω =
1
κ

∑
1≤i<j≤n

Ωijd log(zi − zj)

with values in End(V1 ⊗ · · · ⊗ Vn) for a non-zero complex parameter κ.
We set ωij = d log(zi − zj), 1 ≤ i, j ≤ n. It follows from the above infinitesimal

pure braid relations among Ωij together with Arnold’s relation

(4.5) ωij ∧ ωjk + ωjk ∧ ωk` + ωk` ∧ ωij = 0
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that ω∧ω = 0 holds. This implies that ω defines a flat connection for a trivial vector
bundle over the configuration space Xn = {(z1, · · · , zn) ∈ Cn ; zi 6= zj if i 6= j}
with fiber V1 ⊗ · · · ⊗ Vn. A horizontal section of the above flat bundle is a solution
of the total differential equation

(4.6) dϕ = ωϕ

for a function ϕ(z1, · · · , zn) with values in V1 ⊗ · · · ⊗ Vn. This total differential
equation can be expressed as a system of partial differential equations

(4.7)
∂ϕ

∂zi
=

1
κ

∑
j,j 6=i

Ωij

zi − zj
ϕ, 1 ≤ i ≤ n,

which is called the KZ equation. The KZ equation was first introduced in [8] as the
differential equation satisfied by n-point functions in Wess-Zumino-Witten conformal
field theory.

Let φ(z1, · · · , zn) be the matrix whose columns are linearly independent solutions
of the KZ equation. By considering the analytic continuation of the solutions with
respect to a loop γ in Xn with base point x0 we obtain the matrix θ(γ) defined by

(4.8) φ(z1, · · · , zn) 7→ φ(z1, · · · , zn)θ(γ).

Since the KZ connection ω is flat the matrix θ(γ) depends only on the homotopy
class of γ. The fundamental group π1(Xn, x0) is the pure braid group Pn. As
the above holonomy of the connection ω we have a one-parameter family of linear
representations of the pure braid group

(4.9) θ : Pn → GL(V1 ⊗ · · · ⊗ Vn).

The symmetric group Sn acts on Xn by the permutations of coordinates. We
denote the quotient space Xn/Sn by Yn. The fundamental group of Yn is the braid
group Bn. In the case V1 = · · · = Vn = V , the symmetric group Sn acts diagonally
on the trivial vector bundle over Xn with fiber V ⊗n and the connection ω is invariant
by this action. Thus we have one-parameter family of linear representations of the
braid group

(4.10) θ : Bn → GL(V ⊗n).

It is known by [6] and [10] that this representation is described by means of quantum
groups. We call θ the quantum representation of the braid group.

5. Solutions of KZ equation by hypergeometric integrals

In this section we describe solutions of the KZ equation for the case g = sl2(C)
by means of hypergeometric integrals following Schechtman and Varchenko [16]. A
description of the solutions of the KZ equation was also given by Date, Jimbo,
Matsuo and Miwa [5]. We refer the reader to [2] and [15] for general treatments of
hypergeometric integrals.

Let us recall basic facts about the Lie algebra sl2(C) and its Verma modules. As
a complex vector space the Lie algebra sl2(C) has a basis H,E and F satisfying the
relations:

(5.1) [H,E] = 2E, [H,F ] = −2F, [E,F ] = H.
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For a complex number λ we denote by Mλ the Verma module of sl2(C) with highest
weight λ. Namely, there is a non-zero vector vλ ∈ Mλ called the highest weight
vector satisfying

(5.2) Hvλ = λvλ, Evλ = 0

and Mλ is spanned by F jvλ, j ≥ 0. The elements H,E and F act on this basis as

(5.3)


H · F jvλ = (λ − 2j)F jvλ

E · F jvλ = j(λ − j + 1)F j−1vλ

F · F jvλ = F j+1vλ.

It is known that if λ ∈ C is not a non-negative integer, then the Verma module Mλ

is irreducible.
For Λ = (λ1, · · · , λn) ∈ Cn we put |Λ| = λ1 + · · · + λn and consider the tensor

product Mλ1 ⊗· · ·⊗Mλn . For a non-negative integer m we define the space of weight
vectors with weight |Λ| − 2m by

(5.4) W [|Λ| − 2m] = {x ∈ Mλ1 ⊗ · · · ⊗ Mλn ; Hx = (|Λ| − 2m)x}
and consider the space of null vectors defined by

(5.5) N [|Λ| − 2m] = {x ∈ W [|Λ| − 2m] ; Ex = 0}.
The KZ connection ω commutes with the diagonal action of g on Vλ1 ⊗ · · · ⊗ Vλn ,

hence it acts on the space of null vectors N [|Λ| − 2m].
For parameters κ and λ we consider the multi-valued function

(5.6) Φn,m =
∏

1≤i<j≤n

(zi − zj)
λiλj
2κ

∏
1≤i≤m,1≤`≤n

(ti − z`)−
λ`
κ

∏
1≤i<j≤m

(ti − tj)
2
κ

defined over Xn+m. Let L denote the local system associated to the multi-valued
function Φ. The restriction of L on the fiber Xn,m is the local system associated
with the parameters

(5.7) α` = −λ`

κ
, 1 ≤ ` ≤ n, γ =

1
κ

in the notation of Section 3.
The symmetric group Sm acts on Xn,m by the permutations of the coordinate

functions t1, · · · , tm. The function Φn,m is invariant by the action of Sm. The local
system L over Xn,m defines a local system on Yn,m, which we denote by L. The
local system dual to L is denoted by L∗.

We put v = vλ1⊗· · ·⊗vλn and for J = (j1, · · · , jn) set F Jv = F j1vλ1⊗· · ·⊗F jnvλn ,
where j1, · · · , jn are non-negative integers. The weight space W [|Λ| − 2m] has a
basis F Jv for each J with |J | = j1 + · · · + jn = m. For the sequence of integers
(i1, · · · , im) = (1, · · · , 1︸ ︷︷ ︸

j1

, · · · , n, · · · , n︸ ︷︷ ︸
jn

) we set

(5.8) SJ(z, t) =
1

(t1 − zi1) · · · (tm − zim)

and define the rational function RJ(z, t) by

(5.9) RJ(z, t) =
1

j1! · · · jn!

∑
σ∈Sm

SJ(z1, · · · , zn, tσ(1), · · · , tσ(m)).
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For example, we have

R(1,0,··· ,0)(z, t) =
1

t1 − z1
, R(2,0,··· ,0)(z, t) =

1
(t1 − z1)(t2 − z1)

R(1,1,0,··· ,0)(z, t) =
1

(t1 − z1)(t2 − z2)
+

1
(t2 − z1)(t1 − z2)

and so on.
Since πn,m : Xm+n → Xm is a fiber bundle with fiber Xn,m the fundamental group

of the base space Xn acts naturally on the homology group Hm(Xn,m,L∗). Thus we
obtain a representation of the pure braid group

(5.10) rn,m : Pn −→ AutHm(Xn,m,L∗)

which defines a local system on Xn denoted by Hn,m. In the case λ1 = · · · = λn

there is a representation of the braid group

(5.11) rn,m : Bn −→ AutHm(Yn,m,L∗)

which defines a local system Hn,m on Yn,m. For any horizontal section c(z) of the
local system Hn,m we consider the hypergeometric type integral

(5.12)
∫

c(z)
Φn,mRJ(z, t) dt1 ∧ · · · ∧ dtm

for the above rational function RJ(z, t).
According to Schechtman and Varchenko, solutions of the KZ equation are de-

scribed in the following way.

Theorem 5.1 (Schechtman and Varchenko [16]). The integral∑
|J |=m

(∫
c(z)

Φn,mRJ(z, t) dt1 ∧ · · · ∧ dtm

)
F Jv

lies in the space of null vectors N [|Λ| − 2m] and is a solution of the KZ equation.

6. Relation between LKB representation and KZ connection

We fix a complex number λ and consider the space of null vectors

N [nλ − 2m] ⊂ M⊗n
λ

by putting λ1 = · · · = λn = λ in the definition of Section 5. As the monodromy of
the KZ connection

ω =
1
κ

∑
1≤i<j≤n

Ωijd log(zi − zj)

with values in N [nλ − 2m] we obtain the linear representation of the braid group

θλ,κ : Bn −→ AutN [nλ − 2m].

The next theorem describes a relationship between a specialization of the Lawrence-
Krammer-Bigelow representation ρn,m and the representation θλ,κ.

Theorem 6.1. There exists an open dense subset U in (C∗)2 such that for (λ, κ) ∈ U
the Lawrence-Krammer-Bigelow representation ρn,m with the specialization

q = e−2π
√
−1λ/κ, t = e2π

√
−1/κ
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is equivalent to the monodromy representation of the KZ connection θλ,κ with values
in the space of null vectors

N [nλ − 2m] ⊂ M⊗n
λ .

We assume the conditions i∗L ∼= i!L and i∗L ∼= i!L in the following. By means
of the argument in Section 3 these conditions are satisfied for (λ, κ) in an open
dense subset in (C∗)2. By the assumption we have an isomorphism Hm(Xn,m,L) ∼=
H lf

m (Xn,m,L) and we can take the regularized cycles [∆̃M ] ∈ Hm(Xn,m,L) for the
bounded chamber ∆M .

We will consider the integral∑
|J |=m

(∫
∆M

Φn,mRJ(z, t) dt1 ∧ · · · ∧ dtm

)
F Jv

in the space of null vectors N [|Λ|−2m]. In general the above integral is divergent. We
replace the integration cycle by the regularized cycle [∆̃M ] to obtain the convergent
integral. This is called the regularized integral. We refer the reader to [2] for details
on this aspect.

The rest of this section is devoted to the proof of the above theorem. We first
show the following proposition.

Proposition 6.1. There exists an open dense subset U in (C∗)2 such that for
(λ, κ) ∈ U the following properties (1) and (2) are satisfied.

(1) The integrals in Theorem 5.1 over [∆̃M ] for M = (m1, · · · , mn−1) with m1 +
· · · + mn−1 = m are linearly independent.

(2) The homology classes [∆M ] for M = (m1, · · · ,mn−1) with m1+· · ·+mn−1 =
m form a basis of H lf

m (Yn,m,L∗) ∼= Hm(Yn,m,L∗).
Here m1, · · · ,mn−1 are non-negative integers.

Proof. We prepare notation for a basis of N [|Λ| − 2m]. We suppose that λ1 is not
a non-negative integer. Let us observe that for Λ = (λ1, · · · , λn) the space of null
vectors N [|Λ| − 2m] has dimension dn,m. This can be shown as follows. First, let us
consider the weight space

Mλ2 ⊗ · · · ⊗ Mλn [λ2 + · · · + λn − 2m]

= {x ∈ Mλ2 ⊗ · · · ⊗ Mλn ; Hx = (λ2 + · · · + λn − 2m)x}.
There is an isomorphism

ξ : Mλ2 ⊗ · · · ⊗ Mλn [λ2 + · · · + λn − 2m] −→ N [|Λ| − 2m]

defined by

u 7→ vλ1 ⊗ u − 1
λ1

Fvλ1 ⊗ Eu +
1

λ1(λ1 − 1)
F 2vλ1 ⊗ E2u − · · ·

This shows that N [|Λ|− 2m] has a basis indexed by J ′ = (j1, j2, · · · , jn) with j1 = 0
and j2 + · · ·+ jn = m, where j2, · · · , jn are non-negative integers. Let us denote by
Sn,m the set of such indices J ′. The above weight space has a basis uJ ′ indexed by
J ′ ∈ Sn,m. We have the corresponding basis ξ(uJ ′) of N [|Λ| − 2m].

We set α1, · · · , αn and γ as in (5.7). We put

(6.1) Φ̃n,m =
∏

1≤i≤m,1≤`≤n

(ti − z`)α`
∏

1≤i<j≤m

(ti − tj)2γ

11



and for J ′ ∈ Sn,m put

(6.2) α′
J =

n∏
k=2

(jk)!αk(αk + γ) · · · (αk + (jk − 1)γ).

We assume that α1, · · · , αn and γ are positive. We express the integral in Theorem
5.1 over the cycle ∆M in the linear combination for the basis ξ(uJ ′) of N [|Λ| − 2m]
and we donote by R̃J ′(z, t) the corresponding rational function. In [18] Varchenko
gave a formula for the determinant

(6.3) det
M,J ′

(
αJ ′

∫
∆M

Φ̃n,mR̃J ′(z, t)dt1 ∧ · · · ∧ dtm

)
,

where M = (m1, · · · ,mn−1) with m1 + · · · + mn−1 = m and J ′ ∈ Sn,m. According
to Varchenko’s formula the above determinant is expressed as a non-zero constant
times the gamma factor given by

(6.4)
m−1∏
i=0

(
Γ((i + 1)γ + 1)n−1

Γ(γ + 1)n−1

Γ(α1 + iγ + 1) · · · (αn + iγ + 1)
Γ(α1 + · · · + αn + (2m − 2 − i)γ + 1)

)νi

where νi is defined by

(6.5) νi =
(

m + n − i − 3
m − i − 1

)
.

Since the gamma function does not have zeros and has only poles of order one at non-
positive integers, it is clear that the determinant is zero only when the denominator
of the gamma factor has a pole. Considering the regularized integrals over the cycles
[∆̃M ] we can analytically continue the determinant formula to complex numbers
α1, · · · , αn and γ.

Let us recall that we deal with the case

α` = −λ

κ
, 1 ≤ ` ≤ n, γ =

1
κ

.

From the determinant formula we observe that the linearly independence for the
solutions of the KZ equation in (1) in the statement of the proposition is satisfied
for (λ, κ) in an open dense subset in (C∗)2. Under the same condition we have the
linear independence for the homology classes [∆M ] for M = (m1, · · · , mn−1) with
m1 + · · · + mn−1 = m. Since we have dim H lf

m (Yn,m,L∗) = dm,n we obtain the
property (2). This completes the proof of our proposition. ¤

Let us consider the specialization map

(6.6) s : R = Z[q±1, t±1] −→ C

defined by the substitutions q 7→ e−2π
√
−1λ/κ and t 7→ e2π

√
−1/κ. This induces in a

natural way a homomorphism

(6.7) Hm(C̃n,m(D);Z) −→ Hm(Yn,m,L∗).

We take a basis [cM ] of Hm(C̃n,m(D);Z) as the R-module for M = (m1, · · · ,mn−1)
with m1 + · · · + mn−1 = m in such a way that [cM ] maps to the regularized cycle
for [∆M ] by the above specialization map. We observe that the LKB representa-
tion specialized at q 7→ e−2π

√
−1λ/κ and t 7→ e2π

√
−1/κ is identified with the linear

representation of the braid group rn,m : Bn → AutHm(Yn,m,L∗).
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Since the basis of N [nλ− 2m] is indexed by the set Sn,m we have an isomorphism

Hm(Yn,m,L∗) ∼= N [nλ − 2m].

Now the fundamental solutions of the KZ equation with values in N [nλ − 2m] is
give by the matrix of the form (∫

e∆M

ωM ′

)
M,M ′

with M = (m1, · · · ,mn−1) and M ′ = (m′
1, · · · ,m′

n−1) such that m1+· · ·+mn−1 = m
and m′

1 + · · ·+m′
n−1 = m. Here ωM ′ is a multivalued m-form on Xn,m. The column

vectors of the above matrix form a basis of the solutions of the KZ equation with
values in N [nλ − 2m]. Thus the representation rn,m : Bn → AutHm(Yn,m,L∗) is
equivalent to the action of Bn on the solutions of the KZ equation with values in
N [nλ − 2m]. This completes the proof of Theorem 6.1.
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