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ABSTRACT. Let A be an essential complex hyperplane arrangement
in Cn, and H denote the union of the hyperplanes. We develop
the real-valued and circle-valued Morse theory on the space M =
Cn \ H and prove, in particular, that M has the homotopy type of
a space obtained from a finite n-dimensional CW complex fibered
over a circle, by attaching |χ(M)| cells of dimension n. We com-
pute the Novikov homology Ĥ∗(M, ξ) for a large class of homomor-
phisms ξ : π1(M) → R.

1. INTRODUCTION

Let Z be a complex analytic manifold, and f : Z → C a holo-
morphic Morse function without zeros. It gives rise to a real-valued
Morse function |f | : Z → R and a circle-valued Morse function
f/|f | : Z → S1. These two functions can be used to study the topol-
ogy of Z. There are however numerous technical problems, and this
approach works only in some rare particular cases. This paper is
about one of such cases, namely the case when Z is the comple-
ment to a complex hyperplane arrangement in Cn. The homology of
such complements was extensively studied, see [3], [4]. The meth-
ods of the paper allow to obtain new results about the homology of
the complement, in particular the Novikov homology, which can be
viewed as homology with local coefficients.

Let ξi : Cn → C be non-constant affine functions (1 6 i 6
m); put Hi = Ker ξi. Denote by A the hyperplane arrangement
{H1, . . . , Hm} and put

H =
⋃
i

Hi, M(A) = Cn \ H.

We will abbreviate M(A) to M . The rank of A is the maximal codi-
mension of a non-empty intersection of some subfamily of A. We say
that A is essential if rk L = n. In the sections 1 – 5 we will assume
that L is essential.
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Let α = (α1, . . . , αm) be a string of complex numbers. P. Orlik
and H. Terao [5] proved that for α outside a closed algebraic subset
of Cm the multivalued holomorphic function ξ = ξα1

1 · ξα2
2 · ... · ξαm

m

has only non-degenerate critical points (see the works of K. Aomoto
[2], and A. Varchenko [8] for partial results in this direction).

In this paper we work only with α ∈ Rm. It follows from the
Orlik-Terao theorem, that there is an open dense subset W ⊂ Rm

such that for α ∈ W the function ξ has only non-degenerate critical
points. Consider a real-valued C∞ function

fα(z) =
∏

i

∣∣ξi(z)
∣∣αi , fα : Cn \ H → R.

Lemma 1.1. Let α ∈ W . Then fα is a Morse function. The index of
every critical point of fα equals n.

Proof. Let ωα =
∑

i αi
dξi

ξi
. Then fα(z) = exp(Re

∫
ωα), therefore

log fα(z) locally is the real part of a holomorphic Morse function. In
general, if h is a holomorphic Morse function on an open subset of
Cn, then the real part of h is a real-valued Morse function, and the
index of every critical point of this function equals n. Our assertion
follows. ¤

2. MAIN RESULTS

Let ε > 0 and put

(1) V = {z ∈ Cn | fα(z) = ε}, N = {z ∈ Cn | fα(z) > ε}.

A vector α ∈ Rm will be called positive if αi > 0 for all i. The set of
all positive vectors is denoted by Rm

+ . The rank of the vector α ∈ Rm

is the dimension of the Q-vector space generated by the components
of α in R. Recall that we denote Cn \ H by M .

Theorem 2.1. Let α be any positive vector. Then for every ε > 0 small
enough:

1) The inclusion N ⊂ M is a homotopy equivalence. The space
V = ∂N is a C∞ manifold of dimension 2n − 1.

2) The space N has the homotopy type of the space V with |χ(M)|
cells of dimension n attached.

3) If α has rank 1, then V is fibered over a circle and the fiber has
the homotopy type of a finite CW-complex of dimension n − 1.

To state the next theorem we recall the definition of the Novikov
homology. Let G be a group, and µ : G → R a homomorphism.
Put GC = {g ∈ G | µ(g) > C}. The Novikov completion Λ̂µ of the
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group ring Λ = ZG with respect to the homomorphism µ : G → R is
defined as follows (see the thesis of J.-Cl. Sikorav [7]):

Λ̂µ =
{

λ =
∑
g∈G

ngg
∣∣∣ where ng ∈ Z and

supp λ ∩ GC is finite for every C
}

.

Let X be a connected topological space and denote π1(X) by G. Let
µ : G → R be a homomorphism. The Novikov homology Ĥ∗(X, µ) is
by definition the homology of the chain complex

Ŝ∗(X̃) = Λ̂µ ⊗
Λ

S∗(X̃)

where S∗(X̃) is the singular chain complex of the universal covering
of X.

Returning to the space M = Cn \ H, observe that H1(M, Z) is a
free abelian group of rank m generated by the meridians of the hy-
perplanes Hi. The elements of the dual basis in the group H1(M, Z)
will be denoted by θi, where 1 6 i 6 m. For α ∈ Rm denote by
α : π1(M) → R the homomorphism

∑
i αiθi.

Theorem 2.2. For any positive α the Novikov homology Ĥk(M, α)

vanishes for k 6= n and is a free Λ̂α-module of rank |χ(M)| if k = n.

3. THE GRADIENT FIELD IN THE NEIGHBOURHOOD OF H

Let

vα(z) =
gradfα(z)

fα(z)
.

Denote by uj the gradient of the function z 7→ |ξj(z)|. Then

vα(z) =
m∑

j=1

αj

uj(z)

|ξj(z)|
.

For a linear form ξ : Cn → C, ξ(z) = a1z1 + . . .+amzm the gradient
of the function |ξ(z)| is easy to compute:

(2) grad|ξ(z)| =
ξ(z)

|ξ(z)|
·
(
ā1, ā2, . . . , ān

)
(it follows in particular that the norm of this gradient is constant).
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Lemma 3.1. Assume that A is a central arrangement. Let Γ ⊂ Rm
+ be

a compact subset. Then there is K > 0 such that

(3) ||vα(z)|| > K
∑

i

1

||ξi(z)||

for every z ∈ Cn \ H and every α ∈ Γ.

Proof. Observe that it suffices to prove the Lemma for the case
when

(4)
⋂
j

Ker ξj = {0}.

Indeed, let L = ∩jKer ξj. Then it follows from (2) that both sides
of our inequality (3) are invariant with respect to translations by
vectors in L, and it is sufficient to prove the formula for the vector
fields uj|L⊥ .

Furthermore, the both sides of the inequality are homogeneous of
degree −1, and it is sufficient to prove the inequality for z ∈ Σ \ H,
where Σ stands for the sphere of radius 1 and center 0.

We will proceed by induction on m. Choose some κ > 0, and for
i 6= j let

Ui,j =
{

z ∈ Σ
∣∣∣ |ξi(z)| < κ|ξi(z)|

}
.

These are open sets and it follows from the condition (4) that their
union U = ∪i,jUi,j covers the set H ∩ Σ. We will now prove (3) for
z ∈ Ui,j. To simplify the notation let us assume i = 1, j = m. Put

Am(z) = vα(z), Am−1(z) =

m−1∑
j=1

αj

uj(z)

|ξj(z)|
,

Bm(z) =
m∑

i=1

1

||ξi(z)||
, Bm−1(z) =

m−1∑
i=1

1

||ξi(z)||
.

By the induction assumption we have ||Am−1(z)|| > DBm−1(z),
where D is some positive constant. An easy computation shows
that for z ∈ Ui,j we have

||Am(z)|| > (D − καmKm − κD)Bm(z)

where Km = ||um(z)||. Choosing κ sufficiently small we conclude
that ||vα(z)|| > D′Bm(z) with some D′ > 0 for every α ∈ Γ and
z ∈ U .

The complement Σ \ U is compact and the proof of the lemma will
be over once we show that vα(z) 6= 0 for z ∈ Σ \ U . This is in turn
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obvious since

fα(µz) = µα1+...+αm fα(z) for µ ∈ R+,

therefore f ′
α(z) 6= 0 for every z /∈ H, since all αi are positive. The

proof of Lemma 3.1 is now over. ¤
For a subset X ⊂ Cn and δ > 0 let us denote by X(δ) the subset

of all z ∈ Cn such that d(z, X) 6 δ.

Proposition 3.2. Let Γ ⊂ Rm
+ be a compact subset. There is an open

neighbourhood U of H, and numbers A, B > 0 such that
1) For some δ > 0 the set H(δ) is in U .
2) For every z ∈ U \ H and every α, β ∈ Γ we have

(5) ||vα(z)|| > A,

(6) ||vα(z) − vβ(z)|| 6 B · max
i

|αi − βi| · ||vβ(z)||.

Proof. For a multi-index I = (i1, . . . , is) let us denote by HI the
intersection of the hyperplanes Hi1, . . . , His . Proceeding by induc-
tion on dim HI we will construct for every I with HI 6= ∅ a neigh-
bourhood UI of the subset HI such that the properties 1) – 3) of the
Proposition hold if we replace in the formulae H by HI and U by UI.
Assume that this is done for every HJ with dim HJ 6 k − 1; put

Uk−1 =
⋃

dim HJ 6k−1

UJ.

Let I be a multi-index with dim HI = k. We will construct the neigh-
bourhood UI. We can assume that the multi-index I includes all
the values of j such that HI ⊂ Hj. To simplify the notation let us
assume that I = (1, 2, . . . , r). Write

(7) vα(z) =
r∑

j=1

αj

uj(z)

|ξj(z)|
+

m∑
j=r+1

αj

uj(z)

|ξj(z)|
.

Let µ > 0, and consider the subset U ′
µ = HI(µ) \ Uk−1. For z ∈ U ′

µ

the second term of (7) is bounded (uniformly with respect to α ∈ Γ).
As for the first term, its norm converges to ∞ when d(z, HI) → 0
as it follows from Lemma 3.1, applied to the arrangement defined
by a suitable translation of the hyperplanes H1, . . . , Hr. An easy
computation shows now that for every µ > 0 sufficiently small the
inequalities (5) and (6) hold for z ∈ U ′

µ and every α, β ∈ Γ.
Put UI = U ′

µ ∪ Uk−1. The properties 2) and 3) for HI and UI are
now easy to deduce, and the proof of Proposition 3.2 is complete. ¤
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4. THE HOMOTOPY TYPE OF M

In this section we prove the first two assertions of Theorem 2.1.
Choose a neighbourhood U of H so that the conclusion of Propo-
sition 3.2 holds. Observe that for ε > 0 small enough the set
f−1

α ([0, ε]) is in U , therefore ε is a regular level of fα, and V is a
submanifold of M of dimension 2n − 1. This proves the second part
of the assertion 1).

To prove the first part, consider the normalized gradient

wα(z) =
gradfα(z)

||gradfα(z)||
.

It is clear that the trajectories of wα are defined on R+.
We use the shift along the flow lines of wα to construct the defor-

mation retraction of M onto N = f−1
α

(
[ε, ∞[

)
. If ε > 0 is sufficiently

small then M \ N ⊂ U , and for every integral curve γ(t) of wα

starting at a point x ∈ M \ N we have

d

dt
fα(γ(t)) = ||(gradfα)(γ′(t))|| = fα(γ(t)) · ||vα(γ(t))|| > Afa(x)

(for every t such that γ(t) is in the set U ). Therefore this trajectory
will reach f−1

α (ε), and our deformation retraction is well-defined.
Moving forward to the assertion 2) let us first outline the proof. We

are going to apply the Morse theory to the manifold N with bound-
ary V . By the Orlik-Terao theorem we can choose a positive vector
β close to α, so that fβ is a Morse function. This function is not
constant on V , however it follows from Proposition 3.2 that for β −α
small enough the gradient of fβ is still transversal to V and points
inward N at any point of V . Thus we can apply the Morse theory to
the Morse function fβ | N and its gradient wβ and deduce that N is
obtained from V by attaching several n-cells. The number of these
n-cells equals the number of critical points of fβ, which is equal to
|χ(M)| by Theorem 1.1 of [5].

Let us proceed to the details.

Proposition 4.1. Let α be a positive vector. There is a neighbour-
hood U of H and D > 0 such that

1) H(δ) ⊂ U for some δ > 0,
2)

〈
vα(z), wβ(z)

〉
> D for every z ∈ U and every positive vector β

with maxi |αi − βi| sufficiently small.
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Proof. The neighbourhood U from the Proposition 3.2 will do. In-
deed, ∣∣∣〈vα(z) − vβ(z), wβ(z)

〉∣∣∣ 6 B · max
i

|αi − βi| · ||vβ(z)||

On the other hand
〈
vβ(z), wβ(z)

〉
= ||vβ(z)|| (since these vector

fields are collinear), therefore〈
vα(z), wβ(z)

〉
> (1 − B max

i
|αi − βi|) · ||vβ(z)||.

If α − β is small enough this is greater than a positive constant for
z ∈ U again by Proposition 3.2. ¤

The main result which guarantees the applicability of the Morse
theory to our situation is the next theorem.

Theorem 4.2. Let α be a positive vector. Let ε > 0 be sufficiently
small so that M \ N ⊂ U . Let β be a positive vector sufficiently
close to α so that the conclusion of the previous Proposition holds. Let
x ∈ N . Denote by γ(t) the trajectory of the vector field −wβ starting
at x.

Then either γ(t) converges to a critical point of fβ or it reaches the
manifold V = f−1

α (ε).

Proof. Choose C > 0 sufficiently large so that fβ(x) < C. Let

Y = f−1
β ([0, C]), Y0 = Y ∩ f−1

α ([ε, ∞[).

Let p1, . . . , pN be the critical points of fβ and choose a neighbour-
hood Ri around each pi. Put R = ∪iRi, and set Y1 = Y0 \ R. Then
the function f ′

α(z)(wβ(z)) = fα(z) ·
〈
vα(z), wβ(z)

〉
is bounded away

from 0 in Y1. (Indeed, for z ∈ U this is the subject of the previous
Proposition. As for the set Y \

(
U ∪R

)
, it is compact and the function

in question is non-zero on it.) Then we can apply the same argument
as in [6], page 95, Proposition 2.4, and the proof of the point 2) of
our theorem is over. ¤

5. THE NOVIKOV HOMOLOGY OF V AND M

In this section we prove the assertion 3) of Theorem 2.1 and The-
orem 2.2. We begin with a description of the homotopy type of
V = f−1

α (ε) for arbitrary positive vector α. Recall from the Sec-
tion 2 the cohomology class ᾱ ∈ H1(M, R). By an abuse of notation
we will denote the restriction of the class ᾱ to N by the same letter
ᾱ. Ther restriction of the class ᾱ to V will be denoted by α. Re-
call the holomorphic 1-form ωα =

∑
j αj

dξj

ξj
and denote its real and

imaginary parts by R and I respectively. Then R = dfα

fα
and the
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cohomology class of I equals 2πᾱ. Let ια be the vector field dual to
I. Since ωα is a holomorphic form, we have

(8)
gradfα(z)

fα(z)
= i · ια(z).

If ε > 0 is small enough so that V is contained in the neighbour-
hood U from Proposition 3.2 we have ||ια(z)|| > A. Observe that
ια(z) is orthogonal to gradfα(z) and therefore tangent to V = f−1(ε).
We deduce that the restriction to V of the 1-form I does not vanish,
and moreover, the norm of its dual vector field is bounded from be-
low.

Proposition 5.1. The Novikov homology Ĥk(V, α) vanishes for all k.

Proof. Let p : Ṽ → V be the universal covering of V . The closed
1-form p∗(I) is cohomologous to zero; let p∗(I) = dF , where F :

Ṽ → R is a function without critical points. Denote by Ṽn the subset
F −1

(
] − ∞, −n]

)
. The chain complexes C(n)

∗ = S∗(Ṽ , Ṽn) form an
inverse system, and the Novikov homology Ĥ∗(V, α) is isomorphic
to the homology of its inverse limit (see [7]). For every k we have an
exact sequence

lim1Hk+1

(
C(n)

∗
)

→ Hk

(
lim
←

C(n)
∗

)
→ lim

←
Hk

(
C(n)

∗
)
.

The lift of the vector field ια to Ṽ will be denoted by the same letter
ια. The standard argument using the shift diffeomorphism along
the trajectories of −ια shows that Hk(C

(n)
∗ ) = 0 for every k; our

Proposition follows. ¤
Consider now the case when α is of rank one, that is, all αi are

rational multiples of one real number. In this case the differential
form I is the differential of a map g : V → R/aR ≈ S1 for some
a > 0.

Proposition 5.2. The map g is a fibration of V over S1.

Proof. The map g does not have critical points. Consider the vec-
tor field

yα(z) =
ια(z)

||ια(z)||2
.

For x ∈ V denote by γ(x, t; yα) the yα-trajectory starting at x. Since
the norm of ια(z) is bounded away from zero in V , the trajectory is
defined on the whole of R. We have also

d

dt

(
g(γ(x, t; yα)

)
= 1.
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Pick any λ ∈ S1 and let V0 = g−1(λ). Denote by λ′ ∈ S1 the point
opposite to λ. It is easy to check that for any 0 < κ < π the map

(x, t) 7→ γ(x, t; yα)

is a diffeomorphism

V0 ×
]
λ − π, λ + π

[
≈ g−1

(
S1 \ {λ′}

)
compatible with projections. Therefore g is a locally trivial fibration.
¤

It is clear that any fiber of g is locally the set of zeros of a holomor-
phic function, therefore it is a closed complex analytic submanifold
of Cn and has a homotopy type of a finite CW-complex of dimension
6 n − 1 (see [1]). The proof of Theorem 2.1 is now complete. ¤

Proof of Theorem 2.2. Let Λ be the group ring of the fundamental
group of N . Let Λ̂ᾱ denote the Novikov completion of Λ with respect
to ᾱ. Denote by q : Ñ → N the universal covering of N . Put
V̄ = q−1(V ).

We have the short exact sequence of free Λ̂ᾱ-complexes

(9) 0 → Λ̂ᾱ ⊗
Λ

S∗(V̄ ) → Λ̂ᾱ ⊗
Λ

S∗(Ñ) → Λ̂ᾱ ⊗
Λ

S∗(Ñ, V̄ ) → 0

Observe that the inclusion V ⊂ N induces a surjective homomor-
phism of fundamental groups. Therefore the space V̄ is connected
and the covering V̄ → V is a quotient of the universal covering
Ṽ → V , so that

H∗
(
Λ̂ᾱ ⊗

Λ
S∗(V̄ )

)
= H∗

(
Λ̂ᾱ ⊗

Λ

(
L̂α ⊗

L
S∗(Ṽ )

))
,

where L is the group ring of the fundamental group of V , and L̂α is
the Novikov completion of L with respect to α. By Proposition 5.1
the Novikov homology of V vanishes, and we deduce that the long
exact sequence of homology modules, derived from the short exact
sequence (9), splits into a sequence of isomorphisms

Ĥ∗(N, ᾱ) ≈ H∗

(
Λ̂ξ ⊗

Λ
S∗(Ñ, V̄ )

)
.

Observe now that the homology of the couple (Ñ, V̄ ) is the free mod-
ule over Λ of rank |χ(M)|, concentrated in degree n. Theorem 2.2
follows. ¤
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6. NON-ESSENTIAL ARRANGEMENTS

Let us consider the case of non-essential arrangements A. As
before we denote by m the number of hyperplanes in the family A.
Assume that rk A = l < n. The function fα is not a Morse function
in this case. However the analog of Theorem 2.1 is easily obtained
by reduction to the case of essential arrangements.

Denote by π : Cl ⊕ Ck → Cl the projection onto the first direct
summand. Let A be an arrangement in Cl, defined by affine func-
tions ξi : Cl → C. The functions ξi ◦ π determine a hyperplane
arrangement in Cl+k which will be called k-suspension of A. It is
not difficult to prove the next proposition.

Proposition 6.1. Let A be a hyperplane arrangement in Cn of rank l.
The A is linearly isomorphic to the (n − l)-suspension of an essential
hyperplane arrangement A0 in Cl.

Put
H = Cn \ M(A), H0 = Cl \ M(A0).

Then Cn \ H is diffeomorphic to (Cl \ H0) × Cn−l and we obtain the
following generalizations of the previous theorems.

Theorem 6.2. There is a finite CW-complex Y of dimension l − 1,
fibered over a circle, such that the space M = Cn \ H is homotopy
equivalent to a result of attaching to Y of |χ(M)| cells of dimension n.

Corollary 6.3. For every positive α ∈ Rm the Novikov homology Ĥk(M, α)
vanishes for every k 6= l and is a free module of rank |χ(M)| for k = l.
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