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In the paper “Parabolic invariant theory in complex analysis [16],” Fefferman
proposed a program of studying the geometry and analysis of strictly pseudocon-
vex domains (with C∞ boundary). His basic idea is to consider the Bergman kernel
of strictly pseudoconvex domains as an analogy of the heat kernel of Riemannian
manifolds; the theory of the heat kernel based on invariant theory is well developed
and applied to prove index theorems. The goal of this program is to construct “In-
variant theory of the Bergman kernel” corresponding to the heat kernel case. The
structure group appearing in this new setting is a parabolic subgroup of SU(1, n),
and this is the origin of the name “Parabolic invariant theory.” In this article, we
report recent developments in Fefferman’s program.

For a domain Ω ⊂ Cn, the Bergman kernel KΩ(z, w) of Ω is defined as the
reproducing kernel of the Hilbert space of L2 holomorphic functions. Its restriction
to the diagonal KΩ(z) = KΩ(z, z) is a smooth function on Ω. This function is
also called the Bergman kernel, and in the following KΩ (the variables omitted)
will mean this function. Under a weak assumption, e.g. boundedness of Ω, we
have KΩ(z) > 0, and if we assume more, e.g. strictly pseudoconvexity, we get
KΩ(z) → +∞ as z tends to the boundary ∂Ω. Here we consider the local geometric
information contained in the singularity of KΩ at the boundary.

The fundamental property that enables us to relate the Bergman kernel with
local geometry of the boundary is the transformation law under the biholomorphic
map Φ: Ω1 → Ω2:

(0.1) KΩ2 ◦ Φ = |detΦ′|−2KΩ1 .

Here detΦ′ is the holomorphic Jacobian of Φ. It is well-known that this transforma-
tion law implies the biholomorphic invariance of the Bergman metric −i∂∂ log KΩ

and this metric enables us to apply the theory of Riemannian geometry to the
geometry of complex manifolds. On the other hand, if we regard (0.1) as a re-
lation satisfied by Φ, we can estimate the differentiability of biholomorphic map
between strictly pseudoconvex domains through analyzing the boundary behavior
of the Bergman kernel [14]. In fact, the work [14] is the origin of [16] and in which
the type of the singularity of the Bergman kernel is identified and applied. In gen-
eral, it is difficult to write the singularity of the kernel explicitly. An elementary
and closed form of the Bergman kernel is known only when the domain has large
automorphism group — with in the class of strictly pseudoconvex domains, such
formula is known only for (the domains biholomorphic to) the ball.

The first object of the program is to give an algorithm of writing down the
boundary singularity of the Bergman kernel for a strictly pseudoconvex domain in
terms of local geometric invariants of the boundary — its explanation is the main
part of the present notes. The key to study this problem is the transformation
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law of the Bergman kernel (0.1). Generalizing this transformation law, we consider
domain functionals L = {LΩ} (assigning to each strictly pseudoconvex domain Ω a
function LΩ ∈ C∞(Ω)) satisfying the transformation law

(0.2) LΩ2 ◦ Φ = |detΦ′|−2w/(n+1)LΩ1 .

We call such a functional L a biholomorphic invariant of weight w. In particular,
the Bergman kernel has weight n + 1. Thus, if we can describe the structure of all
biholomorphic invariants, then we can hope to find a naturally way of expressing the
singularity of the Bergman kernel in a biholomorphically invariant manner — this
is the principle of our problem-solving. To put it more precisely, we only need to
consider local biholomorphic invariants L, that is, LΩ is determined locally at each
boundary point. Moreover, we regard L as formal power series at each boundary
point and formulate the problem in an algebraic setting.

Local geometry of strictly pseudoconvex domains is the CR geometry of their
boundaries. Hence our first task is to relate the local biholomorphic invariants
defined on domains to the CR structures of the boundaries. For this purpos, in
addition to the domain functionals, we introduce localizable boundary functionals
— assignments of functions L∂Ω ∈ C∞(∂Ω) for each strictly pseudoconvex domain
Ω — that satisfy the transformation law (0.2) on the boundaries. We here call
such boundary functionals CR invariants. To give an explicit relation between CR
invariants and local biholomorphic invariants, we employ the ambient metric con-
struction, introduced by Fefferman [16], which based on the analysis of the complex
Monge-Ampère operators. For strictly pseudoconvex domains, the Dirichlet bound-
ary value problem of the complex Monge-Ampère equation admits a unique solution
u and we can define a complete Einstein-Kähler metric gEK = i∂∂ log u (see [7]).
Moreover, if we consider the bundle (z0, z) ∈ C∗ × Ω over Ω, which is regarded as
a (n + 1)st root of the canonical bundle of Ω, then g[u] = i∂∂ (|z0|2u(z)) gives a
Ricci-flat Lorentz-Kähler metric on the bundle, which we call the ambient metric.
Since the ambient metric is shown to be biholomorphically invariant, we can hope
that the invariants of the metric (restricted to the boundary) give all CR invari-
ants. However, there are two obstructions that appear in this procedure. Firstly, u
admits weak singularities at the boundary and we cannot define derivatives of g[u]
of high order. Secondary, u is not uniquely determined locally. We need to get over
these difficulties to obtain a biholomorphic invariant asymptotic expansion of the
Bergman kernel to infinite order, which is the main result of this article.

In §1 we recall analytic results about the asymptotic expansions of the Bergman
kernel and the heat kernel, and in §2 we apply invariant theory to give partial
expressions of these asymptotic expansions. The algebraic and geometric features
of the invariant theory are explained in §3 and §§4–5, respectively. In §6 we show
how to overcome the obstruction that appears in the solution of the Monge-Ampère
equation, explained above, and then give a complete asymptotic expansion of the
Bergman kernel in terms of local biholomorphic invariants.

The results described above are the first step of the program. Our next object
is to extract global, geometric and analytic information of the domain out of the
asymptotic expansion thus obtained. As a prospect toward this direction, we give, in
§7, some remarks on the relation between the Bergman kernel and global invariants
of the domain.

Fefferman’s program is now generalized, beyond the framework of several com-
plex variables, to parabolic invariant theory [23]. As its example, §8 describes the
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case of conformal geometry, the structure group of which is a parabolic subgroup
of O(n, 1) and is a subject of the parabolic invariant theory.

Our treatment of Fefferman’s program strongly reflects the author’s point of view
and only a part of the program is explained. The whole picture of the program
can be learnt from Fefferman’s lecture notes [4]. The developments after these
lectures have been explained in the survey papers, e.g. Bailey [1], Hirachi-Komatsu
[28], Gover [20] , and Eastwood [11]. About the circumstances of the study of the
Bergman kernel before Fefferman’s proposal, there is a compact survey article by
Diederich [10].

1. Asymptotic expansion of the Bergman kernel

We start by recalling analytic results on the asymptotic expansion of the Bergman
kernel by comparing with its counterpart for the heat kernel. These are all we need
for this article and are the premise that we can apply invariant theory for the
Bergman kernel.

For a domain Ω ⊂ Cn, let A2(Ω) be the Hilbert space of L2 holomorphic functions
on Ω. Then for a complete orthonormal system {ϕj(z)}∞j=1 of A2(Ω), the series

KΩ(z, w) =
∞∑

j=1

ϕj(z)ϕj(w)

converges uniformly on each compact set of Ω×Ω and defies a holomorphic function
of (z, w). KΩ(z, w) is determined independently on the choice of the complete
orthonormal system and called the Bergman kernel of Ω. It is shown for each
f ∈ A2(Ω) that f(z) =

∫
Ω

KΩ(z, w)f(w)|dw|2, and KΩ(z, w) can be characterized
as the reproducing kerne of A2(Ω). Here |dw|2 denote the standard volume element
of Cn. On the other hand, the heat kernel Ht(x, y) of a compact Riemannian
manifold (M, g) is defined as the integral kernel that gives the solution to the heat
equation (∂t + ∆x)u(x, t) = 0 with initial value u(x, 0) = f(x). If {ϕj(z)}∞j=1 is a
complete orthonormal system of the eigen functions ∆xϕj = λj ϕj , then Ht(x, y)
can be expressed as a series

(1.1) Ht(x, y) =
∞∑

j=1

e−λj tϕj(x)ϕj(y).

For the euclidean space Rn, which is the model case of the Riemannian geometry,
the heat kernel is given by Ht(x, y) = const. t−n/2 exp(−dist(x, y)2/2t) and, in
particular, Ht(x, x) = const. t−n/2. Here “const.” is a universal constant depending
only on the dimension n. For general (M, g), Ht(x, x) has the same principal part
as t → 0 and admits an asymptotic expansion

(1.2) Ht(x, x) ∼ const. t−n/2
(
1 +

∞∑
k=1

γk(x)tk
)
,

where γk(x) are smooth functions of M determined locally by the metric g. Thus,
by comparing the integral over the diagonal of (1.1 ) and (1.2), we get a relation
between the spectrum {λj} of (M, g) and the integrals of curvatures of (M, g).
Now we return to the case of the Bergman kernel. The model case of strictly
pseudoconvex domains is the Siegel domain

Ω0 = {(z′, zn) ∈ Cn : zn + zn − |z′|2 > 0}.
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Its Bergman kernel is

KΩ0(z) = cn (zn + zn − |z′|2)−n−1, cn = n!/πn.

In this case, as z tends to the boundary, KΩ0(z) diverges in the magnitude of
−(n + 1)st power of the defining function. For a general strictly pseudoconvex
domain — a domain whose boundary can be osculated, at each point, to the second
order by a local biholomorphic image of ∂Ω0 — the Bergman kernel admits the same
leading singularity while it also contains a weaker logarithmic singularity.

Theorem 1.1. ([31], [14]) The Bergman kernel of a strictly pseudoconvex domain
Ω has the following singularity at the boundary:

(1.3) KΩ = ϕB ρ−n−1 + ψB log ρ,

where ϕB, ψB ∈ C∞(Ω) (a function smooth up to the boundary) and ρ ∈ C∞(Ω)
is a defining function of Ω (that is, ρ satisfies Ω = {ρ > 0} and dρ 6= 0 on the
boundary ∂Ω). The boundary value of ϕB is give by cn J [ρ], where J [ · ] is the
complex Monge-Ampère operator

(1.4) J [ρ] = (−1)n det
(

ρ ∂ρ/∂zj

∂ρ/∂zk ∂2ρ/∂zj∂zk

)
j,k=1,...,n

.

Moreover, for each boundary point p ∈ ∂Ω, the Taylor series of ϕB mod On+1(∂Ω)
and ψB around p is determined by the Taylor coefficients of ρ around p. Here
f = Om(∂Ω) stands for a function such that f/ρm ∈ C∞(Ω).

The coefficients of the expansions of ϕB, ψB contain local geometric invariants
of Ω. As in the case of the asymptotic expansion of the heat kernel, we further
expand ϕB, ψB in powers of a defining function ρ:

(1.5)
ϕB = ϕ0 + ϕ1ρ + · · · + ϕnρn + On+1(∂Ω),

ψB ∼ ϕn+1 + ϕn+2ρ + · · · + ϕn+k+1ρ
k + · · ·

and try to express the coefficients ϕk(z) ∈ C∞(Ω) in terms of the curvature of
the boundary. Remark that (1.5) are not Taylor expansions; ρ depends on the
variable z. Of course, it is possible to take a C∞ diffeomorphism that transforms
{0 ≤ ρ < ε} into a product space ∂Ω × [0, ε) and define Taylor expansions of
ϕB and ψB with respect to this decomposition; but then the expansions (1.5) lose
their biholomorphic invariance. Our plan is to construct a defining function ρ that
satisfies the transformation law of weight −1 and then give ϕk as biholomorphic
invariant of weight k.

2. Asymptotic expansion of kernel functions using geometric
invariants

We first give the expansion of ϕB. The method is modeled on the description of
the asymptotic expansion of the heat kernel in terms of the Riemannian curvature.
The coefficients γk of the expansion of the heat kernel (1.2) can be identified by
using Weyl’ invariant theory for the orthogonal group O(n). As a result, each γk

is written as a linear combination of complete contraction of the form

(2.1) contr
(
∇p1R ⊗ · · · ⊗ ∇psR

)
.

Here R is the Riemannian curvature of g, ∇pR is its p-th iterated covariant deriva-
tives, and the contraction is taken with respect to the metric g. Moreover, by
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considering the scaling of the metric and correspondence transformation law of the
heat kernel, we see that γk contains only the terms satisfying

∑
pj = 2(k − s). For

each k, such choice of pj are finite, and are easily listed. For example, first three
terms are:

Ht(x, x) ∼ t−n/2
(
c0
n + c1

nS t + (c2
n S2 + c3

n ‖Ric‖2 + c4
n ‖R‖2 + c5

n ∆S) t2 + · · ·
)
,

where S is the scalar curvature and cj
n are numerical constants depending only on

the dimension n.
For the case of the Bergman kernel, we need to start from the construction of

invariants of the strictly pseudoconvex domains. The construction for the Riemann-
ian geometry above can be also applied to this case. Take a defining function ρ of
Ω and set ρ#(z0, z) = |z0|2ρ(z), which is a defining function of C∗×Ω. The strictly
pseudoconvexity of Ω then ensures that

g[ρ] =
n∑

j,k=0

∂2ρ#

∂zj∂zk
dzjdzk

is a Lorentz-Kähler metric in a neighborhood of C∗ × ∂Ω in C∗ × Ω. Let R = R[ρ]
be the curvature of g = g[ρ] and R(p,q) = ∇q−2∇p−2R be its iterated covariant
derivatives. Then we define a Weyl polynomial of weight w ∈ Z+ = {0, 1, 2, . . . } to
be a linear combination of complete contractions of the form

(2.2) W# = contr
(
R(p1,q1) ⊗ · · · ⊗ R(ps,qs)

)
with

∑
pj =

∑
qj = w + s. A Weyl polynomial W# assigns for each defining

function ρ of Ω a smooth function W#[ρ] on C∗ × Ω (to be more precise, it is
defined on a small neighborhood of C∗ × ∂Ω). This function admits an expression
of the form W#[ρ](z0, z) = |z0|−2wW [ρ](z), and W [ρ](z) gives a smooth function
on Ω. In the followings, by this correspondence, we identify W# with W and also
call W a Weyl polynomial.

Theorem 2.1. ([16], [3]) There exist Weyl invariants Wk of weight k ∈ {0, 1, . . . , n}
such that

(2.3) KΩ = r−n−1
n∑

k=0

Wk[r] rk + O(log r)

holds for any strictly pseudoconvex domain Ω. Here r is a defining function of
Ω satisfying J [r] = 1 + On+1(∂Ω), and O(log r) denotes a function f such that
|f/ log r| is bounded near the boundary.

The first three terms of the expansion are given by (note that W1 = 0):

KΩ = r−n−1(cn + c′n ‖R‖2 r2 + · · · ),

where cn, c′n are constants depending only on n (it is clear that cn = n!/πn, while
c′n = (n − 2)!/(24 πn) is shown by a direct computation [29]). This expansion has
less terms compared with that of the heat kernel; this results from the fact that
g[r] is Ricci-flat (approximately near the boundary).

The defining function r satisfying the condition J [r] = 1 + On+1(∂Ω) imposed
in Theorem 2.1 can be constructed by an inductive procedure and is shown to be
unique modulo On+2(∂Ω) [15]. We call such a defining function r a Fefferman’s
defining function, and call g[r] an ambient metric associated with Ω. Fefferman’s



6 KENGO HIRACHI

defining function satisfies the transformation law of weight −1, which we have im-
posed in the previous section (here we neglect the ambiguity of On+2(∂Ω) contained
in the definition of r). The next lemma shows that the right-hand side of (2.3) is
independent of the choice of r and is determined by Ω.

Lemma 2.2. ([16], [3]) For a Weyl polynomial W of weight w, W [r] rw mod
On+1(∂Ω) is independent of the choice of Fefferman’s defining function r.

In case w ≥ n + 1, this lemma becomes empty and we cannot extract geometric
information of Ω out of Weyl polynomial. Thus, in order to remove the restriction
on weight from Theorem 2.1, we need a new idea, which will be described later in
§6. In the following three sections, we outline the proof of Theorem 2.1 by recalling
the results of invariant theory and biholomorphic geometry.

3. Invariant theoretic problems

The expression of the Bergman kernel in terms of Weyl polynomials (2.3) appears
to be a literal translation of corresponding expression for the heat kernel. But
the invariant theories applied to obtain the expressions are quite different. In this
section, we describe what sort of invariant theoretic problems arise in the expansion
of the Bergman kernel and how these problems are solved (and which parts are still
open).

For a semisimple group G and a parabolic subgroup H ⊂ G, we consider several
problems of constructing invariant polynomials for these groups. We here list the
problems in order of the easiness (in the sense that it is well-studied and under-
stood).

Problem 0. Find all G-invariant polynomials on a G-module V .
This problem appears in the expansion of the heat kernel, in which G = O(n) and

V is a tensor space over Rn. In this case, all G-invariant polynomials are shown to
be Weyl polynomials (linear combinations of complete contraction of tensors (2.1))
as an application of the representation theory of semisimple groups. The similar
results based on the representation theory hold for more general settings of Problem
0 (see [4]).

Problem 1. Find all H-invariant polynomials on a G-module V .
This problem can be reduced to Problem 0, because we can show that all H-

invariant polynomials are G-invariant (see [13]).

Problem 2. Let Y be an H-submodule of G-module V , which may not be G-
invariant. Find all H-invariant polynomials of Y .

This is the problem that arises in the expansion of the Bergman kernel, in which
G = SU(1, n), V is a tensor space over Cn+1, Y is the range of curvature tensor
(together with its iterated covariant derivatives) when the ambient metric varies
over all strictly pseudoconvex domains. Since the ambient metric is homogeneous
only in the z0-direction, Y is not G-invariant. (The curvature tensors subject
to nonlinear relations such as Ricci identity and thus Y is not a vector space.
Nevertheless, by considering the tangent space of Y at the origin, we may reduce
the problem to the case of H-module.) Writing down the relations satisfied by the
curvature tensor of the ambient metric, we can prove all H-invariant polynomials on
Y are given by restrictions of Weyl polynomials of V to Y (cf. Theorem 3.1 below).
In this argument, the shape of Y in V is important. In fact, there are H-submodule
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of V for which not all H-invariant polynomials come from Weyl polynomials of V
(cf. Remark 3.3). This dependence on Y of the structure of H-invariant polynomials
is a property that does not appear in the invariant theory of semisimple groups,
which have complete reductivity.

Problem 3. Find all H-invariant polynomials of an H-module Y (a G-module
containing Y is not given).

The definition of CR invariants is given in this setting (Definition 4.1). In this
situation, even making examples of H-invariant polynomials is not easy [21], [30].
We thus construct the ambient metric and reduce this problem to Problem 2. How-
ever, so far, the construction of the ambient metric is obstructed at finite order and
the reduction is not complete. Thus construction of CR invariants is still one of
the main open problem of the parabolic invariant theory — we will further discuss
this problem in §5 and §6.

In the rest of this section, we describe the results on Problem 2 that will be used
to obtain the expansion of the Bergman kernel (Theorem 2.1). Among these results,
Theorem 3.1 below is one of the main (and deep) result of parabolic invariant theory
obtained by Fefferman [16] and Bailey-Eastwood-Graham [3].

We embed the Siegel domain Ω0 into the projective space by z 7→ [1 : z1 : · · · :
zn] ∈ Pn. Then biholomorphic automorphisms of Ω0 can be realized as the action
on Pn of the special unitary group G = SU(1, n) for the hermitian form

Q(ζ, ζ) = ζ0ζn + ζnζ0 − ζ ′ · ζ ′, ζ = (ζ0, ζ
′, ζn) ∈ Cn+1.

The isotropy group at the origin 0 ∈ Ω0 corresponds to the parabolic subgroup of
G:

H = {h ∈ G : h e0 = λ e0, λ ∈ C∗}.
Here e0 is the column vector t(1, 0, . . . , 0). Note that σp,q(h) = λpλq, p, q ∈ Z,
defines a character of H.

For a general domain Ω, we also consider the same embedding into the projective
space and identify the C∗-bundle C∗ × Ω → Ω with the restriction over Ω of the
natural surjection Cn+1 − {0} → Pn. Then a function on the bundle C∗ × Cn of
the form r#(z0, z) = |z0|2r(z) can be identified with a function ϕ(ζ) on Cn+1 −{0}
with homogeneity ϕ(λζ) = |λ|2ϕ(ζ), λ ∈ C∗. Let us denote by E(1) the totality of
the jets at e0 of real-valued C∞ functions with this homogeneity.

If we consider the perturbation of Ω0 with the common boundary point 0, then
the corresponding families of Fefferman’s defining functions r# (as the jets at e0)
move in E(1); their first variations form the harmonic subspace of E(1):

H(1) = {ϕ ∈ E(1) : ∆ϕ = 0}, ∆ = ∂0∂n + ∂n∂0 −
n−1∑
k=1

∂j∂j ,

where ∂j = ∂/∂ζj , ∂j = ∂/∂ζj . The Lorentz-Laplacian ∆ arises as the linearization
of the complex Monge-Ampère operator around r0 = zn + zn − |z′|2.
Remark 3.1. Strictly speaking, Fefferman’s defining function r is not uniquely
determined, and accordingly its first variation is defined as ϕ mod O(Qn+2). We
will consider this point later in §6.

We now generalize the homogeneity to real number s and define E(s) to be the
totality of the jets at e0 of C∞ functions satisfying ϕ(λζ) = |λ|2sϕ(ζ), λ ∈ C∗. We
also define H(s) to be the harmonic subspace of E(s). Then the action of H on Cn+1



8 KENGO HIRACHI

induces a structure of H-module on H(s). If we identify ϕ ∈ H(s) with tensors
T = (Tαβ)|α|,|β|≥0, where Tαβ = ∂α∂βϕ(e0), then the action of H to ϕ agrees with
that of the covariant tensorial action of h ∈ G to T up to scalar multiples by the
character σp,q. We write this action of h ∈ H to T ∈ H(s) as h.T .

Model Problem 1. Find all H-invariant polynomials of H(s). Here, by an H-
invariant polynomial (of weight w) we mean a polynomial P (T ) in the components
of T that satisfies P (h.T ) = σw,w(h)P (T ) for all h ∈ H.

According to s, this problem is reduced to either Problem 1 (which has been
solved) or Problem 2 (which is still open in general).

Case 1: s 6∈ Z+. This case falls under the category of Problem 1. If we modify the
action of H on H(s) by multiplying the character σp,q, then we can define G-action
on the polynomial P (T ) in such a way that P (T ) is invariant under the H-action
obtained by the restriction. It is shown ([12]) that P (T ) is also invariant under G
and hence an H-invariant polynomial is a Weyl polynomial, that is, P (T ) is written
as a liner combination of complete contractions with respect to Q of the form

contr
(
T (p1,q1) ⊗ · · · ⊗ T (pk,qk)

)
, T (p,q) = (Tαβ)|α|=p,|β|=q.

Case 2: s ∈ Z+. In this case, H(s) admits a decomposition as H-modules: H(s) =
Hs ⊕Hs,

Hs = {T : T (p,q) = 0 if min(p, q) ≤ s}, Hs = {T : T (p,q) = 0 if p, q > s}.

We consider H-invariant polynomial of each H-module. These problems fall under
the category of Problem 2. In fact, for each H-invariant polynomial P (T ) of Hs,
we may take p, q so that P (T ) depends only on H(p,q)

s = {T (p,q) : T ∈ Hs} and
H(p,q)

s ⊗ σs−p,s−q is an H-submodule of the covariant tensor space on Cn+1 of type
(p, q) that is not G-invariant. Similar statement also holds for Hs (see [12]).

Theorem 3.1. ([16], [3]) All H-invariant polynomials of Hs are given by Weyl
polynomials.

The case s = 1 is what we need for the description of the biholomorphic invari-
ants. H1 is the space of first variations of the curvatures (R(p,q)(e0))p,q≥2 of the
ambient metrics with respect to the perturbation of the Siegel domain Ω0. The
proof of this fact in [3] contains two different arguments according to the weights
of the polynomials. For high weights, the structure of Hs as a (g,H)-module is
used essentially. For low weights, Weyl’s theory for the subgroup U(n − 1) ⊂ H is
applied; in which, very explicit form of the defining equation of Hs as a subspace of
E(s) is used and the argument is technical. Bailey [1] contains a clear explanation
of the proof.

Remark 3.2. The similar results for the groups G = O(n, 1), SL(n) and their
parabolic subgroups H are obtained in [3], [13] and [18]; they can be applied to
the description of the invariants of the conformal structures and the projective
structures, respectively.

Remark 3.3. There exit H-invariant polynomials of Hs that cannot be expressed
as Weyl polynomials (see [12]). We do not known how to give general H-invariant
polynomials of Hs.
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4. Moser’s normal form

We next explain some geometric tools that are needed to describe the asymptotic
expansion. In the case of the heat kernel, each coefficient γk of the asymptotic
expansion is expressed, at the center of normal coordinates x = (x1, . . . , xn), as
a polynomial Pk(gij,ab...c) whose variables are the partial derivatives (gij,ab...c(0))
of the components of the metric g = (gij) with respect to x. This polynomial
is shown to be invariant under the action of O(n), which acts as transformation
between normal coordinates and accordingly on (gij,ab...c(0)). Thus the invariant
theory for O(n) can be applied to determine the explicit formula for γk.

As an analogy to this argument, we will define CR invariants as H-invariant
polynomials, in which the correspondence of the basic concepts are as follows:

Riemannian manifold: Strictly pseudoconvex domain:
Basic example: Euclidean space Siegel domain

Rn = E(n)/O(n) Ω0 = SU(1, n)/H

Analytic problems: ∆u = f ∂u = α, ∂bu = α

Geometric concepts: Geodesics, Chain,
Levi-Civita connection, Cartan-Tanaka-Chern connection,
Normal coordinates Moser’s normal form

Let us start by explaining Moser’s normal form. Recall that a strictly pseudo-
convex real hypersurface M ⊂ Cn can be osculated, at each point, to the second
order by a local biholomorphic image of the boundary of the Siegel domain ∂Ω0

(this is equivalent to the definition of strictly pseudoconvexity). Moser [35] (cf. [8])
gave for each point p on a real-analytic strictly pseudoconvex hypersurface M a
local biholomorphic map Φ in a neighborhood of 0 such that Φ(∂Ω0) gives the best
approximation at p. Then Φ−1 gives a coordinate system about p, which is called
Moser’s normal coordinates centered at p. For each p ∈ M , if we take a Moser’s
normal coordinates z = (z′, zn) ∈ Cn centered at p, then M is given by the equation

(4.1) 2Re zn − |z′|2 −
∑

|α|,|β|≥2, l≥0

Al
αβ

z′αz′β(Im zn)l = 0,

where z′α = zα1 · · · zαq
are monomials of z′ and |α| = q is the length of multi index

α = α1 . . . αq. The Taylor coefficients (Al
αβ

) satisfy several normalization condi-
tions, which are linear; these are derived from the equation of chains, the CR analog
of geodesics in Riemannian geometry. A = (Al

αβ
) is called Moser’s coefficients at

(M,p), and the (germ of) surface of the form (4.1) is called Moser’s normal form
and is denoted by N(A). As in the case of the normal coordinates in Riemannian
geometry, Moser’s normal coordinates have ambiguity that are parametrized by the
isotropy group H of the model domain. Using this parametrization, we can define
an action of H on the space of all Moser’s coefficients in such a way that the orbits
give the biholomorphic equivalence class of the surfaces N(A).

We can also formulate this H-action as an H-principal bundle over M . The
bundle, introduced by E. Cartan, Tanaka [36], [37], Chern (cf. [8]), is defined as a
higher coframe bundle together with a canonical Cartan connection. The curvature
of this connection has natural relation to Moser’s coefficients A, in which a choice
of the frame corresponds to a choice of Moser’s normal coordinates.
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To obtain invariants of the surfaces that are independent of the choice of normal
coordinates (or frame of the bundle), we now consider functions P (A) of A that
are invariant under the H-action. Here we restrict our attention to the case where
P (A) are polynomials of A, and define CR invariants as follows.

Definition 4.1. A polynomial P (A) of Moser’s coefficients A = (Al
αβ

) is said to be
a CR invariant of weight w if P (A) satisfies

P (Ã) = |detΦ′(0)|−2w/(n+1)P (A)

for any biholomorphic map Φ that maps N(A) to N(Ã).

The coordinates changes Φ can be parametrized by the isotropy group H and
detΦ′(0) can be seen as a character of H. So P (A) becomes an H-invariant poly-
nomial (c.f. Model Problem 1). This definition of H-invariant polynomials falls
under the category of Problem 3 of the previous section, and it is difficult to find
CR invariants based on this definition (moreover, since the action of H to A is
non-linear, we encounter another difficulty; see [21], [30]). It is also possible to
define CR invariants using the curvature of Cartan connection, which is intrinsic to
the CR structures, instead of Moser’s coefficients. However, to relate CR invariants
with the Bergman kernel, the use of normal coordinates is essential and we employ
the extrinsic definition as above.

Remark 4.2. Recently, Kuranishi [32] has been studying the construction of local
embedding of CR manifolds into Cn that based on the Cartan connection. If such
an embedding were constructed, it would become possible to directly relate the
curvature of Cartan connection with the asymptotic expansion of the Bergman
kernel.

5. Construction of CR invariants using the ambient metric

The problem of finding all CR invariants, for weight ≤ n, can be solved by using
the ambient metric defined §2 and the parabolic invariant theory explained in §3.
As an application of the result, we get an expansion of the Bergman kernel (2.3).
In this section, we explain the mechanism that all CR invariants of low weights are
constructed out of the ambient metric.

Recall that the ambient metric on C∗×Ω is defined as the Lorentz-Kähler metric
g[r], where r is Fefferman’s defining function. (To be more precise, r is defined up
to the additions of On+2(∂Ω) and accordingly g[r] only has meaning as a finite jets
along C∗×∂Ω. Meanwhile, we disregard this point to simplify the explanation.) For
the case of the Siegel domain Ω0, Fefferman’s defining function is r0 = zn+zn−|z′|2.
If we introduce coordinates ζ0 = z0, ζ1 = z0z1, . . . , ζn = z0zn on C∗ × Ω0, we can
write the ambient metric g0 = g[r0] as

g0 = dζ0dζn + dζndζ0 − dζ ′ · dζ ′,

which corresponds to the quadratic form Q(ζ, ζ) used in §3. Each automorphism
Φ ∈ Aut(Ω0) can be lifted to an isometry of C∗ × Ω0,

(5.1) Φ#(z0, z) =
(
z0 · (detΦ′(z))−1/(n+1),Φ(z)

)
,

which agrees with a linear map h ∈ SU(1, n) defined with respect to the coordinates
ζ. Here the branch of the fractional power corresponds to the center Zn+1 of
SU(1, n) and we have Aut(Ω0) = SU(1, n)/Zn+1.
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For a biholomorphic map Φ : Ω1 → Ω2, we can also define a bundle map

Φ# : C∗ × Ω1 → C∗ × Ω2

by the formula (5.1). Then Φ# preserves the functions r# = |z0|2r and gives an
isometry for the ambient metrics. Thus we can construct biholomorphic invariants
from the metric g[r]. For a Weyl polynomial, which is homogeneous in z0 and
admits an expression W#[r](z0, z) = |z0|−2wW [r](z), the invariance of W#[r] under
Φ# can be rewritten as

(5.2) W [r2] ◦ Φ = |detΦ′|−2w/(n+1)W [r1],

where rj is Fefferman’s defining fucntion of Ωj . Moreover, if the boundary ∂Ω is
in Moser’s normal form N(A) and W has weight ≤ n (see Lemma 2.2), then the
value of a Weyl polynomial at the origin W [r](0) is shown to depend polynomially
on A; thus W [r](0) is a CR invariant.

Theorem 5.1. ([16], [3]) All CR invariants of weight ≤ n are given by Weyl
polynomials.

If we use this theorem, we can easily prove Theorem 2.1 by induction. Sup-
pose we have found W0, . . . ,Wk−1 and define ϕk ∈ C∞(Ω) by the formula ϕB =∑k−1

j=0 Wj [r] rj + ϕkrk. If ∂Ω is locally in Moser’s normal form N(A), then ϕk(0)
depends polynomially on A (see Theorem 1.1) and gives a CR invariant of weight
k. Thus, using Theorem 5.1, we can find Weyl polynomial Wk of weight k such
that ϕk(0) = Wk[r](0). Since ϕk and Wk satisfy the transformation law of weight
k, we can also see ϕk(p) = Wk[r](p) for any boundary point p. Namely, we have
ϕk = Wk[r] + O(∂Ω), and thus ϕB =

∑k
j=0 Wj [r] rj + Ok+1(∂Ω) as required.

In the following, we explain the method of the proof of Theorem 5.1 using a
linearized model. In this model, we neglect the non-linear terms which appear
in the action of H to A and also neglect the normalization conditions imposed
on A. Even after these simplification, the main problem of the ambient metric
construction remains.

We consider the restriction to the quadric Q = {ζ ∈ Cn+1 : Q(ζ, ζ) = 0} of the
jet space of functions E(s) introduced in §3 and define an H-module

J (s) = {f |Q : f ∈ E(s)}.
With respect to the coordinates (z0, z

′, v) = (ζ0, ζ
′/ζ0, Im(ζn/ζ0)) of Q, each f ∈

J (s) can be written as

(5.3) f = |z0|2s
∑

|α|,|β|,l≥0

Al
αβ

z′αz′β vl.

So identifying f with the list of Taylor coefficients A = (Al
αβ

), we can define an
action of H to A. In particular, when s = 1, this action agrees with the action
of H to Moser’s coefficients A up to the terms which are non-linear in A and the
correction terms caused by the normalization condition on A (see also Remark 5.1
below). Under these settings, we pose the following problem, which is a linearized
model of the problem of the construction of CR invariants.

Model Problem 2. Find all H-invariant polynomials of J (s).

Remark 5.1. The precise relation between the H-module J (1) and the space of
Moser’s coefficients N , on which H-acts, can be described as follows. If we embed
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N as a subspace of J (1) by (5.3), then we get a vector space decomposition J (1) =
N ⊕J 1, where J 1 = {ϕ|Q : ϕ ∈ H1} is a H-submodule of J (1). The linearization
of the action of H on N at A = 0 (that is, the induced H-action on the tangent
space T0N ) is then isomorphic to the quotient H-module J (1)/J 1.

The situation of this problem also varies according to s. The easiest case is
n + 2s 6∈ N = {1, 2, . . . }. Then the restriction to Q,

(5.4) H(s) → J (s),

gives an isomorphism of H-module, and thus Model Problem 2 is reduced to Model
Problem 1 (Case 1) of §3. This isomorphism asserts that each function on Q admits
a unique harmonic extension to Cn+1 (as formal power series). Note that the initial
value problem of the second order partial differential equation ∆ϕ = 0 admits a
unique solution because ϕ(ζ) is assumed to be homogeneous in ζ.

When m = n+2s ∈ N, the map (5.4) in neither surjective nor injective. However,
we can approximately construct harmonic extension so that ∆ϕ = O(Qm−1) holds.
(If s = 1, then ∆ϕ = O(Qn+1) is the linearization about r0 of the equation J [r] =
1 + On+1(∂Ω), which is the equation for Fefferman’s defining function.) Thus,
for the jets of enough low order, (5.4) give an H-equivariant bijection. Using
this map, we can reduce Model problem 2 for H-invariant polynomials of weight
≤ n + 2s − 2 to Model Problem 1 (Case 2). If we restrict the map (5.4) to the
subspace N ⊂ J (1) consisting of Moser’s coefficients A (see Remark 5.1), then we
can reduce the problem of finding H-invariant polynomials of weight ≤ n to the
analogous problem for H1. Therefore, after linearization, Theorem 5.1 is reduced
to Theorem 3.1.

6. Refinement of the ambient metric

In this section, we explain the refinement of the ambient metric given in [26]. In
virtue of this refinement, we can remove the restriction on weight in Theorems 2.1
and 5.1.

We start by studying the complex Monge-Ampère equation, which is fundamen-
tal to the construction of the ambient metric. It is shown by Cheng-Yau [7] that
the boundary value problem of the complex Monge-Ampère equation

(6.1) J [u] = 1 and u > 0 in Ω; u = 0 on ∂Ω

admits a unique solution. This solution uCY has weak singularity at the boundary,
and admits the following asymptotic expansion [33]:

(6.2) uCY ∼ r
∞∑

k=0

ηk · (rn+1 log r)k.

Here r is Fefferman’s defining function and ηk ∈ C∞(Ω). Part of this expansion
is locally determined by the boundary (while uCY itself is determined globally).
In fact, the equation J [u] = 1 admits a formal solution of the form r

∑∞
k=0 ηk ·

(rn+1 log r)k, the ambiguity of which is a choice of a function on the boundary
a ∈ C∞(∂Ω) (see [22]). In (6.2), the function a is determined globally, and if we
specify a, then the formal solution can be constructed uniquely at each boundary
point. There are (at least) two ways of constructing invariants of the boundary out
of this formal solution:
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A) Extract the parts of the formal solutions that are independent of the parameter
a, and use them to construct CR invariants.

Graham ([21], [22]) used this method. He showed that ηk mod On+1(∂Ω) are
independent of a and defined Weyl polynomials that contain ηk. These new Weyl
polynomials enable us to improve Theorem 5.1, but they still do not give all CR
invariants (see also [30]).

B) Define ambient metrics that contain the parameter function a and construct
Weyl polynomials that depend on a.

In this setting, we can describe the full asymptotic expansion of the Bergman
kernel in terms of Weyl polynomials, and can also remove the restriction on weight
from Theorem 5.1 after weakening the statement (Theorem 6.2). In the rest of this
section, we explain this method.

Keeping the transformation law in mind, we construct formal solutions on the
C∗-bundle. Using the coordinates ζ of C∗×Ω, we define the complex Monge-Ampère
operator by

J#[U ] = (−1)n det
(

∂2U

∂ζj∂ζk

)
j,k=0,...,n

and consider the formal solutions of the equation J#[U ] = 1 of the form:

U = r# + r#

∞∑
k=1

ηk(rn+1 log r#)k, ηk ∈ C∞(Ω),

where r ∈ C∞(Ω) is a defining function of Ω, and r# = |z0|2r is its lift to C∗×Ω. As
in the case of the equation on Ω, such formal solutions exist and are parametrized
by C∞(∂Ω). Collecting the defining functions r = r[U ] that appear as the smooth
part of formal solutions U , we now set

F∂Ω = {r[U ] : U is a formal solution along C∗ × ∂Ω}.

This family of defining functions satisfies the transformation law of weight −1 in the
following sense: if we define the weighted pull-back Φ∗(r) = |detΦ′|−2/(n+1)r ◦ Φ
for each biholomorphic map Φ : Ω1 → Ω2, then we have Φ∗(F∂Ω2) = F∂Ω1 . This
results from the fact that U has log term log r# (instead of log r). Note that we
cannot get such a transformation law if we define F∂Ω with respect to the formal
solutions of the form (6.2).

Using this family of defining functions, we now generalize Theorem 2.1 to the
following theorem.

Theorem 6.1. ([26]) There exist Weyl polynomials Wk of weight k for k = 0, 1, 2, . . .
such that the asymptotic expansion

(6.3) KΩ ∼ r−n−1
n∑

k=0

Wk[r] rk + r−n−1
∞∑

k=n+1

Wk[r] rk log r

holds for any strictly pseudoconvex domain Ω ⊂ Cn and for any r ∈ F∂Ω.

When n = 2, the expansion of the log term coefficient ψB starts as follows:

(6.4) ψB = c1 ∆2S + c2‖R(2,4)‖2 r + (c3‖R(2,5)‖2 + c4‖R(3,4)‖2)r2 + O3(∂Ω),

where S and ∆ are the scalar curvature and the Laplacian of g[r], respectively, and
‖R(p,q)‖2 is a complete contraction of the form contr(R(p,q) ⊗ R(p,q)).
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The first n+1 terms of the expansion (6.3) agree with those given in Theorem 2.1.
In fact, each r ∈ F∂Ω is a Fefferman’s defining function (i.e. J [r] = 1 + On+1(∂Ω)
holds) and hence the boundary values of the coefficients Wk[r]|∂Ω, k ≤ n, become
CR invariants. For k > n, Wk[r]|∂Ω may depend on r and may not give a CR
invariant. However, in the series (6.3), the dependence on r of Wk[r] is cancelled
out and (6.3) gives an asymptotic series determined by the domain. To be more
precise, for each m ≥ n + 1, the partial sum

∑m
k=n+1 Wk[r] rk mod Om+1(∂Ω) is

independent on the choice of r ∈ F∂Ω.
We next describe the dependence of Weyl polynomial W [r] on the defining func-

tion r. Recall that the formal solution U is uniquely specified by a choice of a
function on the boundary. Thus F∂Ω is also parametrized by the same function. If
we take a real vector field T on Cn that is transversal to ∂Ω, then the parametriza-
tion is given by Tn+2r|∂Ω = a ∈ C∞(∂Ω); we denote r ∈ F∂Ω satisfying this
condition by ra. We now assume that the boundary is locally in Moser’s normal
form N(A), and consider the value at the origin of W [ra] for each ra ∈ FN(A).
Since this value depends on A and the Taylor coefficients of a at the origin, we may
write PW (A, a) = W [ra](0). If PW (A, a) is independent of the parameter a, then
we call W an a-independent Weyl polynomial.

Theorem 6.2. ([26]) For an a-independent Weyl polynomial W , the polynomial
P (A) = PW (A, a) is a CR invariant, and all CR invariants are given in this way.

This theorem is a generalization of Theorem 5.1; the condition on weight is re-
moved. Since Weyl polynomials of weight ≤ n + 2 are shown to be a-independent,
Theorem 6.2 implies Theorem 5.1. So far, we know no practical criterion for deter-
mining which Weyl polynomial is a-independent. Thus Theorem 6.2 does not give
a method of constructing CR invariants.

Remark 6.3. In a project with R. Gover, the author is trying to find a method
of generating all a-independent Weyl polynomials [20]. This can be seen as a CR
analog of the construction of conformal invariants by Gover [18] (see also [19]).

In the following, we explain the main idea of the proof of Theorem 6.2 by us-
ing the linearized model J (1) introduced in the previous section. We linearize the
problem by considering the first variation of the formal solution under a pertur-
bation of the Siegel domain Ω0. The first variation satisfies the Laplace equation
for the metric g0. Since the formal solution has log terms, the first variation also
contains a log term. The solution space of the Laplace equation with log term is
given by

Proposition 6.3. For each f ∈ J (1), there exists a pair (ϕ, η) ∈ E(1)⊕E(−n−1)
such that

∆(ϕ + η Qn+2 log Q) = 0, ϕ|Q = f

hold. If (ϕ̃, η̃) satisfies the same condition, then there exists a ψ ∈ H(−n− 1) such
that

(ϕ, η) − (ϕ̃, η̃) = (Qn+2ψ, 0)

(Thus ψ describes the ambiguity of the solution).

Let H̃(1) be the image of the projection of
{
(ϕ, η) ∈ E(1) ⊕ E(−n − 1) : ∆(ϕ +

η Qn+2 log Q) = 0
}

to the E(1) component (this projection corresponds to the map
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r 7→ r[U ] and H̃(1) gives the space of the first variations of r at r0). Then the
proposition above can be written as an exact sequence of H-modules:

(6.5) 0 → H(−n − 1) → H̃(1) → J (1) → 0.

This is obtained by extending the domain of (5.4).
Using (6.5), we pull back the H-invariant polynomials of J (1) to the H-invariant

polynomials of H̃(1). Hence denoting by I(H̃(1)) and I(J (1)) the spaces of H-
invariant polynomials of each module, we may regard I(J (1)) ⊂ I(H̃(1)). Intro-
duction of this larger space I(H̃(1)) enables us to avoid the restriction on weight
in the arguments of the previous section.

By restriction, (6.5) gives 0 → 0 → H1 → J 1 → 0, where H1 and J 1 are defined
in §3 and Remark 5.1, respectively. Thus the quotient of (6.5) by this sequence
gives

(6.6) 0 → H(−n − 1) → H̃1 → N → 0,

where H̃1 = H̃(1)/H1 and N = J (1)/J 1, which can be identified with the space
of Moser’s coefficients (see Remark 5.1). Using this sequence, we can reduce the
problem of finding all CR invariants (H-invariant polynomials of N ) to the problem
of finding H-invariant polynomials of H̃1 that vanish on the image of H(−n −
1) (after the process of linearization of the H-actions). Since we can generalize
Theorem 3.1 to the module H̃1, we obtain the Weyl polynomial explession of CR
invariants as in Theorem 6.2.

7. Asymptotic expansion of the Bergman kernel and global
invariants

The result about the invariant theoretic description of the Bergman kernel, ex-
plained so far, is just a first step of Fefferman’s program. In the heat kernel case,
by considering the heat equations on the differential forms, we can obtain a rela-
tion between the asymptotic expansion of the heat kernels and the characteristic
classes; this relation can be applied to prove index theorems in various settings.
It is hoped that the invariant theory for the Bergman kernel will bear such fruits.
However, so far, little is known about the link between the Bergman kernel and
index theorems. Here we explain some related examples, which are hopefully clues
of future research.

In view of the analogy between the time variable and the defining function, we
consider the following method of constructing global invariants of strictly pseudo-
convex domains in complex manifolds. Fixing a defining function ρ, we set Ωε =
{ρ > ε} for ε > 0. Let Vol(Ωε) be the volume of Ωε with respect to the Bergman
volume form KΩdV , where dV is the smooth volume form on Ω used to define the
Hilbert space A2(Ω). Vol(Ωε) diverges as ε tends to 0 and admits an expansion

(7.1) Vol(Ωε) ∼ v0ε
−n + v1ε

−n+1 + · · · + vn−1ε
−1 + vn log ε + · · ·

If we take a canonical defining function ρ, e.g. Fefferman’s defining function, then
some of the coefficients vj give biholomorphic invariants of the domain. In partic-
ular, if (L, h) → M is a positive line bundle over a compact complex manifold and
Ω = {v ∈ L∗ : |v| < 1} ⊂ L∗ is the unit tube in the dual bundle of L, then the
asymptotic series (7.1) for the defining function ρ = − log |v|2 is shown to be the
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Laplace transform of the Hilbert polynomial P (m) = dim H0(M,Lm) of L:

Vol(Ωε) ∼ const.
∫ ∞

0

e−εtP (t)dt,

where the Bergman kernel is defined with respect to the volume dV = (i ∂∂ρ)n+1

(see [27], where the result is stated for the Szegö kernel but it can be modified to
the statement above). This suggests a link between (7.1) and an index theorem.

The construction of global invariants using integrals over the subdomains Ωε

has been done by Burns-Epstein [6], where they used, instead of the Bergman
kernel, the complete Einstein-Kähler metric constructed by Cheng-Yau [7] and its
characteristic classes. In this case, the coefficients of the expansion contains the
Euler characteristic of the domain and the Burns-Epstein invariant of the boundary,
a Chern-Simons type invariant for CR structures.

In the setting of conformal geometry, the expansion (7.1) appears in the frame-
work of AdS/CFT correspondence in quantum gravity, in which Ω is a complete
Einstein metric g and the boundary admits a conformal structure defined by the
boundary value of ρ2g. The coefficient of log ε is shown to be a conformal invariant
and the coefficient of ε0 (the constant term) is called the renormalized volume of
(Ω, g). Note that the Einstein metric g has intimate relation with the ambient
metric for conformal structure as we explain in the next section. For more details
of this subject see Graham [24], which is a short survey for mathematicians.

8. Relation to conformal geometry

Fefferman’s program has been generalized, beyond CR geometry, to parabolic
invariant theory or parabolic geometry, [23], [11], [9]. The objects of which are the
geometric structures modeled on G/H = (semisimple group)/(parabolic subgroup).
This framework merges with the theory of Cartan connection developed by Tanaka
[36], [37], [38], Morimoto [34]. In this section we briefly explain the case of conformal
geometry, which has the closest connection with CR geometry.

The relation between CR geometry and conformal geometry can be described
in terms of the ambient metric. The restriction of the ambient metric on the C∗-
bundle to S1×∂Ω gives a real Lorentz metric, which is called the Fefferman metric.
While this definition of the Fefferman metric depends on the embedding of ∂Ω into
Cn, its conformal class is determined locally by the CR structure of the boundary
[15]. Note that the construction of the Fefferman metric can be generalized to
the abstract CR structures and, moreover, it is shown that this “map” from CR
structures to Lorentz conformal structures is injective [5].

The ambient metric for the conformal structures has been constructed in Fefferman-
Graham [17]. For a conformal manifold (M, [g]), we denote by G ⊂ S2T ∗M the
metric bundle (the R+-bundle consisting of the metrics in [g]). Then the ambient
metric is defined as a Ricci-flat Lorentz metric on G̃ = G × (−ε, ε). If M has odd
dimensions, the ambient metric is determined formally along G ×{0} to infinite or-
der, and the Weyl polynomials of the ambient metric give all local scalar conformal
invariants [3]. However, if M has even dimensions, the ambient metric contains
logarithmic singularity along G × {0} and the uniqueness does not hold. Thus we
need further work as in the CR case, but the details are not known. We here just
note that the CR and the conformal ambient metrics are compatible: if Ω̃ is a collar
neighborhood of ∂Ω, then C∗ × Ω̃ can be identified with the ambient space G̃ for
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the conformal manifold S1 × ∂Ω, and the ambient metric on C∗ × Ω̃ also gives an
ambient metric for the conformal structure on S1 × ∂Ω.

On the other hand, Bailey-Eastwood-Gover [2] introduced another way of con-
structing conformal invariants, which is called Tractor Calculus. This gives a
method of defining Weyl polynomial by using the connection on the vector bundle
associated with the Cartan bundle over conformal manifolds. Gover [19] proved
that Tractor Calculus produces all conformal invariants for odd dimensional man-
ifolds, while for even dimensions, there are finite number of exceptions which has
low weights. An important feature of this method is that it is effective for the
construction of the invariants of high weights (relative to the dimension). This is
complementary to the ambient metric construction which give all invariants of low
weight relative to the dimension. The application of Tractor Calculus to the CR
geometry is also in progress [20].

Finally, I would like to thank the referee for valuable comments.
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