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Introduction

Let M be a three-dimensional strictly pseudoconvex CR manifold which bounds a rel-
atively compact domain in C2. We fix a Levi metric on M , which is called a pseudo-
hermitian structure, and define the Szegö kernel with respect to the volume element
associated with the metric. In this note, we give an invariant-theoric characterization of
ψ0 the first invariant in the logarithmic term of Fefferman’s asymptotic expansion of the
Szegö kernel, and write down the invariant in terms of geometric local pseudo-hermitian
invariants.

In computing the invariant, we also find that the transformation law of ψ0, under
the change of pseudo-hermitian structure, can be expressed by using a fourth-order
linear differential operator Cθ on M , which was introduced in [GL] as the compatibility
operator for a degenerate Dirichlet problem (for example, in case M is the sphere
Cθ = �b�b, where �b is the Kohn Laplacian). See Corollary 1 below. This formula
enables us to reduce the analysis of ψ0 to that of the differential equation Cθf = g. In
particular, by studying the global solutions to Cθf = 0, we can show that ψ0 vanishes
globally on M if and only if the Szegö kernel is defined with respect to an invariant
volume element introduced in [F2], see also [H], under the assumption that M has a
transversal symmetry. See Corollary 2 below.

For the Szegö kernel defined with respect to the invariant volume element, we have
obtained, in [HKN], some detailed results on its asymptotic expansion. Thus, if we
combine the results on the invariant Szegö kernel and the above characterization of
the invariant volume element, we can prove that the Szegö kernel has no logarithmic
singularity if and only if M is spherical, without assuming any condition on the choice
of volume element. See Corollary 3. In this characterization of spherical surfaces, the
assumption that the logarithmic term vanishes globally is essential, while in the case
of the Bergman kernel, this type of result holds under a local vanishing condition of
the logarithmic term on a piece of the boundary, see [G, Theorem 3.2] and [B]. We can
not expect such a localized result for the Szegö kernel, without specifying the choice
of volume element as in [HKN, Remark 2] or [Ha], see Remark 1.1 below. A counter
example can be found in [Fu], see Remark 1.2 below.
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The plan of this note is as follows: after a review of some geometric identities on
pseudo-hermitian manifolds in §2, we first use in §3 Weyl’s classical invariant theory
for the unitary group U(1) to see that the first invariant in the logarithmic term ψ0 is
written as a linear combination of the “Weyl invariants” constructed from the curvature
and the torsion of the Tanaka-Webster connection. To determine the coefficients in the
linear combination, we derive in §4 the transformation law of ψ0 under a change of
pseudo-hermitian structure, which is forced by the transformation law of the Szegö
kernel, and show in §5 that the transformation law uniquely characterizes ψ0 up to a
constant multiple. The evaluation of the constant will be done in §6. Finally, in §7, we
discuss the equation Cθf = 0 and give the proofs of corollaries.

1. Results

Let Ω ⊂ C2 be a strictly pseudoconvex domain with smooth boundary M . We fix a
pseudo-hermitian structure on M by giving a contact form θ. Then it was shown in
[F1] and [B-S] that the Szegö kernel defined with respect to the volume element θ ∧ dθ
has the asymptotic expansion

S(z, z) = ϕ(z)ρ(z)−2 + ψ(z) log ρ(z) with ϕ,ψ ∈ C∞(Ω),

where ρ is a defining function of Ω with ρ > 0 in Ω.

Main Theorem. The boundary value of the log term coefficient ψ0 = ψ|M is given by

ψ0 =
1

24π2
(∆bR− 2 ImA 11

11, ),

where ∆b is the sublaplacian, R is the Webster scalar curvature, and A 11
11, is the

contraction of the second covariant derivative of the Webster torsion.

In proving this formula, we also get the transformation law of ψ0:

Corollary 1. If θ̃ = e2fθ is another pseudo-hermitian structure, then ψ0 transforms
according to

ψ̃0 = e−4f (ψ0 +
1

2π2
Cθf), where Cθf = f 1 1

1 1 + i(A11f
1),1.

Here the indices 1 and 1 indicate the covariant derivatives, see §2 for definition.

By evaluating the explicit formula of ψ0, we can prove ψ0 = 0 if θ ∧ dθ is the
invariant volume element up to multiplication by a CR-pluriharmonic function, see §7
below; this fact also follows from Graham’s result [G], see [HKN]. Moreover, in case Ω
has a transversal symmetry, we can also prove its converse.

Corollary 2. Assume that Ω has a transversal symmetry (see [GL]). Then ψ0 = 0
if and only if θ ∧ dθ is the invariant volume element up to multiplication by a CR-
pluriharmonic function.

Combining this corollary and [HKN, Remark 2], we get

Corollary 3. Assume that Ω has a transversal symmetry and that ψ = O(ρ3). Then
the boundary M is spherical, i.e. locally CR-isomorphic to the sphere.
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Remark 1.1. In Hanges [Ha], he computed ψ0 for the domains in C2 with transversal
symmetries. The computation was done with respect to a specific choice of volume
element. By using the formula, he proved a similar result to our corollary 3 in case the
Szegö kernel is defined with respect to that specific volume element.

Remark 1.2. Fuks [Fu] derived the explicit formula for the Szegö kernel of the tube
domain {(z, w) ∈ C2 : Imz Imw > 1, Imz > 0} with a suitable choice of volume
element on the boundary, see the formula (4.126) in [Fu]. This Szegö kernel contains no
logarithmic singularity. Since we can check that this Szegö kernel satisfies the holonomic
system given by Kashiwara’s theorem, see [HKN, §2], the singularity of the Szegö kernel
can be localized, and thus we can make an example of a bounded domain for which the
logarithmic term of the Szegö kernel vanishes on a non-spherical piece of its boundary.

2. Pseudo-hermitian geometry

Let M be a C∞ real three-dimensional manifold. A CR structure on M is a complex
one-dimensional subbundle T 1,0 ⊂ CTM satisfying T 1,0 ∩ T 1,0 = {0}. We will always
assume that the structure is strictly pseudoconvex : for some choice of a real one-form θ
annihilating T 1,0, the Levi form Lθ(V,W ) = −idθ(V ∧W ) gives a hermitian metric on
T 1,0. A choice of a such one-form θ defines a pseudo-hermitian structure on M , and it
induces a natural linear connection called the Tanaka-Webster connection [T], [W]. We
shall quickly review the definition.

Let {T,Z1, Z1} be a frame of CT , where Z1 is any local frame of T 1,0, Z1 = Z1

and T is the characteristic vector field , that is, the unique real vector field such that
θ(T ) = 1, T cdθ = 0. Then {θ, θ1, θ1}, the coframe dual to {T,Z1, Z1}, satisfies

dθ = ih11θ
1 ∧ θ1

for some positive function h11. We call the one-form θ1 an admissible coframe. In terms
of this frame, the Tanaka-Webster connection ∇ is defined by the relations

∇Z1 = ω1
1 ⊗ Z1, ∇Z1 = ω1

1 ⊗ Z1, ∇T = 0,

dθ1 = θ1 ∧ ω1
1 +A1

1θ ∧ θ1, ω11 + ω11 = dh11

for a one-form ω1
1, with ω1

1 = ω1
1, and a function A1

1, called the Webster torsion.
We denote the components of covariant derivatives of a tensor by indices proceeded

by a comma; as in ∇(A 1
1 Z1⊗ θ1) = (A 1

1 ,1θ
1 +A 1

1 ,1
θ1 +A 1

1 ,0θ)⊗Z1⊗ θ1. For a scalar
functions, we usually omit the comma. The structure equation for the Tanaka-Webster
connection [L2] is then given by

(2.1) dω1
1 = R h11θ

1 ∧ θ1 +A 1
1 ,1θ

1 ∧ θ −A 1
1 ,1θ

1 ∧ θ,

where R is a function called the Webster curvature, and the Bianchi identity is

(2.2) R,0 = A11,
11 +A1 1,

1 1.
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Here we use h11 and its inverse h11 in the usual way to raise and lower indices.
Now we shall collect some fundamental formulas used below. First recall [L2, Lemma

2.3] that the covariant derivatives of a function u satisfy

(2.3) u 1
1 − u1

1 = iu0, u01 − u10 = A11u
1, u11

1 − u 1
1 1 = iu10 +R u1.

The transformation law of the connection under a change of pseudo-hermitian structure
was computed in [L1, §5]. Let θ̃ = e2fθ be a new pseudo-hermitian structure. Then
we can define an admissible coframe by θ̃1 = ef (θ1 + 2if1θ). With this coframe, the
connection form and the torsion tensor are given by

ω̃ 1
1 = ω1

1 + 3(f1θ1 − f1θ
1) + i(f11 + f1

1 + 8f1f1)θ,(2.4)

Ã11 = e−2f (A11 + 2if11 − 4if1f1),(2.5)

and thus the Webster curvature transforms as

(2.6) R̃ = e−2f (R− 4f 1
1 − 4f 1

1 − 8f1f1).

Here covariant derivatives in the right sides are taken with respect to the pseudo-
hermitian structure θ and an admissible coframe θ1. Note also that the dual frame
of {θ̃, θ̃ 1, θ̃ 1} is given by {T̃ , Z̃1, Z̃1}, where

T̃ = e−2f (T + 2if1Z1 − 2if1Z1), Z̃1 = e−fZ1.

Finally we shall recall [S, Lemma 1.8] the transformation law of the sublaplacian ∆b

on functions defined by ∆bu = −(u 1
1 + u 1

1
). If we denote by ∆̃b the sublaplacian

associated with θ̃, then we get

(2.7) ∆̃bu = e−2f (∆bu− 2f1u1 − 2f1u1).

3. Scalar pseudo-hermitian invariants

Our proof of Main Theorem begins with a study of scalar pseudo-hermitian invariants;
as we see in the lemma below, our object ψ0 is a scalar pseudo-hermitian invariant.

By a scalar pseudo-hermitian invariant we mean a polynomial Q in the components
of the curvature and the torsion of the Tanaka-Webster connection and their covariant
derivatives which is invariant under a change of frame of T 1,0. A scalar pseudo-hermitian
invariant defines a C∞ function Q(θ) on each pseudo-hermitian manifold (M, θ) by
evaluating the polynomial at each point. We also call this assignment of functions a
scalar pseudo-hermitian invariant and will identify two invariant polynomials if they
define the same assignment.

The simplest scalar pseudo-hermitian invariant is of course the Webster curvature
R. Other examples of scalar pseudo-hermitian invariants can be constructed out of
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R,A11, A1 1 and their covariant derivatives in Z1 and Z1 by taking tensor products and
contracting:

contraction(R,α1···αn ⊗ · · · ⊗R,α′
1···α′

m
⊗Aβ1β2,β3···βp ⊗ · · · ⊗Aβ′

1β′
2,β′

3···β′
q
)

is a scalar pseudo-hermitian invariant, called a Weyl invariant , for any choice of indices
such that the numbers of 1 and 1 are the same. The contraction is taken with respect
to the Levi metric h11 for some pairing of holomorphic and antiholomorphic indices.

Since a scalar pseudo-hermitian invariant is an invariant polynomial under the action
of the unitary group U(1), the classical invariant theory identifies all such invariant
polynomials. This leads to the conclusion that every scalar pseudo-hermitian invariant
is a linear combination of the Weyl invariants. Note that the Weyl invariants contain
no terms containing covariant derivatives in T ; such terms can be expressed as the
polynomials in the components of the tensors which contain no T covariant derivatives,
by using, e.g. (2.2) and (2.3).

Lemma 3.1. The first invariant in the log term of the Szegö kernel ψ0 is a scalar
pseudo-hermitian invariant, and thus ψ0 is written as a linear combination of the Weyl
invariants.

Proof. In [BGS, Theorem 7.30] the same type of result was proved in the case of the
asymptotic expansion of the heat kernel for �b. The argument used there can be also
applied to our case, if we fix a defining function (or a phase function) and employ the
algorithm of computing the Szegö kernel given in [B-S, §4] or [HKN]. This implies that
ψ0 is written as a polynomial in the components of the curvature, the torsion tensor,
and their covariant derivatives. Since we know that ψ0 is independent of a choice of
defining function, ψ0 must be an invariant polynomial. �

4. Transformation law of the Szegö kernel

This section derives the following transformation law.

Proposition 4.1. Let S and S̃ be the Szegö kernels defined with respect to pseudo-
hermitian structures θ and θ̃ on M respectively. If we have θ̃ = e2fθ for a CR-
pluriharmonic function in a neighborhood of p in M , then there exists a neighborhood
U of p in C2 such that

(4.2) S̃(z, z) ≡ e−4f(z)S(z, z) mod C∞(U ∩ Ω),

where f(z) is identified with its pluriharmonic extension to U ∩Ω. In particular, the log
term coefficients of S and S̃ satisfy

(4.3) ψ̃(z) = e−4f(z)ψ(z) on U ∩M.

Proof. It was shown in [B-S] that the Szegö projector on (M, θ) is micro-locally charac-
terized as the unique Fourier integral operator S, which we call the local Szegö projector ,
satisfying

(4.4) S ∼ S∗ ∼ S2, ∂bS ∼ 0, Id ∼ S + L∂b for some regular operator L.
5



Here “∼” means that the operators of each side differs by an operator of degree −∞
(i.e. an operator with C∞ kernel function). We shall construct operators S′ and L′

which satisfy (4.4), near p, with respect to the volume element θ̃ ∧ dθ̃ from S and f .
Let F be a function on M which is CR-holomorphic in a neighborhood p and satisfies

ReF = 2f , and we regard e−F as the operator, on functions and one-forms, defined by
the multiplication u 7→ e−Fu. Then e−F : L2(M, θ ∧ dθ) → L2(M, θ̃ ∧ dθ̃) is unitary,
and we have ∂b(eFu) = eF ∂bu for any function u with support in a small neighborhood
of p. Thus we see that S′ = e−F S eF and L′ = e−F L eF satisfy (4.4), near p, with
respect to the volume element θ̃ ∧ dθ̃. Therefore, we get S̃ ∼ e−F S eF , near p, by the
uniqueness of the local Szegö projector. If we rewrite this formula in terms of kernel
functions, we get (4.2). �

5. Invariant-theoric characterization of ψ0

In §§3 and 4 we have shown that ψ0 is a scalar pseudo-hermitian invariant and satisfies
the transformation law (4.3). In this section we show that the transformation law
uniquely determines the scalar pseudo-hermitian invariant ψ0 up to a constant multiple.

Theorem 5.1. Let Q be a scalar pseudo-hermitian invariant on three-dimensional CR
manifolds which satisfies the transformation law

(5.2) Q(e2fθ) = e−4fQ(θ) for any CR-pluriharmonic function f.

Then there exists a constant c such that

(5.3) Q = c (∆bR− 2 ImA11,
11).

We begin by showing that the right side of (5.3) satisfies the transformation law (5.2).

Lemma 5.4. The divergence of the one-form W1θ
1 = (R,1 − iA11,

1)θ1 is written as

(5.5) W 1
1, = −1

2
∆bR+ ImA11,

11

and, if θ̃ = e2fθ, then W1 and W1,
1 transform as follows:

W̃1 = e−3f (W1 − 6P1f), where P1f = f 1
1 1 + iA11f

1,(5.6)

W̃ 1
1, = e−4f (W 1

1, − 6Cθf), where Cθf = (P1f),1.(5.7)

In [L2, Proposition 3.4] it was shown that a C∞ real function on an open set U
satisfies P1f = 0 if and only if f is CR-pluriharmonic on U . Thus (5.7) implies that
W 1

1, satisfies the transformation law (5.2).
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Proof of Lemma 5.4. In view of (2.2) and R 1
,1 −R 1

, 1 = iR,0 which follows from (2.3),
we have

W 1
1, = R 1

,1 − iA11,
11 =

1
2
(R 1

,1 +R 1
, 1 − iA11,

11 + iA1 1,
1 1)

= −1
2
∆bR+ ImA11,

11.

This proves (5.5).
To simplify the computation of the transformation laws, we shall work with an ad-

missible coframe θ1 for which ω 1
1 = 0 at a point p ∈ M , so that the first covariant

derivatives at p are equal to ordinary derivatives, see [L2, Lemma 2.1]. At the point p,
we compute

R̃,1 = Z̃1R̃ = e−fZ1e
−2f (R− 4f 1

1 − 4f 1
1 − 8f1f1)

= e−3f (R,1 − 2Rf1 − 4f 1
1 1 − 4f 1

1 1 − 8f11f1 + 8f 1
1 f1 + 16f1f1f1),

iÃ11,1 = i
(
Z̃1 − 2ω̃ 1

1 (Z̃1)
)
Ã11

= ie−f (Z1 + 6f1)e
−2f (A11 + 2if11 − 4if1f1)

= e−3f (iA11,1 + 4iA11f1 − 2f111 + 8f11f1 − 8f11f1 + 16f1f1f1).

Contracting the second equation with respect to the Levi metric h̃11 = h11, we get

R̃,1 − iÃ 1
11, = e−3f (R,1 − iA11,

1 − 4f 1
1 1 − 4f 1

1 1 + 2f 1
11 − 2Rf1 − 4iA11f

1).

So using −4f 1
1 1 +2f 1

11 −2Rf1 = −2f 1
1 1

−2iA11f
1, which follows from (2.3), we obtain

(5.6). To prove (5.7), by using (2.4), we compute

W̃1,1 =
(
Z̃1 − ω̃ 1

1 (Z̃1)
)
W̃1 = e−f (Z1 + 3f1)e

−3f (W1 − 6P1f)

= e−4fZ1(W1 − 6P1f) = e−4f
(
W1,1 − 6(P1f),1

)
.

If we contract this equation, we get (5.7). �

Proof of Theorem 5.1. Suppose we have a scalar pseudo-hermitian invariant Q satisfying
(5.2). First we consider the effect of a change of scale in the Levi metric, that is, to
consider the case f is a constant function. Then, as in [BGS, §8] and [S, §5], we see
that the possible Weyl invariants in Q are

R 1
,1 , R 1

,1 , A11,
11, A1 1,

1 1, |R|2, |A11|2.

Since we know ReA11,
11 = ImR 1

,1 = R,0 from (2.2) and (2.3), Q can be written in the
form

Q = c1∆bR+ c2ImA11,
11 + c3|R|2 + c4|A11|2 + c5R,0.

Now we shall determine the coefficients. To simplify computation, we work on the
Heisenberg group H3 = C×R with the CR structure given by Z1 = ∂/∂z+ iz∂/∂t. On
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H3 with the standard pseudo-hermitian structure θ0 =
1
2
(dt+izdz−izdz), the curvature

and the torsion vanish, and thus we can compute R and A11 for the pseudo-hermitian
structure θ = e2fθ0 from (2.5) and (2.6):

R = −4e−2f (Z1Z1f + Z1Z1f + 2(Z1f)(Z1f)) ,

A11 = 2i e−2f (Z1Z1f − 2(Z1f)(Z1f)) .

Note that Z1 is normalized by the Levi metric associated with θ0. For the deter-
mination of the coefficients, it is enough to compute Q for some simple examples of
CR-pluriharmonic functions f .

First, we consider the case f = aRe(z+ z2), where a is a real constant. Then we get

|R|2 = 4a4 +O(1), |A11|2 = (a2 − 2a)2 +O(1),

where O(1) indicates some smooth function which vanishes at the origin (0, 0) ∈ H3.
To verify ∆bR we use (2.7):

∆bR = e−2f (−Z1Z1 − Z1Z1 − 2(Z1f)Z1 − 2(Z1f)Z1)R

= 2(Z1Z1 + Z1Z1 + aZ1 + aZ1)e−2f |a+ 2az|2 +O(1)

= −8a2(a− 2) +O(1).

Since we have shown in Lemma 5.4 that ∆bR− 2 ImA11,
11 satisfies (5.2), we also get

ImA11,
11 =

1
2
∆bR = −4a2(a− 2) +O(1).

For the evaluation of R,0 we use T = e−2f (∂/∂t+ 2i(Z1f)Z1 − 2i(Z1f)Z1) and get

R,0 = TR = −2
(
∂

∂t
+ iaZ1 − iaZ1

)
e−2f |a+ 2az|2 +O(1) = O(1).

To sum up, we have shown that the value of Q(exp(aRe(z + z2))θ0) at the origin is

−4a2(a− 2)(2c1 + c2) + 4a4c3 + (a2 − 2a)2c4,

which must vanishes for every a ∈ R. Thus we get 2c1 + c2 = 0 and c3 = c4 = 0. So
Q is written as c1(∆bR− 2 ImA 11

11, ) + c5R,0. To determine c5 we compute R,0 for the
CR-pluriharmonic function f = t + |z|2 and get R,0 = 32 + O(1). On the other hand,
we know ∆bR − 2 ImA 11

11, = 0 for the pseudo-hermitian structure exp(2(t + |z|2))θ0.
Thus c5 must vanish. �

6. Determination of the universal constant

By Theorem 5.1, we have ψ0 = c (∆bR−2ImA11,
11) for some constant c which depends

on neither a choice of domain nor a choice of pseudo-hermitian structure. In order to
determine the constant, we shall compute the Szegö kernel S on the Heisenberg group
with the pseudo-hermitian structure θ = exp(2|z|4)(dt+ izdz− izdz). We embed H3 by
(z, t) 7→ (z, (|z|2 − it)/2) ∈ C2, so that H3 is defined by ρ = w + w − zz = 0.

Lemma 6.1. Set γε = (0, ε/2). Then, as ε→ +0, we have

(6.2) S(γε, γε) =
1

4π2
ε−2 +

(
2
π2

+O(ε)
)

log ε.
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Proof. We employ the method used in [HKN, §2]. Since the volume element θ ∧ dθ
corresponds to the δ-function 4 exp(4|z|4)δ(ρ), we get

4 exp(4|z|4)δ(ρ) = 4
∞∑

n=0

4n

n!
z2n(DzD

−1
w )2nδ(ρ).

Thus we have

S =
(
4

∞∑
n=0

4n

n!
z2n(DzD

−1
w )2n

)∗−1 1
π2
ρ−2

=
1

4π2
(1− 4D2

zz
2D−2

w )ρ−2 + (terms of weight> 0).

Since (D2
zz

2D−2
w ρ−2)|γε

= −2 log ε, we get (6.2). �

On the other hand, we see from (5.7) that the value of ∆bR−2 ImA11,
11 at the origin

is 12(P1f),1 = 12f 1 1
1 1

= 12Z1Z1Z1Z1|z|4 = 48. Therefore we find c = 1/24π2. This
concludes the proof of Main Theorem.

7. Proofs of corollaries

Corollary 1 has been proved in Lemma 5.4, so we begin with the proof of Corollary 2.
We first recall that the invariant volume element θ∧dθ is defined by the normalization

(7.1) θ ∧ dθ = iθ ∧ (T cζ) ∧ (T cζ)

with the closed (2, 0)-form ζ = dz1 ∧ dz2. This definition is equivalent to the one given
in [F2] and [HKN], see [H]. We denote the contact form satisfying this condition by
θ0. To evaluate ψ0 for this volume element, we use the following lemma, which is an
analogy of [L2, Theorem 4.2].

Lemma 7.2. Let θ be a pseudo-hermitian structure on a three-dimensional CR man-
ifold. Then W1 = R,1 + iA11,

1 = 0 in a neighborhood of a point p ∈ M if and only if
there exists a closed (2, 0)-form ζ in a neighborhood of p satisfying (7.1).

Proof. If we take the exterior differential of the one-form ω 1
1 + iR θ, and use (2.1), we

obtain
d(ω 1

1 + iR θ) = i (W1θ
1 +W1θ

1) ∧ θ.
Thus we see that W1 = 0 if and only if ω 1

1 + iR θ is closed. This fact corresponds to
[L2, Lemma 4.1], and thus the arguments in the proof of [L2, Theorem 4.2] also hold
just as well in this case. �

In particular, ψ0 = − 1
12π2

W1,
1 = 0 for the invariant volume element. Thus, for the

volume element efθ0 ∧ dθ0 with CR-pluriharmonic function f , we also get ψ0 = 0 by
the transformation law (4.3).

In order to prove the only if part of Corollary 2, we use the following:

Proposition 7.3. Let M be a compact three-dimensional CR manifold which has a
transversal symmetry, and θ be any pseudo-hermitian structure on M . Then a C∞ real
function f satisfies Cθf = 0 on M if and only if f is CR-pluriharmonic.
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Proof. In [GL, Proposition 3.2], they proved this statement under the assumption that
θ is normalized by the symmetry. In case θ is not normalized, we write θ = e2g θ̃

with a normalized pseudo-hermitian structure θ̃. Then the lemma below shows Cθ̃f =
e4gCθf = 0, which implies that f is CR-pluriharmonic.

Conversely, if f is CR-pluriharmonic, then we have Cθf = (P1f),1 = 0. �

Lemma 7.4. Let θ and θ̃ be pseudo-hermitian structures on a three-dimensional CR
manifold. If θ̃ = e2gθ, then we have Cθ̃ = e−4gCθ.

Proof. Take a real function f and define another contact form by θ̂ = e2f θ̃ = e2(f+g)θ.
Then we have the transformation formulas of W 1

1,

Ŵ 1
1, = e−4f (W̃ 1

1, − 6Cθ̃f),

Ŵ 1
1, = e−4(f+g)(W 1

1, − 6Cθf − 6Cθg),

W̃ 1
1, = e−4g(W 1

1, − 6Cθg).

These equations imply Cθ̃f = e−4gCθf . �

If ψ0 vanishes for a volume element θ ∧ dθ, then, writing θ ∧ dθ = e4fθ0 ∧ dθ0, we

get ψ0 =
1

2π2
e−4fCθ0f = 0. Thus Proposition 7.3 implies that f is CR-pluriharmonic,

which proves Corollary 2.
Finally we shall prove Corollary 3. By Corollary 2, we see that the volume element is

a CR-pluriharmonic function multiple of the invariant volume element. Thus the trans-
formation law (4.2) implies that the Szegö kernel defined with respect to the invariant
volume element also has the logarithmic term which vanishes to the third order at the
boundary. Thus [HKN, Remark 2] implies that the boundary is spherical.
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