Pseudodifferential Operators

Kenichi Ito
27 July 2023

On this course

Purpose: We learn basics of pseudodiffernetial operators
References: • X. Saint Raymond, "Elementary Introduction to the Theory of Pseudodifferential Operators", CRC Press

- H. Kumano-go, "Pseudo-Differential Operators", MIT Press
- A. Martinez, "An Introduction to Semiclassical and Microlocal Analysis", Springer
- M.A. Shubin, "Pseudodifferntial Operators and Spectral Analysis", Springer
- M. Zworski, "Semiclassical Analysis", Amer. Math. Soc
- N. Lerner, "Metrics on the Phase Space and Non-Selfadjoint Pseudo-Differential Operators", Springer

§ 1.1 Introduction

- Notation

In this course we use the notation

$$
\mathbb{N}=\{1,2,3, \ldots\}, \quad \mathbb{N}_{0}=\{0,1,2, \ldots\}=\{0\} \cup \mathbb{N} .
$$

We usually let $d \in \mathbb{N}$ be the dimension of the configuration space. For any multi-index $\alpha=\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in \mathbb{N}_{0}^{d}$ we define its length and factorial as

$$
|\alpha|=\alpha_{1}+\cdots+\alpha_{d}, \quad \alpha!=\left(\alpha_{1}!\right) \cdots \cdots\left(\alpha_{d}!\right)
$$

respectively. In addition, for any $\alpha, \beta \in \mathbb{N}_{0}^{d}$ we let

$$
\alpha \leq \beta \quad \stackrel{\text { def }}{\Longleftrightarrow} \alpha_{j} \leq \beta_{j} \text { for all } j=1, \ldots, d
$$

and define the binomial coefficient as

$$
\binom{\alpha}{\beta}=\frac{\alpha!}{\beta!(\alpha-\beta)!} \quad \text { if } 0 \leq \beta \leq \alpha, \quad\binom{\alpha}{\beta}=0 \quad \text { otherwise, }
$$

where $\alpha-\beta=\left(\alpha_{1}-\beta_{1}, \ldots, \alpha_{d}-\beta_{d}\right)$.

For any $x=\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}$ and $\alpha=\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in \mathbb{N}_{0}^{d}$ we write

$$
x^{\alpha}=x_{1}^{\alpha_{1}} \cdots x_{d}^{\alpha_{d}}, \quad \partial^{\alpha}=\partial_{1}^{\alpha_{1}} \cdots \partial_{d}^{\alpha_{d}}, \quad \partial_{j}=\partial_{x_{j}}=\frac{\partial}{\partial x_{j}} .
$$

Moreover, we introduce the notation

$$
D_{j}=-\mathrm{i} \partial_{j}, \quad D^{\alpha}=D_{1}^{\alpha_{1}} \cdots D_{d}^{\alpha_{d}}
$$

Then, in particular, we have

$$
D^{\alpha}=(-i)^{|\alpha|} \partial^{\alpha}
$$

Problem. 1. (Binomial theorem) Show for any $\alpha \in \mathbb{N}_{0}^{d}$ and $x, y \in \mathbb{R}^{d}$

$$
(x+y)^{\alpha}=\sum_{\beta \in \mathbb{N}_{0}^{d}}\binom{\alpha}{\beta} x^{\alpha-\beta} y^{\beta} ; \quad \text { In particular, } \quad \sum_{\beta \in \mathbb{N}_{0}^{d}}\binom{\alpha}{\beta}=2^{|\alpha|}
$$

2. (Leibniz rule) Show for any $\alpha \in \mathbb{N}_{0}^{d}$ and $f, g \in C^{|\alpha|}\left(\mathbb{R}^{d}\right)$

$$
\partial^{\alpha}(f g)=\sum_{\beta \in \mathbb{N}_{0}^{d}}\binom{\alpha}{\beta}\left(\partial^{\alpha-\beta} f\right)\left(\partial^{\beta} g\right)
$$

Thoughout the course for any $x, \xi \in \mathbb{R}^{d}$ we write simply

$$
x \xi=x \cdot \xi=x_{1} \xi_{1}+\cdots+x_{d} \xi_{d}, \quad x^{2}=x \cdot x, \quad|x|=\sqrt{x \cdot x},
$$

and we adopt the Fourier transform and its inverse defined as extensions from

$$
\begin{aligned}
\mathcal{F} u(\xi) & =(2 \pi)^{-d / 2} \int_{\mathbb{R}^{d}} \mathrm{e}^{-\mathrm{i} x \xi} u(x) \mathrm{d} x \quad \text { for } u \in \mathcal{S}\left(\mathbb{R}^{d}\right), \\
\mathcal{F}^{*} f(x) & =(2 \pi)^{-d / 2} \int_{\mathbb{R}^{d}} \mathrm{e}^{\mathrm{i} x \xi} f(\xi) \mathrm{d} \xi \quad \text { for } f \in \mathcal{S}\left(\mathbb{R}^{d}\right),
\end{aligned}
$$

respectively. Note, in particular, for any $u, v \in \mathcal{S}\left(\mathbb{R}^{d}\right)$ and $\alpha \in \mathbb{N}_{0}^{d}$

$$
(u, v)_{L^{2}}=(\mathcal{F} u, \mathcal{F} v)_{L^{2}}, \quad \mathcal{F}^{*} \xi^{\alpha} \mathcal{F} u=D^{\alpha} u
$$

where $(\cdot, \cdot)_{L^{2}}$ denotes the L^{2}-inner product, being linear and conjugate-linear in the first and second entries, respectively.

- Partial differential operators

Consider a partial differential operator (PDO) on \mathbb{R}^{d} :

$$
A=\sum_{|\alpha| \leq m} a_{\alpha}(x) D^{\alpha}, \quad a_{\alpha} \in C^{\infty}\left(\mathbb{R}^{d}\right)
$$

If we let

$$
a(x, \xi)=\sum_{|\alpha| \leq m} a_{\alpha}(x) \xi^{\alpha}
$$

then we can write for any $u \in C_{\mathrm{C}}^{\infty}\left(\mathbb{R}^{d}\right)$

$$
A u(x)=a(x, D) u(x)=(2 \pi)^{-d} \int_{\mathbb{R}^{2 d}} \mathrm{e}^{\mathrm{i}(x-y) \xi} a(x, \xi) u(y) \mathrm{d} y \mathrm{~d} \xi
$$

The last integral makes sense even if we replace the polynomial $a(x, \xi)$ in ξ by a symbol growing at most polynomially in $\xi \in \mathbb{R}^{d}$. That is a pseudodifferential operator ($\Psi D O$, or PsDO). We are going to develop a pseudodifferential calculus for an appropriate symbol class, and discuss its applications.

Remark. The last integral has to be interpreted as an iterated integral; The integrand is not integrable in (y, ξ). However, we can also justify it as an oscillatory integral, as discussed in the following section.

§ 1.2 Oscillatory Integrals

For any $x \in \mathbb{R}^{d}$ we let

$$
\langle x\rangle=\left(1+x^{2}\right)^{1 / 2} \in C^{\infty}\left(\mathbb{R}^{d}\right) .
$$

Lemma 1.1. 1. For any $x \in \mathbb{R}^{d}$

$$
\frac{1}{\sqrt{2}}(1+|x|) \leq\langle x\rangle \leq 1+|x| .
$$

2. For any $\alpha \in \mathbb{N}_{0}^{d}$ there exists $C_{\alpha}>0$ such that for any $x \in \mathbb{R}^{d}$

$$
\left|\partial^{\alpha}\langle x\rangle\right| \leq C_{\alpha}\langle x\rangle^{1-|\alpha|} .
$$

3. (Peetre's inequality) For any $s \in \mathbb{R}$ and $x, y \in \mathbb{R}^{d}$

$$
\langle x+y\rangle^{s} \leq 2^{|s|}\langle x\rangle^{|s|}\langle y\rangle^{s} .
$$

Proof. 1, 2. We omit the proofs.
3. By the assertion 1 we can estimate

$$
\begin{aligned}
\langle x+y\rangle & \leq 1+|x+y| \leq 1+|x|+|y| \\
& \leq(1+|x|)(1+|y|) \leq 2\langle x\rangle\langle y\rangle .
\end{aligned}
$$

This implies the assertion for $s \geq 0$. The same estimate also implies

$$
\langle y\rangle^{-1} \leq 2\langle x\rangle\langle x+y\rangle^{-1} .
$$

If we replace x by $-x$, and then y by $x+y$, it follows that

$$
\langle x+y\rangle^{-1} \leq 2\langle x\rangle\langle y\rangle^{-1},
$$

which implies the assertion for $s \leq 0$. Hence we are done.

- Oscillatory Integrals

For any $m, \delta \in \mathbb{R}$ we define the set of amplitude functions as

$$
A_{\delta}^{m}\left(\mathbb{R}^{d}\right)=\left\{a \in C^{\infty}\left(\mathbb{R}^{d}\right) ; \forall \alpha \in \mathbb{N}_{0}^{d} \sup _{x \in \mathbb{R}^{d}}\langle x\rangle^{-m-\delta|\alpha|}\left|\partial^{\alpha} a(x)\right|<\infty\right\}
$$

For any $k \in \mathbb{N}_{0}$ define a seminorm $|\cdot|_{k}$ on $A_{\delta}^{m}\left(\mathbb{R}^{d}\right)$ as

$$
|a|_{k}=|a|_{k, A_{\delta}^{m}}=\sup \left\{\langle x\rangle^{-m-\delta|\alpha|}\left|\partial^{\alpha} a(x)\right| ;|\alpha| \leq k, x \in \mathbb{R}^{d}\right\} .
$$

Remark. Obviously, $A_{\delta}^{m}\left(\mathbb{R}^{d}\right)$ is a Fréchet space with respect to the family $\left\{|\cdot|_{k}\right\}_{k \in \mathbb{N}_{0}}$ of seminorms.

Problem. Let $\chi \in \mathcal{S}\left(\mathbb{R}^{d}\right)$. Show $\chi(\epsilon x) \in A_{-1}^{0}\left(\mathbb{R}^{d}\right)$ uniformly in $\epsilon \in(0,1)$, i.e., for any $\alpha \in \mathbb{N}_{0}^{d}$ there exists $C>0$ such that for any $\epsilon \in(0,1)$ and $x \in \mathbb{R}^{d}$

$$
\left|\partial^{\alpha}(\chi(\epsilon x))\right| \leq C\langle x\rangle^{-|\alpha|} .
$$

Solution. Take any $\alpha \in \mathbb{N}_{0}^{d}$. Since χ is rapidly decreasing, we can compute and bound it as

$$
\begin{aligned}
\left|\partial^{\alpha}(\chi(\epsilon x))\right| & =\epsilon^{|\alpha|}\left|\left(\partial^{\alpha} \chi\right)(\epsilon x)\right| \leq C \epsilon^{|\alpha|}\langle\epsilon x\rangle^{-|\alpha|} \\
& \leq C \epsilon^{|\alpha|}\left(\epsilon^{2}+\epsilon^{2} x^{2}\right)^{-|\alpha| / 2}=C\langle x\rangle^{-|\alpha|} .
\end{aligned}
$$

Hence we are done.
Remark. Of course, for any fixed $\epsilon \in(0,1)$ we have $\chi(\epsilon x) \in$ $A_{\delta}^{m}\left(\mathbb{R}^{d}\right)$ for all $m, \delta \in \mathbb{R}$.

Theorem 1.2. Let Q be a non-degenerate real symmetric matrix of order d, and let $m \in \mathbb{R}$ and $\delta<1$. Then for any $a \in A_{\delta}^{m}\left(\mathbb{R}^{d}\right)$ and $\chi \in \mathcal{S}\left(\mathbb{R}^{d}\right)$ with $\chi(0)=1$ there exists the limit

$$
I_{Q}(a):=\lim _{\epsilon \rightarrow+0} \int_{\mathbb{R}^{d}} \mathrm{e}^{\mathrm{i} x Q x / 2} \chi(\epsilon x) a(x) \mathrm{d} x
$$

and it is independent of choice of $\chi \in \mathcal{S}\left(\mathbb{R}^{d}\right)$. Moreover, there exist $k \in \mathbb{N}_{0}$ and $C>0$ such that for any $a \in A_{\delta}^{m}\left(\mathbb{R}^{d}\right)$

$$
\left|I_{Q}(a)\right| \leq C|a|_{k, A_{\delta}^{m}}
$$

Remark. The last bound implies $I_{Q}: A_{\delta}^{m}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{C}$ is continuous.

Proof. Noting that for any $x, y \in \mathbb{R}^{d}$

$$
y \partial\left(\frac{x Q x}{2}\right)=\frac{1}{2} \sum_{j=1}^{d} y_{j}\left(e_{j} Q x+x Q e_{j}\right)=y Q x
$$

we can deduce

$$
\mathrm{e}^{\mathrm{i} x Q x / 2}={ }^{t} L \mathrm{e}^{\mathrm{i} x Q x / 2} ; \quad{ }^{t} L=\langle x\rangle^{-2}\left(1+x Q^{-1} D\right)
$$

Substitute the above identity into the integrand of ($\boldsymbol{\oplus}$), and integrate it by parts. Repeat this precedure, and we obtain

$$
\int_{\mathbb{R}^{d}} \mathrm{e}^{\mathrm{i} x Q x / 2} \chi(\epsilon x) a(x) \mathrm{d} x=\int_{\mathbb{R}^{d}} \mathrm{e}^{\mathrm{i} x Q x / 2} L^{k}(\chi(\epsilon x) a(x)) \mathrm{d} x
$$

for any $k \in \mathbb{N}_{\mathrm{O}}$. Since L is of the form

$$
L=c_{0}+\sum_{j=1}^{d} c_{j} \partial_{j} ; \quad c_{0} \in A_{-1}^{-2}\left(\mathbb{R}^{d}\right), \quad c_{j} \in A_{-1}^{-1}\left(\mathbb{R}^{d}\right)
$$

Remarks. 1. The limit ($\boldsymbol{\oplus}$) from Theorem 1.2 is called an os-
cillatory integral, and is denoted simply by

$$
\int_{\mathbb{R}^{d}} \mathrm{e}^{\mathrm{i} x Q x / 2} a(x) \mathrm{d} x=\lim _{\epsilon \rightarrow+0} \int_{\mathbb{R}^{d}} \mathrm{e}^{\mathrm{i} x Q x / 2} \chi(\epsilon x) a(x) \mathrm{d} x
$$

The notation is compatible with the case $a \in L^{1}\left(\mathbb{R}^{d}\right)$.
2. We can also define the oscillatory integral as

$$
\int_{\mathbb{R}^{d}} \mathrm{e}^{\mathrm{i} x Q x / 2} a(x) \mathrm{d} x=\int_{\mathbb{R}^{d}} \mathrm{e}^{\mathrm{i} x Q x / 2} L^{k} a(x) \mathrm{d} x,
$$

where L^{k} is from the proof of Theorem 1.2. Practically, in order to compute an oscillatory integral we may implement any formal integrations by parts until the integrand gets integrable, see also Lemma 1.3.3.

Lemma 1.3. Let Q be a non-degenerate real symmetric matrix of order d, and let $a \in A_{\delta}^{m}\left(\mathbb{R}^{d}\right)$ with $m \in \mathbb{R}$ and $\delta<1$.

1. For any $c \in \mathbb{R}^{d}$

$$
\int_{\mathbb{R}^{d}} \mathrm{e}^{\mathrm{i} x Q x / 2} a(x) \mathrm{d} x=\mathrm{e}^{\mathrm{i} c Q c / 2} \int_{\mathbb{R}^{d}} \mathrm{e}^{\mathrm{i} y Q y / 2}\left(\mathrm{e}^{\mathrm{i} c Q y} a(y+c)\right) \mathrm{d} y
$$

2. For any real invertible matrix P of order d

$$
\int_{\mathbb{R}^{d}} \mathrm{e}^{\mathrm{i} x Q x / 2} a(x) \mathrm{d} x=\int_{\mathbb{R}^{d}} \mathrm{e}^{\mathrm{i} y\left({ }^{(} P Q P\right) y / 2} a(P y)|\operatorname{det} P| \mathrm{d} y .
$$

3. For any $\alpha \in \mathbb{N}_{0}^{d}$

$$
\int_{\mathbb{R}^{d}}\left(\partial^{\alpha} \mathrm{e}^{\mathrm{i} x Q x / 2}\right) a(x) \mathrm{d} x=(-1)^{|\alpha|} \int_{\mathbb{R}^{d}} \mathrm{e}^{\mathrm{i} x Q x / 2} \partial^{\alpha} a(x) \mathrm{d} x
$$

3. Similarly to the above, let $\chi \in \mathcal{S}\left(\mathbb{R}^{d}\right)$ with $\chi(0)=1$. Then

$$
\begin{aligned}
& \int_{\mathbb{R}^{d}}\left(\partial^{\alpha} \mathrm{e}^{\mathrm{i} x Q x / 2}\right) a(x) \mathrm{d} x \\
& =\lim _{\epsilon \rightarrow+0} \int_{\mathbb{R}^{d}}\left(\partial^{\alpha} \mathrm{e}^{\mathrm{i} x Q x / 2}\right) \chi(\epsilon x) a(x) \mathrm{d} x \\
& =\lim _{\epsilon \rightarrow+0}(-1)^{|\alpha|}\left[\int_{\mathbb{R}^{d}} \mathrm{e}^{\mathrm{i} x Q x / 2} \chi(\epsilon x) \partial^{\alpha} a(x) \mathrm{d} x\right. \\
& \left.\quad+\sum_{|\beta| \geq 1}\binom{\alpha}{\beta} \int_{\mathbb{R}^{d}} \mathrm{e}^{\mathrm{i} x Q x / 2}\left(\partial^{\beta} \chi(\epsilon x)\right)\left(\partial^{\alpha-\beta} a(x)\right) \mathrm{d} x\right] .
\end{aligned}
$$

For the second integral in the above square brackets we can further implement integrations by parts, e.g., by using L from the proof of Theorem 1.2, and then we can verify that it converges to 0 as $\epsilon \rightarrow+0$. Thus we obtain the assertion.

§ 1.3 Expansion Formula

Definition. Let Q be a non-degenerate real symmetric matrix of order d, and let $u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$. We define

$$
\mathrm{e}^{\mathrm{i} D Q D / 2} u=\mathcal{F}^{*} \mathrm{e}^{\mathrm{i} \xi Q \xi / 2 \mathcal{F} u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)}
$$

Theorem 1.4. Let Q be a non-degenerate real symmetric matrix of order d, and let $a \in A_{\delta}^{m}\left(\mathbb{R}^{d}\right)$ with $m \in \mathbb{R}$ and $\delta<1$. Then

$$
\mathrm{e}^{\mathrm{i} D Q D / 2} a(x)=\frac{\mathrm{e}^{\mathrm{i} \pi(\operatorname{sgn} Q) / 4}}{(2 \pi)^{d / 2}|\operatorname{det} Q|^{1 / 2}} \int_{\mathbb{R}^{d}} \mathrm{e}^{-\mathrm{i} y Q^{-1} y / 2} a(x+y) \mathrm{d} y .
$$

Remark. As for $a \in A_{\delta}^{m}\left(\mathbb{R}^{d}\right)$ we can compute pointwise values of $\mathrm{e}^{\mathrm{i} D Q D / 2} a$ as an oscillatory integral.

Theorem 1.5. There exists $C>0$ dependent only on the dimension d such that for any non-degenerate real symmetric matrix Q of order $d, a \in C_{C}^{\infty}\left(\mathbb{R}^{d}\right)$ and $N \in \mathbb{N}$

$$
\mathrm{e}^{\mathrm{i} D Q D / 2} a(x)=\sum_{k=0}^{N-1} \frac{\mathrm{i}^{k}}{2^{k} k!}(D Q D)^{k} a(x)+R_{N}(a)
$$

with

$$
\left|R_{N}(a)\right| \leq \frac{C}{2^{N} N!} \sum_{|\alpha| \leq d+1}\left\|\partial^{\alpha}(D Q D)^{N} a\right\|_{L^{1}}
$$

Step 2. There exists an invertible real matrix P such that

$$
{ }^{t} P Q P=\operatorname{diag}\left(I_{p},-I_{q}\right)
$$

where I_{p}, I_{q} are the identity matrices of order $p, q \in \mathbb{N}_{\mathrm{O}}$ with $p+$ $q=d$, respectively. Changing variables as $x=P y$ and spliting $y=\left(y^{\prime}, y^{\prime \prime}\right) \in \mathbb{R}^{p} \times \mathbb{R}^{q}$, we can compute

$$
\begin{aligned}
& \left(\mathcal{F} \mathrm{e}^{\mathrm{i} x Q x / 2}\right)\left(P^{-1} \eta\right) \\
& =\lim _{\epsilon \rightarrow+0}\left(\mathcal{F} \mathrm{e}^{\mathrm{i} x Q x / 2} \mathrm{e}^{-\epsilon x\left({ }^{t} P^{-1} P^{-1}\right) x}\right)\left(P^{-1} \eta\right) \\
& =\lim _{\epsilon \rightarrow+0}(2 \pi)^{-d / 2} \int_{\mathbb{R}^{d}} \mathrm{e}^{\mathrm{i} y \eta} \mathrm{e}^{\mathrm{i}\left(y^{\prime 2}-y^{\prime \prime 2}\right) / 2} \mathrm{e}^{-\epsilon y^{2}}|\operatorname{det} P| \mathrm{d} y \\
& =|\operatorname{det} P| \mathrm{e}^{\mathrm{i} \pi(\operatorname{sgn} Q) / 4} \mathrm{e}^{-\mathrm{i}\left(\eta^{\prime 2}-\eta^{\prime \prime 2}\right) / 2}
\end{aligned}
$$

where in the last equality we use the result from Step 1. Finally let $\eta=P \xi$, and we obtain the assertion.

Proof of Theorem 1.4. Let $a \in C_{C}^{\infty}\left(\mathbb{R}^{d}\right)$. Then it follows by change of variables, the Plancherel theorem and Lemma 1.6

$$
\begin{aligned}
\mathrm{e}^{\mathrm{i} D Q D / 2} a(x) & =(2 \pi)^{-d} \int_{\mathbb{R}^{d}} \mathrm{e}^{\mathrm{i} \xi Q \xi / 2}\left(\int_{\mathbb{R}^{d}} \mathrm{e}^{-\mathrm{i} y \xi} a(x+y) \mathrm{d} y\right) \mathrm{d} \xi \\
& =\frac{\mathrm{e}^{\mathrm{i} \pi(\operatorname{sgn} Q) / 4}}{(2 \pi)^{d / 2}|\operatorname{det} Q|^{1 / 2}} \int_{\mathbb{R}^{d}} \mathrm{e}^{-\mathrm{i} y Q^{-1} y / 2} a(x+y) \mathrm{d} y
\end{aligned}
$$

Then, since the right-hand side of the asserted identity is continuous on $A_{\delta}^{m}\left(\mathbb{R}^{d}\right)$ byTheorem 1.2 , we obtain the assertion.

Proof of Theorem 1.5. Recall by Taylor's theorem for any $N \in \mathbb{N}$ and $t \in \mathbb{R}$

$$
\mathrm{e}^{\mathrm{i} t}=\sum_{k=0}^{N-1} \frac{(\mathrm{i} t)^{k}}{k!}+\frac{\mathrm{i}^{N}}{(N-1)!} \int_{0}^{t} \mathrm{e}^{\mathrm{i} s}(t-s)^{N-1} \mathrm{~d} s
$$

so that we can write

$$
\mathrm{e}^{\mathrm{i} \xi Q \xi / 2}=\sum_{k=0}^{N-1} \frac{(\mathrm{i} \xi Q \xi)^{k}}{2^{k} k!}+r_{N}(\xi) ; \quad\left|r_{N}(\xi)\right| \leq \frac{|\xi Q \xi|^{N}}{2^{N} N!}
$$

Substitute the above expansion into the definition of $\mathrm{e}^{\mathrm{i} D Q D / 2} a$ and implement the Fourier inversion formula, and then

$$
\mathrm{e}^{\mathrm{i} D Q D / 2} a(x)=\sum_{k=0}^{N-1} \frac{\mathrm{i}^{k}}{2^{k} k!}(D Q D)^{k} u(x)+R_{N}(a)
$$

Corollary 1.7 (Stationary phase theorem). There exists $C>$ 0 dependent only on the dimension d such that for any nondegenerate real symmetric matrix Q of order $d, a \in C_{C}^{\infty}\left(\mathbb{R}^{d}\right)$,
$N \in \mathbb{N}$ and $h>0$

$$
\int_{\mathbb{R}^{d}} e^{\mathrm{i} x Q x /(2 h)} a(x) \mathrm{d} x
$$

$$
=\sum_{k=0}^{N-1} \frac{(2 \pi)^{d / 2} h^{k+d / 2} \mathrm{e}^{\mathrm{i} \pi(\operatorname{sgn} Q) / 4}}{|\operatorname{det} Q|^{1 / 2}(2 \mathrm{i})^{k} k!}\left(\left(D Q^{-1} D\right)^{k} a\right)(0)+R_{N}(a, h)
$$

with

$$
\left|R_{N}(a, h)\right| \leq \frac{C h^{N+d / 2}}{|\operatorname{det} Q|^{1 / 2} 2^{N} N!} \sum_{|\alpha| \leq d+1}\left\|\partial^{\alpha}\left(D Q^{-1} D\right)^{N} a\right\|_{L^{1}}
$$

Proof. The assertion is clear by Theorems 1.4 and 1.5.

Remarks. 1. As $h \rightarrow+0$, the rapid oscillatory factor $\mathrm{e}^{\mathrm{i} x Q x /(2 h)}$ cancels contributions from the amplitude a. However, the oscillation is slightly milder at the stationary point $x=0$ of the phase function. This is why the behavior of a at around $x=0$ dominates the asymptotics.
2. The semiclassical parameter $h>0$, rooted in the Planck constant, plays a fundamental role in the semiclassical analysis. However, in this course we do not discuss it.

Solution. By Lemma 1.3 it suffices to prove the assertion for $\alpha=0$. By definition of oscillatory integrals, take any $\chi \in \mathcal{S}\left(\mathbb{R}^{d}\right)$ with $\chi(0)=1$, and then we can compute

$$
\begin{aligned}
& (2 \pi)^{-d} \int_{\mathbb{R}^{2 d}} \mathrm{e}^{\mathrm{i}\left(x^{\prime}-x\right) \xi} a(x) \mathrm{d} x \mathrm{~d} \xi \\
& =\lim _{\epsilon \rightarrow+0}(2 \pi)^{-d} \int_{\mathbb{R}^{2 d}} \mathrm{e}^{\mathrm{i}\left(x^{\prime}-x\right) \xi} \chi(\epsilon x) \chi(\epsilon \xi) a(x) \mathrm{d} x \mathrm{~d} \xi \\
& =\lim _{\epsilon \rightarrow+0}(2 \pi \epsilon)^{-d / 2} \int_{\mathbb{R}^{d}}(\mathcal{F} \chi)\left(\left(x-x^{\prime}\right) / \epsilon\right) \chi(\epsilon x) a(x) \mathrm{d} x \\
& =\lim _{\epsilon \rightarrow+0}(2 \pi)^{-d / 2} \int_{\mathbb{R}^{d}}(\mathcal{F} \chi)(\eta) \chi\left(\epsilon\left(x^{\prime}+\epsilon \eta\right)\right) a\left(x^{\prime}+\epsilon \eta\right) \mathrm{d} \eta \\
& =(2 \pi)^{-d / 2} \int_{\mathbb{R}^{d}} a\left(x^{\prime}\right)(\mathcal{F} \chi)(\eta) \mathrm{d} \eta \\
& =a\left(x^{\prime}\right)
\end{aligned}
$$

Hence we are done.

Chapter 2

Pseudodifferential Calculus

§ 2.1 Pseudodifferential Operators

Definition. Let $m, \rho, \delta \in \mathbb{R}$. We denote by $S_{\rho, \delta}^{m}\left(\mathbb{R}^{2 d}\right)$ the set of all the functions $a \in C^{\infty}\left(\mathbb{R}^{2 d}\right)$ satisfying that for any $\alpha, \beta \in \mathbb{N}_{0}^{d}$ there exists $C>0$ such that for any $(x, \xi) \in \mathbb{R}^{d} \times \mathbb{R}^{d}$

$$
\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} a(x, \xi)\right| \leq C\langle\xi\rangle^{m+\delta|\alpha|-\rho|\beta|} .
$$

We call $S_{\rho, \delta}^{m}\left(\mathbb{R}^{2 d}\right)$ the Kohn-Nirenberg (or Hörmander) symbol class, and its element a symbol of order m. In addition, we set

$$
S_{\rho, \delta}^{\infty}\left(\mathbb{R}^{2 d}\right)=\bigcup_{m \in \mathbb{R}} S_{\rho, \delta}^{m}\left(\mathbb{R}^{2 d}\right), \quad S^{-\infty}\left(\mathbb{R}^{2 d}\right)=\bigcap_{m \in \mathbb{R}} S_{\rho, \delta}^{m}\left(\mathbb{R}^{2 d}\right)
$$

We often write $S^{m}\left(\mathbb{R}^{2 d}\right)=S_{1,0}^{m}\left(\mathbb{R}^{2 d}\right)$ for short.

Remarks. 1. In order to have an appropriate pseudodifferential calculus available it is typically assumed that

$$
0 \leq \delta<\rho \leq 1, \quad \text { or } \quad 1-\rho \leq \delta<\rho \leq 1
$$

2. Some authors define $S_{\rho, \delta}^{m}\left(\mathbb{R}^{2 d}\right)$ as the set of all the functions $a \in C^{\infty}\left(\mathbb{R}^{2 d}\right)$ satisfying that for any $\alpha, \beta \in \mathbb{N}_{0}^{d}$ and $K \Subset \mathbb{R}^{d}$ there exists $C>0$ such that for any $(x, \xi) \in K \times \mathbb{R}^{d}$

$$
\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} a(x, \xi)\right| \leq C\langle\xi\rangle^{m+\delta|\alpha|-\rho|\beta|} .
$$

3. There are many other variations of symbol classes, including semiclassical ones.

Examples. 1. Consider

$$
a(x, \xi)=\sum_{|\alpha| \leq m} a_{\alpha}(x) \xi^{\alpha} ; \quad a_{\alpha} \in C^{\infty}\left(\mathbb{R}^{d}\right)
$$

If a_{α} for all $|\alpha| \leq m$ satisfy that for any $\beta \in \mathbb{N}_{0}^{d}$

$$
\begin{equation*}
\sup _{x \in \mathbb{R}^{d}}\left|\partial^{\beta} a_{\alpha}(x)\right|<\infty \tag{৫}
\end{equation*}
$$

then obviously $a \in S^{m}\left(\mathbb{R}^{2 d}\right)$. Even if a_{α} dissatisfy (() , take any $\chi \in C_{C}^{\infty}\left(\mathbb{R}^{d}\right)$, and then

$$
\chi(x) a(x, \xi) \in S^{m}\left(\mathbb{R}^{2 d}\right)
$$

We can still discuss local properties of a PDO by letting $\chi(x)=1$ in a neighborhood of a point of our interest.
2. For any $m \in \mathbb{R}$ we have $\langle\xi\rangle^{m} \in S^{m}\left(\mathbb{R}^{2 d}\right)$.
3. Assume $a \in C^{\infty}\left(\mathbb{R}^{2 d}\right)$ is positively homogeneous of degree $m \in \mathbb{R}$ in $|\xi| \geq 1$, i.e., for any $x \in \mathbb{R}^{d},|\xi| \geq 1$ and $t \geq 1$

$$
a(x, t \xi)=t^{m} a(x, \xi)
$$

In addition, assume for simplicity

$$
\pi_{1}(\operatorname{supp} a) \Subset \mathbb{R}^{d}
$$

where $\pi_{1}: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ is the first projection. Then we have $a \in S^{m}\left(\mathbb{R}^{2 d}\right)$.

Definition. Let $a \in S_{\rho, \delta}^{m}\left(\mathbb{R}^{2 d}\right)$ with $m \in \mathbb{R}, \rho>-1$ and $\delta<1$.
Define the pseudodifferential operator $a(x, D)$ of order m as, for any $u \in \mathcal{S}\left(\mathbb{R}^{d}\right)$,

$$
a(x, D) u(x)=(2 \pi)^{-d} \int_{\mathbb{R}^{2 d}} \mathrm{e}^{\mathrm{i}(x-y) \xi} a(x, \xi) u(y) \mathrm{d} y \mathrm{~d} \xi
$$

We denote

$$
\Psi_{\rho, \delta}^{m}\left(\mathbb{R}^{d}\right)=\left\{a(x, D) ; a \in S_{\rho, \delta}^{m}\left(\mathbb{R}^{2 d}\right)\right\}
$$

and similarly for $\Psi_{\rho, \delta}^{\infty}\left(\mathbb{R}^{d}\right), \Psi^{-\infty}\left(\mathbb{R}^{d}\right)$ and $\Psi^{m}\left(\mathbb{R}^{d}\right)$. In particular, an element of $\psi^{-\infty}\left(\mathbb{R}^{d}\right)$ is called a smoothing operator.

Remarks. 1. Such a systematic procedure to assign operators
to symbols is called a quantization, as in the quantum mechanics. There are various quantizations.
2. It is also common to use the notation $\mathrm{Op}(a)$ for $a(x, D)$.
3. The semiclassical pseudodifferential operator is defined as

$$
\operatorname{Op}_{h}(a)=a(x, h D)
$$

Here $h>0$ is the semiclassical parameter.
4. The operator $\mathrm{e}^{\mathrm{i} D Q D / 2}$ from the previous chapter may be considered as a pseudodifferential operator, but the associated symbol $e^{\mathrm{i} \xi Q \xi / 2}$ is in a much worse class.

Theorem 2.1. Let $a \in S_{\rho, \delta}^{m}\left(\mathbb{R}^{2 d}\right)$ with $m \in \mathbb{R}, \rho>-1$ and $\delta<1$. Then $a(x, D)$ is a continuous operator on $\mathcal{S}\left(\mathbb{R}^{d}\right)$.

Proof. For any $N \in \mathbb{N}_{0}$ we can write
$a(x, D) u(x)=(2 \pi)^{-d} \int_{\mathbb{R}^{2 d}} \mathrm{e}^{\mathrm{i}(x-y) \xi}\langle\xi\rangle^{-2 N} a(x, \xi)\left\langle D_{y}\right\rangle^{2 N} u(y) \mathrm{d} y \mathrm{~d} \xi$.
Here the integrand is estimated as, for any $\beta \in \mathbb{N}_{0}^{d}$,

$$
\begin{aligned}
& \left|\partial_{x}^{\beta} \mathrm{e}^{\mathrm{i}(x-y) \xi}\langle\xi\rangle^{-2 N} a(x, \xi)\left\langle D_{y}\right\rangle^{2 N} u(y)\right| \\
& \quad \leq C_{\alpha}\langle\xi\rangle^{m+|\beta|-2 N}\left|\left\langle D_{y}\right\rangle^{2 N} u(y)\right|
\end{aligned}
$$

and hence we can differentiate $a(x, D) u(x)$ as much as we want
by retaking N be larger beforehand. Thus for any $\beta \in \mathbb{N}_{0}^{d}$

$$
\begin{aligned}
\partial^{\beta} a(x, D) u(x)= & (2 \pi)^{-d} \sum_{\tau \in \mathbb{N}_{0}^{d}}\binom{\beta}{\tau} \int_{\mathbb{R}^{2 d}} \mathrm{e}^{\mathrm{i}(x-y) \xi} \\
& \cdot(\mathrm{i} \xi)^{\beta-\tau}\langle\xi\rangle^{-2 N} \partial_{x}^{\tau} a(x, \xi)\left\langle D_{y}\right\rangle^{2 N} u(y) \mathrm{d} y \mathrm{~d} \xi .
\end{aligned}
$$

Futhermore, by Lemma 1.3 for any $\alpha \in \mathbb{N}_{0}^{d}$

$$
\begin{aligned}
& x^{\alpha} \partial^{\beta} a(x, D) u(x)=(2 \pi)^{-d} \sum_{\tau, \sigma \in \mathbb{N}_{0}^{d}}\binom{\alpha}{\sigma}\binom{\beta}{\tau} \int_{\mathbb{R}^{2 d}} \mathrm{e}^{\mathrm{i}(x-y) \xi} y^{\alpha-\sigma} \\
& \cdot\left(\left(-D_{\xi}\right)^{\sigma}(\mathrm{i} \xi)^{\beta-\tau}\langle\xi\rangle^{-2 N} \partial_{x}^{\tau} a(x, \xi)\right)\left\langle D_{y}\right\rangle^{2 N} u(y) \mathrm{d} y \mathrm{~d} \xi . \\
& \text { Therefore for any } k \in \mathbb{N}_{\mathrm{O}} \text { by letting } N \text { be sufficiently large we can }
\end{aligned}
$$ find $C>0$ and $l \in \mathbb{N}_{0}$ such that for any $u \in \mathcal{S}\left(\mathbb{R}^{d}\right)$

$$
|a(x, D) u|_{k, \mathcal{S}} \leq C|u|_{l, \mathcal{S}} .
$$

This implies the assertion.

Definition. Under the setting of Theorem 2.2 we write

$$
a \sim \sum_{j=0}^{\infty} a_{j}
$$

and call it the asymptotic sum or asymptotic expansion. In addition, when $a_{0} \not \equiv 0$, we call a_{0} the principal symbol of a, or of $A:=a(x, D)$, and often write it as

$$
\sigma(A)=a_{0}
$$

Note the principal symbol is not unique by definition, and the above identity has to be understood up to lower order errors.

§2.2 Asymptotic Summation

Theorem 2.2. For each $j \in \mathbb{N}_{0}$ given $a_{j} \in S_{\rho, \delta}^{m_{j}}\left(\mathbb{R}^{2 d}\right)$ such that

$$
m:=m_{0}>m_{1}>m_{2}>\cdots>m_{j} \rightarrow-\infty \quad \text { as } j \rightarrow \infty
$$

and $\rho \leq 1$ and $\delta \in \mathbb{R}$. Then there exists $a \in S_{\rho, \delta}^{m}\left(\mathbb{R}^{2 d}\right)$ such that for any $k \in \mathbb{N}_{0}$

$$
a-\sum_{j=0}^{k-1} a_{j} \in S_{\rho, \delta}^{m_{k}}\left(\mathbb{R}^{2 d}\right)
$$

Such a is unique up to $S^{-\infty}\left(\mathbb{R}^{2 d}\right)$. Moreover, one can choose $a \in S_{\rho, \delta}^{m}\left(\mathbb{R}^{2 d}\right)$ such that

$$
\begin{equation*}
\operatorname{supp} a \subset \overline{\left(\bigcup_{j=0}^{\infty} \operatorname{supp} a_{j}\right)} \tag{ৎ}
\end{equation*}
$$

Proof. Step 1. Fix $\chi \in C^{\infty}\left(\mathbb{R}^{d}\right)$ satisfying

$$
\chi(\xi)= \begin{cases}0 & \text { for }|\xi| \leq 1 \\ 1 & \text { for }|\xi| \geq 2\end{cases}
$$

and we construct $a \in S_{\rho, \delta}^{m}\left(\mathbb{R}^{2 d}\right)$ of the form

$$
a(x, \xi)=\sum_{j=0}^{\infty} \chi\left(\epsilon_{j} \xi\right) a_{j}(x, \xi)
$$

with

$$
1>\epsilon_{0}>\epsilon_{1}>\cdots>\epsilon_{j} \rightarrow+0
$$

Note the above sum is locally finite, and hence is locally bounded and smooth. Note also, then, (Ω) is automatically satisfied.

Step 2. Here we are going to choose

$$
1>\epsilon_{0}>\epsilon_{1}>\cdots>\epsilon_{j} \rightarrow+0
$$

such that for any $j \in \mathbb{N}_{0}$ and $\alpha, \beta \in \mathbb{N}_{0}^{d}$ with $|\alpha|+|\beta| \leq j$

$$
\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta}\left(\chi\left(\epsilon_{j} \xi\right) a_{j}(x, \xi)\right)\right| \leq 2^{-j}\langle\xi\rangle^{m_{j}+1+\delta|\alpha|-\rho|\beta|}
$$

For that we note for any $j \in \mathbb{N}_{0}$ and $\alpha, \beta \in \mathbb{N}_{0}^{d}$ there exists $C_{j \alpha \beta}>0$ such that uniformly in $\epsilon \in(0,1)$

$$
\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta}\left(\chi(\epsilon \xi) a_{j}(x, \xi)\right)\right| \leq C_{j \alpha \beta}\langle\xi\rangle^{m_{j}+\delta|\alpha|-\rho|\beta|}
$$

since

$$
\epsilon \leq 2|\xi|^{-1} \leq 4(1+|\xi|)^{-1} \text { on } \operatorname{supp}\left(\partial_{\xi}^{\gamma}(\chi(\epsilon \xi))\right) \text { with }|\gamma| \geq 1
$$

Step 3. Here we prove a from Steps 1 and 2 belongs to $S_{\rho, \delta}^{m}\left(\mathbb{R}^{2 d}\right)$.
In fact, for any $\alpha, \beta \in \mathbb{N}_{0}^{d}$, if we choose $k \in \mathbb{N}_{0}$ such that

$$
k \geq|\alpha|+|\beta| \quad \text { and } \quad m_{k}+1 \leq m
$$

then by (\diamond) and

$$
\begin{aligned}
\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} a(x, \xi)\right| \leq & \sum_{j=0}^{k-1}\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta}\left(\chi\left(\epsilon_{j} \xi\right) a_{j}(x, \xi)\right)\right| \\
& +\sum_{j=k}^{\infty}\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta}\left(\chi\left(\epsilon_{j} \xi\right) a_{j}(x, \xi)\right)\right| \\
\leq & \sum_{j=0}^{k-1} C_{j \alpha \beta}\langle\xi\rangle^{m_{j}+\delta|\alpha|-\rho|\beta|}+\sum_{j=k}^{\infty} 2^{-j}\langle\xi\rangle^{m_{j}+1+\delta|\alpha|-\rho|\beta|} \\
\leq & C_{\alpha \beta}^{\prime}\langle\xi\rangle^{m+\delta|\alpha|-\rho|\beta|} .
\end{aligned}
$$

This implies the claim.

However, since

$$
1 \leq \epsilon|\xi| \leq \epsilon\langle\xi\rangle \quad \text { on supp } \chi(\epsilon \xi)
$$

we can further deduce uniformly in $\epsilon \in(0,1)$

$$
\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta}\left(\chi(\epsilon \xi) a_{j}(x, \xi)\right)\right| \leq C_{j \alpha \beta} \epsilon\langle\xi\rangle^{m_{j}+1+\delta|\alpha|-\rho|\beta|}
$$

Now we first choose

$$
\epsilon_{0}<\min \left\{1,\left(C_{000}\right)^{-1}\right\}
$$

and then (\%) is satisfied for $j=0$. Next, suppose we have found $\epsilon_{0}, \ldots, \epsilon_{j-1}$ as claimed, and then it suffices to choose

$$
\epsilon_{j}<\min \left\{j^{-1}, \epsilon_{j-1}, 2^{-j}\left(C_{j \alpha \beta}\right)^{-1} ;|\alpha|+|\beta| \leq j\right\}
$$

Thus by induction we obtain $\epsilon_{0}, \epsilon_{1}, \ldots$ as claimed.

Step 4. Let us verify ($\boldsymbol{\uparrow}$). For any $k \in \mathbb{N}_{0}$ decompose

$$
a-\sum_{j=0}^{k-1} a_{j}=\sum_{j=0}^{k-1}\left(\chi\left(\epsilon_{j} \xi\right)-1\right) a_{j}(x, \xi)+\sum_{j=k}^{\infty} \chi\left(\epsilon_{j} \xi\right) a_{j}(x, \xi)
$$

Then the first sum on the right-hand side belongs to $S^{-\infty}\left(\mathbb{R}^{2 d}\right)$ since it vanishes for $|\xi| \geq 2 / \epsilon_{k}$, while the second to $S_{\rho, \delta}^{m_{k}}\left(\mathbb{R}^{2 d}\right)$ similarly to Step 3. Thus the claim follows.

Step 5. Finally we discuss the uniqueness up to $S^{-\infty}\left(\mathbb{R}^{2 d}\right)$. If both of $a, b \in S_{\rho, \delta}^{m}\left(\mathbb{R}^{2 d}\right)$ satisfy ($\left.\boldsymbol{\oplus}\right)$, then for any $k \in \mathbb{N}_{0}$

$$
a-b=\left(a-\sum_{j=0}^{k-1} a_{j}\right)-\left(b-\sum_{j=0}^{k-1} a_{j}\right) \in S_{\rho, \delta}^{m_{k}}\left(\mathbb{R}^{2 d}\right)
$$

so that $a-b \in S^{-\infty}\left(\mathbb{R}^{2 d}\right)$. Thus we are done.

Definition. Let $m \in \mathbb{R} . a \in S^{m}\left(\mathbb{R}^{2 d}\right)$, or $a(x, D) \in \Psi^{m}\left(\mathbb{R}^{d}\right)$, is classical (or polyhomogeneous) if a has an expansion

$$
a \sim \sum_{j=0}^{\infty} a_{j}
$$

such that, for each $j \in \mathbb{N}_{0}, a_{j} \in S^{m-j}\left(\mathbb{R}^{2 d}\right)$ is positively homogeneous of degree $m-j$ in $\xi \neq 0$. Although we actually need modifications around $\xi=0$, we often abuse notation as above. We denote

$$
\begin{aligned}
S_{\mathrm{Cl}}^{m}\left(\mathbb{R}^{2 d}\right) & =\left\{a \in S^{m}\left(\mathbb{R}^{2 d}\right) ; a \text { is classical }\right\}, \\
\Psi_{\mathrm{Cl}}^{m}\left(\mathbb{R}^{d}\right) & =\left\{a(x, D) ; a \in S_{\mathrm{Cl}}^{m}\left(\mathbb{R}^{2 d}\right)\right\} .
\end{aligned}
$$

Remark. Under homogeneity the principal symbol is unique.

Examples. 1. Any partial differential operator of order $m \in \mathbb{N}_{0}$:

$$
A=a(x, D)=\sum_{|\alpha| \leq m} a_{\alpha}(x) D^{\alpha}
$$

where $a_{\alpha} \in C^{\infty}\left(\mathbb{R}^{d}\right)$ has bounded derivatives, is classical. The principal symbol is given by

$$
\sigma(A)(x, \xi)=\sum_{|\alpha|=m} a_{\alpha}(x) \xi^{\alpha} .
$$

2. For any $m \in \mathbb{R}$ the operator $\langle D\rangle^{m} \in \Psi^{m}\left(\mathbb{R}^{2 d}\right)$ is classical. In fact, by the Taylor expansion for any $|\xi|>1$

$$
\begin{aligned}
\langle\xi\rangle^{m} & =|\xi|^{m}\left(1+|\xi|^{-2}\right)^{m / 2} \\
& =\sum_{j=0}^{\infty} \frac{(m / 2)(m / 2-1) \cdots(m / 2-j+1)}{j!}|\xi|^{m-2 j}
\end{aligned}
$$

Step 2. Here we are going to choose

$$
1<R_{0}<R_{1}<\cdots<R_{j} \rightarrow \infty
$$

such that any $j \in \mathbb{N}_{0}$ and $\beta \in \mathbb{N}_{0}^{d}$ with $|\beta| \leq j$

$$
\left|\partial^{\beta}\left(\chi\left(R_{j} x\right) \sum_{|\alpha|=j} \frac{c_{\alpha}}{\alpha!} x^{\alpha}\right)\right| \leq 2^{-j}|x|^{j-1-|\beta|}
$$

Note that, thanks to supporting property of $\chi(R x)$, for any $j \in \mathbb{N}_{0}$ and $\beta \in \mathbb{N}_{0}^{d}$ there exists $C_{j \beta}>0$ such that uniformly in $R \geq 1$

$$
\left|\partial^{\beta}\left(\chi(R x) \sum_{|\alpha|=j} \frac{c_{\alpha}}{\alpha!} x^{\alpha}\right)\right| \leq C_{j \beta} R^{-1}|x|^{j-1-|\beta|} .
$$

Then we can discuss similarly to the proof of Theorem 2.2. We omit the details.

Step 3. Now let $\beta \in \mathbb{N}_{0}^{d}$, and consider the following series:

$$
\begin{aligned}
\sum_{j=0}^{\infty} \partial^{\beta}\left(\chi\left(R_{j} x\right) \sum_{|\alpha|=j} \frac{c_{\alpha}}{\alpha!} x^{\alpha}\right)= & \sum_{j=0}^{|\beta|} \partial^{\beta}\left(\chi\left(R_{j} x\right) \sum_{|\alpha|=j} \frac{c_{\alpha}}{\alpha!} x^{\alpha}\right) \\
& +\sum_{j=|\beta|+1}^{\infty} \partial^{\beta}\left(\chi\left(R_{j} x\right) \sum_{|\alpha|=j} \frac{c_{\alpha}}{\alpha!} x^{\alpha}\right) .
\end{aligned}
$$

The sum is pointwise finite on \mathbb{R}^{d} similarly to Step 1 . Moreover, it is uniformly and absolutely convergent due to the result from Step 2. Since $\beta \in \mathbb{N}_{0}^{d}$ is arbitrary, we can conclude $f \in C^{\infty}\left(\mathbb{R}^{d}\right)$ by induction, and differetiate it under the summation. Thus

$$
\left(\partial^{\beta} f\right)(0)=\left.\sum_{j=0}^{\infty} \partial^{\beta}\left(\chi\left(R_{j} x\right) \sum_{|\alpha|=j} \frac{c_{\alpha}}{\alpha!} x^{\alpha}\right)\right|_{x=0}=c_{\beta}
$$

We are done.

Remarks. 1. The formal adjoint of an operator A on $\mathcal{S}\left(\mathbb{R}^{d}\right)$ is an operator A^{*} on $\mathcal{S}\left(\mathbb{R}^{d}\right)$ such that for any $u, v \in \mathcal{S}\left(\mathbb{R}^{d}\right)$

$$
(A u, v)=\left(u, A^{*} v\right)
$$

2. By Proposition 2.5 below we can also see uniqueness of the "adjoint symbol" $a^{*} \in S_{\rho, \delta}^{m}\left(\mathbb{R}^{2 d}\right)$.

Proof. Step 1. We first show $a^{*} \in S_{\rho, \delta}^{m}\left(\mathbb{R}^{2 d}\right)$. For that we are going to prove for any $\alpha, \beta \in \mathbb{N}_{0}^{d}$

$$
\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} a^{*}(x, \xi)\right| \leq C_{\alpha \beta}\langle\xi\rangle^{m+\delta|\alpha|-\rho|\beta|} .
$$

However, since, as we can easily see,

$$
\partial_{x}^{\alpha} \partial_{\xi}^{\beta} a^{*}(x, \xi)=(2 \pi)^{-d} \int_{\mathbb{R}^{2 d}} \mathrm{e}^{-\mathrm{i} y \eta}\left(\partial_{x}^{\alpha} \partial_{\xi}^{\beta} \bar{a}\right)(x+y, \xi+\eta) \mathrm{d} y \mathrm{~d} \eta,
$$

it suffices to prove (\diamond) only for $\alpha=\beta=0$.

§ 2.3 Formal Adjoint

Theorem 2.3. Let $a \in S_{\rho, \delta}^{m}\left(\mathbb{R}^{2 d}\right)$ with $m \in \mathbb{R}, 0 \leq \delta \leq \rho \leq 1$ and $\delta \neq 1$, and define

$$
a^{*}(x, \xi)=\mathrm{e}^{\mathrm{i} D_{x} D_{\xi} \bar{a}(x, \xi)=(2 \pi)^{-d} \int_{\mathbb{R}^{2 d}} \mathrm{e}^{-\mathrm{i} y \eta} \bar{a}(x+y, \xi+\eta) \mathrm{d} y \mathrm{~d} \eta}
$$

Then $a^{*} \in S_{\rho, \delta}^{m}\left(\mathbb{R}^{2 d}\right)$, and

$$
a(x, D)^{*}=a^{*}(x, D)
$$

Moreover, if $\delta<\rho$, then

$$
a^{*} \sim \sum_{\alpha \in \mathbb{N}_{0}^{d}} \frac{1}{\mathrm{i}|\alpha| \alpha!} \partial_{x}^{\alpha} \partial_{\xi}^{\alpha} \bar{a}
$$

Fix any $\chi \in C^{\infty}\left(\mathbb{R}^{d}\right)$ satisfying

$$
\chi(x)= \begin{cases}1 & \text { for }|x| \leq 1 \\ 0 & \text { for }|x| \geq 2\end{cases}
$$

and we set

$$
\begin{aligned}
& \chi_{1}(\xi, y, \eta)=\chi\left(\langle\xi\rangle^{\delta} y\right) \chi\left(2 \epsilon^{-1}\langle\xi\rangle^{-\rho} \eta\right) \\
& \chi_{2}(\xi, y, \eta)=\left[1-\chi\left(\langle\xi\rangle^{\delta} y\right)\right] \chi\left(2 \epsilon^{-1}\langle\xi\rangle^{-\rho} \eta\right) \\
& \chi_{3}(\xi, y, \eta)=\chi\left(\epsilon^{-1}\langle\xi\rangle^{-1} \eta\right)-\chi\left(2 \epsilon^{-1}\langle\xi\rangle^{-\rho} \eta\right) \\
& \chi_{4}(\xi, y, \eta)=1-\chi\left(\epsilon^{-1}\langle\xi\rangle^{-1} \eta\right)
\end{aligned}
$$

where $\epsilon>0$ is a fixed small constant such that

$$
\begin{aligned}
& c\langle\xi\rangle \leq\langle\xi+\eta\rangle \leq C\langle\xi\rangle \text { on supp } \chi_{1} \cup \text { supp } \chi_{2} \cup \text { supp } \chi_{3}, \\
& \langle\xi\rangle \leq C\langle\eta\rangle,\langle\xi+\eta\rangle \leq C\langle\eta\rangle \text { on supp } \chi_{4} .
\end{aligned}
$$

Using these cut-off functions, we split a^{*} into four parts as

$$
a^{*}=I_{1}+I_{2}+I_{3}+I_{4}
$$

with

$$
I_{j}(x, \xi)=(2 \pi)^{-d} \int_{\mathbb{R}^{2 d}} \mathrm{e}^{-i y \eta} \chi_{j}(\xi, y, \eta) \bar{a}(x+y, \xi+\eta) \mathrm{d} y \mathrm{~d} \eta
$$

The terms I_{2}, I_{3} and I_{4} are estimated by integrations by parts. In fact, to estimate I_{2}, let

$$
{ }^{t} L_{1}=\left\langle\langle\xi\rangle^{-\rho} \eta\right\rangle^{-2}\left(1-\langle\xi\rangle^{-2 \rho} \eta D_{y}\right), \quad{ }^{t} L_{2}=-|y|^{-2} y D_{\eta}
$$

Then, noting ($\mathbf{\oplus}$), we have for any $N \geq d+1$

$$
\begin{aligned}
\left|I_{2}(x, \xi)\right| & \leq C_{1} \int_{\mathbb{R}^{2 d}}\left|L_{2}^{N} L_{1}^{N} \chi_{2}(\xi, y, \eta) \bar{a}(x+y, \xi+\eta)\right| \mathrm{d} y \mathrm{~d} \eta \\
& \leq C_{2} \int_{\mathbb{R}^{2 d}}\left\langle\langle\xi\rangle^{\delta} y\right\rangle^{-N}\left\langle\langle\xi\rangle^{-\rho} \eta\right\rangle^{-N}\langle\xi\rangle^{m-(\rho-\delta) N} \mathrm{~d} y \mathrm{~d} \eta \\
& \leq C_{3}\langle\xi\rangle^{m-(\rho-\delta)(N-d)}
\end{aligned}
$$

Thus I_{2} satisfies (\diamond) for $\alpha=\beta=0$. Similarly, as for I_{3}, let

$$
{ }^{t} L_{3}=-|\eta|^{-2} \eta D_{y}, \quad{ }^{t} L_{4}=\left\langle\langle\xi\rangle^{\delta} y\right\rangle^{-2}\left(1-\langle\xi\rangle^{2 \delta} y D_{\eta}\right) .
$$

Then, noting ($\boldsymbol{\oplus}$), we have for any $N \geq d+1$

$$
\begin{aligned}
\left|I_{3}(x, \xi)\right| & \leq C_{4} \int_{\mathbb{R}^{2 d}}\left|L_{3}^{N} L_{4}^{N} \chi_{3}(\xi, y, \eta) \bar{a}(x+y, \xi+\eta)\right| \mathrm{d} y \mathrm{~d} \eta \\
& \leq C_{5} \int_{\mathbb{R}^{2 d}}\left(\eta+\langle\xi\rangle^{\rho}\right)^{-N}\left\langle\langle\xi\rangle^{\delta} y\right\rangle^{-N}\langle\xi\rangle^{m+\delta N} \mathrm{~d} y \mathrm{~d} \eta \\
& \leq C_{6}\langle\xi\rangle^{m-(\rho-\delta)(N-d)} .
\end{aligned}
$$

Thus I_{3} also satisfies (\diamond) for $\alpha=\beta=0$. As for I_{4}, let

$$
{ }^{t} L_{y, \eta}=\langle(y, \eta)\rangle^{-2}\left(1-\eta D_{y}-y D_{\eta}\right),
$$

and fix $N_{0} \in \mathbb{N}$ such that

$$
-N_{0}+|m|+\delta N_{0}<-2 d
$$

Apply Theorem 1.5, and then we obtain for any $N \in \mathbb{N}$

$$
I_{1}=\sum_{k=0}^{N-1} \frac{\mathrm{i}^{k}}{k!}\left(D_{x} D_{\xi}\right)^{k} \bar{a}(x, \xi)+R_{N}(x, \xi)
$$

with

$$
\begin{aligned}
&\left|R_{N}(x, \xi)\right| \leq \frac{C_{7}}{N!}\langle\xi\rangle^{-(\rho-\delta) N} \sum_{|\alpha| \leq 2 d+1} \| \partial^{\alpha}\left(D_{y} D_{\eta}\right)^{N} \chi(y) \chi(\eta / \epsilon) \\
& \cdot \bar{a}\left(x+\langle\xi\rangle^{-\delta} y, \xi+\langle\xi\rangle^{\rho} \eta\right) \|_{L_{y, \eta}^{1}} \\
& \leq C_{8}\langle\xi\rangle^{m-(\rho-\delta) N} .
\end{aligned}
$$

Thus we can estimate I_{1} as desired, and the claim is verified.

Step 2. The asserted asymptotic expansion is essentially done in Step 1. We omit the details.

Step 3. Finally we prove $a^{*}(x, D)$ is the formal adjoint of $a(x, D)$. For any $u, v \in \mathcal{S}\left(\mathbb{R}^{d}\right)$ we rewrite

$$
\begin{aligned}
& (2 \pi)^{3 d / 2}(a(x, D) u, v) \\
& =(2 \pi)^{d / 2} \int_{\mathbb{R}^{d}}\left(\int_{\mathbb{R}^{2 d}} \mathrm{e}^{\mathrm{i}(x-y) \xi} a(x, \xi) u(y) \mathrm{d} y \mathrm{~d} \xi\right) \bar{v}(x) \mathrm{d} x \\
& =\int_{\mathbb{R}^{2 d}} \mathrm{e}^{-\mathrm{i} x \eta}\left(\int_{\mathbb{R}^{2 d}} \mathrm{e}^{-\mathrm{i} y \xi} a(x, \xi) u(x+y)\left(\mathcal{F}^{*} \bar{v}\right)(\eta) \mathrm{d} y \mathrm{~d} \xi\right) \mathrm{d} x \mathrm{~d} \eta
\end{aligned}
$$

Implement integrations by parts in (y, ξ), so that the integrand gets integrable in (y, ξ, x, η). Then by Fubini's theorem and Lemma 1.3 we can rewrite it as an oscillatory integral in (y, ξ, x, η)

Example. Let

$$
A=a(x, D)=\sum_{|\alpha| \leq m} a_{\alpha}(x) D^{\alpha}, \quad a_{\alpha} \in C^{\infty}\left(\mathbb{R}^{d}\right)
$$

Then the formal adjoint of A on $C_{C}^{\infty}\left(\mathbb{R}^{d}\right)$ is computed by the Leibniz rule as

$$
A^{*}=\sum_{|\alpha| \leq m} D^{\alpha} \bar{a}_{\alpha}(x)=\sum_{\beta \in \mathbb{N}_{0}^{d}} \sum_{|\alpha| \leq m}\binom{\alpha}{\beta}\left(D^{\beta} \bar{a}_{\alpha}\right)(x) D^{\alpha-\beta}
$$

Hence the adjoint symbol a^{*} is given by

$$
a^{*}(x, \xi)=\sum_{\beta \in \mathbb{N}_{0}^{d}|\alpha| \leq m} \sum_{\beta}\binom{\alpha}{\beta}\left(D^{\beta} \bar{a}_{\alpha}\right)(x) \xi^{\alpha-\beta}=\sum_{\beta \in \mathbb{N}_{0}^{d}} \frac{1}{| | \beta \mid \beta!} \partial_{x}^{\beta} \partial_{\xi}^{\beta} \bar{a}(x, \xi)
$$

which coincides with the asymptotic expansion.
as

$$
\begin{aligned}
& (2 \pi)^{3 d / 2}(a(x, D) u, v) \\
& =\int_{\mathbb{R}^{4 d}} \mathrm{e}^{-\mathrm{i} x \eta-\mathrm{i} y \xi} a(x, \xi) u(x+y)\left(\mathcal{F}^{*} \bar{v}\right)(\eta) \mathrm{d} y \mathrm{~d} \xi \mathrm{~d} x \mathrm{~d} \eta \\
& =\int_{\mathbb{R}^{4 d}} \mathrm{e}^{-\mathrm{i} y \eta+\mathrm{i} x \xi} a(x+y, \xi+\eta) u(y)\left(\mathcal{F}^{*} \bar{v}\right)(\eta) \mathrm{d} y \mathrm{~d} \xi \mathrm{~d} x \mathrm{~d} \eta
\end{aligned}
$$

Next, again, implement integrations by parts in (x, ξ) to have an integrable integrand, and apply Fubini's theorem. Then the definition of a^{*} appears, and we obtain

$$
\begin{aligned}
& (2 \pi)^{3 d / 2}(a(x, D) u, v) \\
& =(2 \pi)^{d} \int_{\mathbb{R}^{2 d}} \mathrm{e}^{-\mathrm{i} y \eta} \overline{a^{*}(y, \eta)} u(y)\left(\mathcal{F}^{*} \bar{v}\right)(\eta) \mathrm{d} y \mathrm{~d} \eta \\
& =(2 \pi)^{3 d / 2}\left(u, a^{*}(x, D) v\right)
\end{aligned}
$$

Hence we are done.

- Extension to tempered disributions

Corollary 2.4. Let $a \in S_{\rho, \delta}^{m}\left(\mathbb{R}^{2 d}\right)$ with $m \in \mathbb{R}, 0 \leq \delta \leq \rho \leq 1$ and $\delta \neq 1$. Then $a(x, D)$ extends as a continuous operator on $\mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$.

Proof. For any $u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$ define $a(x, D) u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$ as, for any $\phi \in \mathcal{S}\left(\mathbb{R}^{d}\right)$,

$$
(a(x, D) u, \phi)=\left(u, a^{*}(x, D) \phi\right)
$$

Obviously this provides a continuous extension of $a(x, D)$ from $\mathcal{S}\left(\mathbb{R}^{d}\right)$ to $\mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$. We are done.

Proposition 2.5. Let $m \in \mathbb{R}, 0 \leq \delta \leq \rho \leq 1$ and $\delta \neq 1$. Then for any $a \in S_{\rho, \delta}^{m}\left(\mathbb{R}^{2 d}\right)$

$$
\mathrm{e}^{-\mathrm{i} x \xi} a(x, D) \mathrm{e}^{\mathrm{i} x \xi}=a(x, \xi)
$$

In particular, the quantization

$$
S_{\rho, \delta}^{m}\left(\mathbb{R}^{2 d}\right) \rightarrow \Psi_{\rho, \delta}^{m}\left(\mathbb{R}^{d}\right), \quad a(x, \xi) \mapsto a(x, D)
$$

is bijective.

We integrate by parts in (y, η) and in (x, ζ), and then we can verify

$$
\begin{aligned}
& (2 \pi)^{3 d / 2}\left(\mathrm{e}^{-\mathrm{i} x \xi} a(x, D) \mathrm{e}^{\mathrm{i} x \xi}, \phi\right) \\
& =\int_{\mathbb{R}^{4 d}} \mathrm{e}^{\mathrm{i} y \eta-\mathrm{i} x \zeta} \overline{a^{*}(x-y, \xi+\eta)} \overline{\mathcal{F} \phi(\zeta)} \mathrm{d} y \mathrm{~d} \eta \mathrm{~d} \zeta \mathrm{~d} x \\
& =(2 \pi)^{d / 2} \int_{\mathbb{R}^{d}}\left(\int_{\mathbb{R}^{2 d}} \mathrm{e}^{\mathrm{i} y \eta} \overline{a^{*}(x-y, \xi+\eta)} \mathrm{d} y \mathrm{~d} \eta\right) \overline{\phi(x)} \mathrm{d} x \\
& =(2 \pi)^{3 d / 2} \int_{\mathbb{R}^{d}}\left(a^{*}\right)^{*}(x, \xi) \overline{\phi(x)} \mathrm{d} x .
\end{aligned}
$$

Since (passing through the Fourier space expression)

$$
\left(a^{*}\right)^{*}=\mathrm{e}^{\mathrm{i} D_{x} D_{\xi}} \overline{\left(\mathrm{e}^{\mathrm{i} D_{x} D_{\xi} \bar{a}}\right)}=a
$$

we obtain the assertion.

Proof. For any $\phi \in \mathcal{S}\left(\mathbb{R}^{d}\right)$ we can compute

$$
\begin{aligned}
& (2 \pi)^{3 d / 2}\left(\mathrm{e}^{-\mathrm{i} x \xi} a(x, D) \mathrm{e}^{\mathrm{i} x \xi}, \phi\right)=(2 \pi)^{3 d / 2}\left(\mathrm{e}^{\mathrm{i} x \xi}, a^{*}(x, D) \mathrm{e}^{\mathrm{i} x \xi} \phi\right) \\
& =\int_{\mathbb{R}^{d}} \mathrm{e}^{\mathrm{i} x \xi}\left(\int _ { \mathbb { R } ^ { 2 d } } \mathrm { e } ^ { - \mathrm { i } (x - y) \eta - \mathrm { i } y \xi } \overline { a ^ { * } (x , \eta) } \left(\int_{\mathbb{R}^{d}} \mathrm{e}^{-\mathrm{i} y \zeta \overline{\mathcal{F} \phi(\zeta)} \mathrm{d} \zeta) \mathrm{d} y \mathrm{~d} \eta) \mathrm{d} x}\right.\right. \\
& =\int_{\mathbb{R}^{d}}\left(\int_{\mathbb{R}^{2 d}} \mathrm{e}^{\mathrm{i} y \eta} \overline{a^{*}(x, \xi+\eta)}\left(\int_{\mathbb{R}^{d}} \mathrm{e}^{-\mathrm{i}(x+y) \zeta} \overline{\mathcal{F} \phi(\zeta)} \mathrm{d} \zeta\right) \mathrm{d} y \mathrm{~d} \eta\right) \mathrm{d} x .
\end{aligned}
$$

We integrate by parts in (y, η) to make the integrand integrable in (ζ, y, η). Then apply the Fubini's theorem, and we can proceed

$$
\begin{aligned}
& (2 \pi)^{3 d / 2}\left(\mathrm{e}^{-\mathrm{i} x \xi} a(x, D) \mathrm{e}^{\mathrm{i} x \xi}, \phi\right) \\
& =\int_{\mathbb{R}^{d}}\left(\int _ { \mathbb { R } ^ { 2 d } } \left(\int_{\mathbb{R}^{d}} \mathrm{e}^{\left.\left.\mathrm{i} y \eta-\mathrm{i}(x+y) \zeta \overline{a^{*}(x, \xi+\eta)} \overline{\mathcal{F} \phi(\zeta)} \mathrm{d} y \mathrm{~d} \eta\right) \mathrm{~d} \zeta\right) \mathrm{d} x}\right.\right. \\
& =\int_{\mathbb{R}^{d}}\left(\int_{\mathbb{R}^{2 d}}\left(\int_{\mathbb{R}^{d}} \mathrm{e}^{\mathrm{i} y \eta-\mathrm{i} x \zeta} \overline{a^{*}(x, \xi+\eta+\zeta)} \overline{\mathcal{F} \phi(\zeta)} \mathrm{d} y \mathrm{~d} \eta\right) \mathrm{d} \zeta\right) \mathrm{d} x
\end{aligned}
$$

§ 2.4 Composition

Theorem 2.6. Let $a \in S_{\rho, \delta}^{m}\left(\mathbb{R}^{2 d}\right)$ and $b \in S_{\rho, \delta}^{l}\left(\mathbb{R}^{2 d}\right)$ with $m, l \in \mathbb{R}$, $0 \leq \delta \leq \rho \leq 1$ and $\delta \neq 1$. Then there uniquely exists $a \# b \in$ $S_{\rho, \delta}^{m+l}\left(\overline{\mathbb{R}^{2 d}}\right)$ such that

$$
a(x, D) \circ b(x, D)=(a \# b)(x, D)
$$

Moreover, $a \# b$ is expressed as

$$
\begin{align*}
(a \# b)(x, \xi) & =\left.\mathrm{e}^{\mathrm{i} D_{y} D_{\eta}} a(x, \eta) b(y, \xi)\right|_{(y, \eta)=(x, \xi)} \\
& =(2 \pi)^{-d} \int_{\mathbb{R}^{2 d}} \mathrm{e}^{-\mathrm{i} y \eta} a(x, \xi+\eta) b(x+y, \xi) \mathrm{d} y \mathrm{~d} \eta
\end{align*}
$$

and, if $\delta<\rho$, then

$$
a \# b \sim \sum_{\alpha \in \mathbb{N}_{0}^{d}} \frac{1}{i|\alpha| \alpha!}\left(\partial_{\xi}^{\alpha} a\right)\left(\partial_{x}^{\alpha} b\right)
$$

Proof. Let $a \# b$ be given by (() . Then we can verify $a \# b \in$ $S_{\rho, \delta}^{m+l}\left(\mathbb{R}^{2 d}\right)$ and the asserted asymptotic expansion similarly to Steps 1 and 2 of the proof of Theorem 2.3. We omit the details. The uniqueness of the "composite symbol" is clear by Proposition 2.5 as long as it exists. Hence it remainds to show

$$
a(x, D) \circ b(x, D)=(a \# b)(x, D)
$$

where $a \# b$ is given by ((Ω). For any $u \in \mathcal{S}\left(\mathbb{R}^{d}\right)$ we can rewrite by change of variables

$$
\begin{aligned}
& (2 \pi)^{2 d} a(x, D) \circ b(x, D) u(x) \\
& =\int_{\mathbb{R}^{2 d}} \mathrm{e}^{-\mathrm{i} y \xi} a(x, \xi)\left(\int_{\mathbb{R}^{2 d}} \mathrm{e}^{-\mathrm{i} z \eta} b(x+y, \eta) u(x+y+z) \mathrm{d} z \mathrm{~d} \eta\right) \mathrm{d} y \mathrm{~d} \xi .
\end{aligned}
$$

Integrate it by parts in (z, η) sufficiently many times, and then in (y, ξ), so that the resulting integrand gets integrable in (z, η, y, ξ).

Then by Fubini's theorem and Lemma 1.3 we can rewrite it as

$$
\begin{aligned}
& (2 \pi)^{2 d} a(x, D) \circ b(x, D) u(x) \\
& =\int_{\mathbb{R}^{4 d}} \mathrm{e}^{-\mathrm{i} y \xi-\mathrm{i} z \eta} a(x, \xi) b(x+y, \eta) u(x+y+z) \mathrm{d} z \mathrm{~d} \eta \mathrm{~d} y \mathrm{~d} \xi \\
& =\int_{\mathbb{R}^{4 d}} \mathrm{e}^{-\mathrm{i} y \xi-\mathrm{i} z \eta} a(x, \xi+\eta) b(x+y, \eta) u(x+z) \mathrm{d} z \mathrm{~d} \eta \mathrm{~d} y \mathrm{~d} \xi .
\end{aligned}
$$

Again, integrate it by parts first in (y, ξ), and then in (z, η), and apply Fubini's theorem. (Note integrations by parts in (z, η) do not make anything worse.) Then we obtain

$$
\begin{aligned}
& (2 \pi)^{2 d} a(x, D) \circ b(x, D) u(x) \\
& =(2 \pi)^{d} \int_{\mathbb{R}^{2 d}} \mathrm{e}^{-\mathrm{i} z \eta}(a \# b)(x, \eta) u(x+z) \mathrm{d} z \mathrm{~d} \eta \\
& =(2 \pi)^{2 d}(a \# b)(x, D) u(x) .
\end{aligned}
$$

Hence we are done.

- Commutator and Possion bracket

Definition. 1. Define the commutator of operators A, B on $\mathcal{S}\left(\mathbb{R}^{d}\right)$ as

$$
[A, B]=A B-B A
$$

2. Define the Poisson bracket of $a, b \in C^{1}\left(\mathbb{R}^{2 d}\right)$ as

$$
\{a, b\}=\frac{\partial a}{\partial \xi} \frac{\partial b}{\partial x}-\frac{\partial a}{\partial x} \frac{\partial b}{\partial \xi} \in C\left(\mathbb{R}^{2 d}\right) .
$$

Corollary 2.7. Let $a \in S_{\rho, \delta}^{m}\left(\mathbb{R}^{2 d}\right)$ and $b \in S_{\rho, \delta}^{l}\left(\mathbb{R}^{2 d}\right)$ with $m, l \in \mathbb{R}$ and $0 \leq \delta<\rho \leq 1$.

1. If supp $a \cap \operatorname{supp} b=\emptyset$, then

$$
a \# b \in S^{-\infty}\left(\mathbb{R}^{2 d}\right)
$$

2. One has

$$
[a(x, D), b(x, D)] \in \psi_{\rho, \delta}^{m+l-(\rho-\delta)}\left(\mathbb{R}^{d}\right)
$$

and the associated symbol satisfies

$$
(a \# b-b \# a)+\mathrm{i}\{a, b\} \in S_{\rho, \delta}^{m+l-2(\rho-\delta)}\left(\mathbb{R}^{2 d}\right)
$$

Proof. The assertions are clear by Theorem 2.6.
Remark. According to Theorems 2.3 and 2.6, a multiplication operator by
$a(x, \xi)$ on the phase space $\mathbb{R}^{2 d}$
may be "comparable" to a pseudodifferential operator
$a(x, D)$ on the configuration space \mathbb{R}^{d}
up to errors of lower order. Such a comparison gets more accurate in the high energy (frequency) limit $|\xi| \rightarrow \infty$

§ 2.5 Parametrix

Definition. Let $a \in S_{\rho, \delta}^{m}\left(\mathbb{R}^{2 d}\right)$ with $m \in \mathbb{R}$ and $0 \leq \delta<\rho \leq 1$.

1. We say $a(x, \xi)$, or $a(x, D)$, is elliptic if there exists $\epsilon, R>0$ such that for any $(x, \xi) \in \mathbb{R}^{2 d}$ with $|\xi| \geq R$

$$
|a(x, \xi)| \geq \epsilon|\xi|^{m} .
$$

2. We call $b(x, D) \in \Psi_{\rho, \delta}^{-m}\left(\mathbb{R}^{d}\right)$ a parametrix for $a(x, D)$ if

$$
\begin{aligned}
& a(x, D) \circ b(x, D)-1 \in \Psi^{-\infty}\left(\mathbb{R}^{d}\right), \\
& b(x, D) \circ a(x, D)-1 \in \Psi^{-\infty}\left(\mathbb{R}^{d}\right)
\end{aligned}
$$

Problem. Show a parametrix is unique up to $\Psi^{-\infty}\left(\mathbb{R}^{d}\right)$ if it exists.

Proof. $1 \Rightarrow 2$. Take $\chi \in C^{\infty}\left(\mathbb{R}^{d}\right)$ such that

$$
\chi(\xi)= \begin{cases}0 & \text { for }|\xi| \leq 1 \\ 1 & \text { for }|\xi| \geq 2\end{cases}
$$

and set for large $R>0$

$$
b_{0}(x, \xi)=\chi(\xi / R) a(x, \xi)^{-1}
$$

Then we can easily verify $b_{0} \in S_{\rho, \delta}^{-m}\left(\mathbb{R}^{2 d}\right)$. Moreover, by Theorem 2.6 it clearly satisfies both ($\boldsymbol{\oplus})$ and ((ς).
$2 \Rightarrow 3$. We first note that by Corollary 2.7, if either ($\boldsymbol{\oplus}$) or ($(\mathbb{)}$ holds, then both of them hold. Let $b_{0} \in S_{\rho, \delta}^{-m}\left(\mathbb{R}^{2 d}\right)$ be as in the condition 2, and we set

$$
r=a \# b_{0}-1 \in S_{\rho, \delta}^{-(\rho-\delta)}\left(\mathbb{R}^{2 d}\right)
$$

Then, since

$$
b_{0} \#(-r)^{\# j} \in S_{\rho, \delta}^{-m-j(\rho-\delta)}\left(\mathbb{R}^{2 d}\right),
$$

we can take their asymptotic sum: For some $b \in S_{\rho, \delta}^{-m}\left(\mathbb{R}^{2 d}\right)$

$$
b \sim \sum_{j=0}^{\infty} b_{0} \#(-r)^{\# j} .
$$

Now we have $a \# b-1 \in S^{-\infty}\left(\mathbb{R}^{d}\right)$. In fact, noting

$$
a \# b_{0} \#(-r)^{\# j}=(-r)^{\# j}-(-r)^{\#(j+1)},
$$

we have for any $k \in \mathbb{N}$

$$
a \# b-1=a \#\left(b-\sum_{j=0}^{k-1} b_{0} \#(-r)^{\# j}\right)-(-r)^{\# k} \in S_{\rho, \delta}^{-k(\rho-\delta)}\left(\mathbb{R}^{2 d}\right)
$$

Similarly, we can construct $c \in S_{\rho, \delta}^{-m}\left(\mathbb{R}^{2 d}\right)$ such that

$$
c \# a-1 \in S^{-\infty}\left(\mathbb{R}^{2 d}\right)
$$

However, then

$$
\begin{aligned}
b & =c \# a \# b+(1-c \# a) \# b \\
& =c+c \#(a \# b-1)+(1-c \# a) \# b,
\end{aligned}
$$

so that

$$
b-c \in S^{-\infty}\left(\mathbb{R}^{2 d}\right)
$$

Thus $b(x, D)$ gives a parametrix for $a(x, D)$ as desired.

2.6 Weyl Quantization

Definition. Let $a \in S_{\rho, \delta}^{m}\left(\mathbb{R}^{2 d}\right)$ with $m \in \mathbb{R}, \rho>-1$ and $\delta<1$, and let $t \in[0,1]$. Define the t-quantization of a as, for any $u \in \mathcal{S}\left(\mathbb{R}^{d}\right)$,
$a^{t}(x, D) u(x)=(2 \pi)^{-d} \int_{\mathbb{R}^{2 d}} \mathrm{e}^{\mathrm{i}(x-y) \xi_{a}((1-t) x+t y, \xi) u(y) \mathrm{d} y \mathrm{~d} \xi .}$
In particular, we call:

1. $a(x, D)=a^{0}(x, D)$ the standard (or left) quantization;
2. $a^{1}(x, D)$ the right quantization;
3. $a^{\mathrm{W}}(x, D):=a^{1 / 2}(x, D)$ the Weyl quantization.

Proposition 2.10. Let $a \in S_{\rho, \delta}^{m}\left(\mathbb{R}^{2 d}\right)$ with $m \in \mathbb{R}, \rho>-1$ and $\delta<1$, and let $t \in[0,1]$. Then

$$
a^{t}(x, D)^{*}=(\bar{a})^{1-t}(x, D)
$$

In particular, the following holds.

1. $a^{t}(x, D)$ extends as a continuous operator on $\mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$.
2. If a is real-valued, $a^{\mathrm{W}}(x, D)$ is formally self-adjoint, i.e.,

$$
a^{\mathrm{W}}(x, D)^{*}=a^{\mathrm{W}}(x, D)
$$

Proof. We prove only the former assertion since the latter ones are obvious. We implement integrations by parts to change the order of integrations as follows. Take large $N \in \mathbb{N}_{0}$ such that

$$
m-2(1-\delta) N<-d
$$

- Continuity

Proposition 2.9. Let $a \in S_{\rho, \delta}^{m}\left(\mathbb{R}^{2 d}\right)$ with $m \in \mathbb{R}, \rho>-1$ and $\delta<1$, and let $t \in[0,1]$. Then $a^{t}(x, D)$ is a continuous operator on $\mathcal{S}\left(\mathbb{R}^{d}\right)$.

Proof. We can prove it similarly to Theorem 2.1. The details are omitted.

Problem. Fill out the details of the above proof.

and then we can compute

$$
\begin{aligned}
& (2 \pi)^{d}\left(a^{t}(x, D) u, v\right) \\
& =\int_{\mathbb{R}^{d}}\left(\int_{\mathbb{R}^{2 d}} \mathrm{e}^{\mathrm{i}(x-y) \xi_{a}} a((1-t) x+t y, \xi) u(y) \mathrm{d} y \mathrm{~d} \xi\right) \bar{v}(x) \mathrm{d} x \\
& =\int_{\mathbb{R}^{3 d}} \mathrm{e}^{\mathrm{i}(x-y) \xi}\langle\xi\rangle^{-2 N}\left\langle D_{y}\right\rangle^{2 N} a((1-t) x+t y, \xi) u(y) \bar{v}(x) \mathrm{d} x \mathrm{~d} \xi \mathrm{~d} y \\
& =\int_{\mathbb{R}^{3 d}} \mathrm{e}^{\mathrm{i}(x-y) \xi}\langle\xi\rangle^{-4 N} \\
& \quad \cdot\left\langle D_{x}\right\rangle^{2 N}\left\langle D_{y}\right\rangle^{2 N} a((1-t) x+t y, \xi) u(y) \bar{v}(x) \mathrm{d} x \mathrm{~d} \xi \mathrm{~d} y \\
& =\int_{\mathbb{R}^{3 d}} \mathrm{e}^{\mathrm{i}(x-y) \xi}\langle\xi\rangle^{-2 N}\left\langle D_{x}\right\rangle^{2 N} a((1-t) x+t y, \xi) \bar{v}(x) u(y) \mathrm{d} x \mathrm{~d} \xi \mathrm{~d} y \\
& =\int_{\mathbb{R}^{d}} u(y)\left(\int_{\mathbb{R}^{2 d}} \mathrm{e}^{\mathrm{i}(x-y) \xi_{a}} a((1-t) x+t y, \xi) \bar{v}(x) \mathrm{d} x \mathrm{~d} \xi\right) \mathrm{d} y \\
& =(2 \pi)^{d}\left(u,(\bar{a})^{1-t}(x, D) v\right)
\end{aligned}
$$

Hence we obtain the former assertion. We are done.

- Change of quantization

Theorem 2.11. Let $a \in S_{\rho, \delta}^{m}\left(\mathbb{R}^{2 d}\right)$ with $m \in \mathbb{R}, 0 \leq \delta \leq \rho \leq 1$ and $\delta \neq 1$, and let $t, s \in[0,1]$ with $t \neq s$. There uniquely exists $b \in S_{\rho, \delta}^{m}\left(\mathbb{R}^{2 d}\right)$ such that

$$
a^{t}(x, D)=b^{s}(x, D)
$$

Moreover, b is expressed as

$$
\begin{aligned}
b(x, \xi) & =\mathrm{e}^{\mathrm{i}(t-s) D_{x} D_{\xi} a(x, \xi)} \\
& =(2 \pi)^{-d}|t-s|^{-d} \int_{\mathbb{R}^{2 d}} \mathrm{e}^{-\mathrm{i} y \eta /(t-s)} a(x+y, \xi+\eta) \mathrm{d} y \mathrm{~d} \eta
\end{aligned}
$$

and, if $\delta<\rho$, then

$$
b \sim \sum_{\alpha \in \mathbb{N}_{0}^{d}} \frac{(t-s)^{|\alpha|}}{\mathrm{i}^{|\alpha|} \alpha!} \partial_{x}^{\alpha} \partial_{\xi}^{\alpha} a .
$$

We change variables, integrate it by parts and change the order of integrations, so that

$$
\begin{aligned}
& (2 \pi)^{2 d} b^{s}(x, D) u(x) \\
& =\int_{\mathbb{R}^{4 d}} \mathrm{e}^{-\mathrm{i} z \xi-\mathrm{i} y \eta} a(x+s z+(t-s) y, \xi+\eta) u(x+z) \mathrm{d} y \mathrm{~d} \eta \mathrm{~d} z \mathrm{~d} \xi
\end{aligned}
$$

We further change variables, and apply the Fourier inversion formula:

$$
\begin{aligned}
& (2 \pi)^{2 d} b^{s}(x, D) u(x) \\
& =\int_{\mathbb{R}^{4 d}} \mathrm{e}^{-\mathrm{i} z \xi-\mathrm{i} y \eta} a(x+s z+t y, \eta) u(x+y+z) \mathrm{d} y \mathrm{~d} \eta \mathrm{~d} z \mathrm{~d} \xi \\
& =(2 \pi)^{d} \int_{\mathbb{R}^{2 d}} \mathrm{e}^{-\mathrm{i} y \eta} a(x+t y, \eta) u(x+y) \mathrm{d} y \mathrm{~d} \eta \\
& =(2 \pi)^{2 d} a^{t}(x, D) u(x)
\end{aligned}
$$

Hence (\diamond) is verified for b given by

Proof. Step 1. We first let b be given by (\&). Then we can verify $b \in S_{\rho, \delta}^{m}\left(\mathbb{R}^{2 d}\right)$ and the asserted asymptotic expansion in exactly the same way as in the proof of Theorem 2.3. We omit the details.

Step 2. Next we prove (\diamond) for b given by ($\boldsymbol{\&}$), but only present the outline. By (\&) we can write

$$
\begin{aligned}
& (2 \pi)^{2 d} b^{s}(x, D) u(x) \\
& =|t-s|^{-d} \int_{\mathbb{R}^{2 d}} \mathrm{e}^{\mathrm{i}(x-z) \xi}\left(\int_{\mathbb{R}^{2 d}} \mathrm{e}^{-\mathrm{i} y \eta /(t-s)}\right. \\
& \quad \cdot a((1-s) x+s z+y, \xi+\eta) \mathrm{d} y \mathrm{~d} \eta) u(z) \mathrm{d} z \mathrm{~d} \xi .
\end{aligned}
$$

Step 3. We finally discuss the uniqueness. Suppose that both $b, c \in S_{\rho, \delta}^{m}\left(\mathbb{R}^{2 d}\right)$ satisfy (\diamond). If we let

$$
\tilde{b}=\mathrm{e}^{\mathrm{i} s D_{x} D_{\xi}} b, \quad \tilde{c}=\mathrm{e}^{\mathrm{i} s D_{x} D_{\xi_{c}}}
$$

then we have $\tilde{b}(x, D)=\widetilde{c}(x, D)$, so that by Proposition 2.5

$$
\tilde{b}=\tilde{c}
$$

Now we note that $\mathrm{e}^{\mathrm{i} s D_{x} D_{\xi}}$ is bijective from $S_{\rho, \delta}^{m}\left(\mathbb{R}^{2 d}\right)$ to itself, since $\mathrm{e}^{ \pm \mathrm{i} s D_{x} D_{\xi}}$ map it into itself, being the inverses to each other on $\mathcal{S}^{\prime}\left(\mathbb{R}^{2 d}\right)$. Hence we can conclude $b=c$. We are done.

- Composition

Theorem 2.12. Let $a \in S_{\rho, \delta}^{m}\left(\mathbb{R}^{2 d}\right)$ and $b \in S_{\rho, \delta}^{l}\left(\mathbb{R}^{2 d}\right)$ with $m, l \in \mathbb{R}$, $0 \leq \delta \leq \rho \leq 1$ and $\delta \neq 1$, and let $t \in[0,1]$. Then there uniquely exists $a \#^{t} b \in S_{\rho, \delta}^{m+l}\left(\mathbb{R}^{2 d}\right)$ such that

$$
a^{t}(x, D) \circ b^{t}(x, D)=\left(a \not \#^{t} b\right)^{t}(x, D)
$$

Moreover, $a \#^{t} b$ is given by

$$
\begin{aligned}
& \left(a \#^{t} b\right)(x, \xi) \\
& =\left.\mathrm{e}^{\mathrm{i}\left(D_{y} D_{\eta}-D_{z} D_{\zeta}\right)} a((1-t) x+t z, \eta) b((1-t) y+t x, \zeta)\right|_{\substack{y=z=x \\
\eta=\zeta=\xi}} \\
& =(2 \pi)^{-2 d} \int_{\mathbb{R}^{4 d}} \mathrm{e}^{-\mathrm{i}(y \eta-z \zeta)} a(x+t z, \xi+\eta)
\end{aligned}
$$

$$
b((1-t) y+x, \xi+\zeta) \mathrm{d} y \mathrm{~d} \eta \mathrm{~d} z \mathrm{~d} \zeta
$$

and we set

$$
\begin{aligned}
\chi_{1}(\xi, y, \eta)= & \chi\left(\langle\xi\rangle^{\delta} y,\langle\xi\rangle^{\delta} z\right) \chi\left(2 \epsilon^{-1}\langle\xi\rangle^{-\rho} \eta, 2 \epsilon^{-1}\langle\xi\rangle^{-\rho} \zeta\right) \\
\chi_{2}(\xi, y, \eta)= & {\left[1-\chi\left(\langle\xi\rangle^{\delta} y,\langle\xi\rangle^{\delta} z\right)\right] \chi\left(2 \epsilon^{-1}\langle\xi\rangle^{-\rho} \eta, 2 \epsilon^{-1}\langle\xi\rangle^{-\rho} \zeta\right) } \\
\chi_{3}(\xi, y, \eta)= & \chi\left(\epsilon^{-1}\langle\xi\rangle^{-1} \eta, \epsilon^{-1}\langle\xi\rangle^{-1} \zeta\right) \\
& \quad-\chi\left(2 \epsilon^{-1}\langle\xi\rangle^{-\rho} \eta, 2 \epsilon^{-1}\langle\xi\rangle^{-\rho} \zeta\right)
\end{aligned}
$$

$$
\chi_{4}(\xi, y, \eta)=1-\chi\left(\epsilon^{-1}\langle\xi\rangle^{-1} \eta, \epsilon^{-1}\langle\xi\rangle^{-1} \zeta\right)
$$

where $\epsilon>0$ is a sufficiently small constant. The we split $a \#^{t} b$, using these cut-off functions, and estimate them similarly to Theorem 2.3. We omit the rest of the arguments.

Step 2. The asserted asymptotic expansion is obtained similarly to Theorem 2.3. We omit the details.
and, if $\delta<\rho$, then

$$
\begin{aligned}
& a \#^{t} b \sim \sum_{k \in \mathbb{N}_{0}} \frac{1}{i^{k} k!}\left(\partial_{y} \partial_{\eta}-\partial_{z} \partial_{\zeta}\right)^{k} \\
& \left.a((1-t) x+t z, \eta) b((1-t) y+t x, \zeta)\right|_{\substack{y=z=x, x \\
\eta=\zeta=\xi}},
\end{aligned}
$$

Proof. Step 1. Here we prove $a \#^{t} b$ given by ($\boldsymbol{\oplus}$) belongs to $S_{\rho, \delta}^{m+l}\left(\mathbb{R}^{2 d}\right)$. However, we only present the strategy since the proof is similar to that of Theorem 2.3. It suffices to show

$$
\left|\left(a \#^{t} b\right)(x, \xi)\right| \leq C\langle\xi\rangle^{m+l} .
$$

Fix any $\chi \in C^{\infty}\left(\mathbb{R}^{2 d}\right)$ satisfying

$$
\chi(x, y)= \begin{cases}1 & \text { for }|(x, y)| \leq 1 \\ 0 & \text { for }|(x, y)| \geq 2\end{cases}
$$

Step 3. Now, let $a \#^{t} b$ be given in the assertion, and we prove

$$
a^{t}(x, D) \circ b^{t}(x, D)=\left(a \#^{t} b\right)^{t}(x, D)
$$

For that we first construct $c \in S_{\rho, \delta}^{m+l}\left(\mathbb{R}^{2 d}\right)$ such that

$$
a^{t}(x, D) \circ b^{t}(x, D)=c(x, D)
$$

and then verify

$$
\mathrm{e}^{-\mathrm{i} t D_{x} D_{\xi}} c=a \#^{t} b
$$

The following computations can be verified by integrations by parts, change of variables and change of order of integrations, though the details are omitted for simplicity. For any $u \in \mathcal{S}\left(\mathbb{R}^{d}\right)$
we compute

$$
\begin{aligned}
& (2 \pi)^{3 d} a^{t}(x, D) \circ b^{t}(x, D) u(x) \\
& \begin{array}{c}
=(2 \pi)^{3 d} a^{t}(x, D) \circ b^{t}(x, D)\left(\mathcal{F}^{*} \mathcal{F} u\right)(x) \\
=\int_{\mathbb{R}^{2 d}} \mathrm{e}^{\mathrm{i}(x-y) \xi_{a}((1-t) x+t y, \xi)\left[\int_{\mathbb{R}^{2 d}} \mathrm{e}^{\mathrm{i}(y-z) \eta} b((1-t) y+t z, \eta)\right.} \\
\left.\cdot\left(\int_{\mathbb{R}^{2 d}} \mathrm{e}^{\mathrm{i}(z-w) \zeta_{u}} u(w) \mathrm{d} w \mathrm{~d} \zeta\right) \mathrm{d} z \mathrm{~d} \eta\right] \mathrm{d} y \mathrm{~d} \xi \\
=\int_{\mathbb{R}^{6 d}} \mathrm{e}^{-\mathrm{i} y \xi-\mathrm{i} z \eta-\mathrm{i} w \zeta_{a}(x+t y, \xi) b(x+y+t z, \eta)} \\
=\int_{\mathbb{R}^{2 d}} \mathrm{e}^{-\mathrm{i} w \zeta}\left(\int_{\mathbb{R}^{4 d}} \mathrm{e}^{-\mathrm{i} y \xi-\mathrm{i} z \eta} a(x+t y, \zeta+\xi)\right. \\
\cdot b(x+y+t z, \zeta+\eta) \mathrm{d} z \mathrm{~d} \eta \mathrm{~d} y \mathrm{~d} \xi) u(x+w) \mathrm{d} w \mathrm{~d} \zeta
\end{array}
\end{aligned}
$$

Hence we should set

$$
\begin{aligned}
& c(x, \zeta)=(2 \pi)^{-2 d} \int_{\mathbb{R}^{4 d}} \mathrm{e}^{-\mathrm{i} y \xi-\mathrm{i} z \eta} a(x+t y, \zeta+\xi) \\
& \cdot b(x+y+t z, \zeta+\eta) \mathrm{d} z \mathrm{~d} \eta \mathrm{~d} y \mathrm{~d} \xi
\end{aligned}
$$

Similarly to Theorem 2.12, we can show $c \in S_{\rho, \delta}^{m+l}\left(\mathbb{R}^{2 d}\right)$. Then we further proceed along with the Fourier inversion formula

$$
\begin{aligned}
& (2 \pi)^{3 d} \mathrm{e}^{-\mathrm{i} t D_{x} D_{\zeta}} c(x, \zeta) \\
& =|t|^{-d} \int_{\mathbb{R}^{6 d}} \mathrm{e}^{\mathrm{i} w \theta / t-\mathrm{i} y \xi-\mathrm{i} z \eta} a(x+w+t y, \zeta+\theta+\xi) \\
& \quad \cdot b(x+w+y+t z, \zeta+\theta+\eta) \mathrm{d} z \mathrm{~d} \eta \mathrm{~d} y \mathrm{~d} \xi \mathrm{~d} w \mathrm{~d} \theta \\
& =\int_{\mathbb{R}^{6 d}} \mathrm{e}^{-\mathrm{i} y \xi+\mathrm{i} w \eta+\mathrm{i} z \theta} a(x+t w, \zeta+\xi) \\
& \quad \cdot b(x+(1-t) y+t z, \zeta+\eta) \mathrm{d} z \mathrm{~d} \eta \mathrm{~d} y \mathrm{~d} \xi \mathrm{~d} w \mathrm{~d} \theta
\end{aligned}
$$

Corollary 2.13. Let $a \in S_{\rho, \delta}^{m}\left(\mathbb{R}^{2 d}\right)$ and $b \in S_{\rho, \delta}^{l}\left(\mathbb{R}^{2 d}\right)$ with $m, l \in \mathbb{R}$ and $0 \leq \delta<\rho \leq 1$. Then

$$
a \not \#^{W^{2}}:=a \#^{1 / 2} b \sim \sum_{\alpha, \beta \in \mathbb{N}_{0}^{d}} \frac{(-1)^{|\alpha|}}{(2 \mathrm{i})^{|\alpha|+|\beta|_{\alpha!\beta!}}}\left(\partial_{x}^{\alpha} \partial_{\xi}^{\beta} a\right)\left(\partial_{\xi}^{\alpha} \partial_{x}^{\beta} b\right)
$$

Moreover,

$$
a \not \#^{\mathrm{W}_{b}-b \not \#^{\mathrm{W}}}{ }_{a+\mathrm{i}\{a, b\} \in S_{\rho, \delta}^{m+l-3(\rho-\delta)}\left(\mathbb{R}^{2 d}\right)}
$$

Proof. The expansion is verified by Theorem 2.12 and the multinomial theorem. Under interchange of the indices α and β a partial sum over $|\alpha|+|\beta|=k \in \mathbb{N}_{0}$ is even or odd according to k even or odd, respectively. Thus the latter assertion follows.

Problem. Let $a \in S_{0,0}^{0}\left(\mathbb{R}^{2 d}\right)$.

1. Verify

$$
\begin{equation*}
\mathcal{F}{ }^{\mathrm{W}}\left(x, D_{x}\right) \mathcal{F}^{*}=a^{\mathrm{W}}\left(-D_{\xi}, \xi\right): \mathcal{S}\left(\mathbb{R}^{d}\right) \rightarrow \mathcal{S}\left(\mathbb{R}^{d}\right) \tag{ৎ}
\end{equation*}
$$

2. For any $t \in \mathbb{R}$ define the free Schrödinger propagator as

$$
\mathrm{e}^{\mathrm{i} t \Delta / 2}=\mathcal{F}^{*} \mathrm{e}^{-\mathrm{i} t \xi^{2} / 2} \mathcal{F}: \mathcal{S}\left(\mathbb{R}^{d}\right) \rightarrow \mathcal{S}\left(\mathbb{R}^{d}\right)
$$

Then verify

$$
\mathrm{e}^{-\mathrm{it} \Delta / 2}{ }_{a}^{\mathrm{W}}(x, D) \mathrm{e}^{\mathrm{it} \Delta / 2}=a^{\mathrm{W}}(x+t D, D) .
$$

Remarks. 1. These identities support the idea that $a^{\mathrm{W}}(x, D)$ is merely a multiplication operator by $a(x, \xi)$ on $\mathbb{R}^{2 d}$, with \mathcal{F} and $\mathrm{e}^{\mathrm{i} t \Delta}$ being symplectic transforms

$$
(x, \xi) \mapsto(-\xi, x), \quad(x, \xi) \mapsto(x+t \xi, \xi)
$$

respectively.
2. Due to the symmetry (Ω) in x and ξ, it is also possible to develop the theory of $\Psi D O$ for symbols satisfying

$$
\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} a(x, \xi)\right| \leq C_{\alpha \beta}\langle x\rangle^{m-\rho|\alpha|+\delta|\beta|} .
$$

Such a class is useful, for example, in the quantum scattering theory. This is just an example of various symbol classes.

§3.1 L^{2}-boundedness

Theorem 3.1. Let $0 \leq \delta<\rho \leq 1$. Then there exist $C>0$ and $j \in \mathbb{N}_{0}$ such that for any $a \in S_{\rho, \delta}^{0}\left(\mathbb{R}^{2 d}\right)$ and $u \in \mathcal{S}\left(\mathbb{R}^{d}\right)$

$$
\|a(x, D) u\|_{L^{2}} \leq C|a|_{j, S_{\rho, \delta}^{0}}\|u\|_{L^{2}}
$$

In particular, $a(x, D)$ is bounded on $L^{2}\left(\mathbb{R}^{d}\right)$.
Remark. Recall the seminorm $|\cdot|_{j, S_{\rho, \delta}^{m}}$ on $S_{\rho, \delta}^{m}\left(\mathbb{R}^{2 d}\right)$ is defined as

$$
|a|_{j}=|a|_{j, S_{\rho, \delta}^{m}}=\sup \left\{\langle\xi\rangle^{-m-\delta|\alpha|+\rho|\beta|} \partial_{x}^{\alpha} \partial_{\xi}^{\beta} a(x, \xi) \mid ;\right.
$$

$$
\left.|\alpha|+|\beta| \leq j,(x, \xi) \in \mathbb{R}^{2 d}\right\}
$$

Proposition 3.2 (Schur's lemma). Let $K: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{C}$ be measurable, and assume there exist $\alpha, \beta \geq 0$ such that

$$
\begin{gathered}
\int_{\mathbb{R}^{d}}|K(x, y)| \mathrm{d} y \leq \alpha \text { for a.e. } x \in \mathbb{R}^{d} \\
\int_{\mathbb{R}^{d}}|K(x, y)| \mathrm{d} x \leq \beta \quad \text { for a.e. } y \in \mathbb{R}^{d} .
\end{gathered}
$$

Then, for any $u \in L^{2}\left(\mathbb{R}^{d}\right)$ and for a.e. $x \in \mathbb{R}^{d}, K(x, \cdot) u$ is integrable, and

$$
\left\|\int_{\mathbb{R}^{d}} K(\cdot, y) u(y) \mathrm{d} y\right\|_{L^{2}} \leq(\alpha \beta)^{1 / 2}\|u\|_{L^{2}}
$$

Proof of Theorem 3.1. For simplicity we shall not keep track of dependence of constants on seminorms, but it is not difficult.

Step 1. We first prove the assertion for $a \in S_{\rho, \delta}^{m}\left(\mathbb{R}^{2 d}\right)$ with $m<-d$. Let $u \in \mathcal{S}\left(\mathbb{R}^{d}\right)$. By the assumption and Fubini's theorem

$$
a(x, D) u(x)=(2 \pi)^{-d} \int_{\mathbb{R}^{d}}\left(\int_{\mathbb{R}^{d}} \mathrm{e}^{\mathrm{i}(x-y) \xi} a(x, \xi) \mathrm{d} \xi\right) u(y) \mathrm{d} y
$$

so that $a(x, D)$ has the Schwartz kernel

$$
K(x, y)=(2 \pi)^{-d} \int_{\mathbb{R}^{d}} \mathrm{e}^{\mathrm{i}(x-y) \xi_{a}} a(x, \xi) \mathrm{d} \xi
$$

By integrations by parts we can verify that for any $N \in \mathbb{N}_{0}$

$$
|K(x, y)| \leq C_{1}\langle x-y\rangle^{-2 N}
$$

Schur's lemma applies for large N, hence $a(x, D) \in \mathcal{B}\left(L^{2}\left(\mathbb{R}^{d}\right)\right)$.

Proof. Let $u \in L^{2}\left(\mathbb{R}^{d}\right)$. Then by Fubini's theorem and the Cauchy-Schwarz inequality

$$
\begin{aligned}
& \int_{\mathbb{R}^{d}}\left(\int_{\mathbb{R}^{d}}|K(x, y) u(y)| \mathrm{d} y\right)^{2} \mathrm{~d} x \\
& \leq \int_{\mathbb{R}^{3 d}}|K(x, y)\|K(x, z)\| u(y) \| u(z)| \mathrm{d} y \mathrm{~d} z \mathrm{~d} x \\
& \leq \frac{1}{2} \int_{\mathbb{R}^{3} d}|K(x, y)||K(x, z) \| u(y)|^{2} \mathrm{~d} y \mathrm{~d} z \mathrm{~d} x \\
& \quad+\frac{1}{2} \int_{\mathbb{R}^{3 d}}|K(x, y)\|K(x, z)\| u(z)|^{2} \mathrm{~d} y \mathrm{~d} z \mathrm{~d} x \\
& \leq \int_{\mathbb{R}^{d}}|u(y)|^{2}\left(\int_{\mathbb{R}^{d}}|K(x, y)|\left(\int_{\mathbb{R}^{d}}|K(x, z)| \mathrm{d} z\right) \mathrm{d} x\right) \mathrm{d} y \\
& \leq \alpha \beta\|u\|_{L^{2}}^{2}
\end{aligned}
$$

Hence by Fubini's theorem again the assertion is verified.

Step 2. Next we prove the assertion for $a \in S_{\rho, \delta}^{m}\left(\mathbb{R}^{2 d}\right)$ with $m<0$. By Step 1 and induction it suffices to show, if for some $l<0$

$$
\Psi_{\rho, \delta}^{l}\left(\mathbb{R}^{d}\right) \subset \mathcal{B}\left(L^{2}\left(\mathbb{R}^{d}\right)\right)
$$

then

$$
\Psi_{\rho, \delta}^{l / 2}\left(\mathbb{R}^{d}\right) \subset \mathcal{B}\left(L^{2}\left(\mathbb{R}^{d}\right)\right)
$$

Suppose ($\boldsymbol{\mu}$), and take any $a \in S_{\rho, \delta}^{l / 2}\left(\mathbb{R}^{2 d}\right)$. Then for any $u \in \mathcal{S}\left(\mathbb{R}^{d}\right)$ by the Cauchy-Schwarz inequality

$$
\|a(x, D) u\|_{L^{2}}^{2} \leq\left\|a^{*}(x, D) a(x, D) u\right\|_{L^{2}}\|u\|_{L^{2}} .
$$

However, by $a^{*}(x, D) a(x, D) \in \Psi_{\rho, \delta}^{l}\left(\mathbb{R}^{d}\right)$ and (\&) it follows that

$$
\|a(x, D)\|_{\mathcal{B}\left(L^{2}\right)} \leq\left\|a^{*}(x, D) a(x, D)\right\|_{\mathcal{B}\left(L^{2}\right)}^{1 / 2}<\infty
$$

Thus the claim is verified.

Step 3. Finally let $a \in S_{\rho, \delta}^{0}\left(\mathbb{R}^{2 d}\right)$. We set

$$
b(x, \xi)=\sqrt{2|a|_{0}^{2}-|a(x, \xi)|^{2}} \in S_{\rho, \delta}^{0}\left(\mathbb{R}^{2 d}\right)
$$

Then there exists $c \in S_{\rho, \delta}^{-(\rho-\delta)}\left(\mathbb{R}^{2 d}\right)$ such that

$$
a^{*} \# a+b^{*} \# b=2|a|_{0}^{2}+c .
$$

Now for any $u \in \mathcal{S}\left(\mathbb{R}^{d}\right)$

$$
\begin{aligned}
\|a(x, D) u\|_{L^{2}}^{2} & \leq\|a(x, D) u\|_{L^{2}}^{2}+\|b(x, D) u\|_{L^{2}}^{2} \\
& =2|a|_{0}^{2}\|u\|_{L^{2}}^{2}+(c(x, D) u, u)_{L^{2}}^{2} \\
& \leq\left(2|a|_{0}^{2}+\|c(x, D)\|_{\mathcal{B}\left(L^{2}\right)}\right)\|u\|_{L^{2}}^{2}
\end{aligned}
$$

and hence we obtain the assertion.

Lemma 3.4 (Cotlar-Stein lemma). Let \mathcal{H} be a Hilbert space, and assume a family $\left\{A_{j}\right\}_{j \in \mathbb{N}} \subset \mathcal{B}(\mathcal{H})$ satisfies for some $M \geq 0$

$$
\sup _{j \in \mathbb{N}} \sum_{k \in \mathbb{N}}\left\|A_{j} A_{k}^{*}\right\|_{\mathcal{B}(\mathcal{H})}^{1 / 2} \leq M, \quad \sup _{j \in \mathbb{N}} \sum_{k \in \mathbb{N}}\left\|A_{j}^{*} A_{k}\right\|_{\mathcal{B}(\mathcal{H})}^{1 / 2} \leq M .
$$

Then the series

$$
S:=\sum_{j \in \mathbb{N}} A_{j}
$$

converges strongly in $\mathcal{B}(\mathcal{H})$, and

$$
\|S\|_{\mathcal{B}(\mathcal{H})} \leq M
$$

- Calderón-Vaillancourt theorem

Theorem 3.3 (Calderón-Vaillancourt). There exist $C>0$ and $j \in \mathbb{N}_{\mathrm{O}}$ such that for any $a \in S_{0,0}^{0}\left(\mathbb{R}^{2 d}\right)$ and $u \in \mathcal{S}\left(\mathbb{R}^{d}\right)$

$$
\|a(x, D) u\|_{L^{2}} \leq C|a|_{j, S_{0,0}^{0}}\|u\|_{L^{2}}
$$

In particular, $a(x, D)$ is bounded on $L^{2}\left(\mathbb{R}^{d}\right)$.

Proof. Step 1. Here we prove that for any $n \in \mathbb{N}$

$$
\left\|S_{n}\right\| \leq M ; \quad S_{n}:=\sum_{j=1}^{n} A_{j} \in \mathcal{B}(\mathcal{H})
$$

For that we shall compute and bound $\left\|S_{n}\right\|^{2 m}$ for $m \in \mathbb{N}$. Since $S_{n}^{*} S_{n}$ is bounded on \mathcal{H}, we have

$$
\left\|S_{n}\right\|^{2}=\sup _{\|u\|_{\mathcal{H}}=1}\left\|S_{n} u\right\|^{2}=\sup _{\|u\|_{\mathcal{H}}=1}\left(S_{n}^{*} S_{n} u, u\right)=\left\|S_{n}^{*} S_{n}\right\|
$$

Then, since $S_{n}^{*} S_{n}$ is self-adjoint,

$$
\left\|S_{n}\right\|^{2 m}=\left\|S_{n}^{*} S_{n}\right\|^{m}=\left\|\left(S_{n}^{*} S_{n}\right)^{m}\right\|
$$

Hence we are lead to compute and bound

$$
\left(S^{*} S\right)^{m}=\sum_{j_{1}, \ldots, j_{2 m}=1}^{n} A_{j_{1}}^{*} A_{j_{2}} \cdots A_{j_{2 m-1}}^{*} A_{j_{2 m}}
$$

Denote the above summand by $A_{j_{1} \cdots j_{2 m}}$. Then we have

$$
\left\|A_{j_{1} \cdots j_{2 m}}\right\| \leq\left\|A_{j_{1}}^{*} A_{j_{2}}\right\| \cdots\left\|A_{j_{2 m-1}}^{*} A_{j_{2 m}}\right\|
$$

and

$$
\left\|A_{j_{1} \cdots j_{2 m}}\right\| \leq\left\|A_{j_{1}}^{*}\right\|\left\|A_{j_{2}} A_{j_{3}}^{*}\right\| \cdots\left\|A_{j_{2 m-2}} A_{j_{2 m-1}}^{*}\right\|\left\|A_{j_{2 m}}\right\|
$$

Noting

$$
\left\|A_{j}\right\|=\left\|A_{j}^{*}\right\|=\left\|A_{j}^{*} A_{j}\right\|^{1 / 2} \leq M
$$

we can deduce

$$
\left\|A_{j_{1} \cdots j_{2 m}}\right\| \leq M\left(\left\|A_{j_{1}}^{*} A_{j_{2}}\right\|\left\|A_{j_{2}} A_{j_{3}}^{*}\right\| \cdots\left\|A_{j_{2 m-1}}^{*} A_{j_{2 m}}\right\|\right)^{1 / 2}
$$

Therefore by the assumption

$$
\left\|S_{n}\right\|^{2 m} \leq n M^{2 m}, \quad \text { or } \quad\left\|S_{n}\right\| \leq n^{1 /(2 m)} M
$$

Now by letting $m \rightarrow \infty$ we obtain the claim.

Step 3. Finally we estimate $\|S\|$. However, it is straightforward. For any $u \in \mathcal{H}$

$$
\|S u\|=\lim _{n \rightarrow \infty}\left\|S_{n} u\right\| \leq \lim _{n \rightarrow \infty}\left\|S_{n}\right\|\|u\| \leq M\|u\|
$$

Hence we are done.

Proof of Theorem 3.3. Step 1. By Theorem 2.11 it suffices to show $a^{\mathrm{W}}(x, D)$ is bounded on $L^{2}\left(\mathbb{R}^{d}\right)$. Let $\chi \in C_{C}^{\infty}\left(\mathbb{R}^{2 d}\right)$ be such that

$$
\sum_{\mu \in \mathbb{Z}^{2 d}} \chi_{\mu}=1 ; \quad \chi_{\mu}(\cdot)=\chi(\cdot-\mu)
$$

(construction of such χ is left to the reader as a Problem), and we microlocally cut off and set

$$
a_{\mu}=\chi_{\mu} a, \quad A_{\mu}=a_{\mu}^{\mathrm{W}}(x, D)
$$

Step 2. To prove S_{n} is strongly convergent as $n \rightarrow \infty$ we split

$$
\mathcal{H}=\mathcal{G} \oplus \mathcal{G}^{\perp} ; \quad \mathcal{G}=\overline{\operatorname{span}\left(\bigcup_{k \in \mathbb{N}} \operatorname{Ran} A_{k}^{*}\right)}
$$

Note $S_{n} \equiv 0$ on \mathcal{G}^{\perp} since for any $u \in \mathcal{G}^{\perp}$ and $v \in \mathcal{H}$

$$
\left(S_{n} u, v\right)=\sum_{j=1}^{n}\left(u, A_{j}^{*} v\right)=0
$$

Thus it suffices to discuss the limit of $S_{n} u$ for $u \in \mathcal{G}$, however, due to Step 1 and the density argument it further reduces to the case $u \in \operatorname{Ran} A_{k}^{*}$. Let $u=A_{k}^{*} v$ for some $v \in \mathcal{H}$, and then

$$
\sum_{j=1}^{n}\left\|A_{j} u\right\| \leq \sum_{j=1}^{n}\left\|A_{j} A_{k}^{*}\right\|^{1 / 2}\left\|A_{j} A_{k}^{*}\right\|^{1 / 2}\|v\| \leq M^{2}\|v\|
$$

This implies $S_{n} u$ is absolutely convergent for $u \in \operatorname{Ran} A_{k}^{*}$.

Step 2. Here we let $u \in C_{\mathrm{C}}^{\infty}\left(\mathbb{R}^{d}\right)$, and prove pointwise convergence

$$
a^{\mathrm{W}}(x, D) u(x)=\sum_{\mu \in \mathbb{Z}^{2 d}} A_{\mu} u(x)
$$

We introduce

$$
{ }^{t} L_{1}=\langle\xi\rangle^{-2}\left(1-\xi D_{y}\right)
$$

and rewrite a partial sum of the right-hand side of $(\boldsymbol{\phi})$ as

$$
\sum_{|\mu| \leq n} A_{\mu} u(x)=(2 \pi)^{-d} \int_{\mathbb{R}^{2 d}} \mathrm{e}^{\mathrm{i}(x-y) \xi} \sum_{|\mu| \leq n} L_{1}^{N} a_{\mu}\left(\frac{x+y}{2}, \xi\right) u(y) \mathrm{d} y \mathrm{~d} \xi
$$

Since the partition $\left\{\chi_{\mu}\right\}_{\mu \in \mathbb{Z}^{2 d}}$ of unity is uniformly locally finite, we have for any $(x, y, \xi) \in \mathbb{R}^{3 d}$ and $n \in \mathbb{N}_{0}$

$$
\left|\sum_{|\mu| \leq n} L_{1}^{N} a_{\mu}\left(\frac{x+y}{2}, \xi\right) u(y)\right| \leq C_{1, N}|a|_{N}\langle y\rangle^{-N}\langle\xi\rangle^{-N}
$$

Hence by the Lebesgue convergence theorem

$$
\sum_{\mu \in \mathbb{Z}^{2 d}} A_{\mu} u(x)=(2 \pi)^{-d} \int_{\mathbb{R}^{2 d}} \mathrm{e}^{\mathrm{i}(x-y) \xi} L_{1}^{N} a\left(\frac{x+y}{2}, \xi\right) u(y) \mathrm{d} y \mathrm{~d} \xi
$$

and we obtain
Step 3. Now it suffices to verify the assumptions of the CotlarStein lemma for $\mathcal{H}=L^{2}\left(\mathbb{R}^{d}\right)$ and $\left\{A_{\mu}\right\}_{\mu \in \mathbb{Z}^{2 d}}$. Let us write

$$
A_{\mu} A_{\nu}^{*} u(x)=\int_{\mathbb{R}^{d}} K_{\mu \nu}(x, y) u(y) \mathrm{d} y
$$

with

$$
K_{\mu \nu}(x, y)=(2 \pi)^{-2 d} \int_{\mathbb{R}^{3 d}} \mathrm{e}^{\mathrm{i}(x \xi-z \xi+z \eta-y \eta)}
$$

$$
\cdot a_{\mu}\left(\frac{x+z}{2}, \xi\right) \bar{a}_{\nu}\left(\frac{y+z}{2}, \eta\right) \mathrm{d} \eta \mathrm{~d} z \mathrm{~d} \xi .
$$

so that

$$
\sup _{x \in \mathbb{R}^{d}} \int_{\mathbb{R}^{d}}\left|K_{\mu \nu}(x, y)\right| \mathrm{d} y \leq C_{4, N}|a|_{N}^{2}\langle\mu-\nu\rangle^{2 d+2-N},
$$

and

$$
\sup _{y \in \mathbb{R}^{d}} \int_{\mathbb{R}^{d}}\left|K_{\mu \nu}(x, y)\right| \mathrm{d} x \leq C_{4, N}|a|_{N}^{2}\langle\mu-\nu\rangle^{2 d+2-N} .
$$

Hence by Schur's lemma it follows that

$$
\left\|A_{\mu} A_{\nu}^{*}\right\| \leq C_{4, N}|a|_{N}^{2}\langle\mu-\nu\rangle^{2 d+2-N}
$$

Similarly we obtain

$$
\left\|A_{\mu}^{*} A_{\nu}\right\| \leq C_{5, N}|a|_{N}^{2}\langle\mu-\nu\rangle^{2 d+2-N} .
$$

Now the Cotlar-Stein Iemma applies for sufficiently large N, and along with Step 2 we obtain the assertion.

We are going to apply Schur's lemma. Note $K_{\mu \nu} \in C^{\infty}\left(\mathbb{R}^{2 d}\right)$. Set

$$
{ }^{t} L_{2}=\langle(x-y, \xi-\eta)\rangle^{-2}\left(1+(x-y)\left(D_{\xi}+D_{\eta}\right)-(\xi-\eta) D_{z}\right),
$$

and we rewrite

$$
\begin{aligned}
K_{\mu \nu}(x, y)=(2 \pi)^{-2 d} & \int_{\mathbb{R}^{3} d} \mathrm{e}^{\mathrm{i}(x \xi-z \xi+z \eta-y \eta)} \\
& \cdot L_{2}^{N} a_{\mu}\left(\frac{x+z}{2}, \xi\right) \bar{a}_{\nu}\left(\frac{y+z}{2}, \eta\right) \mathrm{d} \eta \mathrm{~d} z \mathrm{~d} \xi .
\end{aligned}
$$

Note on the support of the integrand we have for $N \geq 2 d+2$

$$
\begin{aligned}
& \left|L_{2}^{N} a_{\mu}\left(\frac{x+z}{2}, \xi\right) \bar{a}_{\nu}\left(\frac{y+z}{2}, \eta\right)\right| \\
& \leq C_{2, N}|a|_{N}^{2}\langle(x-y, \xi-\eta)\rangle^{-N} \\
& \leq C_{3, N}|a|_{N}^{2}\langle\mu-\nu\rangle^{d+1-N}\langle x-y\rangle^{-d-1}
\end{aligned}
$$

§ 3.2 Sobolev Spaces

Definition. 1. Define the weighted L^{2}-space of order $s \in \mathbb{R}$ as

$$
L_{s}^{2}\left(\mathbb{R}^{d}\right)=\left\{u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right) ;\langle x\rangle^{s} u \in L^{2}\left(\mathbb{R}^{d}\right)\right\},
$$

which is a Hilbert space with respect to the inner product

$$
(u, v)_{L_{s}^{2}}=\int_{\mathbb{R}^{d}}\langle x\rangle^{2 s} u(x) \overline{v(x)} \mathrm{d} x
$$

2. Define the Sobolev space of order $s \in \mathbb{R}$ as

$$
H^{s}\left(\mathbb{R}^{d}\right)=\left\{u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right) ; \mathcal{F} u \in L_{s}^{2}\left(\mathbb{R}^{d}\right)\right\}
$$

which is a Hilbert space with respect to the inner product

$$
(u, v)_{H^{s}}=\int_{\mathbb{R}^{d}}\langle\xi\rangle^{2 s}(\mathcal{F} u)(\xi) \overline{(\mathcal{F} v)(\xi)} \mathrm{d} \xi
$$

We further set

$$
H^{\infty}\left(\mathbb{R}^{d}\right)=\bigcap_{s \in \mathbb{R}} H^{s}\left(\mathbb{R}^{d}\right), \quad H^{-\infty}\left(\mathbb{R}^{d}\right)=\bigcup_{s \in \mathbb{R}} H^{s}\left(\mathbb{R}^{d}\right)
$$

Note that for any $s<t$

$$
\mathcal{S}\left(\mathbb{R}^{d}\right) \subset H^{\infty}\left(\mathbb{R}^{d}\right) \subset H^{t}\left(\mathbb{R}^{d}\right) \subset H^{s}\left(\mathbb{R}^{d}\right) \subset H^{-\infty}\left(\mathbb{R}^{d}\right) \subset \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)
$$

Proposition 3.5. Let $s \in \mathbb{R}$. Then $\mathcal{S}\left(\mathbb{R}^{d}\right)$ is dense in $H^{s}\left(\mathbb{R}^{d}\right)$.
Proof. It is straightforward if we discuss it in the Fourier space. We omit the details.

Proof. Let $s>k+d / 2$. We first note that for any $u \in \mathcal{S}\left(\mathbb{R}^{d}\right)$, $|\alpha| \leq k$ and $x \in \mathbb{R}^{d}$

$$
\begin{aligned}
\left|D^{\alpha} u(x)\right| & =(2 \pi)^{-d / 2}\left|\int_{\mathbb{R}^{d}} e^{\mathrm{i} x \xi} \xi^{\alpha}(\mathcal{F} u)(\xi) \mathrm{d} \xi\right| \\
& \leq(2 \pi)^{-d / 2}\left(\int_{\mathbb{R}^{d}}|\xi|^{2|\alpha|}\langle\xi\rangle^{-2 s} \mathrm{~d} \xi\right)^{1 / 2}\|u\|_{H^{s}}=C\|u\|_{H^{s}}
\end{aligned}
$$

Let $v \in H^{s}\left(\mathbb{R}^{d}\right)$. Take a sequence $\left(v_{n}\right)_{n \in \mathbb{N}}$ on $\mathcal{S}\left(\mathbb{R}^{d}\right)$ such that

$$
v_{n} \rightarrow v \text { in } H^{s}\left(\mathbb{R}^{d}\right)
$$

Due to the above bound $\left(v_{n}\right)_{n \in \mathbb{N}}$ is also a Cauchy sequance on $C_{\mathrm{b}}^{k}\left(\mathbb{R}^{d}\right)$, and thus there exists $w \in C_{\mathrm{b}}^{k}\left(\mathbb{R}^{d}\right)$ such that

$$
v_{n} \rightarrow w \text { in } C_{\mathrm{b}}^{k}\left(\mathbb{R}^{d}\right)
$$

By uniquness of limit in $\mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$ it follows that $v=w \in C_{\mathrm{b}}^{k}\left(\mathbb{R}^{d}\right)$. The asserted bound also follows from the above one.

Theorem 3.6 (Sobolev embedding theorem). Let $s \in \mathbb{R}$ and $k \in \mathbb{N}_{\mathrm{O}}$ with $s>k+d / 2$. Then

$$
H^{s}\left(\mathbb{R}^{d}\right) \subset C_{\mathrm{b}}^{k}\left(\mathbb{R}^{d}\right)
$$

Moreover, there exists $C>0$ such that for any $u \in H^{s}\left(\mathbb{R}^{d}\right)$

$$
\|u\|_{C_{\mathrm{b}}^{k}}=\sup \left\{\left|\partial^{\alpha} u(x)\right| ;|\alpha| \leq k, x \in \mathbb{R}^{d}\right\} \leq C\|u\|_{H^{s}}
$$

Therefore the embedding $H^{s}\left(\mathbb{R}^{d}\right) \hookrightarrow C_{\mathrm{b}}^{k}\left(\mathbb{R}^{d}\right)$ is continuous.

Proposition 3.7. Let $s, t \in \mathbb{R}$. The operator $\langle D\rangle^{s}$ is unitary as

$$
H^{t+s}\left(\mathbb{R}^{d}\right) \rightarrow H^{t}\left(\mathbb{R}^{d}\right)
$$

Moreover, it also gives linear isomorphisms

$$
H^{\infty}\left(\mathbb{R}^{d}\right) \rightarrow H^{\infty}\left(\mathbb{R}^{d}\right), \quad H^{-\infty}\left(\mathbb{R}^{d}\right) \rightarrow H^{-\infty}\left(\mathbb{R}^{d}\right)
$$

Proof. By the Fourier transform we may reduce the assertion to that for the corresponding weighted L^{2}-spaces. Then the proof is straightforward. We omit the details.

Theorem 3.8. Let $a \in S_{\rho \delta \delta}^{m}\left(\mathbb{R}^{2 d}\right)$ or $a \in S_{0,0}^{m}\left(\mathbb{R}^{2 d}\right)$ with $m \in \mathbb{R}$ and $0 \leq \delta<\rho \leq 1$, and let $s \in \mathbb{R}$. Then $a(x, D)$ is bounded as $H^{s}\left(\mathbb{R}^{d}\right) \rightarrow H^{s-m}\left(\mathbb{R}^{d}\right)$.

Proof. Set

$$
b(x, \xi)=\langle\xi\rangle^{s-m} \# a(x, \xi) \#\langle\xi\rangle^{-s} \in S_{\rho, \delta}^{0}\left(\mathbb{R}^{2 d}\right) \text { or } S_{0,0}^{0}\left(\mathbb{R}^{2 d}\right)
$$

By Theorems 3.1 or 3.3 there exists $C>0$ such that for any $u \in L^{2}\left(\mathbb{R}^{d}\right)$

$$
\|b(x, D) u\|_{L^{2}} \leq C\|u\|_{L^{2}}
$$

Now we let $u=\langle D\rangle^{s} v$ with $v \in \mathcal{S}\left(\mathbb{R}^{d}\right)$, and then it follows that

$$
\|a(x, D) v\|_{H^{s-m}} \leq C\|v\|_{H^{s}}
$$

Since $\mathcal{S}\left(\mathbb{R}^{d}\right) \subset H^{s}\left(\mathbb{R}^{d}\right)$ is dense, the assertion is verified.

- Smoothing operators

Proposition 3.9. Let $a \in S^{-\infty}\left(\mathbb{R}^{2 d}\right)$.

1. For any $u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$ there exists $N \in \mathbb{N}_{\mathrm{O}}$ such that

$$
a(x, D) u \in\langle x\rangle^{N} H^{\infty}\left(\mathbb{R}^{d}\right) \subset C^{\infty}\left(\mathbb{R}^{d}\right)
$$

2. $a(x, D)$ has the Schwartz kernel $K(x, x-y)$ with $K \in C^{\infty}\left(\mathbb{R}^{2 d}\right)$ satisfying for any $\alpha, \beta, \gamma \in \mathbb{N}_{0}^{d}$

$$
\sup _{(x, z) \in \mathbb{R}^{2 d}}\left|z^{\alpha} \partial_{x}^{\beta} \partial_{z}^{\gamma} K(x, z)\right|<\infty .
$$

3. Conversely, any operator with the Schwartz kernel $K(x, x-y)$ satisfying the above properties belongs to $\Psi^{-\infty}\left(\mathbb{R}^{d}\right)$.
4. For any $u \in \mathcal{S}\left(\mathbb{R}^{d}\right)$ we can write by Fubini's theorem

$$
a(x, D) u(x)=\int_{\mathbb{R}^{d}} K(x, x-y) u(y) \mathrm{d} y
$$

with

$$
K(x, z)=(2 \pi)^{-d} \int_{\mathbb{R}^{d}} \mathrm{e}^{\mathrm{i} z \xi} a(x, \xi) \mathrm{d} \xi
$$

The asserted properties of K follows by integrations by parts.
3. We can construct the associated symbol as

$$
a(x, \xi)=\int_{\mathbb{R}^{d}} \mathrm{e}^{-\mathrm{i} z \xi} K(x, z) \mathrm{d} z
$$

It is easy to see $a \in S^{-\infty}\left(\mathbb{R}^{2 d}\right)$, and that $a(x, D)$ in fact has the Schwartz kernel $K(x, x-y)$. We omit the details.

- Compactness criterion

Theorem 3.10. Let $a \in S_{\rho, \delta}^{0}(\mathbb{R})$ with $0 \leq \delta<\rho \leq 1$ or $\rho=\delta=0$, and assume for any $\alpha, \beta \in \mathbb{N}_{0}^{d}$ there exists $m \in L^{\infty}\left(\mathbb{R}^{2 d}\right)$ such that

$$
\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} a(x, \xi)\right| \leq m(x, \xi)\langle\xi\rangle^{\delta|\alpha|-\rho|\beta|}
$$

and

$$
\lim _{|(x, \xi)| \rightarrow \infty} m(x, \xi)=0
$$

Then $a(x, D)$ is a compact operator on $L^{2}\left(\mathbb{R}^{d}\right)$.

Now suppose $a \in C_{C}^{\infty}\left(\mathbb{R}^{2 d}\right)$, and let $\left(u_{j}\right)_{j \in \mathbb{N}}$ be a bounded sequence on $L^{2}\left(\mathbb{R}^{d}\right)$. By the assumption there exists a compact subset $K \subset \mathbb{R}^{d}$ such that for any $j \in \mathbb{N}$

$$
\operatorname{supp} a(x, D) u_{j} \subset K
$$

In addition, since $a(x, D) \in \Psi^{-\infty}\left(\mathbb{R}^{d}\right)$, by Theorems 3.6 and 3.8 there exists $C>0$ such that for any $j \in \mathbb{N},|\alpha| \leq 1$ and $x \in \mathbb{R}^{d}$

$$
\left|\partial^{\alpha} a(x, D) u_{j}(x)\right| \leq C
$$

Then by the Ascoli-Arzelà theorem we can choose a uniformly convergent subsequence of $\left(a(x, D) u_{j}\right)_{j \in \mathbb{N}}$, and it also converges in $L^{2}\left(\mathbb{R}^{d}\right)$. Hence we are done.

Proof. We first reduce the proof to the case $a \in C_{C}^{\infty}\left(\mathbb{R}^{2 d}\right)$. In fact, take any $\chi \in C_{C}^{\infty}\left(\mathbb{R}^{2 d}\right)$ such that

$$
\chi(x, \xi)= \begin{cases}1 & \text { for }|(x, \xi)| \leq 1 \\ 0 & \text { for }|(x, \xi)| \geq 2\end{cases}
$$

and set for $\epsilon>0$

$$
a_{\epsilon}(x, \xi)=\chi(\epsilon x, \epsilon \xi) a(x, \xi)
$$

Then by the assumption we can see for any $j \in \mathbb{N}_{0}$

$$
\left|a-a_{\epsilon}\right|_{S_{\rho, \delta}^{0}}^{0} \rightarrow 0 \quad \text { as } \epsilon \rightarrow+0
$$

This implies by Theorems 3.1 or 3.3

$$
\lim _{\epsilon \rightarrow+0} a_{\epsilon}(x, D)=a(x, D) \quad \text { in } \mathcal{B}\left(L^{2}\left(\mathbb{R}^{d}\right)\right)
$$

and thus the reduction is valid.

Remark. Let us present a heuristic. Let a be as in Theorem 3.10, and take any bounded sequence $\left(u_{j}\right)_{j \in \mathbb{N}}$ on $L^{2}\left(\mathbb{R}^{d}\right)$. Suppose we could regard $u_{j}(x)$ as a function $u_{j}(x, \xi)$ on $\mathbb{R}^{2 d}$, and look at

$$
a(x, \xi) u_{j}(x, \xi) \text { instead of } a(x, D) u_{j}(x)
$$

By the assumption and the uncertainty principle $u_{j}(x, \xi)$ should be "uniformly bounded" on $\mathbb{R}^{2 d}$. Thus we would have

$$
\left|a(x, \xi) u_{j}(x, \xi)\right| \leq C m(x, \xi)
$$

uniformly in $j \in \mathbb{N}$. Then by the diagonal argument we would be able to extract a subsequence of $\left(a(x, \xi) u_{j}(x, \xi)\right)_{j \in \mathbb{N}}$ that converges on any compact subsets of $\mathbb{R}^{2 d}$.

§ 3.3 Gårding-Type Inequalities

Theorem 3.11 (Elliptic a priori estimate). Let $a \in S_{\rho, \delta}^{m}\left(\mathbb{R}^{2 d}\right)$ be elliptic with $m \in \mathbb{R}$ and $0 \leq \delta<\rho \leq 1$, and let $s, t \in \mathbb{R}$. Then there exists $C>0$ such that for any $u \in \mathcal{S}\left(\mathbb{R}^{d}\right)$

$$
\|u\|_{H^{s+m}} \leq C\left(\|a(x, D) u\|_{H^{s}}+\|u\|_{H^{t}}\right)
$$

Proof. By the assumption and Theorem 2.8 there exist $b \in$ $S_{\rho, \delta}^{-m}\left(\mathbb{R}^{2 d}\right)$ and $r \in S^{-\infty}\left(\mathbb{R}^{2 d}\right)$ such that

$$
1=b(x, D) a(x, D)+r(x, D)
$$

so that for any $u \in \mathcal{S}\left(\mathbb{R}^{d}\right)$

$$
\langle D\rangle^{s+m} u=\langle D\rangle^{s+m} b(x, D) a(x, D) u+\langle D\rangle^{s+m} r(x, D) u
$$

Then the assertion follows by Proposition 3.8.

Example. Let $a \in S_{\rho, \delta}^{m}\left(\mathbb{R}^{2 d}\right)$ be elliptic with $m \in \mathbb{R}$ and $0 \leq \delta<\rho \leq$ 1. Given $f \in H^{s}\left(\mathbb{R}^{d}\right)$ with $s \in \mathbb{R}$, we consider an inhomogeneous elliptic equation

$$
a(x, D) u=f
$$

Suppose we find a solution u in a wide Sobolev space $H^{-N}\left(\mathbb{R}^{d}\right)$ with $N \gg 1$. However, then it automatically follows by the a priori estimate, or more presicely by ($\boldsymbol{\oplus}$), that

$$
u \in H^{s+m}\left(\mathbb{R}^{d}\right)
$$

We can always recover the regularity of a solution u. Such a property is called the elliptic regularity. See also Theorem 4.1.

Theorem 3.12 (Gärding inequality). Let $a \in S_{\rho, \delta}^{m}\left(\mathbb{R}^{2 d}\right)$ with $m \in \mathbb{R}$ and $0 \leq \delta<\rho \leq 1$. Assume there exist $\epsilon_{0}>0$ and $R \geq 0$ such that for any $x \in \mathbb{R}^{d}$ and $|\xi| \geq R$

$$
\operatorname{Re} a(x, \xi) \geq \epsilon_{0}\langle\xi\rangle^{m}
$$

Then for any $\epsilon \in\left(0, \epsilon_{0}\right)$ and $l<m$ there exists $C>0$ such that, as quadratic forms on $H^{m / 2}\left(\mathbb{R}^{d}\right)$,

$$
\operatorname{Re}(a(x, D)) \geq \epsilon\langle D\rangle^{m}-C\langle D\rangle^{l}
$$

i.e., for any $u \in H^{m / 2}\left(\mathbb{R}^{d}\right)$

$$
\operatorname{Re}(a(x, D) u, u)_{L^{2}} \geq \epsilon\|u\|_{H^{m / 2}}^{2}-C\|u\|_{H^{l / 2}}^{2}
$$

Remarks. 1. In general, for an operator A we define

$$
\operatorname{Re} A=\frac{1}{2}\left(A+A^{*}\right), \quad \operatorname{Im} A=\frac{1}{2 \mathrm{i}}\left(A-A^{*}\right)
$$

These conform with the associated quadratic forms as

$$
(\operatorname{Re} A u, u)=\operatorname{Re}(A u, u), \quad(\operatorname{Im} A u, u)=\operatorname{Im}(A u, u)
$$

2. We can say symbol estimates are translated into the associated operators up to lower order errors.
3. Inner product is more informative than norm.

Problem. Deduce the elliptic a priori estimate from the Gårding inequality.

Proof. Take sufficiently large $C_{1}>0$, so that for any $(x, \xi) \in \mathbb{R}^{2 d}$

$$
\operatorname{Re} a(x, \xi) \geq \epsilon_{0}\langle\xi\rangle^{m}-C_{1}\langle\xi\rangle^{m-\rho+\delta}
$$

Set for any $\epsilon^{\prime} \in\left(\epsilon, \epsilon_{0}\right)$

$$
b(x, \xi)=\left(\operatorname{Re} a(x, \xi)-\epsilon^{\prime}\langle\xi\rangle^{m}+C_{1}\langle\xi\rangle^{m-\rho+\delta}\right)^{1 / 2} \in S_{\rho, \delta}^{m / 2}\left(\mathbb{R}^{2 d}\right)
$$

Then there exists $c \in S_{\rho, \delta}^{m-\rho+\delta}\left(\mathbb{R}^{2 d}\right)$ such that

$$
\frac{1}{2}\left(a(x, \xi)+a^{*}(x, \xi)\right)=\left(b^{*} \# b\right)(x, \xi)+\epsilon^{\prime}\langle\xi\rangle^{m}-c(x, \xi)
$$

Theorem 3.13 (Sharp Gårding inequality). Let $a \in S_{\rho, \delta}^{m}\left(\mathbb{R}^{2 d}\right)$
with $m \in \mathbb{R}$ and $0 \leq \delta<\rho \leq 1$. Assume there exists $R \geq 0$ such that for any $x \in \mathbb{R}^{d}$ and $|\xi| \geq R$

$$
\operatorname{Re} a(x, \xi) \geq 0
$$

There exists $C>0$ such that, as quadratic forms on $H^{m / 2}\left(\mathbb{R}^{d}\right)$,

$$
\operatorname{Re}(a(x, D)) \geq-C\langle D\rangle^{m-\rho+\delta}
$$

Remark. The Fefferman-Phong inequality further improves the right-hand side of the sharp Garding inequality.

Proof. We omit the proof.

Problem. Deduce the Gårding inequality from the sharp Gårding inequality.

Hence we obtain for sufficiently large $C_{2}>0$

$$
\begin{aligned}
\operatorname{Re} a(x, D) & =b^{*}(x, D) b(x, D)+\epsilon^{\prime}\langle D\rangle^{m}-c(x, D) \\
& \geq \epsilon^{\prime}\langle D\rangle^{m}-C_{2}\langle D\rangle^{m-\rho+\delta} .
\end{aligned}
$$

Finally for any $l<m$ we can find $C_{3}>0$ such that

$$
-C_{2}\langle D\rangle^{m-\rho+\delta} \geq-\left(\epsilon^{\prime}-\epsilon\right)\langle D\rangle^{m}-C_{3}\langle D\rangle^{l}
$$

Thus we obtain the assertion.

Chapter 4

Application I: Analysis of Singularities

§ 4.1 Pseudolocality

Definition. Define the support and singular support of $u \in$ $\mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$ as

$$
\begin{aligned}
\operatorname{supp} u & =\left(\bigcup\left\{U \subset \mathbb{R}^{d} ; U \text { is open, and }\left.u\right|_{U} \equiv 0\right\}\right)^{c}, \\
\text { sing supp } u & =\left(\bigcup\left\{U \subset \mathbb{R}^{d} ; U \text { is open, and }\left.u\right|_{U} \in C^{\infty}(U)\right\}\right)^{c},
\end{aligned}
$$

respectively.
Remark. By definition $\left.u\right|_{U} \equiv 0$ iff

$$
\langle u, \phi\rangle=0 \text { for any } \phi \in C_{\mathrm{C}}^{\infty}(U)
$$

Similarly, $\left.u\right|_{U} \in C^{\infty}(U)$ iff there exists $v \in C^{\infty}(U)$ such that

$$
\langle u, \phi\rangle=\int_{U} v(x) \phi(x) \mathrm{d} x \quad \text { for any } \phi \in C_{\mathrm{C}}^{\infty}(U)
$$

Proof. 1. Let $u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$. Let $U \subset \mathbb{R}^{d}$ be an open subset such that

$$
\left.u\right|_{U} \in C^{\infty}(U)
$$

Take any $\chi_{1} \in C_{C}^{\infty}(U)$, and choose $\chi_{2} \in C_{C}^{\infty}(U)$ such that

$$
\chi_{2}=1 \text { on a neighborhood of } \operatorname{supp} \chi_{1} .
$$

We decompose

$$
\chi_{1} a(x, D) u=\chi_{1} a(x, D) \chi_{2} u+\chi_{1} a(x, D)\left(1-\chi_{2}\right) u
$$

Then, since $\chi_{2} u \in \mathcal{S}\left(\mathbb{R}^{d}\right)$,

$$
\chi_{1} a(x, D) \chi_{2} u \in \mathcal{S}\left(\mathbb{R}^{d}\right)
$$

On the other hand, since $\chi_{1} a(x, D)\left(1-\chi_{2}\right) \in \psi^{-\infty}\left(\mathbb{R}^{d}\right)$,

$$
\chi_{1} a(x, D)\left(1-\chi_{2}\right) u \in \mathcal{S}\left(\mathbb{R}^{d}\right)
$$

Theorem 4.1. Let $a \in S_{\rho, \delta}^{m}\left(\mathbb{R}^{2 d}\right)$ with $m \in \mathbb{R}$ and $0 \leq \delta<\rho \leq 1$.

1. $a(x, D)$ is pseudolocal, i.e., for any $u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$ sing supp $a(x, D) u \subset$ sing supp u.
2. If a is elliptic, $a(x, D)$ is hypoelliptic, i.e., for any $u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$ sing supp $a(x, D) u=\operatorname{sing} \operatorname{supp} u$.

Remark. An operator A on $\mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$ is said to be local if it satisfies for any $u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$
$\operatorname{supp} A u \subset \operatorname{supp} u$.
See also Proposition 4.2 below.

Thus we obtain $\chi_{1} a(x, D) u \in \mathcal{S}\left(\mathbb{R}^{d}\right)$, and hence

$$
\left.(a(x, D) u)\right|_{U} \in C^{\infty}(U)
$$

This implies the assertion.
2. If a is elliptic, then by Theorem 2.8 there exist $b \in S_{\rho, \delta}^{-m}\left(\mathbb{R}^{2 d}\right)$ and $r \in S^{-\infty}\left(\mathbb{R}^{2 d}\right)$ such that for any $u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$

$$
u=b(x, D) a(x, D) u+r(x, D) u
$$

Then by Proposition 3.9 and the assertion 1
sing supp $u \subset$ sing supp $b(x, D) a(x, D) u \subset$ sing supp $a(x, D) u$.
Thus the assertion follows.

- Topic: Local Ψ DOs

Proposition 4.2. Let $a \in S_{\rho, \delta}^{m}\left(\mathbb{R}^{2 d}\right)$ with $m \in \mathbb{R}, 0 \leq \delta \leq \rho \leq 1$, $\delta \neq 1$ and $\rho \neq 0 . a(x, D)$ is local if and only if it is a PDO.

Proof. Step 1. First, assume $m<-d$, and we show $a \equiv 0$. In this case we can write for any $u \in \mathcal{S}\left(\mathbb{R}^{d}\right)$

$$
a(x, D) u(x)=\int_{\mathbb{R}^{d}} K(x, y) u(y) \mathrm{d} y
$$

with

$$
K(x, y)=(2 \pi)^{-d} \int_{\mathbb{R}^{d}} \mathrm{e}^{\mathrm{i}(x-y) \xi_{a(x, \xi)} \mathrm{d} \xi .}
$$

By the locality we obtain $K(x, y)=0$ for $x \neq y$, hence the claim.

Step 2. Next, let $\alpha \in \mathbb{N}_{0}^{d}$, and we prove $\left(\partial_{\xi}^{\alpha} a\right)(x, D)$ is also local. However, it is straightforward since by integration by parts we can write for any $u \in \mathcal{S}\left(\mathbb{R}^{d}\right)$

$$
\left(\partial_{\xi}^{\alpha} a\right)(x, D) u(x)=(-\mathrm{i})^{|\alpha|} \sum_{\beta \in \mathbb{N}_{0}^{d}}(-1)^{|\beta|}\binom{\alpha}{\beta} x^{\alpha-\beta} a(x, D) x^{\beta} u(x)
$$

Step 3. Here we prove the assertion. By Taylor's theorm and Steps 2 and 1 it follows that for any $N \in \mathbb{N}_{0}$ with $m-\rho N<-d$

$$
a(x, \xi)=\sum_{|\alpha| \leq N} \frac{1}{\alpha!}\left(\partial_{\xi}^{\alpha} a\right)(x, 0) \xi^{\alpha} .
$$

This implies $a(x, D)$ is a PDO.

Definition. The wave front set of $u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$:

$$
\mathrm{WF}(u) \subset \mathbb{R}^{2 d} \backslash 0
$$

is defined such that $\left(x_{0}, \xi_{0}\right) \notin \operatorname{WF}(u)$ if and only if there exist $\chi \in C_{C}^{\infty}\left(\mathbb{R}^{d}\right)$ with $\chi\left(x_{0}\right) \neq 0$ and a conic neighborhood $\Gamma \subset \mathbb{R}^{d} \backslash\{0\}$ of ξ_{0} such that for any $N \geq 0$ there exists $C_{N} \geq 0$ such that

$$
|(\mathcal{F} \chi u)(\xi)| \leq C_{N}\langle\xi\rangle^{-N} \quad \text { for } \xi \in \Gamma
$$

Remark. By definition $\operatorname{WF}(u) \subset \mathbb{R}^{2 d} \backslash 0$ is closed and conic.

Theorem 4.3. Let $u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$. Then

$$
\pi(\mathrm{WF}(u))=\text { sing supp } u
$$

where

$$
\pi: \mathbb{R}^{2 d} \backslash 0 \rightarrow \mathbb{R}^{d},(x, \xi) \mapsto x
$$

is the first projection.
Remark. WF (u) represents "direction-wise singularities" at each point.

Proof. Step 1. Let $x_{0} \notin \pi(\operatorname{WF}(u))$. For each $\xi \in \mathbb{S}^{d-1}$ we have

$$
\left(x_{0}, \xi\right) \notin \mathrm{WF}(u),
$$

so that we can find $\chi \in C_{C}^{\infty}\left(\mathbb{R}^{d}\right)$ and $\Gamma \subset \mathbb{R}^{d} \backslash\{0\}$ as in the definition of the wave front set. Since \mathbb{S}^{d-1} is compact, we can choose $\xi_{j} \in \mathbb{S}^{d-1}, j=1, \ldots, k$, and the corresponding χ_{j} and Γ_{j} such that

$$
\bigcup_{j=1}^{k} \Gamma_{j}=\mathbb{R}^{d} \backslash\{0\}
$$

Now we set

$$
\chi=\chi_{1} \cdots \chi_{k} \in C_{\mathrm{C}}^{\infty}\left(\mathbb{R}^{d}\right)
$$

Then obviously $\chi\left(x_{0}\right) \neq 0$, and moreover we can verify that for any $N \geq 0$ there exists $C_{N}>0$ such that

$$
|(\mathcal{F} \chi u)(\xi)| \leq C_{N}\langle\xi\rangle^{-N} \quad \text { for } \xi \in \mathbb{R}^{d}
$$

(The verification is left to the reader as a Problem.) Thus

$$
\chi u=\mathcal{F}^{*} \mathcal{F} \chi u \in C^{\infty}\left(\mathbb{R}^{d}\right)
$$

and this implies $x_{0} \notin$ sing supp u.

Step 2. Conversely, let $x_{0} \notin \operatorname{sing} \operatorname{supp} u$. Then there exists $\chi \in$ $C_{C}^{\infty}\left(\mathbb{R}^{d}\right)$ such that

$$
\chi\left(x_{0}\right) \neq 0, \quad \chi u \in C_{\mathrm{C}}^{\infty}\left(\mathbb{R}^{d}\right) \subset \mathcal{S}\left(\mathbb{R}^{d}\right)
$$

Since $\mathcal{F} \chi u \in \mathcal{S}\left(\mathbb{R}^{d}\right)$, for any $N \geq 0$ there exists $C_{N}>0$ such that

$$
|(\mathcal{F} \chi u)(\xi)| \leq C_{N}\langle\xi\rangle^{-N} \text { for } \xi \in \mathbb{R}^{d}
$$

Thus for any $\xi \in \mathbb{R}^{d} \backslash\{0\}$ we obtain $\left(x_{0}, \xi\right) \notin \mathrm{WF}(u)$.

Problem. Compute the wave front sets of the following distributions.

1. The Dirac delta funcion δ on \mathbb{R}^{d};
2. $\delta\left(x^{\prime}\right) \otimes 1\left(x^{\prime \prime}\right)$ for $\left(x^{\prime}, x^{\prime \prime}\right) \in \mathbb{R}^{p} \times \mathbb{R}^{q}$;
3. $\delta_{\mathbb{S}^{d-1}}$ on \mathbb{R}^{d};
4. $(x+i 0)^{-1}$ on \mathbb{R};
5. The characteristic function χ_{Γ} of an angular domain $\Gamma \subset \mathbb{R}^{2}$.

§ 4.3 Microlocal Ellipticity

Definition. Let $a \in S_{\rho, \delta}^{m}\left(\mathbb{R}^{2 d}\right)$ with $m \in \mathbb{R}$ and $0 \leq \delta<\rho \leq 1$.

1. We say $a(x, \xi)$, or $a(x, D)$, is elliptic at $x_{0} \in \mathbb{R}^{d}$ if there exists $\epsilon, R>0$ and a neighborhood $\Omega \subset \mathbb{R}^{d}$ of x_{0} such that for any $x \in \Omega$ and $|\xi| \geq R$

$$
|a(x, \xi)| \geq \epsilon|\xi|^{m}
$$

2. We say $a(x, \xi)$, or $a(x, D)$, is elliptic at $\left(x_{0}, \xi_{0}\right) \in \mathbb{R}^{2 d} \backslash 0$ if there exist $\epsilon, R>0$ and a conic neighborhood $\left\ulcorner\subset \mathbb{R}^{2 d}\right.$ of $\left(x_{0}, \xi_{0}\right)$ such that for any $(x, \xi) \in \Gamma$ with $|\xi| \geq R$

$$
|a(x, \xi)| \geq \epsilon|\xi|^{m} .
$$

Theorem 4.4. Let $u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$ and $\left(x_{0}, \xi_{0}\right) \in \mathbb{R}^{2 d} \backslash 0$. Then $\left(x_{0}, \xi_{0}\right) \notin \operatorname{WF}(u)$ if and only if there exists $a \in S_{\rho, \delta}^{m}\left(\mathbb{R}^{2 d}\right)$ with $m \in \mathbb{R}$ and $0 \leq \delta<\rho \leq 1$ such that it is elliptic at $\left(x_{0}, \xi_{0}\right)$ and

$$
a(x, D) u \in C^{\infty}\left(\mathbb{R}^{d}\right)
$$

Proof. Necessity. First let $\left(x_{0}, \xi_{0}\right) \notin \operatorname{WF}(u)$. Take $\chi \in C_{C}^{\infty}\left(\mathbb{R}^{d}\right)$ and $\Gamma \subset \mathbb{R}^{d} \backslash\{0\}$ as in the definition of the wave front set. Let $\eta \in C^{\infty}\left(\mathbb{R}^{d}\right)$ be such that

$$
\eta\left(\xi_{0}\right) \neq 0, \quad \operatorname{supp} \eta \subset\ulcorner, \quad \eta(t \xi)=\eta(\xi) \text { for } t \geq 1 \text { and }|\xi| \geq 1
$$

Then for any $N \geq 0$ there exists $C_{N}>0$ such that

$$
|\eta(\xi)(\mathcal{F} \chi u)(\xi)| \leq C_{N}\langle\xi\rangle^{-N} \text { for all } \xi \in \mathbb{R}^{d}
$$

3. Define the characteristic set of $a(x, \xi)$, or $a(x, D)$, as

$$
\begin{aligned}
\operatorname{char} a & =\operatorname{char}(a(x, D)) \\
& =\left\{(x, \xi) \in \mathbb{R}^{2 d} \backslash 0 ; a \text { is not elliptic at }(x, \xi)\right\} .
\end{aligned}
$$

Remark. By definition char $a \subset \mathbb{R}^{2 d} \backslash 0$ is closed and conic. Note, if a is elliptic, it is elliptic at any $(x, \xi) \in \mathbb{R}^{2 d} \backslash 0$ and char $a=\emptyset$.
which implies

$$
(\bar{\chi}(x) \bar{\eta}(D))^{*} u=\mathcal{F}^{*} \eta \mathcal{F} \chi u \in C^{\infty}\left(\mathbb{R}^{d}\right)
$$

Thus it suffices to take $a(x, \xi)=(\bar{\chi}(x) \bar{\eta}(\xi))^{*} \in S^{0}\left(\mathbb{R}^{2 d}\right)$.
Sufficiency. Conversely, assume we can find $a \in S_{\rho, \delta}^{m}\left(\mathbb{R}^{2 d}\right)$ as in the assertion. Note we may assume

$$
\operatorname{supp} u \Subset \mathbb{R}^{d}, \quad \operatorname{supp} a(x, D) u \Subset \mathbb{R}^{d}
$$

In fact, take $\phi, \psi \in C_{C}^{\infty}\left(\mathbb{R}^{d}\right)$ such that

$$
\phi\left(x_{0}\right) \neq 0, \quad \psi=1 \text { on } \operatorname{supp} \phi
$$

and decompose

$$
\phi(x) a(x, D) u=\phi(x) a(x, D) \psi(x) u+\phi(x) a(x, D)(1-\psi(x)) u
$$

Then it suffices to prove the assertion for ψu and ϕa instead of u and a, respectively.

Next, by the assumption there exist $\epsilon, R>0$ and a conic neighborhood $\Gamma \subset \mathbb{R}^{2 d}$ of (x_{0}, ξ_{0}) such that

$$
|a(x, \xi)| \geq \epsilon|\xi|^{m} \quad \text { for }(x, \xi) \in \Gamma \text { with }|\xi| \geq R
$$

Then we can construct $b \in S_{\rho, \delta}^{-m}\left(\mathbb{R}^{2 d}\right)$ and $r \in S^{-\infty}\left(\mathbb{R}^{2 d}\right)$ such that

$$
b(x, D) a(x, D)=\eta(D) \chi(x)+r(x, D)
$$

where $\chi, \eta \in C^{\infty}\left(\mathbb{R}^{d}\right)$ satisfy

$$
\begin{aligned}
& \chi\left(x_{0}\right) \eta\left(R \xi_{0} /\left|\xi_{0}\right|\right) \neq 0, \quad \text { supp } \chi \eta \subset \Gamma, \\
& \eta(t \xi)=\eta(\xi) \text { for }|\xi| \geq R \text { and } t \geq 1
\end{aligned}
$$

In fact, let $b_{0}=\chi \eta a^{-1}$, and then there exist $c_{1} \in S_{\rho, \delta}^{-\rho+\delta}\left(\mathbb{R}^{2 d}\right)$ and $r_{1} \in S^{-\infty}\left(\mathbb{R}^{2 d}\right)$ such that

$$
b_{0} \# a=\eta \# \chi+c_{1}+r_{1}, \quad \operatorname{supp} c_{1} \subset \operatorname{supp} \chi \eta .
$$

Then, let $b_{1}=-c_{1} a^{-1}$, and there exist $c_{2} \in S_{\rho, \delta}^{-2(\rho-\delta)}\left(\mathbb{R}^{2 d}\right)$ and $r_{2} \in S^{-\infty}\left(\mathbb{R}^{2 d}\right)$ such that

$$
b_{1} \# a=-c_{1}+c_{2}+r_{2}, \quad \operatorname{supp} c_{2} \subset \operatorname{supp} \chi \eta .
$$

Repeat this procedure, and we take the asymptotic sum

$$
b \sim \sum_{j=0}^{\infty} b_{j}
$$

which satisfies the claimed identity.

Now we obtain, noting the support of u and $a(x, D) u$,

$$
\eta(D) \chi u=b(x, D) a(x, D) u-r(x, D) u \in \mathcal{S}\left(\mathbb{R}^{d}\right),
$$

cf. Proposition 3.9. Therefore $\left(x_{0}, \xi_{0}\right) \notin \mathrm{WF}(u)$.

Proof. Step 1. Assume $\left(x_{0}, \xi_{0}\right) \notin \operatorname{WF}(a(x, D) u) \cup$ char a. Then, since $\left(x_{0}, \xi_{0}\right) \notin \operatorname{WF}(a(x, D) u)$, by Theorem 4.4 there exists $b \in$ $S_{\sigma, \epsilon}^{l}\left(\mathbb{R}^{2 d}\right)$ with $l \in \mathbb{R}$ and $0 \leq \epsilon<\sigma \leq 1$ such that it is elliptic at (x_{0}, ξ_{0}) and

$$
b(x, D) a(x, D) u \in C^{\infty}\left(\mathbb{R}^{d}\right)
$$

On the other hand, since $\left(x_{0}, \xi_{0}\right) \notin$ char $a, b \# a$ is also elliptic at $\left(x_{0}, \xi_{0}\right)$. Hence by Theorem 4.4 we obtain $\left(x_{0}, \xi_{0}\right) \notin \mathrm{WF}(u)$.

Step 2. Next, let $\left(x_{0}, \xi_{0}\right) \notin \operatorname{WF}(u)$. Take $\chi, \tilde{\chi} \in C_{C}^{\infty}\left(\mathbb{R}^{d}\right)$ and $\eta, \tilde{\eta} \in C^{\infty}\left(\mathbb{R}^{d}\right)$ such that

$$
\begin{aligned}
& \chi\left(x_{0}\right) \eta\left(\xi_{0}\right) \neq 0, \quad \tilde{\eta}(D) \tilde{\chi}(x) u \in H^{\infty}\left(\mathbb{R}^{d}\right) \\
& \eta(t \xi)=\eta(\xi), \tilde{\eta}(t \xi)=\tilde{\eta}(\xi) \text { for } t \geq 1 \text { and }|\xi| \geq\left|\xi_{0}\right| \\
& \tilde{\chi}(x) \tilde{\eta}(\xi)=1 \quad \text { on a neighborhood of } \operatorname{supp} \chi(x) \eta(\xi) .
\end{aligned}
$$

We decompose

$$
\begin{aligned}
\eta(D) \chi(x) a(x, D) u= & \eta(D) \chi(x) a(x, D) \tilde{\eta}(D) \tilde{\chi}(x) u \\
& +\eta(D) \chi(x) a(x, D)(1-\tilde{\eta}(D) \tilde{\chi}(x)) u .
\end{aligned}
$$

Then the first term on the right-hand side belongs to $H^{\infty}\left(\mathbb{R}^{d}\right)$. In addition, since

$$
\eta(D) \chi(x) a(x, D)(1-\tilde{\eta}(D) \tilde{\chi}(x)) \in \Psi^{-\infty}\left(\mathbb{R}^{d}\right)
$$

the second term belongs to $C^{\infty}\left(\mathbb{R}^{d}\right)$. Thus we obtain $\left(x_{0}, \xi_{0}\right) \notin$ WF $(a(x, D) u)$. We are done.

Proposition 4.6. Let $p \in C^{\infty}(\Gamma ; \mathbb{R})$ with $\Gamma \subset \mathbb{R}^{2 d}$ open. For any bicharacteristic $\gamma: I \rightarrow \Gamma, I \subset \mathbb{R}$, of $p, p \circ \gamma$ is constant on I.

Proof. Let us write simply $\gamma=(x, \xi)$. Then by definition

$$
\frac{\mathrm{d}}{\mathrm{~d} t} p(x, \xi)=\sum_{j=1}^{d}\left(\frac{\mathrm{~d} x_{j}}{\mathrm{~d} t} \frac{\partial p}{\partial x_{j}}(x, \xi)+\frac{\mathrm{d} \xi_{j}}{\mathrm{~d} t} \frac{\partial p}{\partial \xi_{j}}(x, \xi)\right)=0
$$

Hence the assertion follows.

Definition. A bicharacteristic γ of p is called a null bicharacteristic if $p \circ \gamma \equiv 0$.

§ 4.4 Propagation of Wave Front Set

- Hamilton flow

Definition. Let $\Gamma \subset \mathbb{R}^{2 d}$ be open. Define the Hamilton vector field associated with a Hamiltonian $p \in C^{\infty}(\Gamma ; \mathbb{R})$ as

$$
H_{p}=\frac{\partial p}{\partial \xi} \frac{\partial}{\partial x}-\frac{\partial p}{\partial x} \frac{\partial}{\partial \xi}=\sum_{j=1}^{d}\left(\frac{\partial p}{\partial \xi_{j}} \frac{\partial}{\partial x_{j}}-\frac{\partial p}{\partial x_{j}} \frac{\partial}{\partial \xi_{j}}\right) \in \mathfrak{X}(\Gamma) .
$$

In addition, a solution to the Hamilton equations

$$
\frac{\mathrm{d} x_{j}}{\mathrm{~d} t}=\frac{\partial p}{\partial \xi_{j}}(x, \xi), \quad \frac{\mathrm{d} \xi_{j}}{\mathrm{~d} t}=-\frac{\partial p}{\partial x_{j}}(x, \xi), \quad j=1, \ldots, d,
$$

is called a bicharacteristic of p.

Proposition 4.7. Let $\Gamma \subset \mathbb{R}^{2 d} \backslash 0$ be open and conic, and let $p \in C^{\infty}(\Gamma ; \mathbb{R})$ be positively homogeneous of degree $m \in \mathbb{R}$ in $\xi \neq 0$. If

$$
\gamma(t ; y, \eta)=(x(t ; y, \eta), \xi(t ; y, \eta)), \quad \gamma(0 ; y, \eta)=(y, \eta)
$$

is a bicharacteristic of p, then for any $\lambda>0$

$$
\gamma_{ \pm, \lambda}(t ; y, \eta):=\left(x\left(\pm \lambda^{m-1} t ; y, \eta\right), \lambda \xi\left(\pm \lambda^{m-1} t ; y, \eta\right)\right)
$$

are bicharacteristics of $\pm p$, respectively.

Proof. It is straightforward due to direct computations.

- Propagation theorem

Theorem 4.8. Let $a \in S_{\mathrm{Cl}}^{m}\left(\mathbb{R}^{2 d}\right)$ with principal symbol p, and let $u, f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$ satisfy

$$
a(x, D) u=f
$$

Let $\gamma:[0, T] \rightarrow \mathbb{R}^{2 d} \backslash 0$ be a null bicharacteristic of $\operatorname{Re} p$, and suppose for some conic neighborhood $\Gamma \subset \mathbb{R}^{2 d} \backslash 0$ of $\gamma([0, T])$

$$
\operatorname{Im} p \geq 0 \quad \text { in } \Gamma .
$$

If

$$
\gamma(0) \in \operatorname{WF}(u) \text { and } \gamma([0, T]) \cap \operatorname{WF}(f)=\emptyset,
$$

then $\gamma(T) \in \operatorname{WF}(u)$.
3. The conclusion is equivalent to the converse propagation of regularities: "If

$$
\gamma(T) \notin \operatorname{WF}(u) \text { and } \quad \gamma([0, T]) \cap \operatorname{WF}(f)=\emptyset,
$$

then $\gamma(0) \notin \mathrm{WF}(u)$." In fact, the proof keeps track of propagation of regularities.
4. Recall Theorem 4.5 implies

$$
\operatorname{WF}(u) \cap(\operatorname{char} p)^{c}=\operatorname{WF}(f) \cap(\operatorname{char} p)^{c}
$$

This is why we consider only the null bicharacteristics. (However, note also

$$
\text { char } p=\{\operatorname{Re} p=0\} \cap\{\operatorname{Im} p=0\},
$$

see Corollary 4.10 below.)

Remarks. 1. WF (u) propagates forward/backward along the null bicharacteristics of $\operatorname{Re} p$ where $\pm \operatorname{Im} p \geq 0$, respectively, until they hit $\mathrm{WF}(f)$. As for the backward propagation for $\operatorname{Im} p \leq 0$, it suffices to apply the assertion to

$$
-a(x, D) u=-f
$$

along with Proposition 4.7. Note, if $\operatorname{Im} p \equiv 0$, then $\operatorname{WF}(u)$ propagates both forward and backward, see Corollary 4.9 below.
2. In other words, along null bicharacteristics, singularities may only be amplified/damped according to $\pm \operatorname{Im} p \geq 0$, respectively. We avoid $\operatorname{WF}(f)$ since the external force f could create or annihilate singularities there.

Corollary 4.9. Let $a \in S_{\mathrm{Cl}}^{m}\left(\mathbb{R}^{2 d}\right)$ have a real principal symbol p, and let $u, f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$ satisfy

$$
a(x, D) u=f
$$

If $\gamma:[0, T] \rightarrow \mathbb{R}^{2 d} \backslash 0$ is a null bicharacteristic of p such that $\gamma([0, T]) \cap \operatorname{WF}(f)=\emptyset$, then either

$$
\gamma([0, T]) \subset \operatorname{WF}(u) \text { or } \gamma([0, T]) \subset(\operatorname{WF}(u))^{c}
$$

holds.

Proof. The assertion is obvious by Theorem 4.8 and the subsequent remarks.

Corollary 4.10. Let $a \in S_{c \mid}^{m}\left(\mathbb{R}^{2 d}\right)$ have a principal symbol p with $\operatorname{Im} p \geq 0$, and let $u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$ and $f \in C^{\infty}\left(\mathbb{R}^{d}\right)$ satisfy

$$
a(x, D) u=f
$$

If $\gamma:[0, T] \rightarrow \mathbb{R}^{2 d} \backslash 0$ is a null bicharacteristic of $\operatorname{Re} p$ such that $\operatorname{Im} p(\gamma(T))>0$, then

$$
\gamma([0, T]) \subset(\operatorname{WF}(u))^{c}
$$

holds.

Proof. The assertion is obvious by Theorems 4.5 and 4.8 , and the remarks subsequent to Theorems 4.8.

Example. Consider the 1D wave equation

$$
\left(\frac{\partial^{2}}{\partial t^{2}}-\frac{\partial^{2}}{\partial x^{2}}\right) u(t, x)=0 \quad \text { for }(t, x) \in \mathbb{R} \times \mathbb{R}
$$

We can apply Theorems 4.5 and 4.8 , or Corollary 4.9, with

$$
a(t, x, \tau, \xi)=p(t, x, \tau, \xi)=-\tau^{2}+\xi^{2}, \quad f=0
$$

and conclude that $\operatorname{WF}(u)$ is a subset of the light cone

$$
\left\{(t, x, \tau, \xi) \in \mathbb{R}^{4} \backslash 0 ;-\tau^{2}+\xi^{2}=0\right\}
$$

and that $\operatorname{WF}(u)$ is invariant under the Hamilton flow of p. Note all the null bicharacteristics of p are given by

$$
(t, x, \tau, \xi)=\left(t_{0}-2 s \tau_{0}, x_{0}+2 s \xi_{0}, \tau_{0}, \xi_{0}\right) \text { with }-\tau_{0}^{2}+\xi_{0}^{2}=0
$$

Outline of proof of Theorem 4.8. Step 1. We microlocalize in a conic neighborhood of $\gamma([0, T])$ with factor $|D|^{1-m}$, so that we may let

$$
m=1, \quad \operatorname{Im} p \geq 0, \quad f \in C_{\mathrm{C}}^{\infty}\left(\mathbb{R}^{d}\right), \quad u \in H^{s}\left(\mathbb{R}^{d}\right) \text { for some } s \in \mathbb{R}
$$

In fact, choose $\chi \in S_{\mathrm{cl}}^{1-m}\left(\mathbb{R}^{2 d}\right)$ and $\tilde{\chi} \in S_{\mathrm{Cl}}^{0}\left(\mathbb{R}^{2 d}\right)$ both supported in a small conic neighborhood of $\gamma([0, T])$ such that
$\chi(x, \xi)=|\xi|^{1-m}$ in a conic neighborhood of $\gamma([0, T])$,
$\tilde{\chi}(x, \xi)=1$ in a conic neighborhood of supp χ.

Then the claim follows by the decomposition

$$
\begin{aligned}
& \chi(x, D) a(x, D) \tilde{\chi}(x, D) u \\
& =\chi(x, D) f-\chi(x, D) a(x, D)(1-\tilde{\chi}(x, D)) u
\end{aligned}
$$

and the structure of compactly supported distributions. Note $\gamma([0, T])$ remains the same up to scaling of time parameter.

Step 2. Let $(y, \eta) \in \mathbb{R}^{2 d} \backslash 0$, and take $\psi \in S_{\mathrm{Cl}}^{s}\left(\mathbb{R}^{2 d}\right)$ supported in a small conic neighborhood of (y, η) with

$$
\psi(x, \xi)=\langle\epsilon \xi\rangle^{-1 / 2}\langle\xi\rangle^{s+1 / 2} \text { in a conic neighborhood of }(y, \eta)
$$

Here $\epsilon \in(0,1]$ is a parameter to be let $\epsilon \rightarrow 0$, cf. Yosida approximation. Now we solve a transport equation

$$
\frac{\partial}{\partial t} b-\{\operatorname{Re} p, b\}=0, \quad b(0, x, \xi)=\psi(x, \xi)
$$

In fact, if $\gamma(t ; x, \xi)$ is a bicharacteristic with initial data (x, ξ),

$$
\frac{\partial}{\partial t} b(t, \gamma(t ; x, \xi))=0, \quad \text { and hence } \quad b(t, x, \xi)=\psi(\gamma(-t, x, \xi))
$$

Note b are bounded in $S_{\mathrm{Cl}}^{s+1 / 2}\left(\mathbb{R}^{2 d}\right)$ for $t \in[0, T]$ and $\epsilon \in(0,1]$.

Step 3. In the following let us write for short

$$
\begin{aligned}
& A=a(x, D), \quad P_{r}=(\operatorname{Re} p)^{\mathrm{W}}(x, D), \quad P_{i}=(\operatorname{Im} p)^{\mathrm{W}}(x, D), \\
& B=b^{\mathrm{W}}(t, x, D), \quad R=r^{\mathrm{W}}(t, x, D), \quad \cdots
\end{aligned}
$$

Here we are going to show there exist $\mu>0$ and $r \in S_{\mathrm{cl}}^{2 s}\left(\mathbb{R}^{2 d}\right)$, bounded uniformly in $t \in[0, T]$ and $\epsilon \in(0,1]$, such that

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{\mu t} B^{2}\right)-2 \mathrm{e}^{\mu t} \operatorname{Im}\left(A^{*} B^{2}\right) \geq R
$$

as quadratic forms, e.g., on $\mathcal{S}\left(\mathbb{R}^{d}\right)$. In fact, we can compute

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{\mu t} B^{2}\right)= & \mu \mathrm{e}^{\mu t} B^{2}+\mathrm{i}^{\mu t}\left[P_{r}, B\right] B+\mathrm{ie}^{\mu t} B\left[P_{r}, B\right]+R_{1} \\
= & \mu \mathrm{e}^{\mu t} B^{2}+2 \mathrm{e}^{\mu t} \operatorname{Im}\left(P_{r} B^{2}\right)+R_{1} \\
= & \mu \mathrm{e}^{\mu t} B^{2}+2 \mathrm{e}^{\mu t} \operatorname{Im}\left(A^{*} B^{2}\right)+2 \mathrm{e}^{\mu t} \operatorname{Re}\left(P_{i} B^{2}\right) \\
& +2 \mathrm{e}^{\mu t} \operatorname{Im}\left(\left(P_{r}-\mathrm{i} P_{i}-A^{*}\right) B^{2}\right)+R_{1}
\end{aligned}
$$

where $R_{1} \in \Psi_{\mathrm{cl}}^{2 s}\left(\mathbb{R}^{d}\right)$. We continue by using the L^{2}-boundedness theorem and the sharp Gårding inequality as

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{dt}}\left(\mathrm{e}^{\mu t} B^{2}\right)= & \mu \mathrm{e}^{\mu t} B^{2}+2 \mathrm{e}^{\mu t} \operatorname{Im}\left(A^{*} B^{2}\right) \\
& +2 \mathrm{e}^{\mu t} B P_{i} B+\mathrm{e}^{\mu t}\left[\left[P_{i}, B\right], B\right] \\
& +2 \mathrm{e}^{\mu t} B\left(\operatorname{Im}\left(P_{r}-\mathrm{i} P_{i}-A^{*}\right)\right) B \\
& +2 \mathrm{e}^{\mu t} \operatorname{Im}\left(\left[P_{r}-\mathrm{i} P_{i}-A^{*}, B\right] B\right)+R_{1} \\
= & \left(\mu-C_{1}\right) \mathrm{e}^{\mu t} B^{2}+2 \mathrm{e}^{\mu t} \operatorname{Im}\left(A^{*} B^{2}\right)+R_{2}
\end{aligned}
$$

with $R_{2} \in \Psi_{\mathrm{Cl}}^{2 s}\left(\mathbb{R}^{d}\right)$. Therefore the claim follows for large $\mu>0$.

Step 4. Now let $\gamma(T ; y, \eta) \notin \operatorname{WF}(u)$. By Step 3 and the fundamental theorem of calculus

$$
\|B(0) u\|_{L^{2}}^{2} \leq \mathrm{e}^{\mu T}\|B(T) u\|_{L^{2}}^{2}+C\left(\|u\|_{H^{s}}^{2}+\|f\|_{H^{s+1}}^{2}\right)
$$

uniformly in $\epsilon \in(0,1]$. If we choose supp ψ small enough, and let and let $\epsilon \rightarrow+0$, then by the monotone convergence theorem
u is $H^{s+1 / 2}$ in a (microlocal) neighborhood of (y, η).
Hence u is $H^{s+1 / 2}$ in a neighborhood of $\gamma([0, T])$. We repeat the above arguments, and obtain at last u is C^{∞} in a neighborhood of $\gamma([0, T])$. (We have to be careful that these neighborhoods should not shrink to $\gamma([0, T])$.) Thus we are done.

Chapter 5

Application II: Local Solvability of PDOs

5.1 Local Solvability

- Definition and reduction

Throughout the chapter we study a PDO

$$
a(x, D)=\sum_{|\alpha| \leq m} a_{\alpha}(x) D^{\alpha} ; \quad a_{\alpha} \in C^{\infty}\left(\mathbb{R}^{d}\right)
$$

Definition. $a(x, D)$ is locally solvable at $x_{0} \in \mathbb{R}^{d}$ if there exists a neighborhood $U \subset \mathbb{R}^{d}$ of x_{0} such that for any $f \in C^{\infty}\left(\mathbb{R}^{d}\right)$ there exists $u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$ satisfying

$$
a(x, D) u=f \text { on } U
$$

Proof. 1. Step 1. Assume $a(x, D)$ is locally solvable at x_{0}, and take a neighborhood $U \subset \mathbb{R}^{d}$ of x_{0} as in the definition. We may let U be bounded. For each $v \in C_{C}^{\infty}(U)$ we define

$$
\phi_{v}: X:=H^{\infty}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{C}, \quad f \mapsto(f, v)_{L^{2}}
$$

and set for each $n, k \in \mathbb{N}_{\mathrm{O}}$

$$
X_{n, k}=\left\{f \in X ; \forall v \in C_{C}^{\infty}(U)\left|\phi_{v}(f)\right| \leq n\left\|a^{*}(x, D) v\right\|_{H^{k}}\right\}
$$

We are going to apply the Baire category theorem for X and $X_{n, k}$. Note X is a complete metric space with respect to a distance given by

$$
d(f, g)=\sum_{k \in \mathbb{N}_{0}} \frac{1}{2^{k}} \frac{\|f-g\|_{H^{k}}}{1+\|f-g\|_{H^{k}}}
$$

Theorem 5.1. 1. If $a(x, D)$ is locally solvable at $x_{0} \in \mathbb{R}^{d}$, then there exist a neighborhood $U \subset \mathbb{R}^{d}$ of $x_{0}, s, t \in \mathbb{R}$ and $c>0$ such that for any $v \in C_{C}^{\infty}(U)$

$$
\left\|a^{*}(x, D) v\right\|_{H^{-s}} \geq c\|v\|_{H^{-t}}
$$

2. Conversely, if there exist $U \subset \mathbb{R}^{d}, s, t \in \mathbb{R}$ and $c>0$ as above, then for any $f \in H^{t}\left(\mathbb{R}^{d}\right)$ there exists $u \in H^{s}\left(\mathbb{R}^{d}\right)$ such that

$$
a(x, D) u=f \text { on } U .
$$

In partiucular, $a(x, D)$ is locally solvable at x_{0}.
Remark. We may say, very roughly, $a(x, D): H^{s} \rightarrow H^{t}$ is surjective if and only if $a^{*}(x, D): H^{-t} \rightarrow H^{-s}$ is injective.

Step 2. We verify the assumptions the Baire category theorem. To see $X_{n, k} \subset X$ is closed let us rewrite

$$
X_{n, k}=\bigcap_{v \in C_{c}^{\infty}(U)}\left\{f \in X ; \quad\left|\phi_{v}(f)\right| \leq n\left\|a^{*}(x, D) v\right\|_{H^{k}}\right\}
$$

Thus it suffices to show ϕ_{v} is continuous, however it is staightforward since

$$
\left|\phi_{v}(f)\right|=\left|(f, v)_{L^{2}}\right| \leq\|f\|_{H^{0}}\|v\|_{H^{0}}
$$

Next we prove $X_{n, k}$ with $n, k \in \mathbb{N}_{0}$ exhaust X. Take any $f \in X \subset$ $C^{\infty}\left(\mathbb{R}^{d}\right)$, and then by the assumption there exists $u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$ such that

$$
a(x, D) u=f \text { on } U
$$

Now by the continuity of u, boundedness of U and the Sobolev embedding theorem there exist $C, C^{\prime}>0$ and $k, k^{\prime} \in \mathbb{N}_{0}$ such that for any $v \in C_{C}^{\infty}(U)$

$$
\begin{aligned}
\left|\phi_{v}(f)\right| & =\left|\left(u, a^{*}(x, D) v\right)_{L^{2}}\right| \\
& \leq C \sup \left\{\left|\partial^{\alpha} a^{*}(x, D) v(x)\right| ;|\alpha| \leq k, x \in U\right\} \\
& \leq C^{\prime}\left\|a^{*}(x, D) v\right\|_{H^{k^{\prime}}}
\end{aligned}
$$

This implies the claim.

Step 3. Now by the Baire category theorem there exist $g \in X$, $l \in \mathbb{N}_{0}$ and $\epsilon>0$ such that

$$
\left\{h \in X ;\|h-g\|_{H^{l}} \leq \epsilon\right\} \subset X_{n, k}
$$

Thus for any $v \in C_{C}^{\infty}(U)$ and $f \in X$ with $\|f\|_{H^{l}} \leq \epsilon$

$$
\left|\phi_{v}(f)\right| \leq\left|\phi_{v}(f+g)\right|+\left|\phi_{v}(g)\right| \leq 2 n\left\|a^{*}(x, D) v\right\|_{H^{k}},
$$

Note it is well-defined since $a^{*}(x, D): H^{-t}\left(\mathbb{R}^{d}\right) \rightarrow H^{-s}\left(\mathbb{R}^{d}\right)$ is injective. Since

$$
\left|\phi_{f}(w)\right| \leq\|v\|_{H^{-t}}\|f\|_{H^{t}} \leq C\|w\|_{H^{-s}}\|f\|_{H^{t}},
$$

we can extend ϕ_{f} to $\widetilde{\phi}_{f} \in\left(H^{-s}\left(\mathbb{R}^{d}\right)\right)^{*}$ by the Hahn-Banach theorem. Then we can write for some $u \in H^{s}\left(\mathbb{R}^{d}\right)$

$$
\widetilde{\phi}_{f}=(\cdot, u)_{L^{2}}
$$

and hence for any $w=a^{*}(x, D) v \in L$
$(v, f)_{L^{2}}=\widetilde{\phi}_{f}(w)=(w, u)_{L^{2}}=\left(a^{*}(x, D) v, u\right)_{L^{2}}=(v, a(x, D) u)_{L^{2}}$.
Thus the assertion 2 is verified.
which in turn implies for any $v \in C_{C}^{\infty}(U)$ and $f \in X$

$$
\left|(f, v)_{L^{2}}\right| \leq 2 n \epsilon^{-1}\|f\|_{H^{l}}\left\|a^{*}(x, D) v\right\|_{H^{k}}
$$

Hence it follows that for any $v \in C_{\mathrm{C}}^{\infty}(U)$

$$
\|v\|_{H^{-l}} \leq 2 n \epsilon^{-1}\left\|a^{*}(x, D) v\right\|_{H^{k}}
$$

and the assertion 1 is verified.
2. Assume that there exist $U \subset \mathbb{R}^{d}, s, t \in \mathbb{R}$ and $c>0$ as in the assertion 2. Take any $f \in H^{t}\left(\mathbb{R}^{d}\right)$. Define

$$
\phi_{f}: L \rightarrow \mathbb{C} ; \quad L=a^{*}(x, D) C_{C}^{\infty}(U),
$$

as, for any $w=a^{*}(x, D) v \in L$,

$$
\phi_{f}(w)=(v, f)_{L^{2}}
$$

- Topic: Derivative loss

We present a refinement of local solvability for reference.

Definition. $a(x, D)$ is locally solvable at $x_{0} \in \mathbb{R}^{d}$ with derivative loss $\mu \geq 0$ if for any $s \in \mathbb{R}$ there exists a neighborhood $U \subset \mathbb{R}^{d}$ of x_{0} such that for any $f \in H^{s}\left(\mathbb{R}^{d}\right)$ there exists $u \in H^{s+m-\mu}\left(\mathbb{R}^{d}\right)$ satisfying

$$
a(x, D) u=f \text { on } U .
$$

Remark. 1. If $a(x, D)$ is locally solvable at x_{0} with derivative loss $\mu \geq 0$, then it is locally solvable at x_{0}.
2. The smaller μ gets, the stronger the above property gets, since we have to seek for u in a smaller Sobolev space.

§ 5.2 Examples

- Elliptic PDOs

Theorem 5.2. Assume $a(x, D)$ is elliptic at $x_{0} \in \mathbb{R}^{d}$. Then there exist a neighborhood $U \subset \mathbb{R}^{d}$ of x_{0} and $c>0$ such that for any $v \in C_{C}^{\infty}(U)$

$$
\left\|a^{*}(x, D) v\right\|_{L^{2}} \geq c\|v\|_{H^{m}}
$$

In particular, $a(x, D)$ is locally solvable at x_{0}.
Proposition 5.3 (Poincaré inequality). For any $k \in \mathbb{N}_{0}$ there exist $C, C^{\prime}>0$ such that for any bounded open subset $U \subset \mathbb{R}^{d}$ and any $u \in C_{C}^{\infty}(U)$

$$
\|u\|_{H^{k}} \leq C(\operatorname{diam} U)\|D \mid u\|_{H^{k}} \leq C^{\prime}(\operatorname{diam} U)\|u\|_{H^{k+1}}
$$

where diam U denotes the diameter of U.

Proof of Theorem 5.2. The assertion is obvious for $m=0$, and we may let $m \geq 1$. By the assumption we can find $c_{1}, R>0$ and $\chi \in C_{\mathrm{C}}^{\infty}\left(\mathbb{R}^{d}\right)$ such that

$$
0 \leq \chi \leq 1, \quad \chi=1 \text { in a neighborhood of } x_{0},
$$

and that for any $(x, \xi) \in \mathbb{R}^{2 d}$ with $|\xi| \geq R$

$$
\chi(x)^{2}|a(x, \xi)|^{2}+\left(1-\chi(x)^{2}\right)|\xi|^{2 m} \geq c_{1}|\xi|^{2 m} .
$$

Then by the Gårding inequality we obtain for any $v \in H^{m}\left(\mathbb{R}^{d}\right)$

$$
\left\|\chi a^{*}(x, D) v\right\|_{L^{2}}^{2} \geq c_{2}\|v\|_{H^{m}}^{2}-C_{1}\|v\|_{H^{m-1}}\|v\|_{H^{m}}
$$

Next, by the Poincaré inequality, if we take a sufficiently small neighborhood $U \subset \mathbb{R}^{d}$ of x_{0}, then for any $v \in C_{C}^{\infty}(U)$

$$
\left\|a^{*}(x, D) v\right\|_{L^{2}}^{2} \geq c_{3}\|v\|_{H^{m}}^{2}
$$

Thus we obtain the assertion.

Proof. The latter inequality is obvious, and we verify only the former one. We may let $0 \in U$ by translation. Then for any $u \in C_{C}^{\infty}(U)$ we can estimate we can estimate

$$
\begin{aligned}
\|u\|_{H^{k}}^{2} & \leq C_{1} \sum_{|\alpha| \leq k}\left(\mathrm{i}\left[D_{1}, x_{1}\right] D^{\alpha} u, D^{\alpha} u\right)_{L^{2}} \\
& \leq C_{1} \sum_{|\alpha| \leq k} \mathrm{i}\left[\left(x_{1} D^{\alpha} u, D_{1} D^{\alpha} u\right)_{L^{2}}-\left(D_{1} D^{\alpha} u, x_{1} D^{\alpha} u\right)_{L^{2}}\right] \\
& \leq 2 C_{1}(\operatorname{diam} U) \sum_{|\alpha| \leq k}\left\|D^{\alpha} u\right\|_{L^{2}}\left\|D_{1} D^{\alpha} u\right\|_{L^{2}} \\
& \leq C_{2}(\operatorname{diam} U)\|u\|_{H^{k}}\||D| u\|_{H^{k}}
\end{aligned}
$$

Thus we obtain the assertion.

Remark. It is obvious from the above proof that the assertion extends for any $U \subset \mathbb{R}^{d}$ bounded only in one direction.

- PDOs of principal type

We shall denote the principal symbol of $a(x, D)$ by p, i.e.,

$$
p(x, \xi)=\sum_{|\alpha|=m} a_{\alpha}(x) \xi^{\alpha}
$$

Definition. $a(x, D)$ is of principal type at $x_{0} \in \mathbb{R}^{d}$ if

$$
\partial_{\xi} p\left(x_{0}, \xi\right) \neq 0 \text { for any } \xi \in \mathbb{R}^{d} \backslash\{0\} \text { with } p\left(x_{0}, \xi\right)=0
$$

Remarks. 1. The condition says, even if ellipticity is lost, a configuration component of the Hamilton vector field is alive.
2. Suppose $m=0$. Then $a(x, D)$ is of principal type at $x_{0} \in \mathbb{R}^{d}$ if and only if it is elliptic there, since a PDO of order 0 is just a multiplication operator.
3. Suppose $m \neq 0$. Then $a(x, D)$ is of principal type at $x_{0} \in \mathbb{R}^{d}$ if and only if

$$
\partial_{\xi} p\left(x_{0}, \xi\right) \neq 0 \text { for any } \xi \in \mathbb{R}^{d} \backslash\{0\}
$$

In fact, if $p\left(x_{0}, \xi\right) \neq 0$, then $\partial_{\xi} p\left(x_{0}, \xi\right) \neq 0$, since

$$
\xi \cdot \partial_{\xi} p\left(x_{0}, \xi\right)=m p\left(x_{0}, \xi\right)
$$

due to Euler's homogeneous function theorem.

Theorem 5.4. Let $m \neq 0$, and assume $a(x, D)$ is of principal type at x_{0}.

1. There exist $C, \delta>0$ such that for any neighborhood U of x_{0} with $\operatorname{diam} U<\delta$ and $u \in C_{C}^{\infty}(U)$

$$
\|u\|_{H^{m-1}}^{2} \leq C(\operatorname{diam} U)\left(\|a(x, D) u\|_{L^{2}}^{2}+\left\|a^{*}(x, D) u\right\|_{L^{2}}^{2}\right) .
$$

2. In addition, assume p is real or purely imaginary in a neighborhood of x_{0}. Then there exist a neighborhood U of x_{0} and $c>0$ such that for any $u \in C_{\mathrm{C}}^{\infty}(U)$

$$
\left\|a^{*}(x, D) u\right\|_{L^{2}} \geq c\|u\|_{H^{m-1}}
$$

In particular, $a(x, D)$ is locally solvable at x_{0}

Step 2 (Bound from below). By the assumption there exist $\delta>0$ and $c>0$ such that for any $(x, \xi) \in B_{2 \delta} \times \mathbb{R}^{d}$

$$
\left|\partial_{\xi} p(x, \xi)\right|^{2} \geq 4 c|\xi|^{2 m-2}
$$

Take any $\chi \in C_{\mathrm{C}}^{\infty}\left(B_{2 \delta}\right)$ such that $\chi=1$ on B_{δ}, and then

$$
\chi(x)\left|\partial_{\xi} p(x, \xi)\right|^{2}+4 c(1-\chi(x))|\xi|^{2 m-2} \geq 4 c|\xi|^{2 m-2}
$$

so that we can apply the Gårding inequality. Noting

$$
\sum_{j=1}^{d} Q_{j}^{*} \chi Q_{j}-\chi\left|\partial_{\xi} p\right|^{2}(x, D) \in S^{2 m-3}\left(\mathbb{R}^{d}\right)
$$

we can find $c_{1}, C_{1}>0$ such that for any $u \in C_{C}^{\infty}\left(B_{\delta}\right)$

$$
\sum_{j=1}^{d}\left(Q_{j}^{*} Q_{j} u, u\right) \geq 2 c_{1}\|u\|_{H^{m-1}}^{2}-C_{1}\|u\|_{H^{m-2}}\|u\|_{H^{m-1}}
$$

Now we use the Poincaré inequality. Let $\delta>0$ be smaller if necessary, and we obtain for any $u \in C_{C}^{\infty}\left(B_{\delta}\right)$

$$
\sum_{j=1}^{d}\left(Q_{j}^{*} Q_{j} u, u\right) \geq c_{1}\|u\|_{H^{m-1}}^{2}
$$

Step 3 (Bound from above). On the other hand, we can compute

$$
\begin{aligned}
\left\|Q_{j} u\right\|_{L^{2}}^{2}= & \mathrm{i}\left(\left(A x_{j}-x_{j} A\right) u, Q_{j} u\right) \\
= & \mathrm{i}\left(x_{j} Q_{j}^{*} u, A^{*} u\right)+\mathrm{i}\left(\left[Q_{j}^{*}, x_{j}\right] u, A^{*} u\right) \\
& +\mathrm{i}\left(x_{j} u,\left[A^{*}, Q_{j}\right] u\right)-\mathrm{i}\left(x_{j} A u, Q_{j} u\right)
\end{aligned}
$$

Here we express, using a finite number of some PDOs R_{k}, S_{k} of order $m-1$, as

$$
\left[A^{*}, Q_{j}\right]=\sum_{k} R_{k}^{*} S_{k}
$$

Step 4. Let $\delta>0$ be from Step 2. Then by Steps $1-3$ it follows that for any $\epsilon \in(0, \delta)$ and $u \in C_{C}^{\infty}\left(B_{\epsilon}\right)$

$$
\left(c_{1}-\epsilon C_{3}\right)\|u\|_{H^{m-1}}^{2} \leq \epsilon C_{3}\left(\|A u\|_{L^{2}}^{2}+\left\|A^{*} u\right\|_{L^{2}}^{2}\right) .
$$

Let $\delta>0$ be even smaller if necessary, and the assertion 1 follows.
2. If p is real/purely imaginary, then $a(x, D) \mp a^{*}(x, D)$ is a PDO of order $m-1$, respectively. Then by the assertion 1 for any $\epsilon \in(0, \delta)$ and $u \in C_{\mathrm{C}}^{\infty}\left(B_{\epsilon}\right)$

$$
\|u\|_{H^{m-1}}^{2} \leq \epsilon C_{4}\left(\left\|a^{*}(x, D) u\right\|_{L^{2}}^{2}+\|u\|_{H^{m-1}}^{2}\right) .
$$

Letting $\epsilon \in(0, \delta)$ be small enough, we obtain the asserted bound. This bound and Theorem 5.1.2 imply the local solvability. We are done
and then

$$
\begin{aligned}
\left\|Q_{j} u\right\|_{L^{2}}^{2}= & \mathrm{i}\left(x_{j} Q_{j}^{*} u, A^{*} u\right)+\mathrm{i}\left(\left[Q_{j}^{*}, x_{j}\right] u, A^{*} u\right)-\mathrm{i}\left(x_{j} A u, Q_{j} u\right) \\
& +\sum_{k} \mathrm{i}\left(\left[R_{k}, x_{j}\right] u, S_{k} u\right)+\sum_{k} \mathrm{i}\left(x_{j} R_{k} u, S_{k} u\right) .
\end{aligned}
$$

By the Cauchy-Schwarz inequality, the Sobolev boundedness and the Poincaré inequality we obtain for any $\epsilon>0$ and $u \in C_{C}^{\infty}\left(B_{\epsilon}\right)$

$$
\begin{aligned}
\left\|Q_{j} u\right\|_{L^{2}}^{2} \leq & \epsilon C_{2}\|u\|_{H^{m-1}}\left\|A^{*} u\right\|_{L^{2}}+C_{2}\|u\|_{H^{m-2}}\left\|A^{*} u\right\|_{L^{2}} \\
& +\epsilon C_{2}\|A u\|_{L^{2}}\|u\|_{H^{m-1}}+C_{2}\|u\|_{H^{m-2}}\|u\|_{H^{m-1}} \\
& +\epsilon C_{2}\|u\|_{H^{m-1}}^{2} \\
\leq & \epsilon C_{3}\left(\|A u\|_{L^{2}}^{2}+\left\|A^{*} u\right\|_{L^{2}}^{2}+\|u\|_{H^{m-1}}^{2}\right) .
\end{aligned}
$$

- Topic: Conditions (Ψ) and (P)

Definition. Let $U \subset \mathbb{R}^{d}$ be open, and let $p \in C^{\infty}\left(U \times\left(\mathbb{R}^{d} \backslash\{0\}\right)\right)$.

1. We say p satisfies condition (Ψ) if for any $(x, \xi) \in p^{-1}(0)$ there exists a neighborhood $\Omega \subset U \times \mathbb{R}^{n}$ of (x, ξ) such that for $z=1$ or i the following holds:
(a) $H_{\operatorname{Re}(z p)}$ does not vanish on Ω;
(b) Along any null bicharacteristic of $\operatorname{Re}(z p)$ on $\Omega, \operatorname{Im}(z p)$ does not change sign from negative to positive.
2. We say p satisfies condition (\boldsymbol{P}) if both p and \bar{p} satisfy condition (Ψ).

Remarks. 1. For a $\Psi D O$, or PDO, of principal type local solvability is practically characterized by condition (Ψ), or (P), respectively. However, in this course, we will present simpler characterizations under some non-degeneracy assumption.
2. Conditions (P) and (Ψ) are equivalent for the principal symbol of a PDO since it is a homogeneous polynomial in ξ.

Problem. 1. Verify the equivalence of conditions (P) and (Ψ) for a homogeneous polynomial in ξ.
2. Check the principal symbols from Theorems 5.2 and 5.4.2 satisfy conditions (P) and (Ψ).

§ 5.3 Characterization under Non-Degeneracy

- A necessary condition

Theorem 5.5. Assume $a(x, D)$ is locally solvable at $x_{0} \in \mathbb{R}^{d}$. Then there exists a neighborhood $U \subset \mathbb{R}^{d}$ of $x_{0} \in \mathbb{R}^{d}$ for which Hörmander's condition holds, i.e.,
$\{\bar{p}, p\}(x, \xi)=0$ for any $(x, \xi) \in U \times \mathbb{R}^{d}$ with $p(x, \xi)=0$.

Proof. For the proof refer to Theorem 6.1.1 of "Linear Partia Differential Operators" by L. Hörmander. We omit it.

In fact, multiplying i on p if necessary, we may let

$$
\left(\partial_{\xi} \operatorname{Re} \bar{p}\right)\left(x_{0}, \pm \xi_{0}\right) \neq 0
$$

On the other hand, $\left(x_{0}, \xi_{0}^{\prime}\right)=\left(x_{0}, \xi_{0}\right)$ or $\left(x_{0},-\xi_{0}\right)$ satisfies

$$
\begin{aligned}
\left(H_{\operatorname{Re} \bar{p}}(\operatorname{Im} \bar{p})\right)\left(x_{0}, \xi_{0}^{\prime}\right) & =\{\operatorname{Re} \bar{p}, \operatorname{Im} \bar{p}\}\left(x_{0}, \xi_{0}^{\prime}\right) \\
& =\frac{i}{2}\{\bar{p}, p\}\left(x_{0}, \xi_{0}^{\prime}\right) \\
& <0
\end{aligned}
$$

since $\{\bar{p}, p\}$ is of odd degree in ξ. This implies that, along a null bicharactristic of $\operatorname{Re} \bar{p}, \operatorname{Im} \bar{p}$ changes sign at $\left(x_{0}, \xi_{0}^{\prime}\right)$ from positive to negative. Thus we could construct a quasi-mode for $a^{*}(x, D)$ that lives in an arbitrarily small conic neighborhood of (x_{0}, ξ_{0}^{\prime}), cf. Theorem 4.8 and Corollary 4.10. See also condition (P).

- A sufficient condition

Definition. $a(x, D)$ is principally normal at $x_{0} \in \mathbb{R}^{d}$ if there exists a neighborhood $U \subset \mathbb{R}^{d}$ of x_{0} and $q \in C^{\infty}\left(U \times\left(\mathbb{R}^{d} \backslash\{0\}\right)\right)$ homogeneous of degree $m-1$ in ξ such that

$$
\{\bar{p}, p\}=2 \mathrm{i} \operatorname{Re}(\bar{q} p) \text { on } U \times\left(\mathbb{R}^{d} \backslash\{0\}\right)
$$

Remarks. 1. Let $p=p_{1}+\mathrm{i} p_{2}$ and $q=q_{1}+\mathrm{i} q_{2}$ with $p_{1}, p_{2}, q_{1}, q_{2}$ being real-valued. Then the above condition is expressed as

$$
\{\bar{p}, p\}=2 \mathrm{i}\left(q_{1} p_{1}+q_{2} p_{2}\right)
$$

This says $\{\bar{p}, p\}$ vanishes with the same order as p does. In particular, Hörmander's condition holds automatically.
2. If $a(x, D)$ is principally normal, so is $a^{*}(x, D)$.

196

Step 1. We first show there exist $C_{1}, \delta>0$ such that for any $u \in C_{\mathrm{C}}^{\infty}\left(B_{\delta}\right)$

$$
\|a(x, D) u\|_{L^{2}}^{2} \leq C_{1}\left(\left\|a^{*}(x, D) u\right\|_{L^{2}}^{2}+\|u\|_{H^{m-1}}^{2}\right) .
$$

In fact, by the assumption there exist $\delta>0$ and $q \in C^{\infty}\left(B_{2 \delta} \times\right.$ $\left(\mathbb{R}^{d} \backslash\{0\}\right)$) homogeneous of degree $m-1$ in ξ such that

$$
\{\bar{p}, p\}=2 \mathrm{i} \operatorname{Re}(\bar{q} p) \quad \text { on } B_{2 \delta} \times\left(\mathbb{R}^{d} \backslash\{0\}\right)
$$

Fix any $\chi \in C_{C}^{\infty}\left(B_{2 \delta}\right)$ with $\chi=1$ on B_{δ}, and then for any $u \in$ $C_{C}^{\infty}\left(B_{\delta}\right)$

$$
\|A u\|_{L^{2}}^{2}=\left\|A^{*} u\right\|_{L^{2}}^{2}+\left(\chi\left[A^{*}, A\right] \chi u, u\right)
$$

Theorem 5.6. Let $m \neq 0$, and assume $a(x, D)$ is of principal type and principally normal at $x_{0} \in \mathbb{R}^{d}$. There exist a neighborhood U of x_{0} and $c>0$ such that for any $v \in C_{C}^{\infty}(U)$

$$
\left\|a^{*}(x, D) v\right\|_{L^{2}} \geq c\|v\|_{H^{m-1}}
$$

In partiulcar, $a(x, D)$ is locally solvable at x_{0}.

Proof. As in the proof of Theorem 5.4, we may let $x_{0}=0$. We also use the notation B_{r} there.

If we modify q smoothly in a neighborhood of $\xi=0$, then we can find $R \in \Psi^{2 m-2}\left(\mathbb{R}^{d}\right)$ such that

$$
\chi\left[A^{*}, A\right] \chi=Q A^{*}+A Q^{*}+R ; \quad Q=\chi q(x, D) \chi
$$

Now by the Cauchy-Schwarz inequality and the Sobolev boundedness we obtain for any $u \in C_{C}^{\infty}\left(B_{\delta}\right)$

$$
\begin{aligned}
\|A u\|_{L^{2}}^{2} & =\left\|A^{*} u\right\|_{L^{2}}^{2}+\left(A^{*} u, Q^{*} u\right)+\left(Q^{*} u, A^{*} u\right)+(R u, u) \\
& \leq\left\|A^{*} u\right\|_{L^{2}}^{2}+C_{4}\left\|A^{*} u\right\|_{L^{2}}\|u\|_{H^{m-1}}+\|u\|_{H^{m-1}}^{2} \\
& \leq C_{2}\left(\left\|A^{*} u\right\|_{L^{2}}^{2}+\|u\|_{H^{m-1}}^{2}\right) .
\end{aligned}
$$

Hence the claim is verified.

Step 2. By Theorem 5.4.1 and Step 1 there exist $C_{3}, \delta^{\prime}>0$ such that for any $\epsilon \in\left(0, \delta^{\prime}\right)$ and $u \in C_{C}^{\infty}\left(B_{\epsilon}\right)$

$$
\|u\|_{H^{m-1}}^{2} \leq \epsilon C_{3}\left(\left\|a^{*}(x, D) u\right\|_{L^{2}}^{2}+\|u\|_{H^{m-1}}^{2}\right) .
$$

If we fix sufficiently small ϵ, then for any $u \in C_{\mathrm{C}}^{\infty}\left(B_{\epsilon}\right)$

$$
\|u\|_{H^{m-1}} \leq C_{4}\left\|a^{*}(x, D) u\right\|_{L^{2}} .
$$

Thus we obtain the assertion.

Remarks. 1. By the assumption it automatically follows that both $a(x, D)$ and $a^{*}(x, D)$ are of principal type at x_{0}.
2. The assertion does not extend to a general PDO of principal type without non-degeneracy. In fact, for local solvability, the principal normality is not necessary, and Hörmander's condition is not sufficient either
3. The principal symbol from Theorem 5.4.2 is degenerate in the sense that it does not satisfy the assumption.
4. See also Conditions (P) and (Ψ), and the subsequent remarks.

- Characterization

Theorem 5.7. Let $x_{0} \in \mathbb{R}^{d}$, and assume the vectors

$$
\partial_{\xi} \operatorname{Re} p\left(x_{0}, \xi\right), \quad \partial_{\xi} \operatorname{Im} p\left(x_{0}, \xi\right)
$$

are linearly independent for any $\xi \in \mathbb{R}^{d} \backslash\{0\}$ with $p\left(x_{0}, \xi\right)=0$ Then the following conditions are equivalent:

1. $a(x, D)$ is locally solvable at x_{0}.
2. $a^{*}(x, D)$ is locally solvable at x_{0}.
3. Hörmander's condition holds in some neighborhood of x_{0}.
4. $a(x, D)$ is principally normal at x_{0}.

Proof. If $m=0$, then $a(x, D)$ is merely a multiplication operator non-vanishing at x_{0} by the assumption. Hence we may let $m \neq 0$
$4 \Rightarrow$ (1 and 2). This follows by Theorem 5.6.
(1 or 2$) \Rightarrow 3$. This follows by Theorem 5.5.
$3 \Rightarrow 4$. Step 1. We are going to construct q as in the definition of principal normality. Note the construction reduces to that on $|\xi|=1$ by homogeneity, and further to that in a neighborhood of each (x_{0}, ξ) with $|\xi|=1$ by partition-of-unity arguments. If $p(x, \xi) \neq 0$, we can actually take

$$
q(x, \xi)=\frac{\{\bar{p}, p\}(x, \xi)}{2 \mathrm{i} \bar{p}(x, \xi)},
$$

and hence it suffices to find q for $p(x, \xi)=0$.

Step 2. Let $\xi_{0} \in \mathbb{R}^{d} \backslash\{0\}$ satisfy $p\left(x_{0}, \xi_{0}\right)=0$. It suffices to find a neighborhood $\Omega \subset \mathbb{R}^{2 d} \backslash 0$ of $\left(x_{0}, \xi_{0}\right)$ and $q \in C^{\infty}(\Omega)$ such that

$$
\{\bar{p}, p\}=2 \mathrm{i} \operatorname{Re}(\bar{q} p)
$$

By the assumption there exists a neighborhood Ω of (x_{0}, ξ_{0}) and local coordinates $X: \Omega \rightarrow \mathbb{R}^{2 d}$ such that

$$
X_{1}(x, \xi)=\operatorname{Re} p(x, \xi), \quad X_{2}(x, \xi)=\operatorname{Im} p(x, \xi)
$$

Then by Taylor's theorem we can find $q_{1}, \ldots, q_{2 d} \in C^{\infty}(\Omega)$ such that
$\frac{1}{2 \mathrm{i}}\{\bar{p}, p\}(x, \xi)=\frac{1}{2 \mathrm{i}}\{\bar{p}, p\}\left(x_{0}, \xi_{0}\right)+q_{1} X_{1}+\cdots+q_{2 d} X_{2 d}$.

