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Abstract

We show that the global quotient stack of the projective plane by the natural
action of a finite subgroup G of SL3(C) has a full strong exceptional of line bundles
if and only if G is abelian.

1 Introduction

Let D be a triangulated category over C. An object E of D is exceptional if Hom(E,E) =
C · idE and Hom(E,E[j]) = 0 for any j 6= 0. A sequence (E1, . . . , En) of exceptional
objects of D is an exceptional collection if the semiorthogonality Hom(Ei, Ej [k]) = 0 for
any i > j and any k ∈ Z holds. An exceptional collection is strong if Hom(Ei, Ej[k]) = 0
for any i, j = 1, . . . , n and any k 6= 0. An exceptional collection is full if the smallest full
triangulated subcategory of D containing Ei for all i = 1, . . . , n coincides with D.

Assume that D has a dg enhancement in the sense of Bondal and Kapranov [BK90].
This assumption is satisfied by derived categories of coherent sheaves on algebraic stacks.
Under this assumption, Morita theory for derived categories [Bon89, Ric89] shows that
if D has a full strong exceptional collection, then one has an equivalence of triangulated
categories

D ∼= Db modA

with the bounded derived category of finitely-generated modules over the total morphism
algebra

A =

n
⊕

i,j=1

Hom(Ei, Ej).

The first example of a full strong exceptional collection is the sequence

(OPn,OPn(1), . . . ,OPn(n))

of line bundles on the projective space Pn discovered by Beilinson [Bĕı78]. Its dual collec-
tion

(Ωn
Pn(n)[n],Ωn−1

Pn (n− 1)[n− 1], . . . ,OPn)

gives another example of a full strong exceptional collection, consisting of shifts of vector
bundles.

A semiorthogonal decomposition of a triangulated category is a decomposition of a tri-
angulated category into simpler pieces, which is conjecturally related to the minimal model
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program in algebraic geometry when the triangulated category is the derived category of
coherent sheaves on an algebraic variety [BO]. An exceptional collection corresponds to
a semiorthogonal decomposition whose semiorthogonal summands are the derived cate-
gory of vector spaces, and its existence imposes a strong condition on the structure of a
triangulated category. Exceptional collections also have applications to gauge theory and
string theory (cf. e.g. [HK09] and references therein). It is in general difficult to find an
exceptional object in the derived category of coherent sheaves, let alone a full exceptional
collection. It is conjectured that any homogeneous space G/P for a semisimple algebraic
group G and its parabolic subgroup P has a full exceptional collection of vector bundles
(cf. e.g. [KP, Section 1.1] for an overview).

Among full exceptional collections, full strong exceptional collections of line bundles
are the ‘nicest’ ones. On the other hand, the combination of the strongness condition
and the line bundle condition makes it hard to find examples of full strong exceptional
collections of line bundles. King [Kin97, Conjecture 9.3] conjectured that a smooth com-
plete toric variety has a full strong exceptional collection consisting of line bundles. This
conjecture is shown to be false by Hille and Perling [HP06], who subsequently gave a
necessary and sufficient condition for a smooth complete toric surface to have such a
collection [HP]. Borisov and Hua [BH09] suggested to extend the conjecture to stacks,
with an additional assumption that the toric stack be weak Fano, and proved it for toric
Fano stacks of Picard number or dimension at most two. Efimov [Efi10] disproved this
modified conjecture by showing the existence of a toric Fano manifold of Picard number
three admitting no full exceptional collection of line bundles. On the other hand, Kawa-
mata [Kaw06] shows that a smooth projective toric stack has a full exceptional collection
consisting of sheaves.

In this paper, we study the problem of the existence of a full exceptional collection of
line bundles on the quotient stack of the complex projective plane P2 by a finite subgroup
of SL3(C). Our main result is the following:

Theorem 1.1. The quotient stack [P2/G] of the projective plane P2 by a finite subgroup
G of SL3(C) has a full strong exceptional collection of line bundles if and only if G is an
abelian group.

This is in sharp contrast with the situation in dimension one:

Theorem 1.2 ([GL87, Proposition 4.1]). Let X a smooth rational stack of dimension
one. Then X has a full strong exceptional collection of line bundles.

The quotient stack of P1 by any finite subgroup of SL2(C) is covered by Theorem 1.2.
A natural generalization of Theorem 1.2 is the following:

Theorem 1.3 ([IU12]). Let X be a smooth rational stack obtained from P
n by iterated

root constructions along n + 1 hyperplanes in general position. Then X has a full strong
exceptional collection of line bundles.

Here, the root construction is the operation introduced in [AGV08, Cad07] which
produces a generic stabilizer along a divisor. A further generalization to arbitrary number
of hyperplanes is announced by Herschend, Iyama, Minamoto and Oppermann. On the
other hand, one has no full exceptional collection of line bundles when X is obtained from
P2 by the root construction along a smooth conic:
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Theorem 1.4. Let X be the stack obtained from P
2 by the root construction along a

smooth conic. Then X does not admit a full exceptional collection of line bundles.

A fine moduli interpretation of any smooth projective toric varieties in terms of quiver
representations, which was one of the original motivations of King, is obtained by Craw
and Smith [CS08]. This has been generalized to Mori dream spaces, toric stacks and
rational orbifold stacks in [CW13], [Abd12] and [AU]. The quotient stack [P2/G] gives an
example of an MD-stack, which is introduced in [HM] as a generalization of Mori dream
spaces. It is an interesting problem to find a fine moduli interpretation of the stack X
appearing in Theorem 1.4 in terms of quiver representations.

Acknowledgement : This work has been initiated while the authors are visiting the
Max Planck Institute for Mathematics in Bonn, whose hospitality and nice working envi-
ronment is gratefully acknowledged. R. O. is supported by JSPS Grant-in-Aid for Young
Scientists No. 25800016. K. U. is supported by JSPS Grant-in-Aid for Young Scientists
No. 24740043.

2 Grassmannians

In this section, we give a proof of the following theorem, in order to illustrate the method
of the proof of Theorem 1.1.

Theorem 2.1. The Grassmannian Gr(r, n) of r-planes in n-space has a full exceptional
collection of line bundles if and only if r = 1 or r = n− 1.

Proof. The ‘if’ part is proved by Beilinson [Bĕı78]. To show the ‘only if’ part, assume
that 1 < r < n− 1. The universal subbundle S and the universal quotient bundle Q fits
into the exact sequence

0 → S → O⊕n
Gr(r,n) → Q → 0,

which shows

det S ⊗ detQ ∼= OGr(r,n).

The Picard group PicGr(r, n) is the free abelian group generated byOGr(r,n)(1) := detQ ∼=
detS∨, which is an ample line bundle defining the Plücker embedding

Gr(r, n) →֒ P(Λr
k
n).

The tangent bundle is given by

TGr(r,n)
∼= HomOGr(r,n)

(S,Q),

and the canonical bundle is given by

ωGr(r,n)
∼= det T ∨ ∼= (detS)⊗(n−r) ⊗ (detQ)⊗(−r) ∼= OGr(r,n)(−n).

Set N = dimGr(r, n) = r(n− r). It follows that

ExtN(OGr(r,n)(k),OGr(r,n)) ∼= H0(OGr(r,n)(k − n)) = 0 if and only if k < n,
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so that the exceptional collection of line bundles with the maximal length is

OGr(r,n),OGr(r,n)(1), . . . ,OGr(r,n)(n− 1).

This collection cannot be full since rankK(Gr(r, n)) =
(

n
r

)

> n.

On the other hand, Gr(r, n) has a full strong exceptional collection of vector bundles
[Kap88].

3 The root stack along a smooth conic

We prove Theorem 1.4 in this section. Let [A1/Gm] be the quotient stack of the affine
line A1 by the natural action of the multiplicative group Gm. As a category fibered in
groupoid, an object of [A1/Gm] over a scheme S is a pair (L, s) of a line bundle L on
S and a section s of L. For a positive integer r, let θr : [A

1/Gm] → [A1/Gm] be the
morphism sending an object (L, s) to its tensor power (L⊗r, s⊗r). Let X be an algebraic
stack. Giving a morphism ϕ : X → [A1/Gm] is equivalent to giving a pair (L, s) of a line
bundle on X and a section. The root stack X = XL,s,r is defined in [Cad07, AGV08] as
the fiber product

X
π2−−−→ [A1/Gm]

π1





y





y
θr

X
ϕ−−−→ [A1/Gm].

Note that Pic[A1/Gm] ∼= PicGm A1 ∼= Hom(Gm,Gm) ∼= Z since any line bundle on A1 is
trivial, and we write its generator as O[A1/Gm](1). The pull-back morphisms π∗

1 : PicX →
PicX and π∗

2 : Pic[A1/Gm] → PicX are injective, and PicX is generated by their images
with one relation

π∗
1L ∼= π∗

2O[A1/Gm](r).

In this sense, the root construction is the operation of adding an r-th root π∗
2O[A1/Gm](1)

of π∗
1L.
Now consider the case when X is the projective plane, L = OX(C) is the line bundle

associated with a smooth conic C, and s is the canonical section of OX(C). Any element

of PicX can uniquely be written as OX

(

aH + b r
√
C
)

with a ∈ Z and b ∈ {0, 1, . . . , r−1},

where OX(H) = π∗
1OP2(1) and OX

(

r
√
C
)

= π∗
2O[A1/Gm](1). Let L = (L1, . . . , LN) be an

exceptional collection of line bundles. The canonical divisor is given by KX = −H − r
√
C,

so that

H2
(

OX

(

−aH − b
r
√
C
))

= H0
(

OX

(

(a− 1)H + (b− 1)
r
√
C
))

.

This shows thatH2
(

OX

(

−aH − b r
√
C
))

6= 0 if and only if a ≥ 1 and (a, b) 6= (1, 0), (2, 0).

When this is the case, then one also has H0
(

OX

(

aH + b r
√
C
))

6= 0. Similarly, if a ≤ −3,
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(−3, 0)//////// (−3, 1)//////// · · · (−3, r − 1)/////////////

(−2, 0) (−2, 1) · · · (−2, r − 1)
(−1, 0) (−1, 1) · · · (−1, r − 1)
(0, 0) (0, 1) · · · (0, r − 1)
(1, 0) (1, 1)////// · · · (1, r − 1)///////////

(2, 0) (2, 1)////// · · · (2, r − 1)///////////

(3, 0)////// (3, 1)////// · · · (3, r − 1)///////////

Table 3.1: (a, b) such that OX

(

aH + b r
√
C
)

can be in L

then we have H2
(

OX

(

aH + b r
√
C
))

6= 0 and H0
(

OX

(

−aH − b r
√
C
))

6= 0. It follows

that if OX

(

aH + b r
√
C
)

∈ L, then OX

(

(a± a′)H + (b± b′) r
√
C
)

6∈ L for any a′ ≥ 1,

b′ = 0, . . . , r − 1 and (a′, b′) 6= (1, 0), (2, 0), or a′ ≤ −3. By tensoring a line bundle if
necessary, one can assume that OX ∈ L. Then the above condition shows that (a, b) ∈
Z × {0, . . . , r − 1} such that OX

(

aH + b r
√
C
)

can be in L are given by the pairs not

crossed out in Table 3.1. Moreover, by setting (a′, b′) = (1, 1), one sees that (a, b) and
(a ± 1, b ± 1) can not simultaneously be in L. This immediately implies that the length
of an exceptional collection of line bundles cannot exceed r + 2. On the other hand, one
has a fully faithful functor Φ: Db cohC → Db cohX and a semiorthogonal decomposition

Db cohX =
〈

Φ(Db cohC)⊗OX

(

(r − 1)
r
√
C
)

, · · · ,Φ(Db cohC)⊗OX

(

r
√
C
)

, π∗
1(D

b cohX)
〉

by [IU, Theorem 1.5], so that the rank of the Grothendieck group of X is 2r + 1. This is
strictly larger than r + 2 since r > 1, and Theorem 1.4 is proved.

4 Exceptional collection of line bundles on [P2/G]

Finite subgroups of SL3(C) are classified in [Bli17] and [MBD61]. The following list is
taken from [YY93]:

(A) Diagonal abelian groups.

(B) A subgroup isomorphic to a finite subgroup G of GL2(C);










α 0 0
0 a b
0 c d





∣

∣

∣

∣

∣

∣

g =

(

a b
c c

)

∈ G ⊂ GL2(C), α = (det g)−1







.

(C) The group generated by (A) and T =





0 1 0
0 0 1
1 0 0



 .
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(D) A group generated by (C) and Q =





a 0 0
0 0 b
0 c 0



 with abc = −1.

(E) The group of order 108 generated by S = diag(1, ω, ω2), T , and V = 1√
−3





1 1 1
1 ω ω2

1 ω2 ω





where ω = exp(2π
√
−1/3).

(F) The group of order 216 generated by (E) and 1√
−3





1 1 ω2

1 ω ω
ω 1 ω



 .

(G) The Hessian group of order 648 generated by (E) and U = diag(ε, ε, εω) where
ε3 = ω2.

(H) The alternating groupA5 of order 60 generated by T , diag(1,−1,−1), and
1

2





−1 µ− µ+

µ− µ+ −1
µ+ −1 µ−





where µ± = 1
2
(−1±

√
5).

(I) The simple group of order 168 generated by T , diag(β, β2, β4), and U = 1√
−7





a b c
b c a
c a b





where β = exp(2π
√
−1/7), a = β4 − β3, b = β2 − β5, and c = β − β6.

(J) The group of order 180 generated by (H) and W =





ω 0 0
0 ω 0
0 0 ω



.

(K) The group of order 504 generated by (I) and W .

(L) The simple group of order 1080 generated by (H) and





−1 0 0
0 0 −ω
0 −ω2 0



 .

We prove Theorem 1.1 in each cases. First note the following:

Lemma 4.1. Let X be a stack containing a point with a non-abelian stabilizer. Then X
does not have a full exceptional collection of line bundles.

Proof. Let ι : BΓ → X be a closed embedding of the quotient stack BΓ = [SpecC/Γ] of a
point by a non-abelian group Γ. Assume for a contradiction that X has a full exceptional
collection (L1, . . . , Ln) of line bundles. Then (ι∗L1, . . . , ι

∗Ln) generates Db cohBΓ =
Db Rep(Γ) as a triangulated category. This is impossible since Db Rep(Γ) decomposes
as the direct sum

⊕

ρ∈Irrep(Γ)D
b Rep(Γ)ρ of categories Db Rep(Γ)ρ equivalent to the de-

rived categories of vector spaces, and the restriction ι∗Li belongs to the subcategory
⊕

ρ∈Char(Γ) D
bRep(Γ)ρ for any i.

The ‘if’ part of Theorem 1.1 is straightforward:
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Theorem 4.2. Let G be a finite abelian subgroup of GLn+1(C) acting naturally on P
n.

Then the quotient stack [Pn/G] has a full strong exceptional collection of line bundles

Proof. The full strong exceptional collection

(O ⊗ ρ,O(1)⊗ ρ, . . . ,O(n)⊗ ρ)ρ∈Irrep(G)

of vector bundles on [Pn/G] consists of line bundles if G is abelian.

The ‘only if’ part is proved by a case-by-case analysis. Let G be a finite subgroup of
SL3(C) and X = [P2/G] be the quotient stack. Let further S = C[x, y, z] be the homoge-
neous coordinate ring of P2, and SG be the invariant subring. By [HE71, Proposition 3 and
page 1036], there exist algebraically-independent homogeneous elements θ1, θ2, θ3 ∈ SG

such that SG is a free C[θ1, θ2, θ3]-module. Let η1, . . . , ηl be the free basis of SG as a
C[θ1, θ2, θ3]-module, so that SG =

⊕l
i=1C[θ1, θ2, θ3]ηi. Their degrees can be computed by

GAP and Singular as in Table 4.1.

type # Irrep(G) #Char(G) (deg θi)
3
i=1 (deg ηi)

l
i=1

(E) 14 4 (12,6,6) (21,12,9,0)
(F) 16 4 (12,9,6) (24,12,0)
(G) 24 3 (18,12,9) (36,18,0)
(H) 5 1 (10,6,2) (15,0)
(I) 15 3 (15,6,6) (24,12,0)
(L) 17 1 (30,12,6) (45,0)

Table 4.1: Degrees of bases of the invariant rings

Theorem 4.3. Let G be a finite non-abelian subgroup of SL3(C). Then the quotient stack
[P2/G] does not have a full exceptional collection of line bundles.

Proof. Let X = [P2/G] be the quotient stack of P2 by a finite non-abelian subgroup G of
SL3(C). If G is of type (B), then the stabilizer of the point [1 : 0 : 0] ∈ P2 is the whole
of G, which is non-abelian by the assumption. Hence X does not have a full exceptional
collection of line bundles by Lemma 4.1.

IfG is of type (C), then the polynomial xyz isG-invariant. Hence we haveH0(OX(3l)) 6=
0 for any non-negative integer l. For any four integers, their exits at least one pair (l, m)
such that l − m ≡ 0 mod 3. Thus any exceptional collection of line bundles on X
must have size less than or equal to 3 ×#Char(G), which is smaller than rankK(X) =
3×#Irr(G) since G is non-abelian. This shows that X does not admit a full exceptional
collection of line bundles.

If G is of type (D), then consider the stabilizer Γ of the point [1 : 0 : 0] ∈ P2. This
is the intersection of G with the parabolic subgroup P of SL3(C) consisting of block

upper-triangular matrices of the form





∗ ∗ ∗
0 ∗ ∗
0 ∗ ∗



 . If Γ is non-abelian, then X does not
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have a full exceptional collection of line bundles by Lemma 4.1. Assume that Γ is abelian.
Note that Q ∈ Γ, and a diagonal element diag(α, β, γ) commutes with Q if and only if
β = γ. Since T−1 · diag(α, β, γ) · T = diag(γ, α, β), the diagonal subgroup of G must
be trivial. Since Q2 = diag(a2, bc, bc), one has a2 = bc = 1. Together with abc = −1,
this gives a = −1 and b = c = ±1. Then one can set a = b = c = −1 by a choice of a
coordinate, and G is isomorphic to the symmetric group S3 of order 6. The group S3 has
three irreducible representations; the trivial representation ρ0, the sign representation ρ1,
and the irreducible representation ρ2 of dimension 2. The canonical bundle is given by
OX(−3) ⊗ ρ1. One can easily see that the maximal length for exceptional collections of
line bundles is 7, and a collection of length 7 is given by

(OX ⊗ ρ0,OX ⊗ ρ1,OX(1)⊗ ρ0,OX(1)⊗ ρ1,OX(2)⊗ ρ0,OX(2)⊗ ρ1,OX(3)⊗ ρ0)

up to tensor by a line bundle. It is not full since rankK(X) = 9.
Let G be the subgroup of type (E), and assume for a contradiction that there exists a

full strong exceptional collection L ⊂ PicX of line bundles. One must have

#L = rankK(X) = 3 ·#Irrep(G) = 42 (4.1)

since L is full. For any i, j ∈ Z, we have

Ext2(OX(i)⊗ ρ,OX(j)⊗ ρ) = H0(OX(i− j − 3))

by the Serre duality. Table 4.1 shows

∞
⊕

k=0

H0(OX(k)) = SG =

4
⊕

i=1

C[θ1, θ2, θ3]ηi, (4.2)

where deg(θ1, θ2, θ3) = (12, 6, 6) and deg(η1, η2, η3, η4) = (21, 12, 9, 0). It follows that if
either

(a) i− j − 3 = 6k for k ≥ 0, or

(b) i− j = 6k for k ≥ 2

is satisfied, then Ext2(OX(i)⊗ρ,OX(j)⊗ρ) is non-zero. The assumption that L is strong
implies that if both OX(i)⊗ρ and OX(j)⊗ρ are in L, then neither (a) nor (b) are satisfied.
We put

Lρ = {i ∈ Z | OX(i)⊗ ρ ∈ L}.
The condition (a) implies that # {[i] ∈ Z/6Z | i ∈ Lρ} ≤ 3, and the condition (b) implies
that #Lρ ≤ 3× 2 = 6. Hence #L ≤ #Char(G) · 6 = 24, which contradicts (4.1).

The cases when G is of type (F), (G), (H), (I), or (L) are proved similarly. The
non-vanishing conditions for H2(OX(−l)) and the upper bound for #Lρ is summarized
in Table 4.2, and one can see that the upper bound is strictly smaller than the quo-
tient rankK(X)

/

#Char(G) of the rank of the Grothendieck group G by the number of
characters of G.

Let G be the group of type (J), and H < G be the subgroup of type (H), so that
G = 〈H,W 〉 where W = diag(ω, ω, ω). The corresponding quotient stacks will be denoted
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type non-vanishing condition for H2(OX(−l)) upper bound for #Lρ

(E) l = 3 or 3k + 9 for k ≥ 0 6
(F) l = 3 or 3k + 9 for k ≥ 0 6
(G) l = 3, 12, 15, 21 or 3k + 27 for k ≥ 0 9
(H) l = 2k + 3 or 2k + 18 for k ≥ 0 3
(I) l = 6k + 3 or 6k + 18 for k ≥ 0 9
(L) l = 6k + 3 or l = 6k + 48 for k ≥ 0 9

Table 4.2: Upper bounds for #Lρ

by X = [P2/G] and Y = [P2/H ]. Let BGm = [SpecC/Gm] be the classifying stack of
the multiplicative group Gm. As a category fibered in groupoid, an object of BGm over a
scheme S is a line bundle on S, so that giving a morphism from S to BGm is equivalent
to giving a line bundle on S. Let φ : Y → BGm be the morphism defined by the line
bundle OY (1), and ϑr : BGm → BGm be the morphism sending an object L over S to
the r-th tensor power L⊗r. Since W acts by the cubic root of unity on the fiber of OY (1)
and trivially on the base Y , the stack X is described as the fiber product

X = Y φ×ϑ3 BGm.

See also [Cad07, Definition 2.2.6]. The abelian category of coherent sheaves on X is
equivalent to the direct sum of 3 copies of the abelian category of coherent sheaves on Y
by [IU, Theorem 1.5];

cohX = π∗
1(cohY )⊕ π∗

1(cohY )⊗ π∗
2OBGm

(1)⊕ π∗
1(cohY )⊗ π∗

2OBGm
(2).

This implies that X has a full exceptional collection of line bundles if and only if Y has
a full exceptional collection of line bundles. Similarly, the type (K) case can be reduced
to the type (I) case.
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