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Chapter 1

Oscillatory Integrals

§ 1.1 Introduction

◦ Notation

In this course we use the notation

N = {1,2,3, . . .}, N0 = {0,1,2, . . .} = {0} ∪ N.

We usually let d ∈ N be the dimension of the configuration

space. For any multi-index α = (α1, . . . , αd) ∈ Nd
0 we define its

length and factorial as

|α| = α1 + · · ·+ αd, α! = (α1!) · · · · · (αd!),

respectively. In addition, for any α, β ∈ Nd
0 we let

α ≤ β
def⇐⇒ αj ≤ βj for all j = 1, . . . , d,
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and define the binomial coefficient as(
α

β

)
=

α!

β!(α− β)!
if 0 ≤ β ≤ α,

(
α

β

)
= 0 otherwise,

where α− β = (α1 − β1, . . . , αd − βd).

For any x = (x1, . . . , xd) ∈ Rd and α = (α1, . . . , αd) ∈ Nd
0 we write

xα = x
α1
1 · · ·xαd

d , ∂α = ∂
α1
1 · · · ∂αd

d , ∂j = ∂xj =
∂

∂xj
.

Moreover, we introduce the notation

Dj = −i∂j, Dα = D
α1
1 · · ·Dαd

d .

Then, in particular, we have

Dα = (−i)|α|∂α.
4

Thoughout the course for any x, ξ ∈ Rd we write simply

xξ = x · ξ = x1ξ1 + · · ·+ xdξd, x2 = x · x, |x| = √
x · x,

and we adopt the Fourier transform and its inverse defined as

extensions from

Fu(ξ) = (2π)−d/2
∫
Rd

e−ixξu(x) dx for u ∈ S(Rd),

F∗f(x) = (2π)−d/2
∫
Rd

eixξf(ξ) dξ for f ∈ S(Rd),

respectively. Note, in particular, for any u, v ∈ S(Rd) and α ∈ Nd
0

(u, v)L2 = (Fu,Fv)L2, F∗ξαFu = Dαu,

where (·, ·)L2 denotes the L2-inner product, being linear and

conjugate-linear in the first and second entries, respectively.
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Problem. 1. (Binomial theorem) Show for any α ∈ Nd
0 and

x, y ∈ Rd

(x+ y)α =
∑

β∈Nd
0

(
α

β

)
xα−βyβ; In particular,

∑
β∈Nd

0

(
α

β

)
= 2|α|.

2. (Leibniz rule) Show for any α ∈ Nd
0 and f, g ∈ C|α|(Rd)

∂α(fg) =
∑

β∈Nd
0

(
α

β

)
(∂α−βf)(∂βg).
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◦ Partial differential operators

Consider a partial differential operator (PDO) on Rd:

A =
∑
|α|≤m

aα(x)D
α, aα ∈ C∞(Rd).

If we let

a(x, ξ) =
∑
|α|≤m

aα(x)ξ
α,

then we can write for any u ∈ C∞c (Rd)

Au(x) = a(x,D)u(x) = (2π)−d
∫
R2d

ei(x−y)ξa(x, ξ)u(y) dydξ.
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The last integral makes sense even if we replace the polynomial

a(x, ξ) in ξ by a symbol growing at most polynomially in ξ ∈ Rd.

That is a pseudodifferential operator (ΨDO, or PsDO). We

are going to develop a pseudodifferential calculus for an appro-

priate symbol class, and discuss its applications.

Remark. The last integral has to be interpreted as an iterated

integral; The integrand is not integrable in (y, ξ). However, we

can also justify it as an oscillatory integral, as discussed in the

following section.
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§ 1.2 Oscillatory Integrals

For any x ∈ Rd we let

〈x〉 = (1+ x2)1/2 ∈ C∞(Rd).

Lemma 1.1. 1. For any x ∈ Rd

1√
2
(1 + |x|) ≤ 〈x〉 ≤ 1+ |x|.

2. For any α ∈ Nd
0 there exists Cα > 0 such that for any x ∈ Rd

|∂α〈x〉| ≤ Cα〈x〉1−|α|.

3. (Peetre’s inequality) For any s ∈ R and x, y ∈ Rd

〈x+ y〉s ≤ 2|s|〈x〉|s|〈y〉s.
9

Proof. 1, 2. We omit the proofs.

3. By the assertion 1 we can estimate

〈x+ y〉 ≤ 1+ |x+ y| ≤ 1+ |x|+ |y|
≤ (1 + |x|)(1 + |y|) ≤ 2〈x〉〈y〉.

This implies the assertion for s ≥ 0. The same estimate also

implies

〈y〉−1 ≤ 2〈x〉〈x+ y〉−1.
If we replace x by −x, and then y by x+ y, it follows that

〈x+ y〉−1 ≤ 2〈x〉〈y〉−1,
which implies the assertion for s ≤ 0. Hence we are done.
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◦ Oscillatory Integrals

For any m, δ ∈ R we define the set of amplitude functions as

Am
δ (Rd) =

{
a ∈ C∞(Rd); ∀α ∈ N

d
0 sup

x∈Rd
〈x〉−m−δ|α||∂αa(x)| <∞

}
.

For any k ∈ N0 define a seminorm | · |k on Am
δ (Rd) as

|a|k = |a|k,Am
δ
= sup

{
〈x〉−m−δ|α||∂αa(x)|; |α| ≤ k, x ∈ R

d
}
.

Remark.Obviously, Am
δ (Rd) is a Fréchet space with respect to

the family {| · |k}k∈N0
of seminorms.
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Problem. Let χ ∈ S(Rd). Show χ(εx) ∈ A0−1(Rd) uniformly in

ε ∈ (0,1), i.e., for any α ∈ Nd
0 there exists C > 0 such that for

any ε ∈ (0,1) and x ∈ Rd∣∣∣∂α(χ(εx))∣∣∣ ≤ C〈x〉−|α|.

Solution. Take any α ∈ Nd
0. Since χ is rapidly decreasing, we can

compute and bound it as∣∣∣∂α(χ(εx))∣∣∣ = ε|α|
∣∣∣(∂αχ)(εx)∣∣∣ ≤ Cε|α|〈εx〉−|α|

≤ Cε|α|
(
ε2 + ε2x2

)−|α|/2
= C〈x〉−|α|.

Hence we are done.

Remark. Of course, for any fixed ε ∈ (0,1) we have χ(εx) ∈
Am
δ (Rd) for all m, δ ∈ R.
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Theorem 1.2. Let Q be a non-degenerate real symmetric matrix

of order d, and let m ∈ R and δ < 1. Then for any a ∈ Am
δ (Rd)

and χ ∈ S(Rd) with χ(0) = 1 there exists the limit

IQ(a) := lim
ε→+0

∫
Rd

eixQx/2χ(εx)a(x) dx, (♠)

and it is independent of choice of χ ∈ S(Rd). Moreover, there

exist k ∈ N0 and C > 0 such that for any a ∈ Am
δ (Rd)

|IQ(a)| ≤ C|a|k,Am
δ
.

Remark. The last bound implies IQ : Am
δ (Rd)→ C is continuous.
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Proof. Noting that for any x, y ∈ Rd

y∂

(
xQx

2

)
=

1

2

d∑
j=1

yj(ejQx+ xQej) = yQx,

we can deduce

eixQx/2 = tLeixQx/2; tL = 〈x〉−2
(
1+ xQ−1D

)
.

Substitute the above identity into the integrand of (♠), and

integrate it by parts. Repeat this precedure, and we obtain∫
Rd

eixQx/2χ(εx)a(x) dx =
∫
Rd

eixQx/2Lk
(
χ(εx)a(x)

)
dx

for any k ∈ N0. Since L is of the form

L = c0 +
d∑

j=1

cj∂j; c0 ∈ A−2−1(R
d), cj ∈ A−1−1(R

d),
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there exists C > 0 such that for any ε ∈ (0,1) and a ∈ Am
δ (Rd)∣∣∣Lk

(
χ(εx)a(x)

)∣∣∣ ≤ C|a|k,Am
δ
〈x〉m−kmin{2,1−δ}. (♥)

We also note there exists a pointwise limit

lim
ε→+0

Lk
(
χ(εx)a(x)

)
= Lka(x).

Then, if we choose k ∈ N0 such that m− kmin{2,1− δ} < −d, it

follows by the Lebesgue convergence theorem that

IQ(a) = lim
ε→+0

∫
Rd

eixQx/2χ(εx)a(x) dx =
∫
Rd

eixQx/2Lka(x) dx.

Certainly the last expression is independent of χ. Combined with

(♥), it also implies the asserted bound. We are done.

15



Remarks. 1. The limit (♠) from Theorem 1.2 is called an os-

cillatory integral, and is denoted simply by∫
Rd

eixQx/2a(x) dx = lim
ε→+0

∫
Rd

eixQx/2χ(εx)a(x) dx.

The notation is compatible with the case a ∈ L1(Rd).

2. We can also define the oscillatory integral as∫
Rd

eixQx/2a(x) dx =
∫
Rd

eixQx/2Lka(x) dx,

where Lk is from the proof of Theorem 1.2. Practically, in

order to compute an oscillatory integral we may implement

any formal integrations by parts until the integrand gets in-

tegrable, see also Lemma 1.3.3.
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Lemma 1.3. Let Q be a non-degenerate real symmetric matrix
of order d, and let a ∈ Am

δ (Rd) with m ∈ R and δ < 1.

1. For any c ∈ Rd∫
Rd

eixQx/2a(x) dx = eicQc/2
∫
Rd

eiyQy/2
(
eicQya(y + c)

)
dy.

2. For any real invertible matrix P of order d∫
Rd

eixQx/2a(x) dx =
∫
Rd

eiy(
tPQP )y/2a(Py)|detP |dy.

3. For any α ∈ Nd
0∫

Rd

(
∂αeixQx/2

)
a(x) dx = (−1)|α|

∫
Rd

eixQx/2∂αa(x) dx.
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Proof. 1 and 2. We can prove 1 and 2 very similarly, and here

we disucss only 2. Let χ ∈ S(Rd) with χ(0) = 1, and then by

definition of the oscillatory integral∫
Rd

eixQx/2a(x) dx = lim
ε→+0

∫
Rd

eixQx/2χ(εx)a(x) dx

= lim
ε→+0

∫
Rd

eiy(
tPQP )y/2χ(εPy)a(Py)|detP |dy

=
∫
Rd

eiy(
tPQP )y/2a(Py)|detP |dy.

This implies the assertion.
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3. Similarly to the above, let χ ∈ S(Rd) with χ(0) = 1. Then∫
Rd

(
∂αeixQx/2

)
a(x) dx

= lim
ε→+0

∫
Rd

(
∂αeixQx/2

)
χ(εx)a(x) dx

= lim
ε→+0

(−1)|α|
⎡⎣∫

Rd
eixQx/2χ(εx)∂αa(x) dx

+
∑
|β|≥1

(
α

β

) ∫
Rd

eixQx/2
(
∂βχ(εx)

)(
∂α−βa(x)

)
dx

⎤⎦.
For the second integral in the above square brackets we can

further implement integrations by parts, e.g., by using L from the

proof of Theorem 1.2, and then we can verify that it converges

to 0 as ε→ +0. Thus we obtain the assertion.
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§ 1.3 Expansion Formula

Definition. Let Q be a non-degenerate real symmetric matrix of

order d, and let u ∈ S′(Rd). We define

eiDQD/2u = F∗eiξQξ/2Fu ∈ S′(Rd).

Theorem 1.4. Let Q be a non-degenerate real symmetric matrix

of order d, and let a ∈ Am
δ (Rd) with m ∈ R and δ < 1. Then

eiDQD/2a(x) =
eiπ(sgnQ)/4

(2π)d/2|detQ|1/2
∫
Rd

e−iyQ−1y/2a(x+ y) dy.

Remark. As for a ∈ Am
δ (Rd) we can compute pointwise values of

eiDQD/2a as an oscillatory integral.
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Theorem 1.5.There exists C > 0 dependent only on the dimen-

sion d such that for any non-degenerate real symmetric matrix

Q of order d, a ∈ C∞c (Rd) and N ∈ N

eiDQD/2a(x) =
N−1∑
k=0

ik

2kk!
(DQD)ka(x) +RN(a)

with ∣∣∣RN(a)
∣∣∣ ≤ C

2NN !

∑
|α|≤d+1

∥∥∥∂α(DQD)Na
∥∥∥
L1.
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Lemma 1.6. Let Q be a non-degenerate real symmetric matrix

of order d. Then(
FeixQx/2

)
(ξ) =

eiπ(sgnQ)/4

|detQ|1/2 e−iξQ−1ξ/2.

Proof. Step 1. We first let d = 1. Since F : S′(R) → S′(R) is

continuous, we can proceed as(
FeiQx2/2

)
(ξ) = lim

ε→+0

(
Fe−(ε−iQ)x2/2

)
(ξ)

= lim
ε→+0

(
ε− iQ

)−1/2
e−(ε−iQ)−1ξ2/2

=
eiπ(sgnQ)/4

|Q|1/2 e−iQ−1ξ2/2.

Thus the assertion for d = 1 is verified.
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Step 2. There exists an invertible real matrix P such that

tPQP = diag(Ip,−Iq),
where Ip, Iq are the identity matrices of order p, q ∈ N0 with p +

q = d, respectively. Changing variables as x = Py and spliting

y = (y′, y′′) ∈ Rp × Rq, we can compute(
FeixQx/2

)
(P−1η)

= lim
ε→+0

(
FeixQx/2e−εx(tP−1P−1)x

)
(P−1η)

= lim
ε→+0

(2π)−d/2
∫
Rd

eiyηei(y
′2−y′′2)/2e−εy2|detP |dy

= |detP |eiπ(sgnQ)/4e−i(η′2−η′′2)/2,

where in the last equality we use the result from Step 1. Finally

let η = Pξ, and we obtain the assertion.
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Proof of Theorem 1.4. Let a ∈ C∞c (Rd). Then it follows by

change of variables, the Plancherel theorem and Lemma 1.6

eiDQD/2a(x) = (2π)−d
∫
Rd

eiξQξ/2
(∫

Rd
e−iyξa(x+ y) dy

)
dξ

=
eiπ(sgnQ)/4

(2π)d/2|detQ|1/2
∫
Rd

e−iyQ−1y/2a(x+ y) dy.

Then, since the right-hand side of the asserted identity is con-

tinuous on Am
δ (Rd) byTheorem 1.2, we obtain the assertion.
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Proof of Theorem 1.5. Recall by Taylor’s theorem for any N ∈ N

and t ∈ R

eit =
N−1∑
k=0

(it)k

k!
+

iN

(N − 1)!

∫ t

0
eis(t− s)N−1 ds,

so that we can write

eiξQξ/2 =
N−1∑
k=0

(iξQξ)k

2kk!
+ rN(ξ); |rN(ξ)| ≤ |ξQξ|N

2NN !
.

Substitute the above expansion into the definition of eiDQD/2a

and implement the Fourier inversion formula, and then

eiDQD/2a(x) =
N−1∑
k=0

ik

2kk!
(DQD)ku(x) +RN(a)
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with

|RN(a)| ≤ 1

(2π)d/22NN !

∫
Rd

∣∣∣(F(DQD)Na
)
(ξ)

∣∣∣dξ.
Finally it suffices to show that for any v ∈ C∞c (Rd)

‖Fv‖L1 ≤ C
∑

|α|≤d+1

‖∂αv‖L1.

However, it is clear since

Fv(ξ) = (2π)−d/2〈ξ〉−2(d+1)
∫
Rd

e−ixξ(1 + ξD)d+1v(x) dx.

Thus we are done.
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Corollary 1.7 (Stationary phase theorem). There exists C >

0 dependent only on the dimension d such that for any non-

degenerate real symmetric matrix Q of order d, a ∈ C∞c (Rd),

N ∈ N and h > 0∫
Rd

eixQx/(2h)a(x) dx

=
N−1∑
k=0

(2π)d/2hk+d/2eiπ(sgnQ)/4

|detQ|1/2(2i)kk!
(
(DQ−1D)ka

)
(0) +RN(a, h)

with ∣∣∣RN(a, h)
∣∣∣ ≤ ChN+d/2

|detQ|1/22NN !

∑
|α|≤d+1

∥∥∥∂α(DQ−1D)Na
∥∥∥
L1.

Proof. The assertion is clear by Theorems 1.4 and 1.5.
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Remarks. 1. As h → +0, the rapid oscillatory factor eixQx/(2h)

cancels contributions from the amplitude a. However, the

oscillation is slightly milder at the stationary point x = 0 of

the phase function. This is why the behavior of a at around

x = 0 dominates the asymptotics.

2. The semiclassical parameter h > 0, rooted in the Planck

constant, plays a fundamental role in the semiclassical

analysis. However, in this course we do not discuss it.
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Problem. Show the following extended version of the “pointwise

Fourier inversion formula”: For any a ∈ Am
δ (Rd) with m ∈ R and

δ < 1 and for any α ∈ Nd
0 and x′ ∈ Rd

(2π)−d
∫
R2d

ei(x
′−x)ξξαa(x) dxdξ = (Dαa)(x′).

Remark.This is an oscillatory integral on R2d = Rd
x×Rd

ξ, not on

Rd, with a phase function

−xξ = 4−1
(
(x− ξ)2 − (x+ ξ)2

)
and an amplitude eix

′ξξαa(x) ∈ A
|α|+max{m,0}
max{δ,0} (R2d).

29

Solution. By Lemma 1.3 it suffices to prove the assertion for

α = 0. By definition of oscillatory integrals, take any χ ∈ S(Rd)

with χ(0) = 1, and then we can compute

(2π)−d
∫
R2d

ei(x
′−x)ξa(x) dxdξ

= lim
ε→+0

(2π)−d
∫
R2d

ei(x
′−x)ξχ(εx)χ(εξ)a(x) dxdξ

= lim
ε→+0

(2πε)−d/2
∫
Rd

(Fχ)((x− x′)/ε)χ(εx)a(x) dx

= lim
ε→+0

(2π)−d/2
∫
Rd

(Fχ)(η)χ(ε(x′+ εη))a(x′+ εη) dη

= (2π)−d/2
∫
Rd

a(x′)(Fχ)(η) dη

= a(x′).

Hence we are done.
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Chapter 2

Pseudodifferential Calculus



§ 2.1 Pseudodifferential Operators

Definition. Let m, ρ, δ ∈ R. We denote by Sm
ρ,δ(R

2d) the set of all

the functions a ∈ C∞(R2d) satisfying that for any α, β ∈ Nd
0 there

exists C > 0 such that for any (x, ξ) ∈ Rd × Rd∣∣∣∂αx∂βξ a(x, ξ)∣∣∣ ≤ C〈ξ〉m+δ|α|−ρ|β|.

We call Sm
ρ,δ(R

2d) the Kohn–Nirenberg (or Hörmander) sym-

bol class, and its element a symbol of order m. In addition,

we set

S∞ρ,δ(R2d) =
⋃

m∈R
Sm
ρ,δ(R

2d), S−∞(R2d) =
⋂

m∈R
Sm
ρ,δ(R

2d).

We often write Sm(R2d) = Sm
1,0(R

2d) for short.
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Remarks. 1. In order to have an appropriate pseudodifferential

calculus available it is typically assumed that

0 ≤ δ < ρ ≤ 1, or 1− ρ ≤ δ < ρ ≤ 1.

2. Some authors define Sm
ρ,δ(R

2d) as the set of all the functions

a ∈ C∞(R2d) satisfying that for any α, β ∈ Nd
0 and K � Rd

there exists C > 0 such that for any (x, ξ) ∈ K × Rd∣∣∣∂αx∂βξ a(x, ξ)∣∣∣ ≤ C〈ξ〉m+δ|α|−ρ|β|.

3. There are many other variations of symbol classes, including

semiclassical ones.
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4. The symbol class Sm
ρ,δ(R

2d) is a Fréchet space with respect

to a family of seminorms given by

|a|j = |a|j,Sm
ρ,δ

= sup
{
〈ξ〉−m−δ|α|+ρ|β|∣∣∣∂αx∂βξ a(x, ξ)∣∣∣;

|α|+ |β| ≤ j, (x, ξ) ∈ R
2d
}
.

Problem. 1. Show that, if l ≤ m, σ ≥ ρ and ε ≤ δ, then

Sl
σ,ε(R

2d) ⊂ Sm
ρ,δ(R

2d).

2. Show that for any a ∈ Sm
ρ,δ(R

2d), b ∈ Sl
ρ,δ(R

2d) and α, β ∈ Nd
0

∂αx∂
β
ξ a ∈ S

m+δ|α|−ρ|β|
ρ,δ (R2d), ab ∈ Sm+l

ρ,δ (R2d).

Solution. We omit it.
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Examples. 1. Consider

a(x, ξ) =
∑
|α|≤m

aα(x)ξ
α; aα ∈ C∞(Rd).

If aα for all |α| ≤ m satisfy that for any β ∈ Nd
0

sup
x∈Rd

|∂βaα(x)| <∞, (♥)

then obviously a ∈ Sm(R2d). Even if aα dissatisfy (♥), take

any χ ∈ C∞c (Rd), and then

χ(x)a(x, ξ) ∈ Sm(R2d).

We can still discuss local properties of a PDO by letting

χ(x) = 1 in a neighborhood of a point of our interest.
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2. For any m ∈ R we have 〈ξ〉m ∈ Sm(R2d).

3. Assume a ∈ C∞(R2d) is positively homogeneous of degree

m ∈ R in |ξ| ≥ 1, i.e., for any x ∈ Rd, |ξ| ≥ 1 and t ≥ 1

a(x, tξ) = tma(x, ξ).

In addition, assume for simplicity

π1(supp a) � R
d,

where π1 : R
d×Rd → Rd is the first projection. Then we have

a ∈ Sm(R2d).
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Definition. Let a ∈ Sm
ρ,δ(R

2d) with m ∈ R, ρ > −1 and δ < 1.

Define the pseudodifferential operator a(x,D) of order m as,

for any u ∈ S(Rd),

a(x,D)u(x) = (2π)−d
∫
R2d

ei(x−y)ξa(x, ξ)u(y) dydξ.

We denote

Ψm
ρ,δ(R

d) =
{
a(x,D); a ∈ Sm

ρ,δ(R
2d)

}
,

and similarly for Ψ∞ρ,δ(Rd), Ψ−∞(Rd) and Ψm(Rd). In particular,

an element of Ψ−∞(Rd) is called a smoothing operator.
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Remarks. 1. Such a systematic procedure to assign operators
to symbols is called a quantization, as in the quantum me-
chanics. There are various quantizations.

2. It is also common to use the notation Op(a) for a(x,D).

3. The semiclassical pseudodifferential operator is defined
as

Oph(a) = a(x, hD).

Here h > 0 is the semiclassical parameter.

4. The operator eiDQD/2 from the previous chapter may be con-
sidered as a pseudodifferential operator, but the associated
symbol eiξQξ/2 is in a much worse class.
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Theorem 2.1. Let a ∈ Sm
ρ,δ(R

2d) with m ∈ R, ρ > −1 and δ < 1.

Then a(x,D) is a continuous operator on S(Rd).

Proof. For any N ∈ N0 we can write

a(x,D)u(x) = (2π)−d
∫
R2d

ei(x−y)ξ〈ξ〉−2Na(x, ξ)〈Dy〉2Nu(y) dydξ.

Here the integrand is estimated as, for any β ∈ Nd
0,∣∣∣∂βxei(x−y)ξ〈ξ〉−2Na(x, ξ)〈Dy〉2Nu(y)

∣∣∣
≤ Cα〈ξ〉m+|β|−2N ∣∣∣〈Dy〉2Nu(y)

∣∣∣,
and hence we can differentiate a(x,D)u(x) as much as we want
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by retaking N be larger beforehand. Thus for any β ∈ Nd
0

∂βa(x,D)u(x) = (2π)−d
∑

τ∈Nd
0

(
β

τ

) ∫
R2d

ei(x−y)ξ

· (iξ)β−τ〈ξ〉−2N∂τxa(x, ξ)〈Dy〉2Nu(y) dydξ.

Futhermore, by Lemma 1.3 for any α ∈ Nd
0

xα∂βa(x,D)u(x) = (2π)−d
∑

τ,σ∈Nd
0

(
α

σ

)(
β

τ

) ∫
R2d

ei(x−y)ξyα−σ

·
(
(−Dξ)

σ(iξ)β−τ〈ξ〉−2N∂τxa(x, ξ)
)
〈Dy〉2Nu(y) dydξ.

Therefore for any k ∈ N0 by letting N be sufficiently large we can
find C > 0 and l ∈ N0 such that for any u ∈ S(Rd)

|a(x,D)u|k,S ≤ C|u|l,S.
This implies the assertion.
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§ 2.2 Asymptotic Summation

Theorem 2.2. For each j ∈ N0 given aj ∈ S
mj
ρ,δ(R

2d) such that

m := m0 > m1 > m2 > · · · > mj → −∞ as j →∞,

and ρ ≤ 1 and δ ∈ R. Then there exists a ∈ Sm
ρ,δ(R

2d) such that
for any k ∈ N0

a−
k−1∑
j=0

aj ∈ S
mk
ρ,δ (R

2d). (♠)

Such a is unique up to S−∞(R2d). Moreover, one can choose
a ∈ Sm

ρ,δ(R
2d) such that

supp a ⊂
( ∞⋃
j=0

supp aj

)
. (♥)
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Definition. Under the setting of Theorem 2.2 we write

a ∼
∞∑

j=0

aj,

and call it the asymptotic sum or asymptotic expansion. In

addition, when a0 �≡ 0, we call a0 the principal symbol of a, or

of A := a(x,D), and often write it as

σ(A) = a0.

Note the principal symbol is not unique by definition, and the

above identity has to be understood up to lower order errors.
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Proof. Step 1. Fix χ ∈ C∞(Rd) satisfying

χ(ξ) =

⎧⎨⎩0 for |ξ| ≤ 1,

1 for |ξ| ≥ 2,

and we construct a ∈ Sm
ρ,δ(R

2d) of the form

a(x, ξ) =
∞∑

j=0

χ(εjξ)aj(x, ξ)

with

1 > ε0 > ε1 > · · · > εj → +0.

Note the above sum is locally finite, and hence is locally bounded

and smooth. Note also, then, (♥) is automatically satisfied.
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Step 2. Here we are going to choose

1 > ε0 > ε1 > · · · > εj → +0

such that for any j ∈ N0 and α, β ∈ Nd
0 with |α|+ |β| ≤ j∣∣∣∂αx∂βξ (χ(εjξ)aj(x, ξ))∣∣∣ ≤ 2−j〈ξ〉mj+1+δ|α|−ρ|β| (♣)

For that we note for any j ∈ N0 and α, β ∈ Nd
0 there exists

Cjαβ > 0 such that uniformly in ε ∈ (0,1)∣∣∣∂αx∂βξ (χ(εξ)aj(x, ξ))∣∣∣ ≤ Cjαβ〈ξ〉mj+δ|α|−ρ|β|, (♦)
since

ε ≤ 2|ξ|−1 ≤ 4(1 + |ξ|)−1 on supp
(
∂
γ
ξ (χ(εξ))

)
with |γ| ≥ 1.
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However, since

1 ≤ ε|ξ| ≤ ε〈ξ〉 on suppχ(εξ),

we can further deduce uniformly in ε ∈ (0,1)∣∣∣∂αx∂βξ (χ(εξ)aj(x, ξ))∣∣∣ ≤ Cjαβε〈ξ〉mj+1+δ|α|−ρ|β|.

Now we first choose

ε0 < min
{
1, (C000)

−1},
and then (♣) is satisfied for j = 0. Next, suppose we have found

ε0, . . . , εj−1 as claimed, and then it suffices to choose

εj < min
{
j−1, εj−1,2−j(Cjαβ)

−1; |α|+ |β| ≤ j
}
.

Thus by induction we obtain ε0, ε1, . . . as claimed.
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Step 3. Here we prove a from Steps 1 and 2 belongs to Sm
ρ,δ(R

2d).

In fact, for any α, β ∈ Nd
0, if we choose k ∈ N0 such that

k ≥ |α|+ |β| and mk +1 ≤ m,

then by (♦) and (♣)
∣∣∣∂αx∂βξ a(x, ξ)∣∣∣ ≤ k−1∑

j=0

∣∣∣∂αx∂βξ (χ(εjξ)aj(x, ξ))∣∣∣
+

∞∑
j=k

∣∣∣∂αx∂βξ (χ(εjξ)aj(x, ξ))∣∣∣
≤

k−1∑
j=0

Cjαβ〈ξ〉mj+δ|α|−ρ|β|+
∞∑
j=k

2−j〈ξ〉mj+1+δ|α|−ρ|β|

≤ C′αβ〈ξ〉m+δ|α|−ρ|β|.

This implies the claim.
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Step 4. Let us verify (♠). For any k ∈ N0 decompose

a−
k−1∑
j=0

aj =
k−1∑
j=0

(
χ(εjξ)− 1

)
aj(x, ξ) +

∞∑
j=k

χ(εjξ)aj(x, ξ).

Then the first sum on the right-hand side belongs to S−∞(R2d)

since it vanishes for |ξ| ≥ 2/εk, while the second to S
mk
ρ,δ (R

2d)

similarly to Step 3. Thus the claim follows.

Step 5. Finally we discuss the uniqueness up to S−∞(R2d). If

both of a, b ∈ Sm
ρ,δ(R

2d) satisfy (♠), then for any k ∈ N0

a− b =

(
a−

k−1∑
j=0

aj

)
−

(
b−

k−1∑
j=0

aj

)
∈ S

mk
ρ,δ (R

2d),

so that a− b ∈ S−∞(R2d). Thus we are done.
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Definition. Let m ∈ R. a ∈ Sm(R2d), or a(x,D) ∈ Ψm(Rd), is

classical (or polyhomogeneous) if a has an expansion

a ∼
∞∑

j=0

aj

such that, for each j ∈ N0, aj ∈ Sm−j(R2d) is positively homo-

geneous of degree m − j in ξ �= 0. Although we actually need

modifications around ξ = 0, we often abuse notation as above.

We denote

Sm
cl (R

2d) =
{
a ∈ Sm(R2d); a is classical

}
,

Ψm
cl(R

d) =
{
a(x,D); a ∈ Sm

cl (R
2d)

}
.

Remark. Under homogeneity the principal symbol is unique.
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Examples. 1. Any partial differential operator of order m ∈ N0:

A = a(x,D) =
∑
|α|≤m

aα(x)D
α,

where aα ∈ C∞(Rd) has bounded derivatives, is classical. The
principal symbol is given by

σ(A)(x, ξ) =
∑

|α|=m

aα(x)ξ
α.

2. For any m ∈ R the operator 〈D〉m ∈ Ψm(R2d) is classical. In
fact, by the Taylor expansion for any |ξ| > 1

〈ξ〉m = |ξ|m
(
1+ |ξ|−2

)m/2

=
∞∑

j=0

(m/2)(m/2− 1) · · · (m/2− j +1)

j!
|ξ|m−2j.
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Problem (Borel’s theorem). Show that, given cα ∈ R for all

α ∈ Nd
0, there exists f ∈ C∞(Rd) such that for any α ∈ Nd

0

(∂αf)(0) = cα.

Solution. Step 1. Fix χ ∈ C∞(Rd) satisfying

χ(x) =

⎧⎨⎩1 for |x| ≤ 1,

0 for |x| ≥ 2,

and we construct f ∈ C∞(Rd) of the form

f(x) =
∞∑

j=0

χ(Rjx)
∑
|α|=j

cα

α!
xα; 1 < R0 < R1 < · · · < Rj →∞.

Note the above sum is locally finite on Rd \ {0}, hence locally

bounded there. In addition, it is obviously finite at x = 0.
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Step 2. Here we are going to choose

1 < R0 < R1 < · · · < Rj →∞
such that any j ∈ N0 and β ∈ Nd

0 with |β| ≤ j∣∣∣∣∣∣∂β
⎛⎝χ(Rjx)

∑
|α|=j

cα

α!
xα

⎞⎠∣∣∣∣∣∣ ≤ 2−j|x|j−1−|β|

Note that, thanks to supporting property of χ(Rx), for any j ∈ N0

and β ∈ Nd
0 there exists Cjβ > 0 such that uniformly in R ≥ 1∣∣∣∣∣∣∂β

⎛⎝χ(Rx)
∑
|α|=j

cα

α!
xα

⎞⎠∣∣∣∣∣∣ ≤ CjβR
−1|x|j−1−|β|.

Then we can discuss similarly to the proof of Theorem 2.2. We

omit the details.
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Step 3. Now let β ∈ Nd
0, and consider the following series:

∞∑
j=0

∂β

⎛⎝χ(Rjx)
∑
|α|=j

cα

α!
xα

⎞⎠ =
|β|∑
j=0

∂β

⎛⎝χ(Rjx)
∑
|α|=j

cα

α!
xα

⎞⎠
+

∞∑
j=|β|+1

∂β

⎛⎝χ(Rjx)
∑
|α|=j

cα

α!
xα

⎞⎠.

The sum is pointwise finite on Rd similarly to Step 1. Moreover,

it is uniformly and absolutely convergent due to the result from

Step 2. Since β ∈ Nd
0 is arbitrary, we can conclude f ∈ C∞(Rd)

by induction, and differetiate it under the summation. Thus

(∂βf)(0) =
∞∑

j=0

∂β

⎛⎝χ(Rjx)
∑
|α|=j

cα

α!
xα

⎞⎠∣∣∣∣∣∣
x=0

= cβ.

We are done.
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§ 2.3 Formal Adjoint

Theorem 2.3. Let a ∈ Sm
ρ,δ(R

2d) with m ∈ R, 0 ≤ δ ≤ ρ ≤ 1 and

δ �= 1, and define

a∗(x, ξ) = eiDxDξā(x, ξ) = (2π)−d
∫
R2d

e−iyηā(x+ y, ξ + η) dydη.

Then a∗ ∈ Sm
ρ,δ(R

2d), and

a(x,D)∗ = a∗(x,D).

Moreover, if δ < ρ, then

a∗ ∼ ∑
α∈Nd

0

1

i|α|α!
∂αx∂

α
ξ a.
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Remarks. 1. The formal adjoint of an operator A on S(Rd) is
an operator A∗ on S(Rd) such that for any u, v ∈ S(Rd)

(Au, v) = (u,A∗v).

2. By Proposition 2.5 below we can also see uniqueness of the
“adjoint symbol” a∗ ∈ Sm

ρ,δ(R
2d).

Proof. Step 1. We first show a∗ ∈ Sm
ρ,δ(R

2d). For that we are

going to prove for any α, β ∈ Nd
0∣∣∣∂αx∂βξ a∗(x, ξ)∣∣∣ ≤ Cαβ〈ξ〉m+δ|α|−ρ|β|. (♦)

However, since, as we can easily see,

∂αx∂
β
ξ a
∗(x, ξ) = (2π)−d

∫
R2d

e−iyη(∂αx∂
β
ξ ā)(x+ y, ξ + η) dydη,

it suffices to prove (♦) only for α = β = 0.
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Fix any χ ∈ C∞(Rd) satisfying

χ(x) =

⎧⎨⎩1 for |x| ≤ 1,

0 for |x| ≥ 2,

and we set

χ1(ξ, y, η) = χ
(
〈ξ〉δy

)
χ
(
2ε−1〈ξ〉−ρη

)
,

χ2(ξ, y, η) =
[
1− χ

(
〈ξ〉δy

)]
χ
(
2ε−1〈ξ〉−ρη

)
,

χ3(ξ, y, η) = χ
(
ε−1〈ξ〉−1η

)
− χ

(
2ε−1〈ξ〉−ρη

)
,

χ4(ξ, y, η) = 1− χ
(
ε−1〈ξ〉−1η

)
,

where ε > 0 is a fixed small constant such that

c〈ξ〉 ≤ 〈ξ + η〉 ≤ C〈ξ〉 on suppχ1 ∪ suppχ2 ∪ suppχ3,

〈ξ〉 ≤ C〈η〉, 〈ξ + η〉 ≤ C〈η〉 on suppχ4.
(♠)
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Using these cut-off functions, we split a∗ into four parts as

a∗ = I1 + I2 + I3 + I4

with

Ij(x, ξ) = (2π)−d
∫
R2d

e−iyηχj(ξ, y, η)ā(x+ y, ξ + η) dydη.

The terms I2, I3 and I4 are estimated by integrations by parts.
In fact, to estimate I2, let

tL1 =
〈
〈ξ〉−ρη

〉−2(
1− 〈ξ〉−2ρηDy

)
, tL2 = −|y|−2yDη.

Then, noting (♠), we have for any N ≥ d+1

|I2(x, ξ)| ≤ C1

∫
R2d

∣∣∣∣LN
2 LN

1 χ2(ξ, y, η)ā(x+ y, ξ + η)
∣∣∣∣dydη

≤ C2

∫
R2d

〈
〈ξ〉δy

〉−N〈
〈ξ〉−ρη

〉−N〈ξ〉m−(ρ−δ)N dydη

≤ C3〈ξ〉m−(ρ−δ)(N−d).
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Thus I2 satisfies (♦) for α = β = 0. Similarly, as for I3, let

tL3 = −|η|−2ηDy,
tL4 =

〈
〈ξ〉δy

〉−2(
1− 〈ξ〉2δyDη

)
.

Then, noting (♠), we have for any N ≥ d+1

|I3(x, ξ)| ≤ C4

∫
R2d

∣∣∣∣LN
3 LN

4 χ3(ξ, y, η)ā(x+ y, ξ + η)
∣∣∣∣dydη

≤ C5

∫
R2d

(
η + 〈ξ〉ρ

)−N〈
〈ξ〉δy

〉−N〈ξ〉m+δN dydη

≤ C6〈ξ〉m−(ρ−δ)(N−d).
Thus I3 also satisfies (♦) for α = β = 0. As for I4, let

tLy,η = 〈(y, η)〉−2(1− ηDy − yDη),

and fix N0 ∈ N such that

−N0 + |m|+ δN0 < −2d.
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Then, noting (♠), we have for any N ≥ N0

|I4| ≤ C4

∫
R2d

∣∣∣∣LN
y,ηχ4(ξ, y, η)ā(x+ y, ξ + η)

∣∣∣∣dydη
≤ C5

∫
η≥ε〈ξ〉

〈(y, η)〉−N〈η〉|m|+δN dydη

≤ C6〈ξ〉−(1−δ)(N−N0).

Thus by letting N be large I3 satisfies (♦) for α = β = 0.

Finally consider I1. We change variables and use Theorem 1.4,
so that

I1 = (2π)−d〈ξ〉d(ρ−δ)
∫
R2d

e−i〈ξ〉ρ−δyηχ(y)χ(η/ε)

· ā
(
x+ 〈ξ〉−δy, ξ + 〈ξ〉ρη

)
dydη

= ei〈ξ〉δ−ρDyDηχ(y)χ(η/ε)ā
(
x+ 〈ξ〉−δy, ξ + 〈ξ〉ρη

)∣∣∣
(y,η)=(0,0)

.
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Apply Theorem 1.5, and then we obtain for any N ∈ N

I1 =
N−1∑
k=0

ik

k!
(DxDξ)

kā(x, ξ) +RN(x, ξ)

with

|RN(x, ξ)| ≤ C7

N !
〈ξ〉−(ρ−δ)N ∑

|α|≤2d+1

∥∥∥∂α(DyDη)
Nχ(y)χ(η/ε)

· ā
(
x+ 〈ξ〉−δy, ξ + 〈ξ〉ρη

)∥∥∥
L1
y,η

≤ C8〈ξ〉m−(ρ−δ)N.

Thus we can estimate I1 as desired, and the claim is verified.
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Step 2. The asserted asymptotic expansion is essentially done in

Step 1. We omit the details.

Step 3. Finally we prove a∗(x,D) is the formal adjoint of a(x,D).

For any u, v ∈ S(Rd) we rewrite

(2π)3d/2(a(x,D)u, v)

= (2π)d/2
∫
Rd

(∫
R2d

ei(x−y)ξa(x, ξ)u(y) dydξ
)
v̄(x) dx

=
∫
R2d

e−ixη
(∫

R2d
e−iyξa(x, ξ)u(x+ y)(F∗v̄)(η) dydξ

)
dxdη.

Implement integrations by parts in (y, ξ), so that the integrand

gets integrable in (y, ξ, x, η). Then by Fubini’s theorem and

Lemma 1.3 we can rewrite it as an oscillatory integral in (y, ξ, x, η)
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as

(2π)3d/2(a(x,D)u, v)

=
∫
R4d

e−ixη−iyξa(x, ξ)u(x+ y)(F∗v̄)(η) dydξdxdη

=
∫
R4d

e−iyη+ixξa(x+ y, ξ + η)u(y)(F∗v̄)(η) dydξdxdη.
Next, again, implement integrations by parts in (x, ξ) to have

an integrable integrand, and apply Fubini’s theorem. Then the

definition of a∗ appears, and we obtain

(2π)3d/2(a(x,D)u, v)

= (2π)d
∫
R2d

e−iyηa∗(y, η)u(y)(F∗v̄)(η) dydη
= (2π)3d/2(u, a∗(x,D)v).

Hence we are done.
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Example. Let

A = a(x,D) =
∑
|α|≤m

aα(x)D
α, aα ∈ C∞(Rd).

Then the formal adjoint of A on C∞c (Rd) is computed by the

Leibniz rule as

A∗ =
∑
|α|≤m

Dαaα(x) =
∑

β∈Nd
0

∑
|α|≤m

(
α

β

)
(Dβaα)(x)D

α−β.

Hence the adjoint symbol a∗ is given by

a∗(x, ξ) =
∑

β∈Nd
0

∑
|α|≤m

(
α

β

)
(Dβaα)(x)ξ

α−β =
∑

β∈Nd
0

1

i|β|β!
∂βx∂

β
ξ a(x, ξ),

which coincides with the asymptotic expansion.
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◦ Extension to tempered disributions

Corollary 2.4. Let a ∈ Sm
ρ,δ(R

2d) with m ∈ R, 0 ≤ δ ≤ ρ ≤ 1 and

δ �= 1. Then a(x,D) extends as a continuous operator on S′(Rd).

Proof. For any u ∈ S′(Rd) define a(x,D)u ∈ S′(Rd) as, for any

φ ∈ S(Rd),

(a(x,D)u, φ) = (u, a∗(x,D)φ).

Obviously this provides a continuous extension of a(x,D) from

S(Rd) to S′(Rd). We are done.
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Proposition 2.5. Let m ∈ R, 0 ≤ δ ≤ ρ ≤ 1 and δ �= 1. Then for

any a ∈ Sm
ρ,δ(R

2d)

e−ixξa(x,D)eixξ = a(x, ξ).

In particular, the quantization

Sm
ρ,δ(R

2d)→ Ψm
ρ,δ(R

d), a(x, ξ) �→ a(x,D)

is bijective.
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Proof. For any φ ∈ S(Rd) we can compute

(2π)3d/2
(
e−ixξa(x,D)eixξ, φ

)
= (2π)3d/2

(
eixξ, a∗(x,D)eixξφ

)
=

∫
Rd

eixξ
(∫

R2d
e−i(x−y)η−iyξa∗(x, η)

(∫
Rd

e−iyζFφ(ζ) dζ
)
dydη

)
dx

=
∫
Rd

(∫
R2d

eiyηa∗(x, ξ + η)
(∫

Rd
e−i(x+y)ζFφ(ζ) dζ

)
dydη

)
dx.

We integrate by parts in (y, η) to make the integrand integrable

in (ζ, y, η). Then apply the Fubini’s theorem, and we can proceed

(2π)3d/2
(
e−ixξa(x,D)eixξ, φ

)
=

∫
Rd

(∫
R2d

(∫
Rd

eiyη−i(x+y)ζa∗(x, ξ + η)Fφ(ζ) dydη
)
dζ

)
dx

=
∫
Rd

(∫
R2d

(∫
Rd

eiyη−ixζa∗(x, ξ + η + ζ)Fφ(ζ) dydη
)
dζ

)
dx.

65

We integrate by parts in (y, η) and in (x, ζ), and then we can

verify

(2π)3d/2
(
e−ixξa(x,D)eixξ, φ

)
=

∫
R4d

eiyη−ixζa∗(x− y, ξ + η)Fφ(ζ) dydηdζdx

= (2π)d/2
∫
Rd

(∫
R2d

eiyηa∗(x− y, ξ + η) dydη
)
φ(x) dx

= (2π)3d/2
∫
Rd

(a∗)∗(x, ξ)φ(x) dx.

Since (passing through the Fourier space expression)

(a∗)∗ = eiDxDξ
(
eiDxDξā

)
= a,

we obtain the assertion.
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§ 2.4 Composition

Theorem 2.6. Let a ∈ Sm
ρ,δ(R

2d) and b ∈ Sl
ρ,δ(R

2d) with m, l ∈ R,
0 ≤ δ ≤ ρ ≤ 1 and δ �= 1. Then there uniquely exists a#b ∈
Sm+l
ρ,δ (R2d) such that

a(x,D) ◦ b(x,D) = (a#b)(x,D).

Moreover, a#b is expressed as

(a#b)(x, ξ) = eiDyDηa(x, η)b(y, ξ)
∣∣∣
(y,η)=(x,ξ)

= (2π)−d
∫
R2d

e−iyηa(x, ξ + η)b(x+ y, ξ) dydη,
(♥)

and, if δ < ρ, then

a#b ∼ ∑
α∈Nd

0

1

i|α|α!
(∂αξ a)(∂

α
x b).
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Proof. Let a#b be given by (♥). Then we can verify a#b ∈
Sm+l
ρ,δ (R2d) and the asserted asymptotic expansion similarly to

Steps 1 and 2 of the proof of Theorem 2.3. We omit the de-

tails. The uniqueness of the “composite symbol” is clear by

Proposition 2.5 as long as it exists. Hence it remainds to show

a(x,D) ◦ b(x,D) = (a#b)(x,D),

where a#b is given by (♥). For any u ∈ S(Rd) we can rewrite by

change of variables

(2π)2da(x,D) ◦ b(x,D)u(x)

=
∫
R2d

e−iyξa(x, ξ)
(∫

R2d
e−izηb(x+ y, η)u(x+ y + z) dzdη

)
dydξ.

Integrate it by parts in (z, η) sufficiently many times, and then in

(y, ξ), so that the resulting integrand gets integrable in (z, η, y, ξ).
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Then by Fubini’s theorem and Lemma 1.3 we can rewrite it as

(2π)2da(x,D) ◦ b(x,D)u(x)

=
∫
R4d

e−iyξ−izηa(x, ξ)b(x+ y, η)u(x+ y + z) dzdηdydξ

=
∫
R4d

e−iyξ−izηa(x, ξ + η)b(x+ y, η)u(x+ z) dzdηdydξ.

Again, integrate it by parts first in (y, ξ), and then in (z, η), and

apply Fubini’s theorem. (Note integrations by parts in (z, η) do

not make anything worse.) Then we obtain

(2π)2da(x,D) ◦ b(x,D)u(x)

= (2π)d
∫
R2d

e−izη(a#b)(x, η)u(x+ z) dzdη

= (2π)2d(a#b)(x,D)u(x).

Hence we are done.
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Example. Let

A = a(x,D) =
∑
|α|≤m

aα(x)D
α, B = b(x,D) =

∑
|β|≤l

bβ(x)D
β

with aα, bβ ∈ C∞(Rd). Then by the Leibniz rule

AB =
∑

γ∈Nd
0

∑
|α|≤m

∑
|β|≤l

(
α

γ

)
aα(x)(D

γbβ)(x)D
α+β−γ.

Hence the composite symbol a#b is given by

(a#b)(x, ξ) =
∑

γ∈Nd
0

⎛⎝ ∑
|α|≤m

(
α

γ

)
aα(x)ξ

α−γ
⎞⎠⎛⎝ ∑

|β|≤l
(Dγbβ)(x)ξ

β

⎞⎠
=

∑
γ∈Nd

0

1

i|γ|γ!
(∂γξ a(x, ξ))(∂

γ
xb(x, ξ)),

being compatible with the asymptotic expansion.
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◦ Commutator and Possion bracket

Definition. 1. Define the commutator of operators A,B on

S(Rd) as

[A,B] = AB −BA.

2. Define the Poisson bracket of a, b ∈ C1(R2d) as

{a, b} = ∂a

∂ξ

∂b

∂x
− ∂a

∂x

∂b

∂ξ
∈ C(R2d).
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Corollary 2.7. Let a ∈ Sm
ρ,δ(R

2d) and b ∈ Sl
ρ,δ(R

2d) with m, l ∈ R

and 0 ≤ δ < ρ ≤ 1.

1. If supp a ∩ supp b = ∅, then

a#b ∈ S−∞(R2d).

2. One has

[a(x,D), b(x,D)] ∈ Ψm+l−(ρ−δ)
ρ,δ (Rd),

and the associated symbol satisfies

(a#b− b#a) + i{a, b} ∈ S
m+l−2(ρ−δ)
ρ,δ (R2d).

Proof. The assertions are clear by Theorem 2.6.
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Remark. According to Theorems 2.3 and 2.6, a multiplication

operator by

a(x, ξ) on the phase space R
2d

may be “comparable” to a pseudodifferential operator

a(x,D) on the configuration space R
d

up to errors of lower order. Such a comparison gets more accu-

rate in the high energy (frequency) limit |ξ| → ∞.
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§ 2.5 Parametrix

Definition. Let a ∈ Sm
ρ,δ(R

2d) with m ∈ R and 0 ≤ δ < ρ ≤ 1.

1. We say a(x, ξ), or a(x,D), is elliptic if there exists ε, R > 0

such that for any (x, ξ) ∈ R2d with |ξ| ≥ R

|a(x, ξ)| ≥ ε|ξ|m.

2. We call b(x,D) ∈ Ψ−mρ,δ (Rd) a parametrix for a(x,D) if

a(x,D) ◦ b(x,D)− 1 ∈ Ψ−∞(Rd),

b(x,D) ◦ a(x,D)− 1 ∈ Ψ−∞(Rd).

Problem. Show a parametrix is unique up to Ψ−∞(Rd) if it exists.
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Theorem 2.8. Let a ∈ Sm
ρ,δ(R

2d) with m ∈ R and 0 ≤ δ < ρ ≤ 1.

The following conditions are equivalent to each other:

1. a is elliptic;

2. There exists b0 ∈ S−mρ,δ (R2d) such that

a(x,D) ◦ b0(x,D)− 1 ∈ Ψ−(ρ−δ)ρ,δ (Rd) (♠)
or

b0(x,D) ◦ a(x,D)− 1 ∈ Ψ−(ρ−δ)ρ,δ (Rd); (♥)

3. a(x,D) has a parametrix b(x,D) ∈ Ψ−mρ,δ (Rd).
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Proof. 1 ⇒ 2. Take χ ∈ C∞(Rd) such that

χ(ξ) =

⎧⎨⎩0 for |ξ| ≤ 1,

1 for |ξ| ≥ 2,

and set for large R > 0

b0(x, ξ) = χ(ξ/R)a(x, ξ)−1.

Then we can easily verify b0 ∈ S−mρ,δ (R2d). Moreover, by Theo-

rem 2.6 it clearly satisfies both (♠) and (♥).
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2 ⇒ 3. We first note that by Corollary 2.7, if either (♠) or (♥)
holds, then both of them hold. Let b0 ∈ S−mρ,δ (R2d) be as in the

condition 2, and we set

r = a#b0 − 1 ∈ S
−(ρ−δ)
ρ,δ (R2d).

Then, since

b0#(−r)#j ∈ S
−m−j(ρ−δ)
ρ,δ (R2d),

we can take their asymptotic sum: For some b ∈ S−mρ,δ (R2d)

b ∼
∞∑

j=0

b0#(−r)#j.

Now we have a#b− 1 ∈ S−∞(Rd). In fact, noting

a#b0#(−r)#j = (−r)#j − (−r)#(j+1),
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we have for any k ∈ N

a#b− 1 = a#

⎛⎝b−
k−1∑
j=0

b0#(−r)#j

⎞⎠− (−r)#k ∈ S
−k(ρ−δ)
ρ,δ (R2d).

Similarly, we can construct c ∈ S−mρ,δ (R2d) such that

c#a− 1 ∈ S−∞(R2d).

However, then

b = c#a#b+ (1− c#a)#b

= c+ c#(a#b− 1) + (1− c#a)#b,

so that

b− c ∈ S−∞(R2d).

Thus b(x,D) gives a parametrix for a(x,D) as desired.
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3 ⇒ 1. By the assumption and Theorem 2.6 there exists C1 > 0

such that

|a(x, ξ)b(x, ξ)− 1| ≤ C1〈ξ〉−(ρ−δ)

On the ohter hand, since b ∈ S−mρ,δ (R2d), there exists C2 > 0 such

that

|a(x, ξ)b(x, ξ)| ≤ C2|a(x, ξ)|〈ξ〉−m.

Hence, combining these estimates, we obtain

|a(x, ξ)| ≥ C−12 |a(x, ξ)b(x, ξ)|〈ξ〉m

≥ C−12

(
1− |a(x, ξ)b(x, ξ)− 1|

)
〈ξ〉m

≥ C−12

(
1− C1〈ξ〉−(ρ−δ)

)
〈ξ〉m,

implying the ellipticity of a.
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§ 2.6 Weyl Quantization

Definition. Let a ∈ Sm
ρ,δ(R

2d) with m ∈ R, ρ > −1 and δ < 1,

and let t ∈ [0,1]. Define the t-quantization of a as, for any

u ∈ S(Rd),

at(x,D)u(x) = (2π)−d
∫
R2d

ei(x−y)ξa
(
(1− t)x+ ty, ξ

)
u(y) dydξ.

In particular, we call:

1. a(x,D) = a0(x,D) the standard (or left) quantization;

2. a1(x,D) the right quantization;

3. aW(x,D) := a1/2(x,D) the Weyl quantization.
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◦ Continuity

Proposition 2.9. Let a ∈ Sm
ρ,δ(R

2d) with m ∈ R, ρ > −1 and

δ < 1, and let t ∈ [0,1]. Then at(x,D) is a continuous operator

on S(Rd).

Proof. We can prove it similarly to Theorem 2.1. The details

are omitted.

Problem. Fill out the details of the above proof.
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Proposition 2.10. Let a ∈ Sm
ρ,δ(R

2d) with m ∈ R, ρ > −1 and
δ < 1, and let t ∈ [0,1]. Then

at(x,D)∗ = (ā)1−t(x,D).

In particular, the following holds.

1. at(x,D) extends as a continuous operator on S′(Rd).

2. If a is real-valued, aW(x,D) is formally self-adjoint, i.e.,

aW(x,D)∗ = aW(x,D).

Proof. We prove only the former assertion since the latter ones
are obvious. We implement integrations by parts to change the
order of integrations as follows. Take large N ∈ N0 such that

m− 2(1− δ)N < −d,
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and then we can compute

(2π)d(at(x,D)u, v)

=
∫
Rd

(∫
R2d

ei(x−y)ξa
(
(1− t)x+ ty, ξ

)
u(y) dydξ

)
v̄(x) dx

=
∫
R3d

ei(x−y)ξ〈ξ〉−2N〈Dy〉2Na
(
(1− t)x+ ty, ξ

)
u(y)v̄(x) dxdξdy

=
∫
R3d

ei(x−y)ξ〈ξ〉−4N

· 〈Dx〉2N〈Dy〉2Na
(
(1− t)x+ ty, ξ

)
u(y)v̄(x) dxdξdy

=
∫
R3d

ei(x−y)ξ〈ξ〉−2N〈Dx〉2Na
(
(1− t)x+ ty, ξ

)
v̄(x)u(y) dxdξdy

=
∫
Rd

u(y)
(∫

R2d
ei(x−y)ξa

(
(1− t)x+ ty, ξ

)
v̄(x) dxdξ

)
dy

= (2π)d(u, (ā)1−t(x,D)v).

Hence we obtain the former assertion. We are done.
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◦ Change of quantization

Theorem 2.11. Let a ∈ Sm
ρ,δ(R

2d) with m ∈ R, 0 ≤ δ ≤ ρ ≤ 1
and δ �= 1, and let t, s ∈ [0,1] with t �= s. There uniquely exists
b ∈ Sm

ρ,δ(R
2d) such that

at(x,D) = bs(x,D). (♦)
Moreover, b is expressed as

b(x, ξ) = ei(t−s)DxDξa(x, ξ)

= (2π)−d|t− s|−d
∫
R2d

e−iyη/(t−s)a(x+ y, ξ + η) dydη,
(♣)

and, if δ < ρ, then

b ∼ ∑
α∈Nd

0

(t− s)|α|

i|α|α!
∂αx∂

α
ξ a.
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Proof. Step 1. We first let b be given by (♣). Then we can verify

b ∈ Sm
ρ,δ(R

2d) and the asserted asymptotic expansion in exactly

the same way as in the proof of Theorem 2.3. We omit the

details.

Step 2. Next we prove (♦) for b given by (♣), but only present

the outline. By (♣) we can write

(2π)2dbs(x,D)u(x)

= |t− s|−d
∫
R2d

ei(x−z)ξ
(∫

R2d
e−iyη/(t−s)

· a((1− s)x+ sz + y, ξ + η) dydη
)
u(z) dzdξ.
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We change variables, integrate it by parts and change the order

of integrations, so that

(2π)2dbs(x,D)u(x)

=
∫
R4d

e−izξ−iyηa(x+ sz + (t− s)y, ξ + η)u(x+ z) dydηdzdξ.

We further change variables, and apply the Fourier inversion

formula:

(2π)2dbs(x,D)u(x)

=
∫
R4d

e−izξ−iyηa(x+ sz + ty, η)u(x+ y + z) dydηdzdξ

= (2π)d
∫
R2d

e−iyηa(x+ ty, η)u(x+ y) dydη

= (2π)2dat(x,D)u(x).

Hence (♦) is verified for b given by (♣).
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Step 3. We finally discuss the uniqueness. Suppose that both

b, c ∈ Sm
ρ,δ(R

2d) satisfy (♦). If we let

b̃ = eisDxDξb, c̃ = eisDxDξc,

then we have b̃(x,D) = c̃(x,D), so that by Proposition 2.5

b̃ = c̃.

Now we note that eisDxDξ is bijective from Sm
ρ,δ(R

2d) to itself,

since e±isDxDξ map it into itself, being the inverses to each other

on S′(R2d). Hence we can conclude b = c. We are done.
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◦ Composition

Theorem 2.12. Let a ∈ Sm
ρ,δ(R

2d) and b ∈ Sl
ρ,δ(R

2d) with m, l ∈ R,

0 ≤ δ ≤ ρ ≤ 1 and δ �= 1, and let t ∈ [0,1]. Then there uniquely

exists a#tb ∈ Sm+l
ρ,δ (R2d) such that

at(x,D) ◦ bt(x,D) = (a#tb)t(x,D).

Moreover, a#tb is given by

(a#tb)(x, ξ)

= ei(DyDη−DzDζ)a((1− t)x+ tz, η)b((1− t)y + tx, ζ)
∣∣∣y=z=x,
η=ζ=ξ

= (2π)−2d
∫
R4d

e−i(yη−zζ)a(x+ tz, ξ + η)

· b((1− t)y + x, ξ + ζ)dydηdzdζ,

(♠)
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and, if δ < ρ, then

a#tb ∼ ∑
k∈N0

1

ikk!
(∂y∂η − ∂z∂ζ)

k

a((1− t)x+ tz, η)b((1− t)y + tx, ζ)
∣∣∣y=z=x,
η=ζ=ξ

.

Proof. Step 1. Here we prove a#tb given by (♠) belongs to
Sm+l
ρ,δ (R2d). However, we only present the strategy since the

proof is similar to that of Theorem 2.3. It suffices to show∣∣∣(a#tb)(x, ξ)
∣∣∣ ≤ C〈ξ〉m+l.

Fix any χ ∈ C∞(R2d) satisfying

χ(x, y) =

⎧⎨⎩1 for |(x, y)| ≤ 1,

0 for |(x, y)| ≥ 2,
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and we set

χ1(ξ, y, η) = χ
(
〈ξ〉δy, 〈ξ〉δz

)
χ
(
2ε−1〈ξ〉−ρη,2ε−1〈ξ〉−ρζ

)
,

χ2(ξ, y, η) =
[
1− χ

(
〈ξ〉δy, 〈ξ〉δz

)]
χ
(
2ε−1〈ξ〉−ρη,2ε−1〈ξ〉−ρζ

)
,

χ3(ξ, y, η) = χ
(
ε−1〈ξ〉−1η, ε−1〈ξ〉−1ζ

)
− χ

(
2ε−1〈ξ〉−ρη,2ε−1〈ξ〉−ρζ

)
,

χ4(ξ, y, η) = 1− χ
(
ε−1〈ξ〉−1η, ε−1〈ξ〉−1ζ

)
,

where ε > 0 is a sufficiently small constant. The we split a#tb,

using these cut-off functions, and estimate them similarly to

Theorem 2.3. We omit the rest of the arguments.

Step 2. The asserted asymptotic expansion is obtained similarly

to Theorem 2.3. We omit the details.
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Step 3. Now, let a#tb be given in the assertion, and we prove

at(x,D) ◦ bt(x,D) = (a#tb)t(x,D).

For that we first construct c ∈ Sm+l
ρ,δ (R2d) such that

at(x,D) ◦ bt(x,D) = c(x,D),

and then verify

e−itDxDξc = a#tb.

The following computations can be verified by integrations by

parts, change of variables and change of order of integrations,

though the details are omitted for simplicity. For any u ∈ S(Rd)
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we compute

(2π)3dat(x,D) ◦ bt(x,D)u(x)

= (2π)3dat(x,D) ◦ bt(x,D)(F∗Fu)(x)

=
∫
R2d

ei(x−y)ξa((1− t)x+ ty, ξ)
[∫

R2d
ei(y−z)ηb((1− t)y + tz, η)

·
(∫

R2d
ei(z−w)ζu(w) dwdζ

)
dzdη

]
dydξ

=
∫
R6d

e−iyξ−izη−iwζa(x+ ty, ξ)b(x+ y + tz, η)

· u(x+ y + z + w) dwdζdzdηdydξ

=
∫
R2d

e−iwζ
(∫

R4d
e−iyξ−izηa(x+ ty, ζ + ξ)

· b(x+ y + tz, ζ + η)dzdηdydξ
)
u(x+ w) dwdζ.
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Hence we should set

c(x, ζ) = (2π)−2d
∫
R4d

e−iyξ−izηa(x+ ty, ζ + ξ)

· b(x+ y + tz, ζ + η) dzdηdydξ.

Similarly to Theorem 2.12, we can show c ∈ Sm+l
ρ,δ (R2d). Then

we further proceed along with the Fourier inversion formula

(2π)3de−itDxDζc(x, ζ)

= |t|−d
∫
R6d

eiwθ/t−iyξ−izηa(x+ w + ty, ζ + θ + ξ)

· b(x+ w + y + tz, ζ + θ + η) dzdηdydξdwdθ

=
∫
R6d

e−iyξ+iwη+izθa(x+ tw, ζ + ξ)

· b(x+ (1− t)y + tz, ζ + η) dzdηdydξdwdθ.

93

Hence with the Fourier inversion formula

(2π)3de−itDxDζc(x, ζ) = (2π)d
∫
R4d

e−iyξ+iwηa(x+ tw, ζ + ξ)

· b(x+ (1− t)y, ζ + η) dηdydξdw

= (2π)3d(a#tb)(x, ζ).

Thus we obtain the claim.

Step 4. Finally it remains to discuss the uniqueness. The unique-

ness of the “t-symbol” can be shown as in Step 3 of the proof

of Theorem 2.11, and we omit it. Thus we are done.
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Corollary 2.13. Let a ∈ Sm
ρ,δ(R

2d) and b ∈ Sl
ρ,δ(R

2d) with m, l ∈ R

and 0 ≤ δ < ρ ≤ 1. Then

a#Wb := a#1/2b ∼ ∑
α,β∈Nd

0

(−1)|α|
(2i)|α|+|β|α!β!

(∂αx∂
β
ξ a)(∂

α
ξ ∂

β
xb).

Moreover,

a#Wb− b#Wa+ i{a, b} ∈ S
m+l−3(ρ−δ)
ρ,δ (R2d).

Proof. The expansion is verified by Theorem 2.12 and the multi-

nomial theorem. Under interchange of the indices α and β a

partial sum over |α|+ |β| = k ∈ N0 is even or odd according to k

even or odd, respectively. Thus the latter assertion follows.
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Problem. Let a ∈ S0
0,0(R

2d).

1. Verify

FaW(x,Dx)F∗ = aW(−Dξ, ξ): S(Rd)→ S(Rd). (♥)

2. For any t ∈ R define the free Schrödinger propagator as

eitΔ/2 = F∗e−itξ2/2F : S(Rd)→ S(Rd).

Then verify

e−itΔ/2aW(x,D)eitΔ/2 = aW(x+ tD,D).
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Remarks. 1. These identities support the idea that aW(x,D) is

merely a multiplication operator by a(x, ξ) on R2d, with F
and eitΔ being symplectic transforms

(x, ξ) �→ (−ξ, x), (x, ξ) �→ (x+ tξ, ξ),

respectively.

2. Due to the symmetry (♥) in x and ξ, it is also possible to

develop the theory of ΨDOs for symbols satisfying∣∣∣∂αx∂βξ a(x, ξ)∣∣∣ ≤ Cαβ〈x〉m−ρ|α|+δ|β|.

Such a class is useful, for example, in the quantum scattering

theory. This is just an example of various symbol classes.
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Chapter 3

Pseudodifferential Estimates

§ 3.1 L2-boundedness

Theorem 3.1. Let 0 ≤ δ < ρ ≤ 1. Then there exist C > 0 and

j ∈ N0 such that for any a ∈ S0
ρ,δ(R

2d) and u ∈ S(Rd)

‖a(x,D)u‖L2 ≤ C|a|j,S0
ρ,δ
‖u‖L2.

In particular, a(x,D) is bounded on L2(Rd).

Remark. Recall the seminorm | · |j,Sm
ρ,δ

on Sm
ρ,δ(R

2d) is defined as

|a|j = |a|j,Sm
ρ,δ

= sup
{
〈ξ〉−m−δ|α|+ρ|β|∣∣∣∂αx∂βξ a(x, ξ)∣∣∣;

|α|+ |β| ≤ j, (x, ξ) ∈ R
2d
}
.
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Proposition 3.2 (Schur’s lemma). Let K : Rd×Rd → C be mea-

surable, and assume there exist α, β ≥ 0 such that∫
Rd
|K(x, y)|dy ≤ α for a.e. x ∈ R

d,∫
Rd
|K(x, y)|dx ≤ β for a.e. y ∈ R

d.

Then, for any u ∈ L2(Rd) and for a.e. x ∈ Rd, K(x, ·)u is inte-

grable, and ∥∥∥∥∫
Rd

K(·, y)u(y) dy
∥∥∥∥
L2
≤ (αβ)1/2‖u‖L2.
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Proof. Let u ∈ L2(Rd). Then by Fubini’s theorem and the

Cauchy–Schwarz inequality∫
Rd

(∫
Rd
|K(x, y)u(y)|dy

)2
dx

≤
∫
R3d
|K(x, y)||K(x, z)||u(y)||u(z)|dydzdx

≤ 1

2

∫
R3d
|K(x, y)||K(x, z)||u(y)|2 dydzdx

+
1

2

∫
R3d
|K(x, y)||K(x, z)||u(z)|2 dydzdx

≤
∫
Rd
|u(y)|2

(∫
Rd
|K(x, y)|

(∫
Rd
|K(x, z)|dz

)
dx

)
dy

≤ αβ‖u‖2
L2.

Hence by Fubini’s theorem again the assertion is verified.
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Proof of Theorem 3.1. For simplicity we shall not keep track of

dependence of constants on seminorms, but it is not difficult.

Step 1. We first prove the assertion for a ∈ Sm
ρ,δ(R

2d) with m < −d.
Let u ∈ S(Rd). By the assumption and Fubini’s theorem

a(x,D)u(x) = (2π)−d
∫
Rd

(∫
Rd

ei(x−y)ξa(x, ξ) dξ
)
u(y) dy,

so that a(x,D) has the Schwartz kernel

K(x, y) = (2π)−d
∫
Rd

ei(x−y)ξa(x, ξ) dξ.

By integrations by parts we can verify that for any N ∈ N0

|K(x, y)| ≤ C1〈x− y〉−2N.

Schur’s lemma applies for large N , hence a(x,D) ∈ B(L2(Rd)).
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Step 2. Next we prove the assertion for a ∈ Sm
ρ,δ(R

2d) with m < 0.

By Step 1 and induction it suffices to show, if for some l < 0

Ψl
ρ,δ(R

d) ⊂ B(L2(Rd)), (♣)
then

Ψ
l/2
ρ,δ (R

d) ⊂ B(L2(Rd)).

Suppose (♣), and take any a ∈ S
l/2
ρ,δ (R

2d). Then for any u ∈ S(Rd)

by the Cauchy–Schwarz inequality

‖a(x,D)u‖2
L2 ≤ ‖a∗(x,D)a(x,D)u‖L2‖u‖L2.

However, by a∗(x,D)a(x,D) ∈ Ψl
ρ,δ(R

d) and (♣) it follows that

‖a(x,D)‖B(L2) ≤ ‖a∗(x,D)a(x,D)‖1/2B(L2)
<∞.

Thus the claim is verified.
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Step 3. Finally let a ∈ S0
ρ,δ(R

2d). We set

b(x, ξ) =
√
2|a|20 − |a(x, ξ)|2 ∈ S0

ρ,δ(R
2d).

Then there exists c ∈ S
−(ρ−δ)
ρ,δ (R2d) such that

a∗#a+ b∗#b = 2|a|20 + c.

Now for any u ∈ S(Rd)

‖a(x,D)u‖2
L2 ≤ ‖a(x,D)u‖2

L2 + ‖b(x,D)u‖2
L2

= 2|a|20‖u‖2L2 + (c(x,D)u, u)L2

≤
(
2|a|20 + ‖c(x,D)‖B(L2)

)
‖u‖2

L2,

and hence we obtain the assertion.
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◦ Calderón–Vaillancourt theorem

Theorem 3.3 (Calderón–Vaillancourt).There exist C > 0 and

j ∈ N0 such that for any a ∈ S0
0,0(R

2d) and u ∈ S(Rd)

‖a(x,D)u‖L2 ≤ C|a|j,S0
0,0
‖u‖L2.

In particular, a(x,D) is bounded on L2(Rd).
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Lemma 3.4 (Cotlar–Stein lemma). Let H be a Hilbert space,

and assume a family {Aj}j∈N ⊂ B(H) satisfies for some M ≥ 0

sup
j∈N

∑
k∈N

‖AjA
∗
k‖1/2B(H) ≤M, sup

j∈N
∑
k∈N

‖A∗jAk‖1/2B(H) ≤M.

Then the series

S :=
∑
j∈N

Aj

converges strongly in B(H), and

‖S‖B(H) ≤M.
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Proof. Step 1. Here we prove that for any n ∈ N

‖Sn‖ ≤M ; Sn :=
n∑

j=1

Aj ∈ B(H).

For that we shall compute and bound ‖Sn‖2m for m ∈ N. Since

S∗nSn is bounded on H, we have

‖Sn‖2 = sup
‖u‖H=1

‖Snu‖2 = sup
‖u‖H=1

(S∗nSnu, u) = ‖S∗nSn‖.

Then, since S∗nSn is self-adjoint,

‖Sn‖2m = ‖S∗nSn‖m = ‖(S∗nSn)
m‖.

Hence we are lead to compute and bound

(S∗S)m =
n∑

j1,...,j2m=1

A∗j1Aj2 · · ·A∗j2m−1Aj2m.
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Denote the above summand by Aj1···j2m. Then we have

‖Aj1···j2m‖ ≤ ‖A∗j1Aj2‖ · · · ‖A∗j2m−1Aj2m‖,
and

‖Aj1···j2m‖ ≤ ‖A∗j1‖‖Aj2A
∗
j3
‖ · · · ‖Aj2m−2A

∗
j2m−1‖‖Aj2m‖.

Noting

‖Aj‖ = ‖A∗j‖ = ‖A∗jAj‖1/2 ≤M,

we can deduce

‖Aj1···j2m‖ ≤M
(
‖A∗j1Aj2‖‖Aj2A

∗
j3
‖ · · · ‖A∗j2m−1Aj2m‖

)1/2
.

Therefore by the assumption

‖Sn‖2m ≤ nM2m, or ‖Sn‖ ≤ n1/(2m)M.

Now by letting m→∞ we obtain the claim.
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Step 2. To prove Sn is strongly convergent as n→∞ we split

H = G ⊕ G⊥; G = span

( ⋃
k∈N

RanA∗k

)
.

Note Sn ≡ 0 on G⊥ since for any u ∈ G⊥ and v ∈ H

(Snu, v) =
n∑

j=1

(u,A∗jv) = 0.

Thus it suffices to discuss the limit of Snu for u ∈ G, however,

due to Step 1 and the density argument it further reduces to the

case u ∈ RanA∗k. Let u = A∗kv for some v ∈ H, and then

n∑
j=1

‖Aju‖ ≤
n∑

j=1

‖AjA
∗
k‖1/2‖AjA

∗
k‖1/2‖v‖ ≤M2‖v‖.

This implies Snu is absolutely convergent for u ∈ RanA∗k.
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Step 3. Finally we estimate ‖S‖. However, it is straightforward.
For any u ∈ H

‖Su‖ = lim
n→∞‖Snu‖ ≤ lim

n→∞‖Sn‖‖u‖ ≤M‖u‖.
Hence we are done.

Proof of Theorem 3.3. Step 1. By Theorem 2.11 it suffices to
show aW(x,D) is bounded on L2(Rd). Let χ ∈ C∞c (R2d) be such
that ∑

μ∈Z2d

χμ = 1; χμ(·) = χ(· − μ)

(construction of such χ is left to the reader as a Problem), and
we microlocally cut off and set

aμ = χμa, Aμ = aWμ (x,D).
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Step 2. Here we let u ∈ C∞c (Rd), and prove pointwise convergence

aW(x,D)u(x) =
∑

μ∈Z2d

Aμu(x). (♠)

We introduce

tL1 = 〈ξ〉−2(1− ξDy),

and rewrite a partial sum of the right-hand side of (♠) as∑
|μ|≤n

Aμu(x) = (2π)−d
∫
R2d

ei(x−y)ξ
∑
|μ|≤n

LN
1 aμ

(
x+ y

2
, ξ

)
u(y) dydξ.

Since the partition {χμ}μ∈Z2d of unity is uniformly locally finite,

we have for any (x, y, ξ) ∈ R3d and n ∈ N0∣∣∣∣∣ ∑|μ|≤nL
N
1 aμ

(
x+ y

2
, ξ

)
u(y)

∣∣∣∣∣ ≤ C1,N |a|N〈y〉−N〈ξ〉−N.

111



Hence by the Lebesgue convergence theorem∑
μ∈Z2d

Aμu(x) = (2π)−d
∫
R2d

ei(x−y)ξLN
1 a

(
x+ y

2
, ξ

)
u(y) dydξ,

and we obtain (♠).

Step 3. Now it suffices to verify the assumptions of the Cotlar–

Stein lemma for H = L2(Rd) and {Aμ}μ∈Z2d. Let us write

AμA
∗
νu(x) =

∫
Rd

Kμν(x, y)u(y) dy

with

Kμν(x, y) = (2π)−2d
∫
R3d

ei(xξ−zξ+zη−yη)

· aμ
(
x+ z

2
, ξ

)
āν

(
y + z

2
, η

)
dηdzdξ.
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We are going to apply Schur’s lemma. Note Kμν ∈ C∞(R2d).
Set

tL2 =
〈
(x− y, ξ − η)

〉−2(
1+ (x− y)(Dξ +Dη)− (ξ − η)Dz

)
,

and we rewrite

Kμν(x, y) = (2π)−2d
∫
R3d

ei(xξ−zξ+zη−yη)

· LN
2 aμ

(
x+ z

2
, ξ

)
āν

(
y + z

2
, η

)
dηdzdξ.

Note on the support of the integrand we have for N ≥ 2d+2∣∣∣∣∣LN
2 aμ

(
x+ z

2
, ξ

)
āν

(
y + z

2
, η

)∣∣∣∣∣
≤ C2,N |a|2N

〈
(x− y, ξ − η)

〉−N
≤ C3,N |a|2N〈μ− ν〉d+1−N〈x− y〉−d−1,
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so that

sup
x∈Rd

∫
Rd
|Kμν(x, y)|dy ≤ C4,N |a|2N〈μ− ν〉2d+2−N,

and

sup
y∈Rd

∫
Rd
|Kμν(x, y)|dx ≤ C4,N |a|2N〈μ− ν〉2d+2−N.

Hence by Schur’s lemma it follows that

‖AμA
∗
ν‖ ≤ C4,N |a|2N〈μ− ν〉2d+2−N.

Similarly we obtain

‖A∗μAν‖ ≤ C5,N |a|2N〈μ− ν〉2d+2−N.

Now the Cotlar–Stein lemma applies for sufficiently large N , and

along with Step 2 we obtain the assertion.
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§ 3.2 Sobolev Spaces

Definition. 1. Define the weighted L2-space of order s ∈ R as

L2
s(R

d) =
{
u ∈ S′(Rd); 〈x〉su ∈ L2(Rd)

}
,

which is a Hilbert space with respect to the inner product

(u, v)L2
s
=

∫
Rd
〈x〉2su(x)v(x) dx.

2. Define the Sobolev space of order s ∈ R as

Hs(Rd) =
{
u ∈ S′(Rd); Fu ∈ L2

s(R
d)
}
,

which is a Hilbert space with respect to the inner product

(u, v)Hs =
∫
Rd
〈ξ〉2s(Fu)(ξ)(Fv)(ξ) dξ.
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We further set

H∞(Rd) =
⋂
s∈R

Hs(Rd), H−∞(Rd) =
⋃
s∈R

Hs(Rd).

Note that for any s < t

S(Rd) ⊂ H∞(Rd) ⊂ Ht(Rd) ⊂ Hs(Rd) ⊂ H−∞(Rd) ⊂ S′(Rd).

Proposition 3.5. Let s ∈ R. Then S(Rd) is dense in Hs(Rd).

Proof. It is straightforward if we discuss it in the Fourier space.

We omit the details.
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Theorem 3.6 (Sobolev embedding theorem). Let s ∈ R and

k ∈ N0 with s > k + d/2. Then

Hs(Rd) ⊂ Ck
b(R

d).

Moreover, there exists C > 0 such that for any u ∈ Hs(Rd)

‖u‖
Ck
b
= sup

{
|∂αu(x)|; |α| ≤ k, x ∈ R

d
}
≤ C‖u‖Hs.

Therefore the embedding Hs(Rd) ↪→ Ck
b(R

d) is continuous.

117

Proof. Let s > k + d/2. We first note that for any u ∈ S(Rd),

|α| ≤ k and x ∈ Rd

|Dαu(x)| = (2π)−d/2
∣∣∣∣∫
Rd

eixξξα(Fu)(ξ) dξ
∣∣∣∣

≤ (2π)−d/2
(∫

Rd
|ξ|2|α|〈ξ〉−2s dξ

)1/2
‖u‖Hs = C‖u‖Hs.

Let v ∈ Hs(Rd). Take a sequence (vn)n∈N on S(Rd) such that

vn → v in Hs(Rd).

Due to the above bound (vn)n∈N is also a Cauchy sequance on

Ck
b(R

d), and thus there exists w ∈ Ck
b(R

d) such that

vn → w in Ck
b(R

d).

By uniquness of limit in S′(Rd) it follows that v = w ∈ Ck
b(R

d).

The asserted bound also follows from the above one.
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Proposition 3.7. Let s, t ∈ R. The operator 〈D〉s is unitary as

Ht+s(Rd)→ Ht(Rd).

Moreover, it also gives linear isomorphisms

H∞(Rd)→ H∞(Rd), H−∞(Rd)→ H−∞(Rd).

Proof. By the Fourier transform we may reduce the assertion to

that for the corresponding weighted L2-spaces. Then the proof

is straightforward. We omit the details.
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Theorem 3.8. Let a ∈ Sm
ρ,δ(R

2d) or a ∈ Sm
0,0(R

2d) with m ∈ R

and 0 ≤ δ < ρ ≤ 1, and let s ∈ R. Then a(x,D) is bounded as

Hs(Rd)→ Hs−m(Rd).

Proof. Set

b(x, ξ) = 〈ξ〉s−m#a(x, ξ)#〈ξ〉−s ∈ S0
ρ,δ(R

2d) or S0
0,0(R

2d).

By Theorems 3.1 or 3.3 there exists C > 0 such that for any

u ∈ L2(Rd)

‖b(x,D)u‖L2 ≤ C‖u‖L2.

Now we let u = 〈D〉sv with v ∈ S(Rd), and then it follows that

‖a(x,D)v‖Hs−m ≤ C‖v‖Hs.

Since S(Rd) ⊂ Hs(Rd) is dense, the assertion is verified.
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◦ Smoothing operators

Proposition 3.9. Let a ∈ S−∞(R2d).

1. For any u ∈ S′(Rd) there exists N ∈ N0 such that

a(x,D)u ∈ 〈x〉NH∞(Rd) ⊂ C∞(Rd).

2. a(x,D) has the Schwartz kernel K(x, x−y) with K ∈ C∞(R2d)
satisfying for any α, β, γ ∈ Nd

0

sup
(x,z)∈R2d

∣∣∣zα∂βx∂γzK(x, z)
∣∣∣ <∞.

3. Conversely, any operator with the Schwartz kernel K(x, x−y)
satisfying the above properties belongs to Ψ−∞(Rd).
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Proof. 1. Due to the structure of S′(Rd) for any u ∈ S′(Rd)

there exists N ∈ N0 and s ∈ R such that

v := 〈x〉−2Nu ∈ Hs(Rd).

Then we can write for some bα ∈ S−∞(R2d)

a(x,D)u(x) = (2π)−d
∫
R2d

eixξ
(
〈Dξ〉2Ne−iyξ

)
a(x, ξ)v(y) dydξ

= (2π)−d
∑

|α|≤2N
xα

∫
R2d

ei(x−y)ξbα(x, ξ)v(y) dydξ,

so that by Theorem 3.8

〈x〉−2Na(x,D)u(x) =
∑

|α|≤2N
xα〈x〉−2Nbα(x,D)v(x) ∈ H∞(Rd).

The inclusion H∞(Rd) ⊂ C∞(Rd) is obvious by Theorem 3.6.
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2. For any u ∈ S(Rd) we can write by Fubini’s theorem

a(x,D)u(x) =
∫
Rd

K(x, x− y)u(y) dy

with

K(x, z) = (2π)−d
∫
Rd

eizξa(x, ξ) dξ.

The asserted properties of K follows by integrations by parts.

3. We can construct the associated symbol as

a(x, ξ) =
∫
Rd

e−izξK(x, z) dz.

It is easy to see a ∈ S−∞(R2d), and that a(x,D) in fact has the

Schwartz kernel K(x, x− y). We omit the details.
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◦ Compactness criterion

Theorem 3.10. Let a ∈ S0
ρ,δ(R) with 0 ≤ δ < ρ ≤ 1 or ρ = δ = 0,

and assume for any α, β ∈ Nd
0 there exists m ∈ L∞(R2d) such that∣∣∣∂αx∂βξ a(x, ξ)∣∣∣ ≤ m(x, ξ)〈ξ〉δ|α|−ρ|β|

and

lim
|(x,ξ)|→∞

m(x, ξ) = 0.

Then a(x,D) is a compact operator on L2(Rd).
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Proof. We first reduce the proof to the case a ∈ C∞c (R2d). In

fact, take any χ ∈ C∞c (R2d) such that

χ(x, ξ) =

⎧⎨⎩1 for |(x, ξ)| ≤ 1,

0 for |(x, ξ)| ≥ 2,

and set for ε > 0

aε(x, ξ) = χ(εx, εξ)a(x, ξ).

Then by the assumption we can see for any j ∈ N0

|a− aε|S0
ρ,δ
→ 0 as ε→ +0.

This implies by Theorems 3.1 or 3.3

lim
ε→+0

aε(x,D) = a(x,D) in B(L2(Rd)),

and thus the reduction is valid.
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Now suppose a ∈ C∞c (R2d), and let (uj)j∈N be a bounded se-

quence on L2(Rd). By the assumption there exists a compact

subset K ⊂ Rd such that for any j ∈ N

supp a(x,D)uj ⊂ K.

In addition, since a(x,D) ∈ Ψ−∞(Rd), by Theorems 3.6 and 3.8

there exists C > 0 such that for any j ∈ N, |α| ≤ 1 and x ∈ Rd∣∣∣∂αa(x,D)uj(x)
∣∣∣ ≤ C.

Then by the Ascoli–Arzelà theorem we can choose a uniformly

convergent subsequence of (a(x,D)uj)j∈N, and it also converges

in L2(Rd). Hence we are done.
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Remark.Let us present a heuristic. Let a be as in Theorem 3.10,

and take any bounded sequence (uj)j∈N on L2(Rd). Suppose we

could regard uj(x) as a function uj(x, ξ) on R2d, and look at

a(x, ξ)uj(x, ξ) instead of a(x,D)uj(x).

By the assumption and the uncertainty principle uj(x, ξ) should

be “uniformly bounded” on R2d. Thus we would have

|a(x, ξ)uj(x, ξ)| ≤ Cm(x, ξ)

uniformly in j ∈ N. Then by the diagonal argument we would

be able to extract a subsequence of (a(x, ξ)uj(x, ξ))j∈N that con-

verges on any compact subsets of R2d.
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§ 3.3 Gårding-Type Inequalities

Theorem 3.11 (Elliptic a priori estimate). Let a ∈ Sm
ρ,δ(R

2d)
be elliptic with m ∈ R and 0 ≤ δ < ρ ≤ 1, and let s, t ∈ R. Then
there exists C > 0 such that for any u ∈ S(Rd)

‖u‖Hs+m ≤ C
(
‖a(x,D)u‖Hs + ‖u‖Ht

)
Proof. By the assumption and Theorem 2.8 there exist b ∈
S−mρ,δ (R2d) and r ∈ S−∞(R2d) such that

1 = b(x,D)a(x,D) + r(x,D),

so that for any u ∈ S(Rd)

〈D〉s+mu = 〈D〉s+mb(x,D)a(x,D)u+ 〈D〉s+mr(x,D)u. (♠)
Then the assertion follows by Proposition 3.8.
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Example. Let a ∈ Sm
ρ,δ(R

2d) be elliptic with m ∈ R and 0 ≤ δ < ρ ≤
1. Given f ∈ Hs(Rd) with s ∈ R, we consider an inhomogeneous

elliptic equation

a(x,D)u = f.

Suppose we find a solution u in a wide Sobolev space H−N(Rd)

with N � 1. However, then it automatically follows by the a

priori estimate, or more presicely by (♠), that

u ∈ Hs+m(Rd).

We can always recover the regularity of a solution u. Such a

property is called the elliptic regularity. See also Theorem 4.1.
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Theorem 3.12 (Gårding inequality). Let a ∈ Sm
ρ,δ(R

2d) with

m ∈ R and 0 ≤ δ < ρ ≤ 1. Assume there exist ε0 > 0 and R ≥ 0

such that for any x ∈ Rd and |ξ| ≥ R

Re a(x, ξ) ≥ ε0〈ξ〉m.

Then for any ε ∈ (0, ε0) and l < m there exists C > 0 such that,

as quadratic forms on Hm/2(Rd),

Re(a(x,D)) ≥ ε〈D〉m − C〈D〉l,
i.e., for any u ∈ Hm/2(Rd)

Re
(
a(x,D)u, u

)
L2 ≥ ε‖u‖2

Hm/2 − C‖u‖2
Hl/2.
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Remarks. 1. In general, for an operator A we define

ReA =
1

2
(A+A∗), ImA =

1

2i
(A−A∗).

These conform with the associated quadratic forms as

(ReAu, u) = Re(Au, u), (ImAu, u) = Im(Au, u).

2. We can say symbol estimates are translated into the associ-

ated operators up to lower order errors.

3. Inner product is more informative than norm.

Problem.Deduce the elliptic a priori estimate from the Gårding

inequality.
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Proof. Take sufficiently large C1 > 0, so that for any (x, ξ) ∈ R2d

Re a(x, ξ) ≥ ε0〈ξ〉m − C1〈ξ〉m−ρ+δ.

Set for any ε′ ∈ (ε, ε0)

b(x, ξ) =
(
Re a(x, ξ)− ε′〈ξ〉m + C1〈ξ〉m−ρ+δ

)1/2 ∈ S
m/2
ρ,δ (R2d).

Then there exists c ∈ S
m−ρ+δ
ρ,δ (R2d) such that

1

2

(
a(x, ξ) + a∗(x, ξ)

)
= (b∗#b)(x, ξ) + ε′〈ξ〉m − c(x, ξ).
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Hence we obtain for sufficiently large C2 > 0

Re a(x,D) = b∗(x,D)b(x,D) + ε′〈D〉m − c(x,D)

≥ ε′〈D〉m − C2〈D〉m−ρ+δ.

Finally for any l < m we can find C3 > 0 such that

−C2〈D〉m−ρ+δ ≥ −(ε′ − ε)〈D〉m − C3〈D〉l.
Thus we obtain the assertion.
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Theorem 3.13 (Sharp Gårding inequality). Let a ∈ Sm
ρ,δ(R

2d)
with m ∈ R and 0 ≤ δ < ρ ≤ 1. Assume there exists R ≥ 0 such
that for any x ∈ Rd and |ξ| ≥ R

Re a(x, ξ) ≥ 0.

There exists C > 0 such that, as quadratic forms on Hm/2(Rd),

Re(a(x,D)) ≥ −C〈D〉m−ρ+δ.

Remark. The Fefferman–Phong inequality further improves
the right-hand side of the sharp Gårding inequality.

Proof. We omit the proof.

Problem.Deduce the Gårding inequality from the sharp Gårding
inequality.
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Chapter 4

Application I: Analysis of Singularities



§ 4.1 Pseudolocality

Definition. Define the support and singular support of u ∈
S′(Rd) as

suppu =
(⋃{

U ⊂ R
d; U is open, and u|U ≡ 0

})c
,

sing suppu =
(⋃{

U ⊂ R
d; U is open, and u|U ∈ C∞(U)

})c
,

respectively.

Remark. By definition u|U ≡ 0 iff

〈u, φ〉 = 0 for any φ ∈ C∞c (U).

Similarly, u|U ∈ C∞(U) iff there exists v ∈ C∞(U) such that

〈u, φ〉 =
∫
U
v(x)φ(x) dx for any φ ∈ C∞c (U).
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Theorem 4.1. Let a ∈ Sm
ρ,δ(R

2d) with m ∈ R and 0 ≤ δ < ρ ≤ 1.

1. a(x,D) is pseudolocal, i.e., for any u ∈ S′(Rd)

sing supp a(x,D)u ⊂ sing suppu.

2. If a is elliptic, a(x,D) is hypoelliptic, i.e., for any u ∈ S′(Rd)

sing supp a(x,D)u = sing suppu.

Remark.An operator A on S′(Rd) is said to be local if it satisfies

for any u ∈ S′(Rd)

suppAu ⊂ suppu.

See also Proposition 4.2 below.
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Proof. 1. Let u ∈ S′(Rd). Let U ⊂ Rd be an open subset such

that

u|U ∈ C∞(U).

Take any χ1 ∈ C∞c (U), and choose χ2 ∈ C∞c (U) such that

χ2 = 1 on a neighborhood of suppχ1.

We decompose

χ1a(x,D)u = χ1a(x,D)χ2u+ χ1a(x,D)(1− χ2)u.

Then, since χ2u ∈ S(Rd),

χ1a(x,D)χ2u ∈ S(Rd).

On the other hand, since χ1a(x,D)(1− χ2) ∈ Ψ−∞(Rd),

χ1a(x,D)(1− χ2)u ∈ S(Rd).
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Thus we obtain χ1a(x,D)u ∈ S(Rd), and hence

(a(x,D)u)|U ∈ C∞(U).

This implies the assertion.

2. If a is elliptic, then by Theorem 2.8 there exist b ∈ S−mρ,δ (R2d)

and r ∈ S−∞(R2d) such that for any u ∈ S′(Rd)

u = b(x,D)a(x,D)u+ r(x,D)u.

Then by Proposition 3.9 and the assertion 1

sing suppu ⊂ sing supp b(x,D)a(x,D)u ⊂ sing supp a(x,D)u.

Thus the assertion follows.
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◦ Topic: Local ΨDOs

Proposition 4.2. Let a ∈ Sm
ρ,δ(R

2d) with m ∈ R, 0 ≤ δ ≤ ρ ≤ 1,

δ �= 1 and ρ �= 0. a(x,D) is local if and only if it is a PDO.

Proof. Step 1. First, assume m < −d, and we show a ≡ 0. In

this case we can write for any u ∈ S(Rd)

a(x,D)u(x) =
∫
Rd

K(x, y)u(y) dy

with

K(x, y) = (2π)−d
∫
Rd

ei(x−y)ξa(x, ξ) dξ.

By the locality we obtain K(x, y) = 0 for x �= y, hence the claim.
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Step 2. Next, let α ∈ Nd
0, and we prove (∂αξ a)(x,D) is also local.

However, it is straightforward since by integration by parts we

can write for any u ∈ S(Rd)

(∂αξ a)(x,D)u(x) = (−i)|α| ∑
β∈Nd

0

(−1)|β|
(
α

β

)
xα−βa(x,D)xβu(x).

Step 3. Here we prove the assertion. By Taylor’s theorm and

Steps 2 and 1 it follows that for any N ∈ N0 with m− ρN < −d

a(x, ξ) =
∑
|α|≤N

1

α!
(∂αξ a)(x,0)ξ

α.

This implies a(x,D) is a PDO.
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§ 4.2 Wave Front Set

Definition. We say Γ ⊂ Rd is conic if it satisfies

ξ ∈ Γ, t > 0 ⇒ tξ ∈ Γ.

We also say Γ′ ⊂ R2d is conic if it satisfies

(x, ξ) ∈ Γ′, t > 0 ⇒ (x, tξ) ∈ Γ′.

In the following we shall write

R
2d \ 0 = R

d × (Rd \ {0})
for short.
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Definition. The wave front set of u ∈ S′(Rd):

WF(u) ⊂ R
2d \ 0

is defined such that (x0, ξ0) /∈ WF(u) if and only if there exist

χ ∈ C∞c (Rd) with χ(x0) �= 0 and a conic neighborhood Γ ⊂ Rd\{0}
of ξ0 such that for any N ≥ 0 there exists CN ≥ 0 such that∣∣∣(Fχu)(ξ)

∣∣∣ ≤ CN〈ξ〉−N for ξ ∈ Γ.

Remark. By definition WF(u) ⊂ R2d \ 0 is closed and conic.
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Theorem 4.3. Let u ∈ S′(Rd). Then

π(WF(u)) = sing suppu,

where

π : R2d \ 0→ R
d, (x, ξ) �→ x

is the first projection.

Remark.WF(u) represents “direction-wise singularities” at each

point.
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Proof. Step 1. Let x0 �∈ π(WF(u)). For each ξ ∈ Sd−1 we have

(x0, ξ) /∈WF(u),

so that we can find χ ∈ C∞c (Rd) and Γ ⊂ Rd \ {0} as in the
definition of the wave front set. Since Sd−1 is compact, we can
choose ξj ∈ Sd−1, j = 1, . . . , k, and the corresponding χj and Γj

such that
k⋃

j=1

Γj = R
d \ {0}.

Now we set

χ = χ1 · · ·χk ∈ C∞c (Rd).

Then obviously χ(x0) �= 0, and moreover we can verify that for
any N ≥ 0 there exists CN > 0 such that

|(Fχu)(ξ)| ≤ CN〈ξ〉−N for ξ ∈ R
d.
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(The verification is left to the reader as a Problem.) Thus

χu = F∗Fχu ∈ C∞(Rd),

and this implies x0 /∈ sing suppu.

Step 2. Conversely, let x0 /∈ sing suppu. Then there exists χ ∈
C∞c (Rd) such that

χ(x0) �= 0, χu ∈ C∞c (Rd) ⊂ S(Rd).

Since Fχu ∈ S(Rd), for any N ≥ 0 there exists CN > 0 such that

|(Fχu)(ξ)| ≤ CN〈ξ〉−N for ξ ∈ R
d.

Thus for any ξ ∈ Rd \ {0} we obtain (x0, ξ) /∈WF(u).
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Problem. Compute the wave front sets of the following distri-

butions.

1. The Dirac delta funcion δ on Rd;

2. δ(x′)⊗ 1(x′′) for (x′, x′′) ∈ Rp × Rq;

3. δ
Sd−1 on Rd;

4. (x+ i0)−1 on R;

5. The characteristic function χΓ of an angular domain Γ ⊂ R2.
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§ 4.3 Microlocal Ellipticity

Definition. Let a ∈ Sm
ρ,δ(R

2d) with m ∈ R and 0 ≤ δ < ρ ≤ 1.

1. We say a(x, ξ), or a(x,D), is elliptic at x0 ∈ Rd if there exists

ε, R > 0 and a neighborhood Ω ⊂ Rd of x0 such that for any

x ∈ Ω and |ξ| ≥ R

|a(x, ξ)| ≥ ε|ξ|m.

2. We say a(x, ξ), or a(x,D), is elliptic at (x0, ξ0) ∈ R2d \ 0 if

there exist ε, R > 0 and a conic neighborhood Γ ⊂ R2d of

(x0, ξ0) such that for any (x, ξ) ∈ Γ with |ξ| ≥ R

|a(x, ξ)| ≥ ε|ξ|m.
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3. Define the characteristic set of a(x, ξ), or a(x,D), as

char a = char(a(x,D))

=
{
(x, ξ) ∈ R

2d \ 0; a is not elliptic at (x, ξ)
}
.

Remark.By definition char a ⊂ R2d \0 is closed and conic. Note,

if a is elliptic, it is elliptic at any (x, ξ) ∈ R2d \ 0 and char a = ∅.
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Theorem 4.4. Let u ∈ S′(Rd) and (x0, ξ0) ∈ R2d \ 0. Then

(x0, ξ0) /∈ WF(u) if and only if there exists a ∈ Sm
ρ,δ(R

2d) with

m ∈ R and 0 ≤ δ < ρ ≤ 1 such that it is elliptic at (x0, ξ0) and

a(x,D)u ∈ C∞(Rd).

Proof. Necessity. First let (x0, ξ0) /∈ WF(u). Take χ ∈ C∞c (Rd)

and Γ ⊂ Rd \ {0} as in the definition of the wave front set. Let

η ∈ C∞(Rd) be such that

η(ξ0) �= 0, supp η ⊂ Γ, η(tξ) = η(ξ) for t ≥ 1 and |ξ| ≥ 1.

Then for any N ≥ 0 there exists CN > 0 such that

|η(ξ)(Fχu)(ξ)| ≤ CN〈ξ〉−N for all ξ ∈ R
d,
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which implies

(χ̄(x)η̄(D))∗u = F∗ηFχu ∈ C∞(Rd).

Thus it suffices to take a(x, ξ) = (χ̄(x)η̄(ξ))∗ ∈ S0(R2d).

Sufficiency. Conversely, assume we can find a ∈ Sm
ρ,δ(R

2d) as in
the assertion. Note we may assume

suppu � R
d, supp a(x,D)u � R

d.

In fact, take φ, ψ ∈ C∞c (Rd) such that

φ(x0) �= 0, ψ = 1 on suppφ,

and decompose

φ(x)a(x,D)u = φ(x)a(x,D)ψ(x)u+ φ(x)a(x,D)(1− ψ(x))u.

Then it suffices to prove the assertion for ψu and φa instead of
u and a, respectively.
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Next, by the assumption there exist ε, R > 0 and a conic neigh-
borhood Γ ⊂ R2d of (x0, ξ0) such that

|a(x, ξ)| ≥ ε|ξ|m for (x, ξ) ∈ Γ with |ξ| ≥ R.

Then we can construct b ∈ S−mρ,δ (R2d) and r ∈ S−∞(R2d) such
that

b(x,D)a(x,D) = η(D)χ(x) + r(x,D),

where χ, η ∈ C∞(Rd) satisfy

χ(x0)η(Rξ0/|ξ0|) �= 0, suppχη ⊂ Γ,

η(tξ) = η(ξ) for |ξ| ≥ R and t ≥ 1.

In fact, let b0 = χηa−1, and then there exist c1 ∈ S
−ρ+δ
ρ,δ (R2d) and

r1 ∈ S−∞(R2d) such that

b0#a = η#χ+ c1 + r1, supp c1 ⊂ suppχη.
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Then, let b1 = −c1a−1, and there exist c2 ∈ S
−2(ρ−δ)
ρ,δ (R2d) and

r2 ∈ S−∞(R2d) such that

b1#a = −c1 + c2 + r2, supp c2 ⊂ suppχη.

Repeat this procedure, and we take the asymptotic sum

b ∼
∞∑

j=0

bj,

which satisfies the claimed identity.

Now we obtain, noting the support of u and a(x,D)u,

η(D)χu = b(x,D)a(x,D)u− r(x,D)u ∈ S(Rd),

cf. Proposition 3.9. Therefore (x0, ξ0) /∈WF(u).
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Theorem 4.5. Let a ∈ Sm
ρ,δ(R

2d) with m ∈ R and 0 ≤ δ < ρ ≤ 1.

Then for any u ∈ S′(Rd)

WF(a(x,D)u) ⊂WF(u) ⊂WF(a(x,D)u) ∪ char a.

In particular, if a is elliptic, then for any u ∈ S′(Rd)

WF(a(x,D)u) = WF(u).

Remarks. 1. These are microlocal refinements of pseudolocality

and hypoellipticity, see Theorem 4.1.

2. If a(x,D) is elliptic, the wave front set of a solution u to

a(x,D)u = f

is completely determined by that of f : WF(u) = WF(f).
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Proof. Step 1. Assume (x0, ξ0) /∈ WF(a(x,D)u) ∪ char a. Then,

since (x0, ξ0) /∈ WF(a(x,D)u), by Theorem 4.4 there exists b ∈
Sl
σ,ε(R

2d) with l ∈ R and 0 ≤ ε < σ ≤ 1 such that it is elliptic at

(x0, ξ0) and

b(x,D)a(x,D)u ∈ C∞(Rd).

On the other hand, since (x0, ξ0) /∈ char a, b#a is also elliptic at

(x0, ξ0). Hence by Theorem 4.4 we obtain (x0, ξ0) /∈WF(u).
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Step 2. Next, let (x0, ξ0) /∈ WF(u). Take χ, χ̃ ∈ C∞c (Rd) and
η, η̃ ∈ C∞(Rd) such that

χ(x0)η(ξ0) �= 0, η̃(D)χ̃(x)u ∈ H∞(Rd)

η(tξ) = η(ξ), η̃(tξ) = η̃(ξ) for t ≥ 1 and |ξ| ≥ |ξ0|
χ̃(x)η̃(ξ) = 1 on a neighborhood of suppχ(x)η(ξ).

We decompose

η(D)χ(x)a(x,D)u = η(D)χ(x)a(x,D)η̃(D)χ̃(x)u

+ η(D)χ(x)a(x,D)
(
1− η̃(D)χ̃(x)

)
u.

Then the first term on the right-hand side belongs to H∞(Rd).
In addition, since

η(D)χ(x)a(x,D)
(
1− η̃(D)χ̃(x)

)
∈ Ψ−∞(Rd),

the second term belongs to C∞(Rd). Thus we obtain (x0, ξ0) /∈
WF(a(x,D)u). We are done.
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§ 4.4 Propagation of Wave Front Set

◦ Hamilton flow

Definition. Let Γ ⊂ R2d be open. Define the Hamilton vector

field associated with a Hamiltonian p ∈ C∞(Γ;R) as

Hp =
∂p

∂ξ

∂

∂x
− ∂p

∂x

∂

∂ξ
=

d∑
j=1

(
∂p

∂ξj

∂

∂xj
− ∂p

∂xj

∂

∂ξj

)
∈ X(Γ).

In addition, a solution to the Hamilton equations

dxj
dt

=
∂p

∂ξj
(x, ξ),

dξj
dt

= − ∂p

∂xj
(x, ξ), j = 1, . . . , d,

is called a bicharacteristic of p.
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Proposition 4.6. Let p ∈ C∞(Γ;R) with Γ ⊂ R2d open. For any

bicharacteristic γ : I → Γ, I ⊂ R, of p, p ◦ γ is constant on I.

Proof. Let us write simply γ = (x, ξ). Then by definition

d

dt
p(x, ξ) =

d∑
j=1

(
dxj
dt

∂p

∂xj
(x, ξ) +

dξj
dt

∂p

∂ξj
(x, ξ)

)
= 0.

Hence the assertion follows.

Definition. A bicharacteristic γ of p is called a null bicharac-

teristic if p ◦ γ ≡ 0.
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Proposition 4.7. Let Γ ⊂ R2d \ 0 be open and conic, and let

p ∈ C∞(Γ;R) be positively homogeneous of degree m ∈ R in

ξ �= 0. If

γ(t; y, η) = (x(t; y, η), ξ(t; y, η)), γ(0; y, η) = (y, η),

is a bicharacteristic of p, then for any λ > 0

γ±,λ(t; y, η) :=
(
x
(
±λm−1t; y, η

)
, λξ

(
±λm−1t; y, η

))
are bicharacteristics of ±p, respectively.

Proof. It is straightforward due to direct computations.
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◦ Propagation theorem

Theorem 4.8. Let a ∈ Sm
cl (R

2d) with principal symbol p, and let

u, f ∈ S′(Rd) satisfy

a(x,D)u = f.

Let γ : [0, T ] → R2d \ 0 be a null bicharacteristic of Re p, and

suppose for some conic neighborhood Γ ⊂ R2d \ 0 of γ([0, T ])

Im p ≥ 0 in Γ.

If

γ(0) ∈WF(u) and γ([0, T ]) ∩WF(f) = ∅,
then γ(T ) ∈WF(u).
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Remarks. 1. WF(u) propagates forward/backward along the

null bicharacteristics of Re p where ± Im p ≥ 0, respectively,

until they hit WF(f). As for the backward propagation for

Im p ≤ 0, it suffices to apply the assertion to

−a(x,D)u = −f
along with Proposition 4.7. Note, if Im p ≡ 0, then WF(u)

propagates both forward and backward, see Corollary 4.9

below.

2. In other words, along null bicharacteristics, singularities may

only be amplified/damped according to ± Im p ≥ 0, respec-

tively. We avoid WF(f) since the external force f could

create or annihilate singularities there.
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3. The conclusion is equivalent to the converse propagation of
regularities: “If

γ(T ) /∈WF(u) and γ([0, T ]) ∩WF(f) = ∅,
then γ(0) /∈WF(u).” In fact, the proof keeps track of prop-
agation of regularities.

4. Recall Theorem 4.5 implies

WF(u) ∩ (char p)c = WF(f) ∩ (char p)c.

This is why we consider only the null bicharacteristics. (How-
ever, note also

char p = {Re p = 0} ∩ {Im p = 0},
see Corollary 4.10 below.)
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Corollary 4.9. Let a ∈ Sm
cl (R

2d) have a real principal symbol p,

and let u, f ∈ S′(Rd) satisfy

a(x,D)u = f.

If γ : [0, T ] → R2d \ 0 is a null bicharacteristic of p such that

γ([0, T ]) ∩WF(f) = ∅, then either

γ([0, T ]) ⊂WF(u) or γ([0, T ]) ⊂ (WF(u))c

holds.

Proof. The assertion is obvious by Theorem 4.8 and the subse-

quent remarks.
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Corollary 4.10. Let a ∈ Sm
cl (R

2d) have a principal symbol p with

Im p ≥ 0, and let u ∈ S′(Rd) and f ∈ C∞(Rd) satisfy

a(x,D)u = f.

If γ : [0, T ] → R2d \ 0 is a null bicharacteristic of Re p such that

Im p(γ(T )) > 0, then

γ([0, T ]) ⊂ (WF(u))c

holds.

Proof. The assertion is obvious by Theorems 4.5 and 4.8, and

the remarks subsequent to Theorems 4.8.
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Example. Consider the 1D wave equation(
∂2

∂t2
− ∂2

∂x2

)
u(t, x) = 0 for (t, x) ∈ R× R.

We can apply Theorems 4.5 and 4.8, or Corollary 4.9, with

a(t, x, τ, ξ) = p(t, x, τ, ξ) = −τ2 + ξ2, f = 0,

and conclude that WF(u) is a subset of the light cone{
(t, x, τ, ξ) ∈ R

4 \ 0; −τ2 + ξ2 = 0
}

and that WF(u) is invariant under the Hamilton flow of p. Note

all the null bicharacteristics of p are given by

(t, x, τ, ξ) = (t0 − 2sτ0, x0 + 2sξ0, τ0, ξ0) with − τ20 + ξ20 = 0.

165

Outline of proof of Theorem 4.8. Step 1. We microlocalize in a
conic neighborhood of γ([0, T ]) with factor |D|1−m, so that we
may let

m = 1, Im p ≥ 0, f ∈ C∞c (Rd), u ∈ Hs(Rd) for some s ∈ R.

In fact, choose χ ∈ S1−m
cl (R2d) and χ̃ ∈ S0

cl(R
2d) both supported

in a small conic neighborhood of γ([0, T ]) such that

χ(x, ξ) = |ξ|1−m in a conic neighborhood of γ([0, T ]),

χ̃(x, ξ) = 1 in a conic neighborhood of suppχ.

Then the claim follows by the decomposition

χ(x,D)a(x,D)χ̃(x,D)u

= χ(x,D)f − χ(x,D)a(x,D)(1− χ̃(x,D))u,

and the structure of compactly supported distributions. Note
γ([0, T ]) remains the same up to scaling of time parameter.
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Step 2. Let (y, η) ∈ R2d \ 0, and take ψ ∈ Ss
cl(R

2d) supported in a

small conic neighborhood of (y, η) with

ψ(x, ξ) = 〈εξ〉−1/2〈ξ〉s+1/2 in a conic neighborhood of (y, η).

Here ε ∈ (0,1] is a parameter to be let ε → 0, cf. Yosida ap-

proximation. Now we solve a transport equation

∂

∂t
b− {Re p, b} = 0, b(0, x, ξ) = ψ(x, ξ).

In fact, if γ(t;x, ξ) is a bicharacteristic with initial data (x, ξ),

∂

∂t
b(t, γ(t;x, ξ)) = 0, and hence b(t, x, ξ) = ψ(γ(−t, x, ξ)).

Note b are bounded in S
s+1/2
cl (R2d) for t ∈ [0, T ] and ε ∈ (0,1].
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Step 3. In the following let us write for short

A = a(x,D), Pr = (Re p)W(x,D), Pi = (Im p)W(x,D),

B = bW(t, x,D), R = rW(t, x,D), . . . .

Here we are going to show there exist μ > 0 and r ∈ S2s
cl (R

2d),
bounded uniformly in t ∈ [0, T ] and ε ∈ (0,1], such that

d

dt
(eμtB2)− 2eμt Im(A∗B2) ≥ R,

as quadratic forms, e.g., on S(Rd). In fact, we can compute

d

dt
(eμtB2) = μeμtB2 + ieμt[Pr,B]B + ieμtB[Pr,B] +R1

= μeμtB2 + 2eμt Im(PrB
2) +R1

= μeμtB2 + 2eμt Im(A∗B2) + 2eμtRe(PiB
2)

+ 2eμt Im
(
(Pr − iPi −A∗)B2

)
+R1,
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where R1 ∈ Ψ2s
cl (R

d). We continue by using the L2-boundedness

theorem and the sharp Gårding inequality as

d

dt
(eμtB2) = μeμtB2 + 2eμt Im(A∗B2)

+ 2eμtBPiB + eμt[[Pi,B], B]

+ 2eμtB
(
Im(Pr − iPi −A∗)

)
B

+2eμt Im
(
[Pr − iPi −A∗, B]B

)
+R1

= (μ− C1)e
μtB2 + 2eμt Im(A∗B2) +R2

with R2 ∈ Ψ2s
cl (R

d). Therefore the claim follows for large μ > 0.
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Step 4. Now let γ(T ; y, η) �∈ WF(u). By Step 3 and the funda-

mental theorem of calculus

‖B(0)u‖2
L2 ≤ eμT‖B(T )u‖2

L2 + C
(
‖u‖2Hs + ‖f‖2

Hs+1

)
uniformly in ε ∈ (0,1]. If we choose suppψ small enough, and let

and let ε→ +0, then by the monotone convergence theorem

u is Hs+1/2 in a (microlocal) neighborhood of (y, η).

Hence u is Hs+1/2 in a neighborhood of γ([0, T ]). We repeat the

above arguments, and obtain at last u is C∞ in a neighborhood

of γ([0, T ]). (We have to be careful that these neighborhoods

should not shrink to γ([0, T ]).) Thus we are done.
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Chapter 5

Application II: Local Solvability of PDOs



§ 5.1 Local Solvability

◦ Definition and reduction

Throughout the chapter we study a PDO

a(x,D) =
∑
|α|≤m

aα(x)D
α; aα ∈ C∞(Rd).

Definition. a(x,D) is locally solvable at x0 ∈ Rd if there exists

a neighborhood U ⊂ Rd of x0 such that for any f ∈ C∞(Rd) there

exists u ∈ S′(Rd) satisfying

a(x,D)u = f on U.
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Theorem 5.1. 1. If a(x,D) is locally solvable at x0 ∈ Rd, then

there exist a neighborhood U ⊂ Rd of x0, s, t ∈ R and c > 0

such that for any v ∈ C∞c (U)

‖a∗(x,D)v‖H−s ≥ c‖v‖H−t.

2. Conversely, if there exist U ⊂ Rd, s, t ∈ R and c > 0 as above,

then for any f ∈ Ht(Rd) there exists u ∈ Hs(Rd) such that

a(x,D)u = f on U.

In partiucular, a(x,D) is locally solvable at x0.

Remark. We may say, very roughly, a(x,D): Hs → Ht is surjec-

tive if and only if a∗(x,D): H−t → H−s is injective.

173

Proof. 1. Step 1. Assume a(x,D) is locally solvable at x0, and

take a neighborhood U ⊂ Rd of x0 as in the definition. We may

let U be bounded. For each v ∈ C∞c (U) we define

φv : X := H∞(Rd)→ C, f �→ (f, v)L2,

and set for each n, k ∈ N0

Xn,k =
{
f ∈ X; ∀v ∈ C∞c (U) |φv(f)| ≤ n‖a∗(x,D)v‖Hk

}
.

We are going to apply the Baire category theorem for X and

Xn,k. Note X is a complete metric space with respect to a

distance given by

d(f, g) =
∑

k∈N0

1

2k
‖f − g‖Hk

1+ ‖f − g‖Hk

.
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Step 2. We verify the assumptions the Baire category theorem.

To see Xn,k ⊂ X is closed let us rewrite

Xn,k =
⋂

v∈C∞c (U)

{
f ∈ X; |φv(f)| ≤ n‖a∗(x,D)v‖Hk

}
.

Thus it suffices to show φv is continuous, however it is staight-

forward since

|φv(f)| = |(f, v)L2| ≤ ‖f‖H0‖v‖H0.

Next we prove Xn,k with n, k ∈ N0 exhaust X. Take any f ∈ X ⊂
C∞(Rd), and then by the assumption there exists u ∈ S′(Rd) such

that

a(x,D)u = f on U.
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Now by the continuity of u, boundedness of U and the Sobolev
embedding theorem there exist C,C′ > 0 and k, k′ ∈ N0 such that
for any v ∈ C∞c (U)

|φv(f)| = |(u, a∗(x,D)v)L2|
≤ C sup

{
|∂αa∗(x,D)v(x)|; |α| ≤ k, x ∈ U

}
≤ C′‖a∗(x,D)v‖

Hk′.

This implies the claim.

Step 3. Now by the Baire category theorem there exist g ∈ X,
l ∈ N0 and ε > 0 such that{

h ∈ X; ‖h− g‖Hl ≤ ε
}
⊂ Xn,k.

Thus for any v ∈ C∞c (U) and f ∈ X with ‖f‖Hl ≤ ε

|φv(f)| ≤ |φv(f + g)|+ |φv(g)| ≤ 2n‖a∗(x,D)v‖Hk,
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which in turn implies for any v ∈ C∞c (U) and f ∈ X

|(f, v)L2| ≤ 2nε−1‖f‖Hl‖a∗(x,D)v‖Hk.

Hence it follows that for any v ∈ C∞c (U)

‖v‖H−l ≤ 2nε−1‖a∗(x,D)v‖Hk,

and the assertion 1 is verified.

2. Assume that there exist U ⊂ Rd, s, t ∈ R and c > 0 as in the

assertion 2. Take any f ∈ Ht(Rd). Define

φf : L→ C; L = a∗(x,D)C∞c (U),

as, for any w = a∗(x,D)v ∈ L,

φf(w) = (v, f)L2.
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Note it is well-defined since a∗(x,D): H−t(Rd) → H−s(Rd) is in-

jective. Since

|φf(w)| ≤ ‖v‖H−t‖f‖Ht ≤ C‖w‖H−s‖f‖Ht,

we can extend φf to φ̃f ∈ (H−s(Rd))∗ by the Hahn–Banach the-

orem. Then we can write for some u ∈ Hs(Rd)

φ̃f = (·, u)L2,

and hence for any w = a∗(x,D)v ∈ L

(v, f)L2 = φ̃f(w) = (w, u)L2 = (a∗(x,D)v, u)L2 = (v, a(x,D)u)L2.

Thus the assertion 2 is verified.
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◦ Topic: Derivative loss

We present a refinement of local solvability for reference.

Definition. a(x,D) is locally solvable at x0 ∈ Rd with deriva-

tive loss μ ≥ 0 if for any s ∈ R there exists a neighborhood U ⊂ Rd

of x0 such that for any f ∈ Hs(Rd) there exists u ∈ Hs+m−μ(Rd)

satisfying

a(x,D)u = f on U.

Remark. 1. If a(x,D) is locally solvable at x0 with derivative

loss μ ≥ 0, then it is locally solvable at x0.

2. The smaller μ gets, the stronger the above property gets,

since we have to seek for u in a smaller Sobolev space.
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§ 5.2 Examples

◦ Elliptic PDOs

Theorem 5.2. Assume a(x,D) is elliptic at x0 ∈ Rd. Then there
exist a neighborhood U ⊂ Rd of x0 and c > 0 such that for any
v ∈ C∞c (U)

‖a∗(x,D)v‖L2 ≥ c‖v‖Hm.

In particular, a(x,D) is locally solvable at x0.

Proposition 5.3 (Poincaré inequality). For any k ∈ N0 there
exist C,C ′ > 0 such that for any bounded open subset U ⊂ Rd

and any u ∈ C∞c (U)

‖u‖Hk ≤ C(diamU)‖|D|u‖Hk ≤ C′(diamU)‖u‖Hk+1,

where diamU denotes the diameter of U .
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Proof. The latter inequality is obvious, and we verify only the

former one. We may let 0 ∈ U by translation. Then for any

u ∈ C∞c (U) we can estimate we can estimate

‖u‖2
Hk ≤ C1

∑
|α|≤k

(i[D1, x1]D
αu,Dαu)L2

≤ C1
∑
|α|≤k

i
[
(x1D

αu,D1D
αu)L2 − (D1D

αu, x1D
αu)L2

]
≤ 2C1(diamU)

∑
|α|≤k

‖Dαu‖L2‖D1D
αu‖L2

≤ C2(diamU)‖u‖Hk‖|D|u‖Hk.

Thus we obtain the assertion.

Remark. It is obvious from the above proof that the assertion

extends for any U ⊂ Rd bounded only in one direction.
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Proof of Theorem 5.2. The assertion is obvious for m = 0, and

we may let m ≥ 1. By the assumption we can find c1, R > 0 and

χ ∈ C∞c (Rd) such that

0 ≤ χ ≤ 1, χ = 1 in a neighborhood of x0,

and that for any (x, ξ) ∈ R2d with |ξ| ≥ R

χ(x)2|a(x, ξ)|2 + (1− χ(x)2)|ξ|2m ≥ c1|ξ|2m.

Then by the Gårding inequality we obtain for any v ∈ Hm(Rd)

‖χa∗(x,D)v‖2
L2 ≥ c2‖v‖2Hm − C1‖v‖Hm−1‖v‖Hm.

Next, by the Poincaré inequality, if we take a sufficiently small

neighborhood U ⊂ Rd of x0, then for any v ∈ C∞c (U)

‖a∗(x,D)v‖2
L2 ≥ c3‖v‖2Hm.

Thus we obtain the assertion.
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◦ PDOs of principal type

We shall denote the principal symbol of a(x,D) by p, i.e.,

p(x, ξ) =
∑

|α|=m

aα(x)ξ
α.

Definition. a(x,D) is of principal type at x0 ∈ Rd if

∂ξp(x0, ξ) �= 0 for any ξ ∈ R
d \ {0} with p(x0, ξ) = 0.
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Remarks. 1. The condition says, even if ellipticity is lost, a

configuration component of the Hamilton vector field is alive.

2. Suppose m = 0. Then a(x,D) is of principal type at x0 ∈ Rd

if and only if it is elliptic there, since a PDO of order 0 is

just a multiplication operator.

3. Suppose m �= 0. Then a(x,D) is of principal type at x0 ∈ Rd

if and only if

∂ξp(x0, ξ) �= 0 for any ξ ∈ R
d \ {0}.

In fact, if p(x0, ξ) �= 0, then ∂ξp(x0, ξ) �= 0, since

ξ · ∂ξp(x0, ξ) = mp(x0, ξ)

due to Euler’s homogeneous function theorem.
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Theorem 5.4. Let m �= 0, and assume a(x,D) is of principal

type at x0.

1. There exist C, δ > 0 such that for any neighborhood U of x0
with diamU < δ and u ∈ C∞c (U)

‖u‖2
Hm−1 ≤ C(diamU)

(
‖a(x,D)u‖2

L2 + ‖a∗(x,D)u‖2
L2

)
.

2. In addition, assume p is real or purely imaginary in a neigh-

borhood of x0. Then there exist a neighborhood U of x0 and

c > 0 such that for any u ∈ C∞c (U)

‖a∗(x,D)u‖L2 ≥ c‖u‖Hm−1.

In particular, a(x,D) is locally solvable at x0
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Proof. We may let x0 = 0 by translation. In addition, we denote

for any r > 0

Br =
{
x ∈ R

d; |x| < r
}
.

1. Step 1. For simplicity let us write

A = a(x,D), Qj = i[A, xj] = (∂ξja)(x,D) for j = 1, . . . , d.

Note, although xj /∈ Ψ∞ρ,δ(Rd), the above symbol calculus is valid

since A is a PDO. We will use such properties of PDOs below,

too, without mentioning. We shall compute and bound

d∑
j=1

(Q∗jQju, u) =
d∑

j=1

‖Qju‖2L2

from above and below for any u ∈ C∞c (Bε) with small ε > 0.
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Step 2 (Bound from below). By the assumption there exist δ > 0

and c > 0 such that for any (x, ξ) ∈ B2δ × Rd

|∂ξp(x, ξ)|2 ≥ 4c|ξ|2m−2.
Take any χ ∈ C∞c (B2δ) such that χ = 1 on Bδ, and then

χ(x)|∂ξp(x, ξ)|2 + 4c(1− χ(x))|ξ|2m−2 ≥ 4c|ξ|2m−2,
so that we can apply the Gårding inequality. Noting

d∑
j=1

Q∗jχQj − χ|∂ξp|2(x,D) ∈ S2m−3(Rd),

we can find c1, C1 > 0 such that for any u ∈ C∞c (Bδ)

d∑
j=1

(Q∗jQju, u) ≥ 2c1‖u‖2Hm−1 − C1‖u‖Hm−2‖u‖Hm−1.
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Now we use the Poincaré inequality. Let δ > 0 be smaller if
necessary, and we obtain for any u ∈ C∞c (Bδ)

d∑
j=1

(Q∗jQju, u) ≥ c1‖u‖2Hm−1.

Step 3 (Bound from above). On the other hand, we can compute

‖Qju‖2L2 = i((Axj − xjA)u,Qju)

= i(xjQ
∗
ju,A

∗u) + i([Q∗j , xj]u,A∗u)
+ i(xju, [A

∗, Qj]u)− i(xjAu,Qju).

Here we express, using a finite number of some PDOs Rk, Sk of
order m− 1, as

[A∗, Qj] =
∑
k

R∗kSk,
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and then

‖Qju‖2L2 = i(xjQ
∗
ju,A

∗u) + i([Q∗j , xj]u,A∗u)− i(xjAu,Qju)

+
∑
k

i([Rk, xj]u, Sku) +
∑
k

i(xjRku, Sku).

By the Cauchy–Schwarz inequality, the Sobolev boundedness and

the Poincaré inequality we obtain for any ε > 0 and u ∈ C∞c (Bε)

‖Qju‖2L2 ≤ εC2‖u‖Hm−1‖A∗u‖L2 + C2‖u‖Hm−2‖A∗u‖L2

+ εC2‖Au‖L2‖u‖Hm−1 + C2‖u‖Hm−2‖u‖Hm−1
+ εC2‖u‖2Hm−1

≤ εC3

(
‖Au‖2

L2 + ‖A∗u‖2
L2 + ‖u‖2

Hm−1
)
.
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Step 4. Let δ > 0 be from Step 2. Then by Steps 1–3 it follows

that for any ε ∈ (0, δ) and u ∈ C∞c (Bε)

(c1 − εC3)‖u‖2Hm−1 ≤ εC3

(
‖Au‖2

L2 + ‖A∗u‖2
L2

)
.

Let δ > 0 be even smaller if necessary, and the assertion 1 follows.

2. If p is real/purely imaginary, then a(x,D)∓ a∗(x,D) is a PDO

of order m − 1, respectively. Then by the assertion 1 for any

ε ∈ (0, δ) and u ∈ C∞c (Bε)

‖u‖2
Hm−1 ≤ εC4

(
‖a∗(x,D)u‖2

L2 + ‖u‖2
Hm−1

)
.

Letting ε ∈ (0, δ) be small enough, we obtain the asserted bound.

This bound and Theorem 5.1.2 imply the local solvability. We

are done.
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◦ Topic: Conditions (Ψ) and (P )

Definition. Let U ⊂ Rd be open, and let p ∈ C∞(U × (Rd \ {0})).

1. We say p satisfies condition (Ψ) if for any (x, ξ) ∈ p−1(0)
there exists a neighborhood Ω ⊂ U × Rn of (x, ξ) such that
for z = 1 or i the following holds:

(a) HRe(zp) does not vanish on Ω;

(b) Along any null bicharacteristic of Re(zp) on Ω, Im(zp)
does not change sign from negative to positive.

2. We say p satisfies condition (P ) if both p and p̄ satisfy
condition (Ψ).
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Remarks. 1. For a ΨDO, or PDO, of principal type local solv-

ability is practically characterized by condition (Ψ), or (P ),

respectively. However, in this course, we will present simpler

characterizations under some non-degeneracy assumption.

2. Conditions (P ) and (Ψ) are equivalent for the principal sym-

bol of a PDO since it is a homogeneous polynomial in ξ.

Problem. 1. Verify the equivalence of conditions (P ) and (Ψ)

for a homogeneous polynomial in ξ.

2. Check the principal symbols from Theorems 5.2 and 5.4.2

satisfy conditions (P ) and (Ψ).
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§ 5.3 Characterization under Non-Degeneracy

◦ A necessary condition

Theorem 5.5. Assume a(x,D) is locally solvable at x0 ∈ Rd.

Then there exists a neighborhood U ⊂ Rd of x0 ∈ Rd for which

Hörmander’s condition holds, i.e.,

{p̄, p}(x, ξ) = 0 for any (x, ξ) ∈ U × R
d with p(x, ξ) = 0.

Proof. For the proof refer to Theorem 6.1.1 of “Linear Partial

Differential Operators” by L. Hörmander. We omit it.
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Remark. Suppose there exists (x0, ξ0) ∈ U × Rd such that

{p̄, p}(x0, ξ0) �= 0, p(x0, ξ0) = 0.

Then we would be able to construct a quasi-mode for a∗(x,D),

or a family of functions v = v(h), h ∈ (0,1], on U such that

‖v(h)‖ = 1, ‖a∗(x,D)v(h)‖ ≤ CNhN for any N ∈ N,

which dissatisfies the inequality from Theorem 5.1.1.
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In fact, multiplying i on p if necessary, we may let

(∂ξ Re p̄)(x0,±ξ0) �= 0.

On the other hand, (x0, ξ
′
0) = (x0, ξ0) or (x0,−ξ0) satisfies(

HRe p̄(Im p̄)
)
(x0, ξ

′
0) = {Re p̄, Im p̄}(x0, ξ′0)

=
i

2
{p̄, p}(x0, ξ′0)

< 0

since {p̄, p} is of odd degree in ξ. This implies that, along a null

bicharactristic of Re p̄, Im p̄ changes sign at (x0, ξ
′
0) from positive

to negative. Thus we could construct a quasi-mode for a∗(x,D)

that lives in an arbitrarily small conic neighborhood of (x0, ξ
′
0),

cf. Theorem 4.8 and Corollary 4.10. See also condition (P ).
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◦ A sufficient condition

Definition. a(x,D) is principally normal at x0 ∈ Rd if there
exists a neighborhood U ⊂ Rd of x0 and q ∈ C∞(U × (Rd \ {0}))
homogeneous of degree m− 1 in ξ such that

{p̄, p} = 2iRe(q̄p) on U × (Rd \ {0}).

Remarks. 1. Let p = p1 + ip2 and q = q1 + iq2 with p1, p2, q1, q2
being real-valued. Then the above condition is expressed as

{p̄, p} = 2i(q1p1 + q2p2).

This says {p̄, p} vanishes with the same order as p does. In
particular, Hörmander’s condition holds automatically.

2. If a(x,D) is principally normal, so is a∗(x,D).
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Theorem 5.6. Let m �= 0, and assume a(x,D) is of principal type

and principally normal at x0 ∈ Rd. There exist a neighborhood U

of x0 and c > 0 such that for any v ∈ C∞c (U)

‖a∗(x,D)v‖L2 ≥ c‖v‖Hm−1.

In partiulcar, a(x,D) is locally solvable at x0.

Proof. As in the proof of Theorem 5.4, we may let x0 = 0. We

also use the notation Br there.
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Step 1. We first show there exist C1, δ > 0 such that for any

u ∈ C∞c (Bδ)

‖a(x,D)u‖2
L2 ≤ C1

(
‖a∗(x,D)u‖2

L2 + ‖u‖2
Hm−1

)
.

In fact, by the assumption there exist δ > 0 and q ∈ C∞(B2δ ×
(Rd \ {0})) homogeneous of degree m− 1 in ξ such that

{p̄, p} = 2iRe (q̄p) on B2δ × (Rd \ {0}).
Fix any χ ∈ C∞c (B2δ) with χ = 1 on Bδ, and then for any u ∈
C∞c (Bδ)

‖Au‖2
L2 = ‖A∗u‖2

L2 + (χ[A∗, A]χu, u).
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If we modify q smoothly in a neighborhood of ξ = 0, then we

can find R ∈ Ψ2m−2(Rd) such that

χ[A∗, A]χ = QA∗+AQ∗+R; Q = χq(x,D)χ.

Now by the Cauchy–Schwarz inequality and the Sobolev bound-

edness we obtain for any u ∈ C∞c (Bδ)

‖Au‖2
L2 = ‖A∗u‖2

L2 + (A∗u,Q∗u) + (Q∗u,A∗u) + (Ru, u)

≤ ‖A∗u‖2
L2 + C4‖A∗u‖L2‖u‖Hm−1 + ‖u‖2

Hm−1

≤ C2

(
‖A∗u‖2

L2 + ‖u‖2
Hm−1

)
.

Hence the claim is verified.
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Step 2. By Theorem 5.4.1 and Step 1 there exist C3, δ
′ > 0 such

that for any ε ∈ (0, δ′) and u ∈ C∞c (Bε)

‖u‖2
Hm−1 ≤ εC3

(
‖a∗(x,D)u‖2

L2 + ‖u‖2
Hm−1

)
.

If we fix sufficiently small ε, then for any u ∈ C∞c (Bε)

‖u‖Hm−1 ≤ C4‖a∗(x,D)u‖L2.

Thus we obtain the assertion.
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◦ Characterization

Theorem 5.7. Let x0 ∈ Rd, and assume the vectors

∂ξ Re p(x0, ξ), ∂ξ Im p(x0, ξ)

are linearly independent for any ξ ∈ Rd \ {0} with p(x0, ξ) = 0.
Then the following conditions are equivalent:

1. a(x,D) is locally solvable at x0.

2. a∗(x,D) is locally solvable at x0.

3. Hörmander’s condition holds in some neighborhood of x0.

4. a(x,D) is principally normal at x0.
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Remarks. 1. By the assumption it automatically follows that

both a(x,D) and a∗(x,D) are of principal type at x0.

2. The assertion does not extend to a general PDO of principal

type without non-degeneracy. In fact, for local solvability,

the principal normality is not necessary, and Hörmander’s

condition is not sufficient either.

3. The principal symbol from Theorem 5.4.2 is degenerate in

the sense that it does not satisfy the assumption.

4. See also Conditions (P ) and (Ψ), and the subsequent re-

marks.
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Proof. If m = 0, then a(x,D) is merely a multiplication operator
non-vanishing at x0 by the assumption. Hence we may let m �= 0.

4 ⇒ (1 and 2). This follows by Theorem 5.6.

(1 or 2) ⇒ 3. This follows by Theorem 5.5.

3 ⇒ 4. Step 1. We are going to construct q as in the definition
of principal normality. Note the construction reduces to that on
|ξ| = 1 by homogeneity, and further to that in a neighborhood
of each (x0, ξ) with |ξ| = 1 by partition-of-unity arguments. If
p(x, ξ) �= 0, we can actually take

q(x, ξ) =
{p̄, p}(x, ξ)
2ip̄(x, ξ)

,

and hence it suffices to find q for p(x, ξ) = 0.
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Step 2. Let ξ0 ∈ Rd \ {0} satisfy p(x0, ξ0) = 0. It suffices to find

a neighborhood Ω ⊂ R2d \ 0 of (x0, ξ0) and q ∈ C∞(Ω) such that

{p̄, p} = 2iRe(q̄p).

By the assumption there exists a neighborhood Ω of (x0, ξ0) and

local coordinates X : Ω→ R2d such that

X1(x, ξ) = Re p(x, ξ), X2(x, ξ) = Im p(x, ξ).

Then by Taylor’s theorem we can find q1, . . . , q2d ∈ C∞(Ω) such

that

1

2i
{p̄, p}(x, ξ) =

1

2i
{p̄, p}(x0, ξ0) + q1X1 + · · ·+ q2dX2d.
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However, by Hörmander’s condition we have

{p̄, p}(x0, ξ0) = 0.

Moreover, by Hörmander’s condition again

q3 = · · · = q2d = 0 for X1 = X2 = 0,

so that, letting Ω be smaller if necessary, we can further find

q̃1, q̃2 ∈ C∞(Ω) such that

1

2i
{p̄, p} = q̃1X1 + q̃2X2.

Therefore it suffices to take q = q̃1 + iq̃2. We are done.
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