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Why noncommutative varieties?

» Noncommutative rings appear ‘in nature’,
e.g., from integrable systems.
» Commutative varieties are closed under neither

» deformations,
» Fourier—Mukai transforms, nor
P mirror symmetry.

» quest for ‘quantization of space’
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Artin—Zhang (1994)

A polarized noncommutative variety is a triple (A, O, (—)(1))
consisting of

> a Noetherian abelian category A

» an object O € A, and

» an autoequivalence (—)(1): A — A

such that

> HO(O) = k: a field,

» VM e A, dim H'(M) < oo, and

» the pair (O, (—)(1)) is ample, i.e.,
> YMe A 3P, O0(—1l;) = M: epi,

> Y M — N: epi, 3ng, Vn > ng, HO(M(n)) — H°(N'(n)): epi,

where HO(M) := Hom(O, M). In this case, one has
A qgrA=grA/torAfor A:==@", H(O(n)).
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Hochschild—Kostant—Rosenberg isomorphism

X: a smooth variety
> HH2(X) = H2(Ox) & HY(Tx) & H° (/\2frx)
» HY(Tx): the ‘classical’ direction
> HO (/\2 7}<>: the ‘strictly noncommutative’ direction

> H?(Ox): the ‘gerby’ direction
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Artin’s conjecture

Any noncommutative surface is birational to either
P> a noncommutative projective plane,
» a noncommutative P-bundle over a commutative curve, or

» a noncommutative surface which is finite over its center.
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AS-regular algebras

> A finitely presented N-graded algebra A = B;°, A; over a
field k is connected if Ay = k.

> A connected algebra A is AS-Gorenstein of dimension d and
parameter a if RHomp(k, A) ~ k(a)[—d].
> A connected algebra A is AS-regular of dimension d if

» A is AS-Gorenstein of dimension d,
» A has polynomial growth, and
» A has global dimension d.

» d-dimensional AS-regular algebras are noncommutative
generalizations of polynomial algebras in d variables.
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Remark

A=k (x1,...,xn) : a free algebra
degxi=d;, i=1,...,n

0—-A(-d)®---@A(—dy) >A—=k—0 (exact)

» A is not AS-Gorenstein.

> A has exponential growth.
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Artin—Schelter (1987)

A 3-dimensional AS-regular algebra A generated in degree 1 is
either quadratic, i.e.,

0= A(-3) = A(-2)® 5 A(-1)®® = A -k -0 (exact),
or cubic, i.e.,

0= A(—4) = A(-3)"2 5 A(-1)"? 5 A -k =0 (exact).
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Artin—-Tate-Van den Bergh (1990)

3-dimensional quadratic AS-regular algebras A such that
qgr A % coh P? are classified by triples (E, L, o) consisting of
P a genus one curve E,
» a very ample line bundle L of degree 3 on E, and
> o c AutE.
3-dimensional cubic AS-regular algebras A such that
qgr A % coh P! x P! are classified by triples (E, L, o) consisting of
P a genus one curve E,
» a line bundle L of degree 2, and
> o< AutE.
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Z.-algebra

» An algebra over a filed k is a k-linear category with one object.

> A Z-algebra is a k-linear category A whose set of objects is
identified with the set Z of integers.

» An A-module is a functor A°? — Mod k.
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Z-algebra (paraphrase)

» A Z-algebra is an algebra A=
> AjAi C Ai,
> de; € Aj satisfying eja = a = aej for any a € A, and
> AjAu=0ifj # k.

P> A can be regarded as a category by

i jez Ajj such that

Ajj = Hom(j, /).

» An A-module is M = @), M; such that
> M,A,_, - Mj
P ¢ acts as the identity on M;, and
> MiAj =0if i #j.
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Qgr of Z-algebra

» A Z-algebra is non-negatively graded if A = EB,-Z/- Ajj.

> A non-negatively graded Z-algebra is connected if A;; = ke;
forall i € Z.

» A module over a Z-algebra is torsion if it is a colimit of
modules which are finite over k.

» QgrA:=GrA/TorA
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Z-algebras and graded algebras

> A graded algebra A =@, Ai produces a Z-algebra
A= ®I,J€Z A,J by AU = Ai_j. One has QgrA = Qgr A.

> A Z-algebra comes from a graded algebra if and only if it is
1-periodic, i.e., there exists a collection (Aj; = Aitij+1)ijez
of linear isomorphisms compatible with multiplication.

> For a pair (A, B) of graded algebras, one has A= B if and
only if A and B are related by the Zhang twist.
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3-dimensional quadratic AS-regular Z-algebra

> A: a connected Z-algebra

> P; = ¢jA: the i-th projective module

> S; = ejAe;: the i-th simple module

» Ais a 3-dimensional quadratic AS-regular Z-algebra if

VieZ, 0—Pi3z— P> =P P —5S —0 (exact).
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Bondal-Polishchuk (1994)

» 3-dimensional quadratic AS-regular Z-algebras A with
qgr A % coh P? are classified by triples consisting of

» a genus one curve E and
» very ample line bundles L; and L, of degree 3 on E such that

> L1 '\;t_é L2 and
> degLi|c = deg Li|c for every irreducible component C of E.

» The map (E,L,0) — (E,L,0*L) from ATV triples to BP
triples is generically 9 : 1.
» Fibers are related by 3-torsion translations.
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Noncommutative P2

» A noncommutative P2 is an abelian category of the form
qgr A for a 3-dimensional quadratic AS-regular algebra.

» The set {O(i)}icz of ‘line bundles’ on a noncommutative P2
is characterized categorically.
» The set of isomorphism classes of noncommutative P? are in

bijection with the set of isomorphism classes of 3-dimensional
quadratic AS-regular Z-algebras.
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Van den Bergh (2011)

A 3-dimensional cubic AS-regular Z-algebra is a connected
Z-algebra A with

0— Pi_g— PP3 — PP — P, — S —0 (exact).

They are classified by quadruples (E, L1, Ly, L3) consisting of

P> a genus one curve E and
» three line bundles L1, L5, and L3 such that
> both (L1, L) and (Lp, L3) embed E as a divisor of bidegree
(2,2) in P! x P,
» deg L1|c = deg Ls|c for every irreducible component C of E,
and
> L% L.
A noncommutative P x P! is an abelian category of the form
qgr A for a 3-dimensional cubic AS-regular Z-algebra A.
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Acyclic helix

» An object E of a dg category D is exceptional if
hom(E, E) ~ kidg .

» A sequence (Ei, ..., Ey) of exceptional objects is an
exceptional collection if hom(E;, E;) ~ 0 for i > j.

> An exceptional collection is full if it generates D.

» A helix of dimension d and period ¢ is a sequence (E;);cz of
objects such that (E,..., E¢) is a full exceptional collection
and Ejiy = S(E;)[—d] for any i € Z, where S is the Serre
functor of D.

> A helix is acyclic if Hom*(E;, E;) = 0 for i < j and k # 0.

» An acyclic helix (E;);cz produces a connected Z-algebra.
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Acyclic helix (continued)

Noncommutative P? and noncommutative P! x P! have acyclic
helices which are noncommutative generalizations of

ey OIP27 OIPQ(].), OP2(2)7 O]}n2(3)7 P
and
e ,O]Pllx[pl, OPIXPI(O, 1), OPIXPI(]-) 1), Oplxpl(l, 2), Oplxpl (2, 2), ceey

respectively.
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Abdelgadir-Okawa—-U

» An acyclic helix (Ej)jcz on a del Pezzo surface defines a type
of an AS-regular Z-algebra specified by a quiver.

» A noncommutative weak del Pezzo surface is qgr of an
AS-regular Z-algebra of that type.

» |t is a noncommutative del Pezzo surface if the pair

(O, (S[-2])7*) of an appropriately defined ‘structure sheaf’ O
and some power k > 1 of the shifted Serre functor is ample in
the sense of Artin—Zhang.
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Abdelgadir—-Okawa-U (continued)

| 4

>

>

A noncommutative weak del Pezzo surface has an acyclic
helix (E})ng.
The algebra @'
relations.

i j—1 Hom(Ej, E;) is described by a quiver with
The (rigidified) moduli stack of relations contains the moduli
space of marked del Pezzo surfaces (the configuration space
of points on P?) as a locally closed substack.

A particularly nice (3-block) acyclic helix, known to exist
except for P? blown up at one or two points by
Karpov—Nogin, allows one to define a compact moduli of
relations as a GIT quotient with respect to a reductive group.
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Noncommutative P2

X1 \(\/ X2
1 n 2 ¥2

2 /\)\22

Vi =kxy & ky; & kzy
Vo i=kxo @ kys @ kzp
V3 =kx3 ® ky; ® kz3

Wrel = Gr3(V1 & Vz)// SL( Vl) X SL( \/2)
Z2VioVWe V3//GL(V1) X GL(VQ) X GL(V3)
>~ P(6,9, 12)
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Noncommutative P! x P!

OO O -0
n— y2 y3
Vi = kx; @ ky;, i=1,2,3,4

Mool = Gra(V4 ® Vo ® V3)// SL(V4) x SL(V5) x SL(V3)
~ Vi@ Vo® Va® Va// GL(VA) x GL(Va) x GL(V5) x GL(V4)
~ P(2,4,4,6)
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Noncommutative cubic surfaces

M, = A27//((Gm)27 is an 8-dimensional toric variety containing
the 4-dimensional configuration space X(3,6) of 6 points in
general position on P2,

24 /28



Remark

» The quiver on the previous slide for noncommutative cubic
surfaces is 3-block complete bipartite of block length (3,3, 3).

» Similarly, the 3-block complete bipartite quiver of block length
(2,4,4) gives noncommutative del Pezzo surfaces of degree 2,
and

> that of block length (2,3, 6) gives noncommutative del Pezzo
surfaces of degree 1.
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Noncommutative cubic surfaces (continued)

M., is birational to the moduli stack of decuples (E, (L,-j)ijzo)
consisting of a genus one curve E and nine line bundles L;; of
degree j:

» Given relations (i.e., a two-sided ideal of the path algebra) of
the quiver, the moduli space E of stable representations (with
respect to a suitable stability condition) together with the
tautological bundles (Lij),?,j:o gives a decuple.

. 2 .

» Given a decuple (E, (LU),?JZO), the algebra End (®iJ:o Lij) is
described by the quiver with relations.
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Spherical helix

» (C: a proper dg category with a Serre functor S
» S e C is spherical of dimension d if S(S) = S[d] and

k i=0,d,

] (0.1)
0 otherwise.

Hom'(S, S) = {
» Ts:= Cone(ev: hom(S,—)® S — id) € Aut(C)
> A sequence S = (5,-)?:1 of spherical objects is a spherical
collection if S|the full subcat consisting of S = (_)[d]
» It extends to the spherical helix (S;)icz by

Si_v=Ts oTs o---0Ts_ (S)[-d—1].

i—0+1 i—042

> A spherical helix (S;);cz is acyclic if Hom*(S;, S;) = 0 for any
i<jand k #0.
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Okawa-U (2007.07620)

» An acyclic spherical helix produces an AS-regular Z-algebra.

» One can construct noncommutative del Pezzo surfaces in
three steps:

1. Take an acyclic helix (E;)icz on a del Pezzo surface.
2. The restriction (S; :== E;|p)icz to an anti-canonical divisor D is
an acyclic spherical helix.

3. Deform (S;)%_; generically. It will generate an acyclic spherical
helix.
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