Noncommutative del Pezzo surfaces

Kazushi Ueda

Why noncommutative varieties?

- Noncommutative rings appear 'in nature', e.g., from integrable systems.
- Commutative varieties are closed under neither
- deformations,
- Fourier-Mukai transforms, nor
- mirror symmetry.
- quest for 'quantization of space'

Artin-Zhang (1994)

A polarized noncommutative variety is a triple $(\mathcal{A}, \mathcal{O},(-)(1))$ consisting of

- a Noetherian abelian category \mathcal{A}
- an object $\mathcal{O} \in \mathcal{A}$, and
- an autoequivalence $(-)(1): \mathcal{A} \rightarrow \mathcal{A}$
such that
- $H^{0}(\mathcal{O})=\mathbf{k}$: a field,
- $\forall \mathcal{M} \in \mathcal{A}, \operatorname{dim}_{\mathbf{k}} H^{0}(\mathcal{M})<\infty$, and
- the pair $(\mathcal{O},(-)(1))$ is ample, i.e.,
- $\forall \mathcal{M} \in \mathcal{A}, \exists \bigoplus_{i} \mathcal{O}\left(-l_{i}\right) \rightarrow \mathcal{M}:$ epi,
- $\forall \mathcal{M} \rightarrow \mathcal{N}:$ epi, $\exists n_{0}, \forall n \geq n_{0}, H^{0}(\mathcal{M}(n)) \rightarrow H^{0}(\mathcal{N}(n)):$ epi,
where $H^{0}(\mathcal{M}):=\operatorname{Hom}(\mathcal{O}, \mathcal{M})$. In this case, one has
$\mathcal{A} \cong \operatorname{qgr} A:=\operatorname{gr} A / \operatorname{tor} A$ for $A:=\bigoplus_{i=0}^{n} H^{0}(\mathcal{O}(n))$.

Hochschild-Kostant-Rosenberg isomorphism

X : a smooth variety
$-\mathrm{HH}^{2}(X) \cong H^{2}\left(\mathcal{O}_{X}\right) \oplus H^{1}\left(\mathcal{T}_{X}\right) \oplus H^{0}\left(\Lambda^{2} \mathcal{T}_{X}\right)$

- $H^{1}\left(\mathcal{T}_{X}\right)$: the 'classical' direction
- $H^{0}\left(\bigwedge^{2} \mathcal{T}_{X}\right)$: the 'strictly noncommutative' direction
- $H^{2}\left(\mathcal{O}_{X}\right)$: the 'gerby' direction

Artin's conjecture

Any noncommutative surface is birational to either

- a noncommutative projective plane,
- a noncommutative \mathbb{P}^{1}-bundle over a commutative curve, or
- a noncommutative surface which is finite over its center.

AS-regular algebras

- A finitely presented \mathbb{N}-graded algebra $A=\bigoplus_{i=0}^{\infty} A_{i}$ over a field \mathbf{k} is connected if $A_{0}=\mathbf{k}$.
- A connected algebra A is $A S$-Gorenstein of dimension d and parameter a if $\mathbb{R} \operatorname{Hom}_{A}(\mathbf{k}, A) \simeq \mathbf{k}(a)[-d]$.
- A connected algebra A is $A S$-regular of dimension d if
- A is AS-Gorenstein of dimension d,
- A has polynomial growth, and
- A has global dimension d.
- d-dimensional AS-regular algebras are noncommutative generalizations of polynomial algebras in d variables.

Remark

$A:=\mathbf{k}\left\langle x_{1}, \ldots, x_{n}\right\rangle$: a free algebra $\operatorname{deg} x_{i}=d_{i}, i=1, \ldots, n$

$$
\begin{equation*}
0 \rightarrow A\left(-d_{1}\right) \oplus \cdots \oplus A\left(-d_{n}\right) \rightarrow A \rightarrow \mathbf{k} \rightarrow 0 \tag{exact}
\end{equation*}
$$

- A is not AS-Gorenstein.
- A has exponential growth.

Artin-Schelter (1987)

A 3-dimensional AS-regular algebra A generated in degree 1 is either quadratic, i.e.,

$$
0 \rightarrow A(-3) \rightarrow A(-2)^{\oplus 3} \rightarrow A(-1)^{\oplus 3} \rightarrow A \rightarrow \mathbf{k} \rightarrow 0 \quad \text { (exact) }
$$

or cubic, i.e.,

$$
0 \rightarrow A(-4) \rightarrow A(-3)^{\oplus 2} \rightarrow A(-1)^{\oplus 2} \rightarrow A \rightarrow \mathbf{k} \rightarrow 0 \quad \text { (exact). }
$$

Artin-Tate-Van den Bergh (1990)

3-dimensional quadratic AS-regular algebras A such that qgr $A \not \approx \operatorname{coh} \mathbb{P}^{2}$ are classified by triples (E, L, σ) consisting of

- a genus one curve E,
- a very ample line bundle L of degree 3 on E, and
- $\sigma \in$ Aut E.

3-dimensional cubic AS-regular algebras A such that qgr $A \neq \operatorname{coh} \mathbb{P}^{1} \times \mathbb{P}^{1}$ are classified by triples (E, L, σ) consisting of

- a genus one curve E,
- a line bundle L of degree 2 , and
- $\sigma \in$ Aut E.

\mathbb{Z}-algebra

- An algebra over a filed \mathbf{k} is a \mathbf{k}-linear category with one object.
- A \mathbb{Z}-algebra is a \mathbf{k}-linear category A whose set of objects is identified with the set \mathbb{Z} of integers.
- An A-module is a functor $A^{\mathrm{op}} \rightarrow \operatorname{Mod} \mathbf{k}$.

\mathbb{Z}-algebra (paraphrase)

- A \mathbb{Z}-algebra is an algebra $A=\bigoplus_{i, j \in \mathbb{Z}} A_{i j}$ such that
- $A_{i j} A_{j k} \subset A_{i k}$,
- $\exists e_{i} \in A_{i j}$ satisfying $e_{i} a=a=a e_{j}$ for any $a \in A_{i j}$, and
- $A_{i j} A_{k l}=0$ if $j \neq k$.
- A can be regarded as a category by

$$
A_{i j}=\operatorname{Hom}(j, i)
$$

- An A-module is $M=\bigoplus_{i \in \mathbb{Z}} M_{i}$ such that
- $M_{i} A_{i j} \subset M_{j}$
- e_{i} acts as the identity on M_{i}, and
- $M_{i} A_{j k}=0$ if $i \neq j$.

Qgr of \mathbb{Z}-algebra

- A \mathbb{Z}-algebra is non-negatively graded if $A=\bigoplus_{i \geq j} A_{i j}$.
- A non-negatively graded \mathbb{Z}-algebra is connected if $A_{i i}=\mathbf{k} e_{i}$ for all $i \in \mathbb{Z}$.
- A module over a \mathbb{Z}-algebra is torsion if it is a colimit of modules which are finite over \mathbf{k}.
- $\operatorname{Qgr} A:=\operatorname{Gr} A / \operatorname{Tor} A$

\mathbb{Z}-algebras and graded algebras

- A graded algebra $A=\bigoplus_{i \in \mathbb{Z}} A_{i}$ produces a \mathbb{Z}-algebra $\check{A}=\bigoplus_{i, j \in \mathbb{Z}} \check{A}_{i j}$ by $\check{A}_{i j}=A_{i-j}$. One has $\operatorname{Qgr} A \cong \operatorname{Qgr} \check{A}$.
- A \mathbb{Z}-algebra comes from a graded algebra if and only if it is 1-periodic, i.e., there exists a collection $\left(A_{i j} \xrightarrow{\sim} A_{i+1, j+1}\right)_{i, j \in \mathbb{Z}}$ of linear isomorphisms compatible with multiplication.
- For a pair (A, B) of graded algebras, one has $\check{A} \cong \check{B}$ if and only if A and B are related by the Zhang twist.

3-dimensional quadratic AS-regular \mathbb{Z}-algebra

- A: a connected \mathbb{Z}-algebra
- $P_{i}=e_{i} A$: the i-th projective module
- $S_{i}=e_{i} A e_{i}$: the i-th simple module
- A is a 3-dimensional quadratic AS-regular \mathbb{Z}-algebra if

$$
\forall i \in \mathbb{Z}, \quad 0 \rightarrow P_{i-3} \rightarrow P_{i-2}^{\oplus 3} \rightarrow P_{i-1}^{\oplus 3} \rightarrow P_{i} \rightarrow S_{i} \rightarrow 0 \quad \text { (exact). }
$$

Bondal-Polishchuk (1994)

- 3-dimensional quadratic AS-regular \mathbb{Z}-algebras A with qgr $A \not \approx \operatorname{coh} \mathbb{P}^{2}$ are classified by triples consisting of
- a genus one curve E and
- very ample line bundles L_{1} and L_{2} of degree 3 on E such that
- $L_{1} \neq L_{2}$ and
- $\operatorname{deg} L_{i}\left|c=\operatorname{deg} L_{i}\right| c$ for every irreducible component C of E.
- The map $(E, L, \sigma) \mapsto\left(E, L, \sigma^{*} L\right)$ from ATV triples to BP triples is generically $9: 1$.
- Fibers are related by 3-torsion translations.

Noncommutative \mathbb{P}^{2}

- A noncommutative \mathbb{P}^{2} is an abelian category of the form qgr A for a 3-dimensional quadratic AS-regular algebra.
- The set $\{\mathcal{O}(i)\}_{i \in \mathbb{Z}}$ of 'line bundles' on a noncommutative \mathbb{P}^{2} is characterized categorically.
- The set of isomorphism classes of noncommutative \mathbb{P}^{2} are in bijection with the set of isomorphism classes of 3-dimensional quadratic AS-regular \mathbb{Z}-algebras.

Van den Bergh (2011)

A 3-dimensional cubic AS-regular \mathbb{Z}-algebra is a connected \mathbb{Z}-algebra A with

$$
0 \rightarrow P_{i-4} \rightarrow P_{i-3}^{\oplus 2} \rightarrow P_{i-1}^{\oplus 2} \rightarrow P_{i} \rightarrow S_{i} \rightarrow 0 \quad \text { (exact). }
$$

They are classified by quadruples $\left(E, L_{1}, L_{2}, L_{3}\right)$ consisting of

- a genus one curve E and
- three line bundles L_{1}, L_{2}, and L_{3} such that
- both $\left(L_{1}, L_{2}\right)$ and (L_{2}, L_{3}) embed E as a divisor of bidegree $(2,2)$ in $\mathbb{P}^{1} \times \mathbb{P}^{1}$,
- $\left.\operatorname{deg} L_{1}\right|_{C}=\left.\operatorname{deg} L_{3}\right|_{C}$ for every irreducible component C of E, and
- $L_{1} \neq L_{3}$.

A noncommutative $\mathbb{P}^{1} \times \mathbb{P}^{1}$ is an abelian category of the form qgr A for a 3-dimensional cubic AS-regular \mathbb{Z}-algebra A.

Acyclic helix

- An object E of a dg category \mathcal{D} is exceptional if $\operatorname{hom}(E, E) \simeq \mathbf{k i d}_{E}$.
- A sequence $\left(E_{1}, \ldots, E_{\ell}\right)$ of exceptional objects is an exceptional collection if hom $\left(E_{i}, E_{j}\right) \simeq 0$ for $i>j$.
- An exceptional collection is full if it generates \mathcal{D}.
- A helix of dimension d and period ℓ is a sequence $\left(E_{i}\right)_{i \in \mathbb{Z}}$ of objects such that $\left(E_{1}, \ldots, E_{\ell}\right)$ is a full exceptional collection and $E_{i+\ell}=\mathbb{S}\left(E_{i}\right)[-d]$ for any $i \in \mathbb{Z}$, where \mathbb{S} is the Serre functor of \mathcal{D}.
- A helix is acyclic if $\operatorname{Hom}^{k}\left(E_{i}, E_{j}\right)=0$ for $i<j$ and $k \neq 0$.
- An acyclic helix $\left(E_{i}\right)_{i \in \mathbb{Z}}$ produces a connected \mathbb{Z}-algebra.

Acyclic helix (continued)

Noncommutative \mathbb{P}^{2} and noncommutative $\mathbb{P}^{1} \times \mathbb{P}^{1}$ have acyclic helices which are noncommutative generalizations of

$$
\ldots, \mathcal{O}_{\mathbb{P}^{2}}, \mathcal{O}_{\mathbb{P}^{2}}(1), \mathcal{O}_{\mathbb{P}^{2}}(2), \mathcal{O}_{\mathbb{P}^{2}}(3), \ldots
$$

and
$\ldots, \mathcal{O}_{\mathbb{P}^{1} \times \mathbb{P}^{1}}, \mathcal{O}_{\mathbb{P}^{1} \times \mathbb{P}^{1}}(0,1), \mathcal{O}_{\mathbb{P}^{1} \times \mathbb{P}^{1}}(1,1), \mathcal{O}_{\mathbb{P}^{1} \times \mathbb{P}^{1}}(1,2), \mathcal{O}_{\mathbb{P}^{1} \times \mathbb{P}^{1}}(2,2), \ldots$,
respectively.

Abdelgadir-Okawa-U

- An acyclic helix $\left(E_{i}\right)_{i \in \mathbb{Z}}$ on a del Pezzo surface defines a type of an AS-regular \mathbb{Z}-algebra specified by a quiver.
- A noncommutative weak del Pezzo surface is qgr of an AS-regular \mathbb{Z}-algebra of that type.
- It is a noncommutative del Pezzo surface if the pair $\left(\mathcal{O},(\mathbb{S}[-2])^{-k}\right)$ of an appropriately defined 'structure sheaf' \mathcal{O} and some power $k \geq 1$ of the shifted Serre functor is ample in the sense of Artin-Zhang.

Abdelgadir-Okawa-U (continued)

- A noncommutative weak del Pezzo surface has an acyclic helix $\left(E_{i}\right)_{i \in \mathbb{Z}}$.
- The algebra $\bigoplus_{i, j=1}^{\ell} \operatorname{Hom}\left(E_{i}, E_{j}\right)$ is described by a quiver with relations.
- The (rigidified) moduli stack of relations contains the moduli space of marked del Pezzo surfaces (the configuration space of points on \mathbb{P}^{2}) as a locally closed substack.
- A particularly nice (3-block) acyclic helix, known to exist except for \mathbb{P}^{2} blown up at one or two points by Karpov-Nogin, allows one to define a compact moduli of relations as a GIT quotient with respect to a reductive group.

Noncommutative \mathbb{P}^{2}

$$
\begin{aligned}
& V_{1}:=\mathbf{k} x_{1} \oplus \mathbf{k} y_{1} \oplus \mathbf{k} z_{1} \\
& V_{2}:=\mathbf{k} x_{2} \oplus \mathbf{k} y_{2} \oplus \mathbf{k} z_{2} \\
& V_{3}:=\mathbf{k} x_{3} \oplus \mathbf{k} y_{3} \oplus \mathbf{k} z_{3}
\end{aligned}
$$

$$
\begin{aligned}
\bar{M}_{\mathrm{rel}} & =\operatorname{Gr}_{3}\left(V_{1} \otimes V_{2}\right) / / \mathrm{SL}\left(V_{1}\right) \times \mathrm{SL}\left(V_{2}\right) \\
& \cong V_{1} \otimes V_{2} \otimes V_{3} / / \mathrm{GL}\left(V_{1}\right) \times \mathrm{GL}\left(V_{2}\right) \times \mathrm{GL}\left(V_{3}\right) \\
& \cong \mathbb{P}(6,9,12)
\end{aligned}
$$

Noncommutative $\mathbb{P}^{1} \times \mathbb{P}^{1}$

$$
V_{i}:=\mathbf{k} x_{i} \oplus \mathbf{k} y_{i}, \quad i=1,2,3,4
$$

$$
\begin{aligned}
\bar{M}_{\mathrm{rel}} & =\mathrm{Gr}_{2}\left(V_{1} \otimes V_{2} \otimes V_{3}\right) / / \mathrm{SL}\left(V_{1}\right) \times \mathrm{SL}\left(V_{2}\right) \times \mathrm{SL}\left(V_{3}\right) \\
& \cong V_{1} \otimes V_{2} \otimes V_{3} \otimes V_{4} / / \mathrm{GL}\left(V_{1}\right) \times \mathrm{GL}\left(V_{2}\right) \times \mathrm{GL}\left(V_{3}\right) \times \mathrm{GL}\left(V_{4}\right) \\
& \cong \mathbb{P}(2,4,4,6)
\end{aligned}
$$

Noncommutative cubic surfaces

$\bar{M}_{\text {rel }}=\mathbb{A}^{27} / /\left(\mathbb{G}_{m}\right)^{27}$ is an 8-dimensional toric variety containing the 4 -dimensional configuration space $X(3,6)$ of 6 points in general position on \mathbb{P}^{2}.

Remark

- The quiver on the previous slide for noncommutative cubic surfaces is 3-block complete bipartite of block length ($3,3,3$).
- Similarly, the 3-block complete bipartite quiver of block length $(2,4,4)$ gives noncommutative del Pezzo surfaces of degree 2, and
- that of block length $(2,3,6)$ gives noncommutative del Pezzo surfaces of degree 1 .

Noncommutative cubic surfaces (continued)

$\bar{M}_{\text {rel }}$ is birational to the moduli stack of decuples $\left(E,\left(L_{i j}\right)_{i, j=0}^{2}\right)$ consisting of a genus one curve E and nine line bundles $L_{i j}$ of degree j :

- Given relations (i.e., a two-sided ideal of the path algebra) of the quiver, the moduli space E of stable representations (with respect to a suitable stability condition) together with the tautological bundles $\left(L_{i j}\right)_{i, j=0}^{2}$ gives a decuple.
- Given a decuple $\left(E,\left(L_{i j}\right)_{i, j=0}^{2}\right)$, the algebra End $\left(\bigoplus_{i, j=0}^{2} L_{i j}\right)$ is described by the quiver with relations.

Spherical helix

- \mathcal{C} : a proper dg category with a Serre functor \mathbb{S}
- $S \in \mathcal{C}$ is spherical of dimension d if $\mathbb{S}(S)=S[d]$ and

$$
\operatorname{Hom}^{i}(S, S) \cong \begin{cases}\mathbf{k} & i=0, d \tag{0.1}\\ 0 & \text { otherwise }\end{cases}
$$

- $T_{S}:=$ Cone (ev: $\left.\operatorname{hom}(S,-) \otimes S \rightarrow \mathrm{id}\right) \in \operatorname{Aut}(\mathcal{C})$
- A sequence $\mathbf{S}=\left(S_{i}\right)_{i=1}^{\ell}$ of spherical objects is a spherical collection if $\left.\mathbb{S}\right|_{\text {the full subcat consisting of } \mathbf{S}} \simeq(-)[d]$.
- It extends to the spherical helix $\left(S_{i}\right)_{i \in \mathbb{Z}}$ by

$$
S_{i-\ell}=T_{S_{i-\ell+1}} \circ T_{S_{i-\ell+2}} \circ \cdots \circ T_{S_{i-1}}\left(S_{i}\right)[-d-1] .
$$

- A spherical helix $\left(S_{i}\right)_{i \in \mathbb{Z}}$ is acyclic if $\operatorname{Hom}^{k}\left(S_{i}, S_{j}\right)=0$ for any $i<j$ and $k \neq 0$.

Okawa-U (2007.07620)

- An acyclic spherical helix produces an AS-regular \mathbb{Z}-algebra.
- One can construct noncommutative del Pezzo surfaces in three steps:

1. Take an acyclic helix $\left(E_{i}\right)_{i \in \mathbb{Z}}$ on a del Pezzo surface.
2. The restriction $\left(S_{i}:=\left.E_{i}\right|_{D}\right)_{i \in \mathbb{Z}}$ to an anti-canonical divisor D is an acyclic spherical helix.
3. Deform $\left(S_{i}\right)_{i=1}^{\ell}$ generically. It will generate an acyclic spherical helix.
