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Introduction

This article is a brief report of recent developments in Fefferman’s
program, proposed and initiated in [F3], concerning invariant expression
of the singularity of the Bergman kernel KB on the diagonal of a strictly
pseudoconvex domain Ω ⊂ Cn with smooth boundary. It was proved by
Fefferman in [F1] that

(0.1) KB =
ϕB

rn+1
+ ψB log r with ϕB, ψB ∈ C∞(Ω),

where r ∈ C∞ is a defining function of the boundary ∂Ω such that r > 0
in Ω and dr 6= 0 on ∂Ω. The problem is to choose r appropriately and
express ϕB modulo On+1(r) and ψB modulo O∞(r) invariantly in the
sense of local biholomorphic geometry. This can be compared with the
asymptotic expansion of the heat kernel associated with the diagonal of
a compact Riemannian manifold, where the time variable corresponds
to the function r in (0.1). The boundary ∂Ω is approximated at every
point by a sphere (hyperquadric), and carries a differential geometric
structure, called the CR (or pseudoconformal) structure.

Let us employ an extrinsic approach due to Chern and Moser in
[CM], [M], and put the boundary ∂Ω (formally) in Moser’s normal form
N(A) with A = (A`

αβ
) given by

2 Re zn = |z′|2 +
∑

|α|,|β|≥2

∞∑

`=0

A`
αβ

z′α z′β (Im zn)`,

where z = (z′, zn) = (z1, . . . , zn−1, zn) ∈ Cn. (For the notations z′α
and |α| with ordered multi-indices α, see Subsection 1.1, (B) below.)
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Then CR invariants of weight w ∈ N0 = {0, 1, 2, . . . } are defined as
polynomials P = P (A) satisfying the transformation law

(0.2) P (A) = P (Ã) | detΦ′(0)|2w/(n+1)

for local (or formal) biholomorphic mappings Φ such that Φ(N(A)) =
N(Ã) and Φ(0) = 0. We wish to express the asymptotic expansions

(0.3)

ϕB =
n∑

k=0

ϕk rk mod On+1(r), ϕk ∈ C∞(Ω),

ψB =
∞∑

k=0

ψk rk mod O∞(r), ψk ∈ C∞(Ω),

of ϕB and ψB in (0.1) in terms of CR invariants. We thus consider local
(or localizable) domain functionals K = KΩ near a reference point at
the boundary ∂Ω satisfying a transformation law of weight w ∈ Z:

(0.4) KΩ1 = KΩ2 ◦ Φ | detΦ′|2w/(n+1)

for local biholomorphic mappings Φ : Ω1 → Ω2 preserving the reference
points, cf. (0.2).

The Bergman kernel KB satisfies (0.4) with w = n+ 1. If one could
find a defining function r satisfying (0.4) with w = −1, then there would
be a hope to have expansions as in (0.3) such that ϕk for k ≤ n and
ψk−n−1 for k ≥ n+1 satisfy (0.4) with w = k. According to Hörmander
[Hö], the boundary value of ϕB agrees with that of the Levi determinant

J [r] = (−1)n det
(

r ∂r/∂zk

∂r/∂zj ∂2r/∂zj ∂zk

)

multiplied by n!/πn. Thus we are led to the zero Dirichlet boundary
value problem for the complex Monge-Ampère equation

(0.5) J [u] = 1 and u > 0 in Ω; u = 0 on ∂Ω.

According to Fefferman [F2], any solution of J [u] = 1 satisfies (0.4) with
w = −1. However, the solution of (0.5), of which the unique existence is
guaranteed by Cheng and Yau in [CY], has a finite differentiability up
to the boundary. This fact is seen from the asymptotic expansion below
due to Lee and Melrose in [LM] (cf. also Graham [G2]):

(0.6) u = r

∞∑

k=0

ηk · (rn+1 log r)k, ηk ∈ C∞(Ω),
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with a C∞ defining function r as before.
There are C∞ approximate solutions r = rF of (0.5) satisfying

J [rF] = 1 + On+1(r) near ∂Ω (r = rF > 0 in Ω).

In [F2], Fefferman gave an explicit algorithm of constructing such a
function rF. Let us refer to these rF as Fefferman’s defining functions.
After reviewing quickly in Section 1 the background of the problem
which contains expositions of CR invariants, the Bergman kernel and the
complex Monge-Ampère boundary value problem, we state in Section 2
Fefferman’s main results in [F3], which were supplemented recently by
Bailey, Eastwood and Graham in [BEG], on the expansion of ϕB in (0.3)
by using Fefferman’s defining function r = rF. Local domain functionals,
called Weyl invariants, of weight ≤ n are defined by using the curvature
of the Lorentz-Kähler metric with potential function |z0|2 rF(z) on a
bundle C∗ × Ω (or a neighborhood of C∗ × ∂Ω) with an extra variable
z0 ∈ C∗ = C\{0}. It is proved in [F3] and [BEG] that any CR invariant
of weight ≤ n is realized as the boundary value of a Weyl invariant and
that the expansion of ϕB in (0.3) with r = rF is valid, where each ϕB

k

is a Weyl invariant of weight k. Proofs of these results are outlined in
Section 5.

The two dimensional case is exceptional and it is possible to obtain
a very precise result by using Fefferman’s defining function r = rF. We
overview in Section 3 the work of Graham in [G1] and [G2] supplemented
by the authors’ joint work with Nakazawa in [HKN1] and [HKN2]. There
are no nonzero CR invariants of weight 1, 2, and the expansion of ϕB in
(0.3) with r = rF is trivial, that is, ϕB = 2/π2 + O3(r). For ψB in (0.1),
it is shown in [G1] and [HKN2] that

ψB =
2
π2

(−3 η1 + W4 r + W5 r2
)

+ O3(r) with r = rF,

where Wk for k = 4, 5 are Weyl invariants of weight k and η1 is that
in (0.6) with r = rF. This result is best possible as far as Fefferman’s
defining function is used. Explicit determination of W4 and W5 is also
done in [HKN2] (partial results are found in [G1] and [HKN1]). In order
to identify universal constants appearing in W4 and W5, it is necessary
to express the singularity of the Bergman kernel in terms of Moser’s
normal form coefficients. This is done in [HKN1] and [HKN2] by using
microlocal calculus due to Kashiwara in [Kas] and Boutet de Monvel in
[B1]–[B3]. We explain this method in Section 4.

In order to get a complete expansion of ψB as in (0.3), it is nec-
essary to take account of the ambiguity of r = rF. In [Hi], a special
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family of Fefferman’s defining functions parametrized by C∞(∂Ω) (or
rather the space of formal power series) is so defined as to satisfy (0.4)
with w = −1. This family leads to the definition of Weyl invariants with
ambiguity measured by C∞(∂Ω). It is proved in [Hi] that the space CR
invariants of arbitrary weight exactly corresponds to that of Weyl in-
variants without ambiguity and that the expansion of ψB in (0.3) with a
Fefferman’s defining function r parametrized by C∞(∂Ω) is valid, where
each ψB

k is a Weyl invariant, with ambiguity, of weight k + n + 1. This
expansion of ψB is invariant in the sense that each Weyl invariant with
ambiguity measured by C∞(∂Ω) is a universal polynomial of A = (A`

αβ
)

and C = (C`
αβ

), where A`
αβ

are Moser’s normal form coefficients and C`
αβ

appear as the coefficients of the power series expansion of an element
f ∈ C∞(∂Ω), that is,

f(z′, z′, Im zn) =
∑

|α|,|β|≥0

∞∑

`=0

C`
αβ

z′α z′β (Im zn)`.

In Section 6, we state these results more precisely and outline the proofs.
In this article, we restrict ourselves to the local analysis of the

Bergman kernel associated with a general strictly pseudoconvex domain,
and do not refer to related topics. Here we only mention two of these.
The first one is an analogue of Fefferman’s program above for the Szegö
kernel associated with an invariant surface element on the boundary of a
strictly pseudoconvex domain. This problem was also posed in [F3], and
the analysis of the Bergman kernel presented in this article applies to the
Szegö kernel as well, after a slight modification (cf. [HKN1], [HKN2]).
Another topic is a conformal analogue of the construction of CR invari-
ants in terms of Weyl invariants. This problem was posed by Fefferman
and Graham in [FG]. For recent progress of this topic, the reader should
see the papers by Bailey-Eastwood-Graham [BEG] and by Eastwood-
Graham [EG]; there are also comprehensive survey articles by Graham
[G3] and by Bailey [Ba].

§1 Backgrounds

1.1 CR invariants

(A) Local boundary equivalence problem. A remarkable phe-
nomenon in Several Complex Variables is the existence of a domain Ω
(in fact, many domains) such that all holomorphic functions in Ω extend
holomorphically across a part of the boundary ∂Ω to a larger domain
simultaneously. If such a phenomenon does never occur for Ω, then Ω is
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called a domain of holomorphy. Assume for simplicity that Ω is a domain
in Cn with C∞ boundary. That is, Ω = {r > 0}, where r ∈ C∞(Cn,R)
is a defining function of the boundary ∂Ω and thus |dr| > 0 on ∂Ω. A
well-known theorem of Oka states that Ω is a domain of holomorphy if
and only if it is pseudoconvex at every boundary point. The pseudocon-
vexity at z ∈ ∂Ω is by definition the non-negativity of the eigenvalues
of the Levi form of r at z = (z1, . . . , zn) given by

Lr,z(ξ, ξ) = −
n∑

j,k=1

∂2r(z)
∂zj∂zk

ξj ξk for ξ = (ξ1, . . . , ξn) ∈ T 1,0
z (∂Ω),

where T 1,0
z (∂Ω) =

{
ξ ∈ Cn;

∑n
j=1 ξj ∂r(z)/∂zj = 0

}
, and thus each

element ξ ∈ T 1,0
z (∂Ω) is identified with a (1, 0)-vector

∑
ξj ∂/∂zj which

is tangential to ∂Ω at z. If the Levi form is positive-definite on ∂Ω, then
Ω is said to be strictly pseudoconvex. The notion of (strict) pseudocon-
vexity is defined independently of the choice of r.

Let Ω1 and Ω2 be strictly pseudoconvex domains in Cn with C∞

boundaries. If there exists a biholomorphic mapping Φ : Ω1 → Ω2, then
Ω1 and Ω2 are said to be holomorphically equivalent. When are Ω1 and
Ω2 holomorphically equivalent? A necessary condition is formulated via
a theorem of Fefferman [F1] which states that if Φ as above exists then Φ
extends to a C∞ diffeomorphism from Ω1 to Ω2. (If the boundaries are
real analytic, then Φ extends biholomorphically across the boundaries,
cf. Lewy [L2].) Thus one can compare the boundaries. The boundary
value of Φ is a diffeomorphism Φ0 : ∂Ω1 → ∂Ω2 such that the compo-
nents are CR functions, those functions which are annihilated by differ-
entiation with respect to sections of the bundle T 0,1(∂Ω) = T 1,0(∂Ω).
Suppose now we are given Φ0, a CR diffeomorphism. If the boundaries
are real analytic, then Φ0 has an analytic extension to a full neighbor-
hood of ∂Ω1. In general, Φ0 extends holomorphically to Ω1 according
to a theorem of Lewy [L1]. These are in fact local results, and one is led
to a local boundary equivalence problem of comparing open portions Mj

of ∂Ωj (j = 1, 2), which are strictly pseudoconvex real hypersurfaces.
That is, one asks when there exists a CR diffeomorphism Φ0 : M1 → M2

such that Φ0(p1) = p2, where the pairs (Mj , pj) with pj ∈ Mj are pre-
scribed. In what follows, we mainly consider the real analytic case, and
identify Φ0 with its holomorphic extension Φ. More precisely, we regard
Φ as a germ of mapping between germs of surface (Mj , pj). In the C∞

case, we regard Φ as a formal mapping given by formal power series
between C∞ surfaces (Mj , pj), and thus we are only concerned with the
Taylor expansions of defining functions of Mj about the reference points
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pj ∈ Mj .

(B) Moser’s normal form. Let M ⊂ Cn be a strictly pseudocon-
vex real hypersurface containing the origin 0 ∈ Cn as a reference point,
and assume first that M is real analytic. To study the biholomorphic
equivalence problem of M in the previous subsection, Moser [M], [CM]
introduced the notion of normal form of M defined as follows.

For the standard coordinate system z = (z1, . . . , zn) in Cn, we write
z = (z′, zn) and set z′α = zα1 · · · zαa

, where α = (α1, . . . , αa) is an
ordered multi-index of length |α| = a, that is, αj ∈ {1, . . . , n − 1} for
j = 1, . . . , a. After a holomorphic change of coordinates, M is locally
written near the origin as

(1.1) 2u = |z′|2 + FA(z′, z′, v), zn = u + i v,

where FA is a real analytic function having the Taylor expansion

FA(z′, z′, v) =
∑

|α|+|β|+2`≥3

A`
αβ

z′α z′β v` =
∑

α, β

Aαβ(v) z′α z′β .

(The meaning of the subscript A in FA will be made clear just after the
definition of Moser’s normal form.) We say that M given by (1.1) is in
pre-normal form if Aαβ(v) = Aβα(v) hold for all α, β and each Aαβ(v) is
unchanged under permutation of α and that of β. These normalizations
are always possible.

By another change of coordinates, M in pre-normal form is made to
satisfy Aαβ(v) = 0 when |α| < 2 or |β| < 2, and thus

(1.2) FA(z′, z′, v) =
∑

|α|,|β|≥2

Aαβ(v) z′α z′β , Aαβ(v) =
∞∑

`=0

A`
αβ

v`.

Definition. A surface M in pre-normal form given by (1.1) is
said to be in Moser’s normal form if (1.2) holds and the following trace
conditions are fulfilled:

(1.3) tr A22(v) = 0, (tr)2 A23(v) = 0, (tr)3 A33(v) = 0.

Here, Aab(v) = (Aαβ(v))|α|=a,|β|=b, and (tr)m Aab(v) for m = 1, 2, 3

means that the contractions with respect to Kronecker’s delta δjk are
taken m times for the indices α, β in Aαβ(v) with |α| = a, |β| = b.

If M is a surface in Moser’s normal form, we write M = N(A) and
A ∈ N , where A = (A`

αβ
) is a collection of the coefficients in (1.2). Thus
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N is the vector space of all collections A giving Moser’s normal forms.
We may identify a surface N(A) with A ∈ N .

The existence of Moser’s normal form is guaranteed as follows.

Theorem 1.1 ([CM], [M]). For any M in pre-normal form, there
exists a holomorphic change of coordinates w = Φ(z) such that Φ(M) is
in Moser’s normal form. The mapping Φ is unique under the conditions

Φ(0) = 0, Φ′(0) = identity, Im
(
∂2wn(0)/∂z2

n

)
= 0,

where Φ′ denotes the holomorphic differential of Φ.

According to Theorem 1.1, there exists a holomorphic coordinate
system z = (z′, zn) such that M is in Moser’s normal form N(A). We
refer to z′, zn as Moser’s normal coordinates. These give “real” coordi-
nates z′, z′, u, v with zn = u+ i v. We rather use coordinates z′, z′, ρA,
v, where

ρA = 2u− |z′|2 − FA(z′, z′, v),

so that N(A) is given by the equation ρA = 0.
In general, Moser’s normal form of a surface M is not unique; M has

a unique normal form if and only if M is locally equivalent to a sphere,
in which case the normal form is given by

M0 = ∂Ω0 = {2u = |z′|2}, where Ω0 = {2u > |z′|2}.
The model domain Ω0 is a Siegel domain which is biholomorphic to a
ball. Elements of Aut(Ω0), the group of holomorphic automorphisms
of Ω0, are linear fractional transformations. The non-uniqueness of the
normal form is measured by using the isotropy group H of Aut(Ω0) at
the origin 0 defined by H = {h ∈ Aut(Ω0); h(0) = 0}; elements of H
are biholomorphic at 0. In fact, there is a group action

(1.4) H ×N 3 (h,A) 7→ h.A ∈ N
such that equivalence classes of N are realized by H-orbits of N . The
action (1.4) is defined by N(h.A) = M with M = h(N(A)) when M is in
Moser’s normal form. In general, M is merely in pre-normal form, but
Theorem 1.1 guarantees the unique existence of a local biholomorphic
mapping Φ such that Φ(M) is close to M and in Moser’s normal form.
Then the action (1.4) is defined by N(h.A) = Φ(M). That is,

(1.4)′ N(h.A) = Eh,A(N(A)), where Eh,A = Φ ◦ h.

Observe that E′
h,A(0) = h′(0).
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Let us finally give remarks on the case where the original real hy-
persurface M ⊂ Cn, being strictly pseudoconvex, is not real analytic
but merely C∞. In the category of formal power series, the notions of
pre-normal form and Moser’s normal form make sense. After a formal
change of variables, M can be always put in pre-normal form, and The-
orem 1.1 has an obvious analogue. We continue to use the notations
N(A) and A ∈ N . (We have a larger class N∞ % N but abuse nota-
tion by writing both N and N∞ as N .) Then the action (1.4) remains
well-defined.

Remark 1.1. Let a surface M with a reference point p ∈ M be
real analytic or C∞. Then by Theorem 1.1, there exists a (formal)
biholomorphic mapping Φp such that Φp(p) = 0 and Φp(M) = N(A) for
some A = (A`

αβ
) ∈ N . We now regard each A`

αβ
as a function of p ∈ M .

Then a family {Φp}p∈M can be chosen in such a way that A`
αβ

is real
analytic or C∞. This fact is contained in the proof of Theorem 1.1.

(C) Local scalar invariants. Given a surface M with a reference
point p ∈ M , local scalar invariants of M at p are defined as follows. For
A = (A`

αβ
) ∈ N , we regard components A`

αβ
as variables and consider

functions of A.

Definition. A polynomial P (A) in A ∈ N is called a CR invari-
ant of weight w ∈ N0 if

(1.5) P (A) = | deth′(0)|2w/(n+1) P (h.A) for any h ∈ H.

We denote by ICR
w the totality of CR invariants of weight w, and

thus ICR
w is the complexification of a real vector space.

Each P (A) ∈ ICR
w determines a functional M 7→ PM defined by

PM (p) = | detΦ′p(p)|2w/(n+1) P (A) with Φp(M) = N(A),

where Φp is a mapping in Remark 1.1. The function PM is real analytic
or C∞ according to the regularity assumption on M , and the value
PM (p) is independent of the choice of Φp. We have a transformation
law under biholomorphic mappings Φ:

PM (p) = | detΦ′(p)|2w/(n+1) PΦ(M)(Φ(p)) (p ∈ M).

Conversely, given a functional PM (p) of a pair (M,p) satisfying the law
above, if PN(A)(0) is a polynomial in A ∈ N then PN(A)(0) ∈ ICR

w .
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Every P (A) ∈ ICR
w is a polynomial in A ∈ N of homogeneous weight

w, if we define the weight of A`
αβ

by

w(A`
αβ

) = w(αβ`) = (|α|+ |β|)/2 + `− 1.

This fact is seen by using dilations φr ∈ H defined by φr(z′, zn) =
(rz′, r2zn) for r > 0. We have P (A) = r2wP (φr.A), while the action
φr.A = Ã is given by Ã`

αβ
= r−|α|−|β|−2`+2A`

αβ
.

1.2 The Bergman kernel

For a general domain Ω ⊂ Cn, we denote by HB(Ω) the Hilbert
space of L2 holomorphic functions in Ω with the norm ‖ · ‖B. Then the
Bergman kernel associated with Ω is defined by

KB(z) = KB(z, z) =
∑

j

|hj(z)|2 for z ∈ Ω,

where {hj}j is an arbitrary complete orthonormal system of HB(Ω).
The series

∑ |hj(z)|2 converges uniformly on every compact subset ω of
Ω, by virtue of the following inequality with a constant Cω > 0:

|h(z)| ≤ Cω ‖h‖B for z ∈ ω, h ∈ HB(Ω).

(In fact,
∑ |hj(z)|2 is the square of the norm of the evaluation functional

h 7→ h(z) on HB(Ω).) Thus, a complex extension of KB(z) = KB(z, z)
is given by

KB(z, w) =
∑

j

hj(z) hj(w) for z, w ∈ Ω,

which is holomorphic in (z, w). This function KB(z, w), which is also
referred to as the Bergman kernel, is the reproducing kernel associated
with the Hilbert space HB(Ω) in the sense that

KB( · , w) ∈ HB(Ω) for w ∈ Ω fixed,

KB(z, w) = KB(w, z) for z, w ∈ Ω,

h(z) =
∫

Ω

KB(z, w) h(w) dV (w) for h ∈ HB(Ω), z ∈ Ω,

where dV (w) denotes the standard volume element of Cn at w.
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When we wish to emphasize the dependence on Ω, we write KB(z, w)
as KB

Ω(z, w). Recall that each element h ∈ HB(Ω) is identified with a
holomorphic n-form ωh(z) = h(z) dz1 ∧ · · · ∧ dzn, and

in
2

2n

∫

Ω

ωh ∧ ωh = ‖h‖2B < +∞.

Thus the Bergman kernel KB
Ω(z, w) is defined for a complex manifold Ω.

(This fact will not be used explicitly, since we shall mainly work locally
near a boundary point.) Also, the transformation law for the Bergman
kernel under a biholomorphic mapping Φ : Ω1 → Ω2 is given as follows:

(1.6) KB
Ω1

(z, z) = KB
Ω2

(Φ(z),Φ(z) ) |detΦ′(z)|2 for z ∈ Ω1,

a relation which can be complexified.

Example. If Ω ⊂ Cn is the unit ball, then

KB(z, w) =
n!/πn

(1− z · w)n+1
, where z · w =

n∑

j=1

zj wj .

For our model domain Ω0 =
{
z = (z′, zn) ∈ Cn; zn + zn > |z′|2},

(1.7) KB
Ω0

(z, w) =
n!
πn

(
zn + wn − z′ · w′ )−n−1

.

Remark 1.2. (1◦) If Ω is a domain in C, then

KB(z, w) = −∂2G(z, w)
∂z ∂w

for z, w ∈ Ω,

where G(z, w) denotes the Green function normalized by multiplying a
constant (cf. Schiffer [Scr]). An operator version is given by using the
∂-operator and its L2 adjoint ∂

∗
as KB = 1− ∂

∗
G ∂, where G denotes

the Green operator and KB, called the Bergman projector, stands for
the orthogonal projector of L2(Ω) to the closed subspace HB(Ω).

(2◦) An analogous formula is available for a domain Ω in Cn as far as
the complex Laplacian ¤ = ∂ ∂

∗
+∂

∗
∂ for (0, 1)-forms on Ω has a closed

range in L2. The generalized inverse N, called the ∂-Neumann operator,
satisfies KB = 1 − ∂

∗
N ∂. If, for instance, Ω is a strictly pseudoconvex

domain with C∞ boundary, then N is defined and C∞ pseudolocal at
every point of the closure Ω (cf. Folland-Kohn [FK]). Then, the Bergman
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kernel KB(z, w) as a function of (z, w) is C∞ on Ω×Ω off the diagonal
of ∂Ω× ∂Ω (cf. Kerzman [Ke]).

From now on, we assume that Ω = {z; r(z) > 0} ⊂ Cn is a strictly
pseudoconvex domain, where r is a smooth (C∞ or real analytic) defining
function of the boundary. It has been known that the Bergman kernel
KB(z) = KB(z, z) tends to +∞ as z approaches to a boundary point.
The magnitude of divergence is measured by virtue of a theorem of
Hörmander [Hö] as follows:

(1.8) lim
z→p

r(z)n+1 KB(z) =
n!
πn

J [r](p) for p ∈ ∂Ω,

where J [r] denotes the Levi determinant of r given by

(1.9) J [r] = (−1)n det
(

r ∂r/∂zk

∂r/∂zj ∂2r/∂zj ∂zk

)
.

We shall rather refer to J [ · ] as the (complex) Monge-Ampère operator.
A far-reaching refinement of (1.8) is given as follows.

Theorem 1.2 ([F1]). Let Ω = {z ∈ Cn; r(z) > 0} be a strictly
pseudoconvex domain, where r is a C∞ defining function of ∂Ω. Then
there exist ϕB, ψB ∈ C∞(Ω) such that

(1.10) KB(z, z) = KB(z) =
ϕB(z)
r(z)n+1

+ ψB(z) log r(z).

In particular, ϕB = (n!/πn)J [r] on ∂Ω.

Remark 1.3. If ∂Ω with r is real analytic, then ϕB and ψB are real
analytic too, so that (1.10) is complexified (cf. Kashiwara [Kas]):

(1.10)′ KB(z, w) =
ϕB(z, w)
r(z, w)n+1

+ ψB(z, w) log r(z, w).

Even when ∂Ω is C∞, the above equality (1.10)′ remains valid with
C∞ functions r(z, w), ϕB(z, w), ψB(z, w) of (z, w) ∈ Ω × Ω which are
regarded as almost analytic extensions of r(z) = r(z, z), . . . in the sense
that ∂r(z, w)/∂z, . . . and ∂r(z, w)/∂w, . . . vanish to infinite order at
z = w (cf. Boutet de Monvel-Sjöstrand [BS]).

Remark 1.4. The singularities (1.10) and (1.10)′ are localizable to
a neighborhood of a boundary point as follows. If Ω1 and Ω2 are strictly
pseudoconvex domains with smooth (C∞ or real analytic) boundaries
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such that Ω1∩V = Ω2∩V for a neighborhood V of a point p ∈ ∂Ω1∩∂Ω2,
then there exists a smaller neighborhood V0 of p such that the difference
KB

Ω1
(z, w)−KB

Ω2
(z, w) are smooth for z, w ∈ Ω1 ∩ V0 = Ω2 ∩ V0.

Remark 1.5. (1◦) An elementary property of the Bergman kernel
is the monotonicity with respect to the domain:

KB
Ω1

(z) ≥ KB
Ω2

(z) when z ∈ Ω1 ⊂ Ω2.

In the proof of (1.8), this fact and the model case formula (1.7) are used
together with a localization argument, after a scaling of the coordinates
(cf. Hörmander [Hö]).

(2◦) Fefferman’s original proof of Theorem 1.2 requires a more pre-
cise approximation of Ω from inside at a boundary point by a domain
Ωball which is locally biholomorphic to a ball. Roughly speaking, starting
from an explicit approximation of the decomposition 1 = KB + ∂

∗
N ∂,

the Bergman kernel is obtained as a Neumann series, where successive
integrations over a thin domain given locally by Ω \ Ωball are involved.
The estimates are extremely hard (cf. [F1]).

(3◦) An alternative proof of Theorem 1.2 is given by Boutet de
Monvel and Sjöstrand [BS], where the singularity of the Bergman kernel
is written as a Fourier integral distribution with complex phase:

KB(z, w) ∼
∫ ∞

0

e−t r(z,w) pB(z, w, t) dt mod C∞,

where pB(z, w, t) is a symbol admitting an asymptotic expansion

pB(z, w, t) ∼
∞∑

j=0

tn−jpB
j (z, w), pB

j ( · , · ) ∈ C∞(Ω× Ω).

This expression yields (1.10)′ via the following formulas for the Laplace
transforms, which are valid for p ∈ C with Re p > 0:

∫ ∞

0

tm e−pt dt =
m!

pm+1
for m ≥ 0,

pf
∫ ∞

0

t−m e−pt dt =
(−1)m pm−1

(m− 1)!
(log p + Cm) for m ≥ 1,

where Cm are constants and pf stands for the Hadamard finite part.
(4◦) For Kashiwara’s proof [Kas] of (1.10) in the real analytic case

and its application, see Section 4 below.
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The equality (1.10) in Theorem 1.2 is referred to as an asymptotic
expansion. A reason is that if the boundary ∂Ω is locally flattened by a
real change of coordinates z = Ψ(s, r) with s ∈ R2n−1 then

KB(Ψ(s, r)) =
ϕB(Ψ(s, r))

rn+1
+ ψB(Ψ(s, r)) log r,

and the Taylor expansions about r = 0 of ϕB(Ψ(s, r)) modulo On+1(r)
and ψB(Ψ(s, r)) provide an asymptotic expansion of KB(Ψ(s, r)). This
is analogous to that of the heat kernel. However, the biholomorphic
invariance is lost, for the expansion depends on the choices of the real
coordinate system (s, r) and the defining function r. Instead, we make
the following tentative definition.

Definition. A domain functional K(z) = KΩ(z) is said to satisfy
a (biholomorphic) transformation law of weight w ∈ Z if

(1.11) KΩ1(z) = KΩ2(Φ(z)) | detΦ′(z)|2w/(n+1)

for any biholomorphic mapping Φ: Ω1 → Ω2. This definition extends to
local domain functionals defined only near a boundary point.

The equality (1.6) means that the Bergman kernel satisfies a trans-
formation law of weight n + 1. If there would exist a defining function
r satisfying a transformation law of weight −1, then we could speak of
an invariant expansion of the Bergman kernel given by the expansions

(1.12)

ϕB =
n∑

j=0

ϕj rj mod On+1(r),

ψB =
∞∑

j=0

ϕn+1+j rj mod O∞(r),

with ϕj ∈ C∞(Ω) for j ∈ N0 satisfying transformation laws of weight j.
Here, the first relation in (1.12) means that the difference between both
sides is smoothly divisible by rn+1, and the second relation means that

ψB =
m∑

j=0

ϕn+1+j rj mod Om+1(r) for any m ∈ N.

In fact, the situation is not so simple. Nevertheless, this is approximately
the case, as we shall see in the next subsection.
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1.3 The Monge-Ampère boundary value problem

Recall the (complex) Monge-Ampère operator J [ · ] defined in (1.9).
If Φ : Ω1 → Ω2 is a biholomorphic mapping, then

J [u1] = J [u2] ◦ Φ with u1 = | detΦ′|−2/(n+1) u2 ◦ Φ

for any function u2 in Ω2 (cf. Fefferman [F2]). In particular, every
solution u of the Monge-Ampère equation J [u] = 1 satisfies a transfor-
mation law of weight −1 in the sense of (1.11). This fact motivates us
to consider the zero Dirichlet boundary value problem

(1.13) J [uMA] = 1 and uMA > 0 in Ω; uMA = 0 on ∂Ω.

The problem (1.13) has a unique solution but it has only a finite
degree of smoothness up to the boundary (cf. Cheng-Yau [CY]):

(1.14) uMA ∈ C∞(Ω) ∩ Cn+3/2−ε(Ω) for any ε > 0.

The solution uMA admits an asymptotic expansion, with an arbitrary
defining function r of ∂Ω such that Ω = {r > 0} (cf. Lee-Melrose [LM]):

(1.15) uMA ∼ r

∞∑

k=0

ηk · (rn+1 log r)k, ηk ∈ C∞(Ω).

In particular, (1.14) is improved as follows: uMA ∈ Cn+2−ε(Ω) for any
ε > 0 small. In the expansion (1.15) considered near a reference point
at the boundary, the function η0 depends globally on the choice of r,
whereas the Taylor expansions of ηk for k ≥ 1 are determined locally by
those of η0 and r (cf. [LM]).

Though the solution uMA of (1.13) is a defining function of ∂Ω and
satisfies a transformation law of weight −1, it is not C∞ smooth up to
the boundary. Thus we cannot use uMA in an invariant expansion of the
Bergman kernel of the form (1.12). Instead, we confine ourselves to a
C∞ defining function r = rF of ∂Ω satisfying (1.13) approximately in
the sense that

(1.16) J [rF] = 1 + On+1(r) near ∂Ω (r = rF > 0 in Ω).

Fefferman [F2] considered rF precedent to the above stated works of
Cheng-Yau [CY] and Lee-Melrose [LM]. In [F2], an explicit algorithm of
constructing rF is given locally near a boundary point (cf. Subsection
3.2 below). We refer to rF as a Fefferman’s defining function. For later
use, we summarize properties of rF:

(1F) rF is unique modulo On+2(r), or the ambiguity of rF is On+2(r);
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(2F) rF satisfies a transformation law of weight −1 modulo On+2(r);
(3F) rF makes sense locally near a reference point at the boundary.

By (1F), we mean that if rF
1 and rF

2 satisfy (1.16) then rF
1 −rF

2 = On+2(r)
and that if rF

1 satisfies (1.16) so does rF
2 = rF

1 +δ whenever δ = On+2(r).
The fact (1F) follows from the condition (1.16); and (1F) implies (2F),
because if Φ : Ω1 → Ω2 is biholomorphic then

J [rF
1 ] = J [rF

2 ] ◦ Φ with rF
1 = |det Φ′|−2/(n+1) rF

2 ◦ Φ

for any Fefferman’s defining function rF
2 of Ω2. By (3F), we mean that

the properties (1F) and (2F) are valid locally near a reference point at
the boundary.

By continuing Fefferman’s construction beyond rF, Graham [G2]
constructed a local asymptotic solution uG of (1.13) in the form

(1.17) uG = r

∞∑

k=0

ηG
k · (rn+1 log r)k, ηG

k ∈ C∞(Ω).

Theorem 1.3 ([G2]). Let r = rF be a Fefferman’s defining func-
tion of Ω. Then, for any a ∈ C∞(∂Ω), there exists a unique asymptotic
solution u = uG of the form (1.17) to the problem

(1.18) J [u] = 1 + O∞(r) near ∂Ω, ηG
0 = 1 + a rn+1 + On+2(r).

Furthermore, ηG
k for each k ≥ 1 has the following properties:

(1G) ηG
k modulo On+1(r) is independent of the choice of a and rF;

(2G) ηG
k has a transformation law of weight k(n+1) modulo On+1(r);

(3G) ηG
k modulo On+1(r) makes sense locally near a boundary point.

The asymptotic solution uG is a formal series of the form (1.17).
The first relation of (1.18) means that J [uG]−1 is formally flat on ∂Ω in
the sense that for any m ∈ N there exists a finite sum uG

m correspond-
ing to (1.17) such that J [uG

m] − 1 is continuously divisible by rm. The
meanings of (1G)–(3G) are similar to those of (1F)–(3F), except for the
fact that uG is uniquely determined by a and rF, where a is prescribed
in a neighborhood of a reference point at the boundary.

Let us return to the problem mentioned at the end of the previous
subsection. We wish to realize an invariant expansion of the Bergman
kernel of the form (1.12) with r = rF. Because of the ambiguity of rF,
the invariance becomes approximate and the expansion of ψB, even if
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possible, only makes sense as a finite sum, say,

(1.12)′N ψB = ϕn+1 + ϕn+2 r + · · ·+ ϕN rN−n−1 mod ON−n(r).

Suppose we are given vector subspaces IW
j ⊂ C∞(Ω) (0 ≤ j ≤ N) with

the following properties:

(1W) Elements of IW
j make sense modulo ON−j+1(r) (we regard these

as equivalence classes modulo ON−j+1(r));
(2W) Each element of IW

j satisfies the transformation law of weight j

modulo ON−j+1(r);
(3W) The boundary value of each element ϕ ∈ IW

j is a CR invariant,
and the resulting mapping IW

j → ICR
j is surjective. In addition,

if the boundary ∂Ω is in normal form N(A) near the origin, then
∂α

z ∂β
z ϕ(0) (|α|+ |β| ≤ N − j) for ϕ ∈ IW

j are polynomials in A.

The latter condition in (3W) is referred to as the polynomial dependence
of ϕ ∈ IW

j on the boundary. The functions ϕB, ψB and rF have a
similar property, as we shall see in Sections 3 and 4. If N ≥ n, then
the conditions (1W)–(3W) yield the expansion of ϕB in (1.12) as follows.
Since the boundary value of ϕB is an element of ICR

0 being a constant,
(3W) implies the existence of ϕ0 ∈ IW

0 such that ϕB = ϕ0 +O1(r). Then
the approximate invariance of the smooth function ϕ̃1 := (ϕB − ϕ0)/r

makes sense. By virtue of (1W)–(3W) and the polynomial dependence
of ϕB and rF, the boundary value of ϕ̃1 belongs to ICR

1 , and thus (3W)
implies as before the existence of ϕ1 ∈ IW

1 such that ϕB = ϕ0 + ϕ1 r +
O2(r). Then induction yields the expansion of ϕB as in (1.12).

A construction of IW
j for 0 ≤ j ≤ n is discussed in the next section.

The same argument applies to the expansion of ψB as in (1.12)′N ,
but the approximate invariance of the right side of (1.12)′N only makes
sense modulo On+1(r) by the ambiguity of r = rF. Consequently, we
have invariant expressions of ϕj for 0 ≤ j ≤ min (N, 2n + 1) whenever
IW
j for 0 ≤ j ≤ N are constructed. In Section 3, we consider the case

n = 2 and realize the optimal case N = 5, that is, we express ϕj for
0 ≤ j ≤ 5 explicitly by constructing IW

j for 0 ≤ j ≤ 5.

§2 Weyl invariants

Elements of the spaces IW
j (0 ≤ j ≤ n) in Subsection 1.3 are realized

by Weyl invariants in the sense of Fefferman [F3]. This notion was
introduced in [F3] as an analogy of that in Riemannian Geometry, where
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the Bergman kernel is compared with the heat kernel. Reviewing quickly
the heat kernel asymptotics in Subsection 2.1, we give the definition of
Weyl invariants in Subsection 2.2. Then in Subsection 2.3, we state the
main results of this section, due to Fefferman [F3] and Bailey-Eastwood-
Graham [BEG], on Weyl invariants and the invariant expansion of the
Bergman kernel.

2.1 Heat kernel on a Riemannian manifold

Let (M, g) be an n-dimensional compact Riemannian manifold. We
denote by ∆g the (negative) Laplacian acting on functions on M , and
consider the initial value problem for the heat equation:

∂u/∂t−∆gu = 0 on M × [0,∞), u|t=0 = f,

where f ∈ C∞(M) is prescribed arbitrarily. Then there exists a unique
solution, which has the form u(x, t) =

∫
M

Ht(x, y) f(y) dV (y), where dV

stands for the volume element on M . The function Ht(x, y) for x, y ∈ M
and t > 0 is called the heat kernel (for functions) associated with ∆g.
Let us consider the restriction Ht(x, x) to the diagonal of M ×M . This
is a smooth function as far as t > 0, but becomes singular as t → +0.
More precisely, the following asymptotic expansion holds:

Ht(x, x) ∼ t−n/2
∞∑

m=0

am(x) tm with am ∈ C∞(M).

The coefficient functions am are determined locally by the metric
g. In addition, these are Riemannian invariants defined as follows. Let
us take a normal coordinate system x = (x1, . . . , xn) about a reference
point p ∈ M . The choice of normal coordinate systems has freedom
corresponding to the action of the isotropy group O(n), and an action
of O(n) is induced on jets of the metric, gjk,ab···c = ∂xa∂xb

· · · ∂xcgjk(p),
where ∂xa = ∂/∂xa, etc. A universal polynomial Pm = Pm(gjk,ab···c) is
called a (local) Riemannian invariant if it is invariant under this action
of O(n).

For the curvature tensor R of g, we consider its successive covariant
derivatives and denote the components by Rijkl,ab···c. Then each gjk,ab···c
is a polynomial of (Rijkl,ab···c), and thus each Riemannian invariant is
written as an O(n)-invariant polynomial of (Rijkl,ab···c), where O(n)
acts tensorially on (Rijkl,ab···c). According to Weyl’s invariant theory,
the vector space of all Riemannian invariants is generated by complete
contractions of the form

contr (∇p1R⊗ · · · ⊗ ∇psR) ,
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where the contractions are taken over all indices. Consequently, each am

in the heat kernel is expressed as a linear combination of these complete
contractions such that 2m = p1 + · · ·+ ps + s. This equality is seen by
scaling the metric.

2.2 Definition of Weyl invariants

CR invariants can be compared with Riemannian invariants with
Moser’s normal coordinates in place of Riemannian normal coordinates.
A substitute for the Riemannian curvature is the curvature of the am-
bient metric, which is defined as follows.

Let r = rF be a Fefferman’s defining function of the domain Ω.
Introducing an extra variable z0 ∈ C∗ = C \ {0}, we consider a function
r#(z0, z) = |z0|2r(z) on C∗ × Ω. Then, a tensor of (1, 1)-type

g =
n∑

j.k=0

gjk dzj dzk =
n∑

j.k=0

∂2r#

∂zj ∂zk
dzj dzk

defines a Lorentz-Kähler metric in a neighborhood of C∗ × ∂Ω. This
metric g is called an ambient metric associated with ∂Ω. Due to the
ambiguity of r = rF modulo On+2(r), the ambient metric is well-defined
only up to the n-th jets along C∗ × ∂Ω.

As in the Riemannian case, scalar invariants are constructed from
the metric g as follows. For the curvature tensor R of g, we consider
successive covariant derivatives R(p,q) = ∇q−2∇p−2R and complete con-
tractions of the form

(2.1) W# = contr
(
R(p1,q1) ⊗ · · · ⊗R(ps,qs)

)
.

These are functions in a neighborhood of C∗ × ∂Ω ⊂ C∗ × Ω, and the
restrictions W = W#|z0=1 are defined near ∂Ω. The weight of W# in
(2.1) is defined by w =

∑s
j=1(pj + qj)/2− s.

Definition. A Weyl invariant of weight w is a linear combination
of complete contractions of the form (2.1) of the weight w.

By definition, a Weyl invariant W# is a functional of r. Nevertheless,
we also use this terminology for the composite function (z0, z) 7→ W#

or the equivalence class modulo the ambiguity of r = rF. For a Weyl
invariant W# of weight w, we set W = W#|z0=1. Then

W#(z0, z) = |z0|−2w W (z).

Accordingly, we still call W a Weyl invariant of weight w.
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Let us recall that rF is a local domain functional of weight −1 in the
sense of (1.12) but with error of On+2(r). Likewise, Weyl invariants W of
weight w are local domain functionals of weight w with some error. The
argument involving the error is somewhat technical, and we postpone
it until the next subsection. Instead, we give here a transformation law
under a biholomorphic mapping Φ:Ω1 → Ω2 for representatives of Weyl
invariants defined by a Fefferman’s defining function r2 of Ω2 and its pull-
back r1 = | detΦ′|−2/(n+1) r2 ◦ Φ to Ω1. To emphasize the dependence
on r = rF, we write g = g[r], W# = W#[r], W = W [r]. Then

(2.2) W [r1] = |det Φ′|2w/(n+1)W [r2] ◦ Φ.

This is seen as follows. We lift Φ to a bundle map Φ# : C∗ × Ω1 →
C∗ × Ω2 defined by

(2.3) Φ#(z0, z) = (z0 · (detΦ′(z))−1/(n+1), Φ(z)).

Then (r1)# = (r2)# ◦ Φ#, and Φ# is an isometry with respect to the
metrics g[r1] and g[r2]. Thus W#[r2]◦Φ# = W#[r1], which implies (2.2).

2.3 Results of Fefferman and Bailey-Eastwood-Graham

We begin with a consideration of the dependence on the choice of
Fefferman’s defining function.

Proposition 2.1. If W [r] is a Weyl invariant of weight w ≤ n,
then W [r] modulo On−w+1(r) is independent of the choice of r = rF.

The proof of Proposition 2.1 is done by using Moser’s normal coor-
dinates. If the boundary ∂Ω is locally in Moser’s normal form N(A),
then W [r] is written in terms of the coordinate system (z′, z′, ρA, v) as

W [r] =
n−w∑
m=0

∑

α,β,`

P `m
αβ

(A) z′α z′β v`ρm
A + On−w+1(ρA),

where P `m
αβ

(A) are polynomials in A (cf. the statement (#) in Subsection

3.2, (B) below.) The desired result then follows, since the main part of
the expression of W [r] above is independent of the choice of r = rF.

By Proposition 2.1 above and (2.2) in the previous subsection, we
have an approximate transformation law corresponding to (2.2), but for
arbitrary Fefferman’s defining functions rj = rF

j of Ωj (j = 1, 2):

(2.4) W [r1] = |det Φ′|2w/(n+1)W [r2] ◦ Φ mod On−w+1(r1).
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In particular, the boundary value of a Weyl invariant of weight w ≤ n
gives a CR invariant of weight w. The converse is the first main result
of this section.

Theorem 2.1 ([F3], [BEG]). Every CR invariant of weight ≤ n
is given by the boundary value of a Weyl invariant.

The statement of Theorem 2.1 was first proved by Fefferman [F3] for
CR invariants of weight ≤ n − 19. The weight restriction was removed
recently by Bailey-Eastwood-Graham [BEG]. We outline the proof of
Theorem 2.1 in Section 5.

Let IW
w denote the totality of Weyl invariants of weight w. By virtue

of Proposition 2.1 and Theorem 2.1 above, the spaces IW
w for 0 ≤ w ≤ n

satisfy the conditions (1W), (2W) and (3W) in Subsection 1.3 with N = n.
Consequently, the argument given there is valid, and we have:

Theorem 2.2 ([F3],[BEG]). For ϕB in the expression (1.10) of the
Bergman kernel, the following expansion holds:

ϕB =
n∑

k=0

Wk rk + On+1(r) with Wk ∈ IW
w .

§3 Explicit computation in the two dimensional case

For domains in C2, it is possible to refine Theorems 2.1 and 2.2,
as we mentioned at the end of Section 1. We also get explicit results,
which are stated in Subsection 3.1. These results are obtained with
the aid of asymptotic calculi of the Monge-Ampère equation and the
Bergman kernel, where explicit algorithms are necessary. Postponing
the calculus of the Bergman kernel until the next section, we discuss
that of the Monge-Ampère equation in Subsection 3.2.

3.1 The two dimensional case

(A) Results. Consider for a domain Ω in C2 the approximate
invariant expansions of ϕB and ψB expressing the singularity of the
Bergman kernel

KB = ϕB r−3 + ψB log r with r = rF

in terms of Fefferman’s defining function rF. To write down explicit
results, it is convenient to normalize ϕB and ψB by writing

KB =
2
π2

(
ϕ̃B r−3 + ψ̃B log r

)
,
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so that ϕ̃B = 1 on ∂Ω, cf. (1.8). As we shall see below, we can completely
determine ϕ̃B and ψ̃B both modulo O3(r). The results are optimal and
better than those in the higher dimensional case.

As before, let M be a portion of ∂Ω, and assume that M is in
Moser’s normal form N(A), where A = (A`

αβ
) ∈ N . Changing notation

slightly, we write A`
pq in place of A`

αβ
with |α| = p and |β| = q, since

(α, β) 7→ (p, q) is bijective. Then the trace conditions on A take the
form

A22(v) = A23(v) = A33(v) = 0,

so that A`
pq = 0 for p + q + ` ≤ 5. That is, M can be approximated

by a sphere to order 5, though in the higher dimensional case the third
order approximation is optimal. By this fact, the two dimensional case
is exceptional in the sense that the Weyl invariants are less ambiguous
(cf. Lemma 3.3 and Remark 3.2 below).

To state the main results of this section, we begin by presenting
bases of the vector spaces ICR

w of CR invariants of weight w ≤ 5.

Lemma 3.1. ICR
1 = ICR

2 = {0} and

dim ICR
3 = dim ICR

4 = 1, dim ICR
5 = 2.

The spaces ICR
3 and ICR

4 are generated by A0
44

and |A0
24
|2, respectively.

The space ICR
5 is spanned by FCR

5 (1, 0) and FCR
5 (0, 1), where

FCR
5 (a, b) = F

(
a, b,−2a + (10/9) b,−a + b/3

)

with F (a, b, c, d) = a |A0
52
|2 + b |A0

43
|2 + Re

{(
cA0

35
− i dA1

24

)
A0

42

}
.

For the proof, see [G1] for w ≤ 4 and [HKN2] for w = 5.
As a consequence of Lemma 3.1, the expansion of ϕ̃B is trivial:

(3.1) ϕ̃B = constant + O3(r) (constant = 1).

To proceed further, it is necessary to extend A0
44
∈ ICR

3 approximate
invariantly to the domain Ω. This is done by using the first coefficient
function ηG

1 of the asymptotic series uG in Subsection 1.3. It is proved
by Graham [G2] that:

Lemma 3.2. The boundary value of ηG
1 is a CR invariant of

weight 3. Specifically, ηG
1 = 4 A0

44
on M .

Let us proceed further to describe ψ̃B modulo O3(r). As we stated
in Subsection 1.3, Fefferman’s defining function r = rF makes invariant



188 K. Hirachi and G. Komatsu

sense modulo O4(r), and ηG
1 modulo O3(r) is independent of the choices

of rF and the data a ∈ C∞(M) determining uG. Consequently, it suffices
to extend |A0

24
|2 ∈ ICR

4 to Ω in such a way that the extension satisfies
an approximate transformation law of weight 4 modulo O2(r). Such an
extension is realized by a Weyl invariant. (The Weyl invariant of weight
≥ 3 are subject to a restriction stronger than that in Subsection 2.2,
because Proposition 2.1 is irrelevant to the case n = 2. See Remark
3.2 below.) Specifically, we consider complete contractions of weight
w = p + q − 2 of the form:

‖R(p,q)‖2 =
∑

gα1α′1 · · · gαpα′p gβ′1β1 · · · gβ′qβq Rαβ Rβ′α′ ,

where the sum runs over ordered multi-indices α, α′, β, β′ of lengths
|α| = |α′| = p, |β| = |β′| = q, e.g. α = (α1, . . . , αp) ∈ {0, 1, 2}p, and

Rα1···αqβ1···βq
= Rα1β1α2β2;α3···αqβ3···βq

.

As before, we restrict ‖R(p,q)‖2 to z0 = 1 and regard it as a function on
the base domain Ω. It is shown in [HKN2] that (cf. Remark 3.2 below):

Lemma 3.3. If w = p+q−2 = 4, 5 then ‖R(p,q)‖2 modulo O6−w(r)
is independent of the ambient metric. The boundary values are given by

3 ‖R(4,2)‖2
∣∣
M

= 7 ‖R(3,3)‖2
∣∣
M

= 28 · 21 |A0
42
|2,

‖R(5,2)‖2
∣∣
M

= −4 · (5!)2FCR
5 (1, 18),

‖R(4,3)‖2∣∣
M

= −4 · (5!)2FCR
5 (4/3, 57/5).

Using these three lemmas, we get:

Theorem 3.1. There exist universal constants c0, c1, c2, c3, c′1,
c′2, c′3 independent of A ∈ N such that

ψ̃B + c0 ηG
1 = c1‖R(3,3)‖2 r +

(
c2‖R(5,2)‖2 + c3‖R(4,3)‖2

)
r2 + O3(r)

= c′1‖R(4,2)‖2 r +
(
c′2‖R(5,2)‖2 + c′3‖R(4,3)‖2

)
r2 + O3(r).

The constant c0 was determined in Graham [G1], where he proved

(3.2) ψ̃B = −12A0
44

on M , so that c0 = 3.

It is shown in [HKN2] that:
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Theorem 3.2. For other universal constants in Theorem 3.1 above,

c1 =
1

160
, c2 =

1
20160

, c3 =
1

560
;

c′1 =
3

1120
, c′2 =

61
141120

, c′3 =
3

7840
.

Theorems 3.1 and 3.2 together with (3.1) and (3.2) are the main
results of this section.

Remark 3.1. For the two dimensional analysis of ϕB and ψB stated
above, Graham [G1] originally proved (3.1) and

ψ̃B + 3 ηG
1 = (constant) |A0

24
|2 r + O2(r) (constant = 24/5),

where the determination of the constant is due to [HKN1]. This result
on ψ̃B is refined one step further in [HKN2] to get Theorems 3.1 and
3.2, where the first statement of Lemma 3.3 concerning the ambiguity
of the Weyl invariants is crucial.

Remark 3.2. In the argument above, we have only considered the
complete contractions of the form ‖R(p,q)‖2, because these generate all
Weyl invariants of weight w ≤ 5, w 6= 3 (see [HKN2]). To state it more
precisely, let IW

w denote the vector space of all Weyl invariants of weight
w which are well-defined modulo O6−w(r), and set ĨW

w = IW
w / ∼, where

∼ stands for the equivalence relation of having the same boundary value.
Then dim ĨW

1 = dim ĨW
2 = dim ĨW

3 = 0, dim ĨW
4 = 1 and dim ĨW

5 = 2.
Bases of ĨW

4 and ĨW
5 are given by the boundary values of

‖R(4,2)‖2 (or ‖R(3,3)‖2) and {‖R(5,2)‖2, ‖R(4,3)‖2},

respectively. Consequently, there are isomorphisms ĨW
w
∼= ĨCR

w for w ≤ 5,
w 6= 3. In the exceptional case w = 3, the CR invariant A0

44
generating

the space ICR
3 is realized by the boundary value of a linear complete con-

traction, but the contraction is defined only up to O1(r) (see [HKN2]).

(B) Determination of the universal constants. We first write
down ψ̃B explicitly in terms of Moser’s normal coordinate system z =
(z1, z2). It is sufficient to consider an expansion of ψ̃B along the half-line
pt = (0, t/2) ∈ C2 (t > 0). Let F (a, b, c, d) be as in Lemma 3.1. Using a
method which will be explained in Section 4, We have:
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Proposition 3.1. As t → +0 along the half-line pt = (0, t/2),

ψ̃B =− 12 A0
44
− (216 |A0

24
|2 + a1 A0

55
+ a2 A1

44
) t

+
(
F (660, 1116, a3, a4) + a5 A0

66
+ a6 A1

55
+ a7 A2

44

)
t2 + O3(t),

where aj for j = 1, 2, . . . , 7 are constants independent of A ∈ N .

We next refine Lemmas 3.2 and 3.3. It is rather easy to see that

(3.3) rF = t + O3(t) as t → +0 along pt = (0, t/2).

We have the following two propositions.

Proposition 3.2. As t → +0 along the half-line pt = (0, t/2),

ηG
1 =4 A0

44
+

(368
5
|A0

24
|2 + b1 A0

55
+ b2 A1

44

)
t

−
(

F
(680

3
,
1956

5
, b3, b4

)
+ b5 A0

66
+ b6 A1

55
+ b7 A2

44

)
t2 + O3(t),

where bj for j = 1, 2, . . . , 7 are constants independent of A ∈ N .

Proposition 3.3. As t → +0 along the half-line pt = (0, t/2),

‖R(4,2)‖2 = 28 · 7 |A0
42
|2 + 28 F (50, 936, d1, d2) t + O2(t),

‖R(3,3)‖2 = 28 · 3 |A0
42
|2 + 28 · 3 F (25, 243, d3, d4) t + O2(t),

where d1, d2, d3, d4 are constants independent of A ∈ N .

Using these three propositions together with Lemma 3.3, (3.2) and
(3.3), we can determine all universal constants in Theorem 3.1 and get
Theorem 3.2.

3.2 The complex Monge-Ampère asymptotics

The proofs of the results stated in Section 2 and Subsection 3.1
require knowledge of the construction and properties of the asymptotic
solutions of the complex Monge-Ampère boundary value problem (1.13).
In this subsection, we summarize these. In particular, we present the
method of proving Proposition 3.2. After reviewing in the part (A)
Graham’s construction of his asymptotic solutions as in Theorem 1.3,
we consider in the part (B) its expansion with respect to Moser’s normal
form coefficients A = (A`

αβ
). We are then required to write down the

linearization with respect to A, and this is done finally in the part (C).
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(A) Construction of the asymptotic solution. We first recall
Fefferman’s construction [F2] of his defining functions rF of M ⊂ ∂Ω,
which are locally defined smooth approximate solutions of (1.13). Start-
ing from an arbitrary smooth defining function ρ of M , we define rs for
s = 1, . . . , n + 1 successively by

(3.4) r1 = J [ρ]−1/(n+1) ρ, rs =
(
1 + c−1

s (1− J [rs−1])
)
rs−1,

where cs = s(n+2−s). Then rs are smooth defining functions satisfying

(3.5)s J [rs] = 1 + Os(ρ) (s = 1, . . . , n + 1),

and thus we may set rF = rn+1. In fact, (3.5)1 holds, since J [φρ] =
φn+1J [ρ] + O1(ρ) whenever φ is smooth. Furthermore, (3.5)s implies
(3.5)s+1 for 1 ≤ s ≤ n, since

(3.6) J [r + φ rs+1] = J [r] + cs+1φ rs + Os+1(ρ) (s = 1, . . . , n + 1)

whenever r is a smooth defining function of M satisfying J [r] = 1 +
Os(ρ). Note that cn+2 = 0 and thus rn+2 cannot be defined by (3.4).
Instead, the above equality (3.6) for s = n + 1 yields the uniqueness of
rF modulo On+2(ρ).

We next recall Graham’s construction [G2] of his asymptotic solu-
tions uG of (1.13), which are formal series of the form

r + r

∞∑

k=0

ηk · (rn+1 log r)k with r = rF,

where ηk are functions of (z, z) smooth up to M . Starting from a
Fefferman’s defining function r = rF with the initial defining function ρ
arbitrarily chosen, we set un+1 = r and define us for s ≥ n + 2 succes-
sively in such a way that each us is a formal series as above (in fact, we
can choose us to be a finite sum) and satisfies

(3.7)s J [us] = 1 + Os−0(r) (s ≥ n + 2),

where Os−0(r) stands for an error term of the form rs
∑∞

k=0 ηk · (log r)k.
Obviously, (3.7)n+1 follows from (3.5)n+1. For the ambient metric g =
(gjk) with potential r#, we define an approximate Laplacian by

∆[g] =
n∑

j,k=0

gjk ∂2

∂zj∂zk
, where

(
gjk

)
= (gjk)−1.
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Using this, we define a linear differential operator L = L[r] by

L[r]f = ∆[g]
(|z0|2f

)∣∣
z0=1

.

It follows that if us satisfies (3.7)s then

J [us + φs+1 rs+1] = J [us] + L(φs+1 rs+1) + Os+1−0(r),

where φs+1 is a formal series of the form
∑∞

k=0 ηk ·(log r)k. Thus (3.7)s+1

is satisfied by us+1 = us + φs+1 rs+1 if φs+1 is subject to

(3.8)s L(φs+1 rs+1) = 1− J [us] + Os+1−0(r) (s ≥ n + 1),

which is regarded as a linearized equation of J [u] = 1. If (3.8)s is solved
for all s, then an asymptotic solution uG is given by the formal limit of
us as s →∞.

To solve (3.8)s for s ≥ n+1, we use the coordinate system (z′, z′, r, v)
and try to determine successively the coefficients of the expansion

φs+1 rs+1 =
∑

j≥s

∑

k≥0

cj,k[φs+1] rj(log r)k,

where cj,k[φs+1] are smooth functions of (z′, z′, v). Setting

L = I + E with I = ∂r (r∂r − n− 2),

we see that E is a tangential operator in the sense that it does not contain
differentiation with respect to r. Consequently, if we write (3.8)s as

(3.9)s I(φs+1 rs+1) = 1− J [us] + Os+1−0(r) (s ≥ n + 1),

then the right side belongs to Os−0(r). Dropping the error term
Os+1−0(r) in (3.9)s and regarding the result as an ordinary differen-
tial equation of the form If = g, we can determine all the coeffi-
cients cj,k[φs+1] uniquely provided cn+2,0[φn+2] is prescribed, a condi-
tion which exactly corresponds to the ambiguity of uG. Therefore, uG

is obtained as desired.

(B) Dependence of the asymptotic solution on the normal
form coefficients. For a surface in Moser’s normal form N(A), let us
use the real coordinate system (z′, z′, ρA, v). If we consider the Taylor
expansions with respect to this coordinate system, then

(#) the Taylor coefficients of rF modulo On+2(ρA) and those of ηG
k

modulo On+1(ρA) are polynomials in A.
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This can be seen as follows. Starting from the defining function ρ = ρA,
we construct r = rF and uG with cn+2[φn+1] = 0 by the algorithm given
in the part (A) above. Then (#) holds without error terms, and thus
we may write rF = rF

A and uG = uG
A. The statement (#) for general rF

and uG follows from (1F) and (1G) in Subsection 1.3.
To prove Proposition 3.2, we need to know the explicit dependence

of rF
A and uG

A on A. We thus expand uG
A in powers of A as follows (the

expansion of rF
A in powers of A will be discussed in the part (C) below):

(3.10) uG
A =

∞∑
s=0

ψs with ψs =
∑

j≥1

∑

k≥0

ηj,k[ψs] ρ
j
A(log ρA)k,

where ηj,k[ψs] = ηj,k[ψs](z′, z′, v;A) are homogeneous polynomials of
degree s in A such that the coefficients are polynomials in (z′, z′, v).
Regarding (3.10) as an asymptotic series in powers of A, we have:

Proposition 3.4. There exists a unique asymptotic series uG
A of

the form (3.10) such that J [uG
A] = 1 and ηn+2,0 :=

∑∞
s=0 ηn+2,0[ψs] = 0.

Proposition 3.4 is proved by constructing uG
A,s :=

∑
m≤s ψm for

s ∈ N0, and the algorithm is actually used in the proof of Proposition
3.2 (cf. [HKN2]). The construction is similar to that of us in the part
(A) above, and done as follows. First, uG

A,0 = ψ0 = ρA follows from the
condition ηn+2,0[ψ0] = 0. For s > 0, we have by induction on s that

J [uG
A] = J [uG

A,s−1] + L[ρA] ψs + Os+1(A),

where Os+1(A) stands for a term which does not contain polynomials
of degree ≤ s in A. (Here, ρA is regarded as an independent variable,
and the dependence of ρA on A is not taken into account.) The above
equality is written as a linear equation for ψs (cf. (3.8)s in the part (A)):

L[ρA]ψs = 1− J [uG
A,s−1] + Os+1(A).

Therefore, ψs and thus uG
A,s are determined inductively by solving this

equation under the condition ηn+2,0[ψs] = 0.

(C) First variation of the Monge-Ampère equation. Let us
next consider the dependence of rF

A on A ∈ N . To prove Proposition 3.3
in the previous subsection, we need to know rF

A modulo O2(A) explicitly.
Less precise information is required also in the proof of Theorem 2.1 (see
Section 5 below). We thus consider rF

εA for a real parameter ε, and seek
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an approximate boundary value problem which characterizes the first
variation r̃F

A = (d/dε)rF
εA

∣∣
ε=0

.
We begin with a heuristic argument for an exact asymptotic solution

uG
A in place of a smooth approximate one rF

A, disregarding the difficulty
due to the ambiguity of Fefferman’s defining functions. Supposing as if
uG

εA were smoothly depending on ε ∈ R small and had no singularity
even on the boundary, we set ũG

A = (d/dε)uG
εA

∣∣
ε=0

. Then, a relation
characterizing ũG

A is obtained by taking the first variation of the formal
boundary value problem

(3.11) J [uG
εA] = 1 in Ωε, uG

εA = 0 on ∂Ωε = N(εA),

where Ωε is a pseudoconvex side of N(εA). The first equality yields

(3.12) L[ρ0] ũG
A = 0 in Ω0.

The second equality of (3.11) is written as uG
εA(z′, z′, u, v) = 0 evaluated

at u = (|z′|2+εFA(z′, z′, v))/2. Differentiating both sides of this equality
with respect to ε and evaluating the result at ε = 0, we have

ũG
A(z′, z′, |z′|2/2, v) = − 1

2
∂uG

0

∂u
(z′, z′, |z′|2/2, v)FA(z′, z′, v).

Recalling that uG
0 = ρ0 = 2u− |z′|2, we get

(3.13) ũG
A = −FA on ∂Ω0 = N(0) = {ρ0 = 0}.

The function ũG
A is obtained by solving the linear equation (3.12) under

the boundary condition (3.13).
Returning to the original problem of expressing the first variation

of rF
A, we have:

Proposition 3.5. The first variation r̃F
A = (d/dε)rF

εA

∣∣
ε=0

exists
and satisfies the approximate boundary value problem

(3.14) L[ρ0] r̃F
A = On+1(ρ0) in Ω0, r̃F

A = −FA on ∂Ω0 = N(0).

The problem (3.14) has a formal power series solution which is unique
modulo On+2(ρ0).

The proof of the latter part of Proposition 3.5 above is done similarly
to that of Proposition 3.4.
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To give an explicit representation of r̃F
A, it is convenient to lift the

problem (3.14) to C∗ × Ω0. Setting (ρ0)# = |z0|2ρ0, (FA)# = |z0|2FA

and (r̃F
A)# = |z0|2r̃F

A, we write (3.14) as

(3.15) ∆0(r̃F
A)# = On+1 ((ρ0)#) , (r̃F

A)# = −(FA)# + O1 ((ρ0)#) ,

where ∆0 = ∆[g0], which is the (negative) Laplacian with respect to the
ambient metric g0 with potential (ρ0)#. Solutions of (3.15) are given by

(3.16) (r̃F
A)# = −(FA)# −

n+1∑
s=1

(−ρ0)s
#∆s

0(FA)#
c1 · · · cs

mod On+2 ((ρ0)#) ,

where cs = s(n + 2− s), which are the same constants as those in (3.4).
To see that the right side of (3.16) gives a solution of (3.15), we use the
projective coordinates z0 = ζ0, zj = ζj/ζ0 (j = 1, . . . , n). Then

(ρ0)# = ζ0 ζn + ζn ζ0 −
n−1∑

j=1

|ζj |2 and g0 =




0 0 1
0 −In−1 0
1 0 0


 ,

where In−1 is the identity matrix. Noting that (g0)−1 = g0, we have

∆0 =
∂2

∂ζ0 ∂ζn

+
∂2

∂ζn ∂ζ0

−
n−1∑

j=1

∂2

∂ζj ∂ζj

.

This expression permits us to compute the commutator

[∆0, (ρ0)s
#] = s (ρ0)s−1

# (Z + Z + n + s),

where Z =
∑n

j=0 ζj ∂/∂ζj . Consequently,

∆0

(
(ρ0)s

#∆s
0(FA)#

)
= (ρ0)s

#∆s+1
0 (FA)# + cs(ρ0)s−1

# ∆s
0(FA)#.

Therefore, (r̃F
A)# in (3.16) satisfies (3.15).

Remark 3.3. In proving Lemma 3.2 stated in the previous sub-
section, Graham [G2] uses essentially the same expression for r̃F

A as that
for (r̃F

A)# given by (3.16).

§4 Microlocal calculus of the Bergman kernel

4.1 Outline

Proposition 3.1 is proved by using a method of Boutet de Monvel
[B1]–[B3] of computing explicitly the singularity of the Bergman kernel.
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In this section, we briefly explain his method which remains valid in the
n dimensional case (cf. Theorem 4.2 below). To get an alternative proof
of Theorem 1.2, Boutet de Monvel and Sjöstrand constructed in [BS] a
Fourier integral operator AFIO with complex phase, which transforms
the Bergman kernel of a strictly pseudoconvex domain Ω ⊂ Cn to that
of a model domain Ω0 (cf. Example in Subsection 1.2). It might be
difficult to derive information we need from AFIO. It would seem, for a
general strictly pseudoconvex domain Ω, that there is no known system
of differential equations which characterizes the Bergman kernel, and
that this is a reason why the computation of the Bergman kernel was
not so easy.

Kashiwara discovered in [Kas] a system of microdifferential equa-
tions (i.e. pseudodifferential equations in the real analytic category or
its complexification) which characterizes the Bergman kernel KB(z, z)
up to a multiplicative constant. This system arises as the formal adjoint
of a system which characterizes the singularity of the Heaviside function
of the domain Ω (i.e. the characteristic function of Ω or its complexi-
fication) up to a multiplicative constant (cf. Theorem 4.1 below). The
Heaviside function of the model domain Ω0 is transformed to that of Ω
by a shift (or translation) operator Ashift(z, ∂z), and consequently, the
operator AB(z, ∂z) which transforms the Bergman kernel of Ω0 to that
of Ω is given by

(4.1) AB = A∗−1 =
∞∑

j=0

(1−A∗)j for A = Ashift,

where A∗ = A∗(z, ∂z) is the formal adjoint of the shift operator A =
A(z, ∂z). This formula, due to Boutet de Monvel, remains valid formally
in the C∞ category.

The operator AB is much simpler than the Fourier integral operator
AFIO, because the shift operator Ashift is completely explicit. However,
we have to be careful with two points. We are now in a complexified
world, so that z and z are independent variables. A point in (4.1) is
that Ashift = Ashift(z, ∂z) is realized as a holomorphic operator, and it
is convenient to regard Ashift as a (formal) microdifferential operator of
infinite order. For such operators, usual definitions of the composition,
the formal adjoint and the asymptotic expansion should be modified.
Another point in (4.1) is that AB acts on functions on Ω0, while A∗

with A = Ashift acts on functions on Ω. Though we only consider as
operands special types of functions related to the asymptotic expansion
of the Bergman kernel as in the part (B) of Subsection 3.2, we need to
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expand these functions in powers of A. Then the singularity on N(A)
loses its role in the asymptotic expansions of operators and operands.
We thus need to introduce the notion of weight for formal operators and
operands. The formal setting in this sense is necessary even under the
assumption that the boundary is real analytic.

The proof of Proposition 3.1 is done by computing explicitly the
necessary terms in the right side of (4.1). In the remaining part of this
section, we describe briefly the justification of (4.1) and its application
to the proof of Proposition 3.1, after a quick overview of the theory of
hyperfunctions.

4.2 Quick review of hyperfunction theory

For a mild function f on R, say, in the Schwartz class, let us consider
the Cauchy integrals

F±(z) :=
1

2πi

∫

R

f(t)
t− z

dt for z ∈ C±,

where C± = {z ∈ C; ±Im z > 0}. According to the Plemelj formula,
the boundary values f±(x) = F±(x ± i 0) for x ∈ R exist and satisfy
2 f± = ±f+iH[f ], whereH is the Hilbert transformation. In particular,

(4.2) f+ − f− = f in R.

More generally, for a Schwartz distribution f ∈ D′(R), there exist
F± ∈ O(C±) such that the boundary values f± on R exist in D′(R)
and satisfy (4.2). Consequently, f is realized by the pair F = (F+, F−)
regarded as a holomorphic function in a disconnected open set C+∪C−.
We identify F1, F2 ∈ O(C+∪C−) if F1−F2 extends holomorphically to
C, and denote the quotient space by B(R). Thus D′(R) ⊂ B(R). Ele-
ments of B(R) are called hyperfunctions on R. For F ∈ O(C+ ∪C−),
we regard (4.2) as a formal expression and write f ∈ B(R). Differentia-
tion of f ∈ B(R) is then defined by that of F ∈ O(C+ ∪C−), and the
definition is compatible with that on D′(R).

The space B(X) of hyperfunctions on an arbitrary open set X ⊂ R
is defined similarly by taking an open set U ⊂ C such that X ⊂ U
is relatively closed. Each element f ∈ B(X) is realized by a function
F ∈ O(U \X), and two functions F1, F2 ∈ O(U \X) are identified when
F1−F2 extends holomorphically to U . The space B(X) is independent of
the choice of U . Multiplication of f ∈ B(X) by a real analytic function g
on X is then defined by that on F ∈ O(U \X) by the complex extension
of g to a suitable U , and the definition is again compatible with that on
D′(R). It is remarkable that the restriction mapping B(R) → B(X) is
surjective.
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Example. The Heaviside function Y ∈ D′(R) is realized by a func-
tion F ∈ O(C \ [0,∞)) satisfying f+(x) = (−1/2πi) log x for x > 0.
Thus, the Delta measure δ ∈ D′(R) is realized by the function −1/2πiz.
More generally, a class of distributions on an open set X ⊂ R containing
the origin is given by holomorphic functions on U \X, with U as above,
of the form

ϕ(z)
z`

+ ψ(z) log z with ` ∈ N0 and ϕ,ψ ∈ O(U).

For f ∈ B(X), its support supp f is defined by the complement of the
largest open subset of X on which f = 0. For a compact set K ⊂ X, we
denote by BK(X) the totality of f ∈ B(X) such that supp f ⊂ K. Then
BK(X) is identified with the dual of the space Cω(K) of real analytic
functions near K. Thus, elements of BK(X) are regarded as analytic
functionals. Each element f ∈ B(X) is expressed as a locally finite sum
f =

∑
fj such that supp fj ⊂ X are compact. This gives an alternative

definition of B(X), which remains valid in the higher dimensional case.
For a Schwartz distribution f on an open set X ⊂ Rn, there exist

open convex cones Γj ⊂ Rn with vertices at the origin and functions
Fj ∈ O(X + i Γj) for j = 1, . . . , N such that

(4.3) f(x) =
N∑

j=1

Fj(x + i Γj0) for x ∈ X,

where Fj(x + i Γj0) denote the limits of Fj(x + i y) as y → 0 with
y ∈ Γj . Similarly for f ∈ B(X), and this property can be used as a
definition of B(X), in which an arbitrary list of holomorphic functions
(F1, . . . , FN ) is considered. Let WFA(f) denote the analytic wave front
set of f ∈ D′(X). Then for (x0, y) ∈ T ∗X \0, we have (x0, y) /∈ WFA(f)
if and only if there exists a representation of f of the form (4.3) for x
near x0 such that y /∈ ⋃

Γ◦j , where Γ◦j denote the (open) dual cones of
Γj . The microanalyticity of f ∈ B(X) is defined by this condition, and
the singular spectrum of f is defined by S.S. f = {(x, y) ∈ T ∗X \ 0; f /∈
A(x,y)}, where A(x,y) denotes the set of germs of hyperfunctions which
are microanalytic in the direction (x, y). Thus S.S. f = WFA(f) for
f ∈ D′(X).

A microlocal singularity (in the analytic category) of a hyperfunction
is called a microfunction. That is, for f ∈ B(X), a microfunction at
(x, y) ∈ T ∗X \ 0 is defined by f modulo A(x,y). The equivalence class is
denoted by [f ], and the totality of such equivalence classes is denoted by
C(x,y). Given a microfunction [f ] ∈ C(x,y), there exists F ∈ O(X + i Γ)
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with an open convex cone Γ such that y ∈ Γ◦ and that f(x)−F (x+i Γ0)
is microanalytic in the direction (x, y). Thus [f ] is identified with the
equivalence class [F ] of F (x + i Γ0).

Differentiation of a microfunction [f ] ∈ C(x,y) is defined by using a
holomorphic function F such that f(x) − F (x + i Γ0) is microanalytic,
and similarly for multiplication by a real analytic function. These define
the action of linear differential operators with analytic coefficients on
microfunctions. It is also possible to define indefinite integration of [f ]
with respect to a variable, say ∂−1

x1
at (x, y) with y1 6= 0. The analogue

of pseudodifferential operator in analytic category, acting on microfunc-
tion, is called microdifferential operator. The symbol of a microdiffer-
ential operator of order m is a formal series P (z, ξ) =

∑m
j=−∞ pj(z, ξ)

of holomorphic functions on a conic open set Ω ⊂ T ∗Cn \ 0 such that
each pj is homogeneous of degree j in ξ and satisfies

(4.4) |pj(z, ξ)| ≤ C−j
K (−j)! for j < 0

on each compact set K ⊂ Ω, where CK > 0 is a constant. Near a point
(x, y) ∈ Ω ∩ T ∗Rn with yn 6= 0, each pj(z, ξ) admits an expansion

pj(z, ξ) =
j∑

k=−∞

∑

|α|=j−k

akα(z)ξ′αξk
n.

Thus replacing ξ by ∂z we may define P (z, ∂z)F (z) as a convergent
series for each holomorphic function F (z) on a wedge X + iΓ such that
X + iΓ◦ ⊂ Ω. In this action the ambiguity of the indefinite integral ∂−1

zn

causes only a difference by a function that extends holomorphically to
z = x. Thus the action of P (z, ∂z) to [F (x+iΓ0)] ∈ C(x,y) can be defined
by the modulo class of P (z, ∂z)F (z).

Remark 4.1. A microdifferential operator of infinite order P (z, ∂z)
is also defined by giving the symbol

P (z, ξ) =
∞∑

j=−∞
pj(z, ξ) (pj ∈ O(Ω)),

where each pj is homogeneous of degree j in ξ. In addition to (4.4), it
is required that

|pj(z, ξ)| ≤ CK,ε εj/j! (j ∈ N0, ε > 0),

where CK,ε > 0 is a constant. Thus P (z, ∂z) is a local operator. In
Subsection 4.4 below, we shall be concerned with a shift operator A =
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A(z, ∂z). Though A is not a local operator, we regard it as a formal
microdifferential operator of infinite order.

A far more precise description of the matters in this subsection is
found in a book by Kaneko [Kan].

4.3 Kashiwara’s characterization of the Bergman kernel

Let Ω ⊂ Cn be a strictly pseudoconvex domain with a local defin-
ing function ρ which is positive in Ω and real analytic near a point
p ∈ ∂Ω, and let M ⊂ ∂Ω be a small neighborhood of p. Setting X = Cn

and denoting by X ′ the complex conjugate of X, we regard X ×X ′ as
the complexification of X identified with R2n. Then ρ extends holo-
morphically to a neighborhood U ⊂ X × X ′ of M , and the complex-
ification of M is given by N = {ρ(z, z) = 0} ⊂ U . We also have
Ω = {ρ(z, z) > 0} ⊂ X ×X ′ and Ω× Ω′ ⊂ {Re ρ(z, z) > 0} near M .

The Bergman kernel KB = ϕBρ−n−1 +ψB log ρ near M has a multi-
valued holomorphic extension to U \N (cf. Remark 1.3). Thus, setting

U± = {(z, z) ∈ U ; ±Im ρ(z, z) > 0},
we have KB ∈ O(U+). Another multi-valued function on U \ N is
defined by Y (ρ) = −(1/2πi) log ρ, and we have Y (ρ) ∈ O(U+ ∪ U−)
which represents the characteristic function of Ω near M . Let us regard
KB and Y (ρ) as elements of O(U+). Then these define hyperfunctions
with the same singular spectrum

T ∗MX = {(x, λ dρ(x)) ∈ T ∗X; x ∈ M, 0 6= λ ∈ R},
the conormal bundle of M . Similarly for multi-valued functions on U \N
of the form

(4.5) K =
m∑

`=1

ϕ` ρ−` + ψ log ρ with ϕ`, ψ ∈ O(U), m ∈ N.

For (x, y) = (x, dρ(x)) ∈ T ∗MX, elements [K] ∈ C(x,y) defined by K of
the form (4.5) are called holomorphic microfunctions, and the totality of
these is denoted by (CN |X×X′)(x,y). In what follows, we omit the bracket
in [K] and regard K as a holomorphic microfunction.

Action of microdifferential operators on C(x,y) preserves the subspace
(CN |X×X′)(x,y). Let K ∈ (CN |X×X′)(x,y) such that ϕ 6= 0 in (4.5). Then,
for a microdifferential operator of the form P (z, ∂z), there exists a unique
microdifferential operator of the form Q(z, ∂z) such that

(4.6) P (z, ∂z)K = Q(z, ∂z)K.
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Such an operator P is generated by zj and ∂/∂zj for j = 1, . . . , n. Using
these generators, we get a system of equations of the form (4.6), and this
system characterizes K in (CN |X×X)(x,y) up to a constant multiple. For
a general theory including these facts, see Sato-Kawai-Kashiwara [SKK]
and Schapira [Sca].

A system characterizing the Bergman kernel can be written down
explicitly. The following theorem is due to Kashiwara [Kas].

Theorem 4.1 ([Kas]). The Bergman kernel KB satisfies

(4.7) P ∗(z, ∂z) KB = Q∗(z, ∂z)KB,

whenever P (z, ∂z)Y (ρ) = Q(z, ∂z) Y (ρ) with Y (ρ) = (−1/2πi) log ρ,
where P ∗ = P ∗(z, ∂z) and Q∗ = Q∗(z, ∂z) are the formal adjoints of P
and Q, respectively.

In the next subsection, we shall give a procedure of constructing the
solution to this system of equation by using Moser’s normal coordinates.

4.4 A formula of Boutet de Monvel

In the previous subsection, we fixed a domain and considered micro-
differential operators of finite order. To study the shift operator A
mentioned in Subsection 4.1, we need to define formal microdifferential
operators of infinite order. These operators act on holomorphic micro-
functions of infinite order defined by setting m = ∞ in (4.5).

It is non-trivial to define such operators, via the symbols, carrying
the operations of taking composition, formal adjoint and inverse. We
need to introduce the notion of weight for the variable z = (z1, . . . , zn)
by setting

w(zj) = −1/2 (j = 1, . . . , n− 1), w(zn) = −1,

and extend it to ∂z and the dual variable ξ = (ξ1, . . . , ξn) of z by

w(∂/∂zj) = w(ξj) = −w(zj) (j = 1, . . . , n).

(We do not consider the notion of weight for polynomials in A ∈ N in this
subsection.) Then we may say polynomials Pw/2 = Pw/2(z, ξ, ξ−1

n ) to be
of homogeneous weight w/2. By a formal sum of such polynomials Pw/2

with respect to w ∈ Z bounded above, we define the (total) symbol of
a formal microdifferential operator of infinite order. In other words, we
regard the symbol as an asymptotic series of decreasing weight. For these
operators, operations of taking the composition, the formal adjoint and
the inverse are defined, as usual, by using weight in place of order. These
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operations are compatible with those for microdifferential operators of
finite order.

We next define holomorphic microfunctions of infinite order. Again,
it is necessary to introduce the notion of weight for holomorphic micro-
functions with support N(0) = {ρ0 = 0} ⊂ X ×X by setting

w(zj) = w(zj), w(log ρ0) = 0, w(ρ−`
0 ) = `.

We consider asymptotic series of decreasing weight:

(4.8) K =
m∑

j=−∞
Kj/2 with w(K2/j) = 2/j,

where Kj/2 ∈ (CN(0)|X×X)(0,dz0). Then we can define an action of formal

operators of infinite order P (z, ∂z) =
∑m′

j=−∞ Pj/2(z, ∂z) to K of the
form (4.8) by setting

P (z, ∂z)K =
m+m′∑

j=−∞
K ′

j/2 with K ′
j/2 =

∑

k+`=j

Pk/2(z, ∂z)K`/2.

We refer to a series of the form (4.8) as a holomorphic microfunction of
infinite order.

Let us restrict ourselves to real analytic surfaces in Moser’s normal
form N(A) (A ∈ N ). To define the shift operator A by giving its symbol,
we need the following:

Lemma 4.1 ([B1]). There exists a unique complex-valued defining
function of N(A) of the form ρBM

B (z, z) = ρ0(z, z) − HB(z, z′), where
HB(z, z′) are convergent power series of the form

HB(z, z′) =
∑

|α|, |β|≥2

Bαβ (zn) z′α z′β , Bαβ (zn) =
∞∑

`=0

B`
αβ

z`
n.

The coefficients B = (B`
αβ

) are polynomials in A = (A`
αβ

), and the trace

conditions (1.3) are valid for Bαβ (zn) in place of Aαβ (v).

With the defining function ρBM
B in Lemma 4.1, any holomorphic

microfunction with support N(A) is written as

(4.9) ϕρ−m + ψ log ρ with ρ = ρBM
B .
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Let us expand (4.9) by using

(
ρBM

B

)−m
= ρ−m

0

(
1− HB

ρ0

)−m

=
∞∑

`=0

(
m

`

)
(−HB)`ρ−m−`

0 ,

log ρBM
B = log ρ0 + log

(
1− HB

ρ0

)
= log ρ0 −

∞∑

`=1

1
`

(
HB

ρ0

)`

.

The right sides are asymptotic series of decreasing weight, since HB

consists of terms of weight ≤ −2. Consequently, we obtain an expression
of (4.9) as a formal sum of holomorphic microfunctions with support
N(0). The asymptotic series thus obtained uniquely determines the
original holomorphic microfunction (4.9). We thus identify (4.9) with
its asymptotic expansion of the form (4.8).

Lemma 4.2 ([B1]). Let A(z, ∂z) be a formal microdifferential op-
erator of infinite order defined by the symbol

A(z, ξ) = exp[−HB(z,−ξ′/ξn) ξn] with ξ = (ξ′, ξn).

Then
Y (ρBM

B ) = AY (ρ0).

Lemma 4.2 is proved by direct computation using the relations

(∂/∂zj) (∂/∂zn)−1 log ρ0 = zj log ρ0 (j = 1, . . . , n− 1).

Changing the notation slightly, we denote by KB
A the Bergman kernel

associated with the domain bounded by N(A). The singularity of its
complex extension is again denoted by KB

A = KB
A(z, z). Regarding it

as a holomorphic microfunction, we can state the following theorem of
Boutet de Monvel [B1], which is used in the proof of Proposition 3.1.

Theorem 4.2 ([B1]). Let A(z, ∂z) be as in Lemma 4.2. Then the
formal adjoint A∗ is invertible as a formal microdifferential operator of
infinite order, and the following equality holds:

(4.10) KB
A = A∗−1KB

0 .

The invertibility of A∗ is a consequence of the fact that the symbol
expansion of 1 − A∗ consists of terms of negative weight. In fact, the
inverse A∗−1 is given by (4.1), because the right side of (4.1) makes sense
as an asymptotic series of decreasing weight. The formula (4.10) follows
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from Theorem 4.1, since K = A∗−1KB
0 satisfies the microdifferential

equation P ∗K = Q∗K whenever P = P (z, ∂z) and Q = Q(z, ∂z) satisfy

(4.11) PY (ρBM
B ) = QY (ρBM

B ).

In fact, by virtue of Lemma 4.2 and the commutation relation

Q(z, ∂z) ◦A(z, ∂z) = A(z, ∂z) ◦Q(z, ∂z),

it follows from (4.11) that

(4.12) A−1 ◦ P ◦AY (ρ0) = QY (ρ0).

Then Theorem 4.1 yields A∗ ◦ P ∗ ◦A∗−1KB
0 = Q∗KB

0 , so that P ∗K =
Q∗K. A point is that A−1 ◦ P ◦A is an operator of finite order. This
fact automatically follows from the relation (4.12).

Let us next sketch the proof of Proposition 3.1 by using the formula
(4.10) in Theorem 4.2. We consider the expansion of ψ̃B along the half-
line pt = (0, t/2) ∈ C2 (t > 0):

ψ̃B(pt) = F3(A) + F4(A) t + F5(A) t2 + · · · .

Then each Fj depends only on the terms in A∗−1 of the form

(4.13) Fjk(A) zk
2 (∂/∂z2)

k−j (k = 0, 1, . . . , j − 3).

In addition, if we write A∗−1 = 1+
∑−1

j=−∞Qj/2 the expansion of A∗−1

of decreasing weight, then Fj is determined by Q−j . On the other hand,
if we set A = 1 +

∑−1
j=−∞ Pj/2, then the trace conditions (1.3) for HB

yield Pj/2 = 0 for j ≥ −4, and thus A = 1 +
∑−5

j=−∞ Pj/2. Using these
facts, we can show that Q−3, Q−4 and Q−5 are written as

Q−3 = −P ∗−3, Q−4 = −P ∗−4 + P ∗−2 ◦ P ∗−2

Q−5 = −P ∗−5 + P ∗−5/2 ◦ P ∗−5/2 + P ∗−2 ◦ P ∗−3 + P ∗−3 ◦ P ∗−2.

The identification of Fj(A) given in Proposition 3.1 is done by computing
explicitly the terms of the form (4.13) in each Q−j .

§5 Parabolic invariant theory

In this section, we outline the proof of Theorem 2.1. This amounts
to reviewing the invariant theory of Fefferman [F3] supplemented by
Bailey-Eastwood-Graham [BEG].
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5.1 H#-invariants of the curvature

Recall that CR invariants are H-invariants of A ∈ N (cf. (1.5)).
To compare the boundary values of Weyl invariants with CR invariants,
it is convenient to represent linear fractional transformations h ∈ H by
matrices h# with respect to the projective coordinates ζ = (ζ0, . . . , ζn)
used in Subsection 3.2, (C). Let H# denote the (parabolic) subgroup of
SU(g0) given by

H# = {h# ∈ SU(g0); h#e0 = λe0 with some λ ∈ C∗},

where e0 = t(1, 0, . . . , 0) ∈ Cn+1. Then each element h# ∈ H# defines

h ∈ H such that λ =
(
deth′(0)

)−1/(n+1). An H#-action on N is given
by h#.A = h.A, and the definition of CR invariants (1.5) is written as

P (h#.A) = |λ|2wP (A) for h# ∈ H#, A ∈ N .

To regard the boundary values of Weyl invariants as H#-invariants,
we need to define H#-invariants of the curvature R of the ambient metric
by using the H#-action on A ∈ N . We first identify R with its Taylor
expansion about e0 with respect to the coordinates ζ = (ζ0, . . . , ζn).
That is, given a domain with boundary in Moser’s normal form N(A),
we write R = (Rαβ)|α|,|β|≥2 for the components

Rαβ = Rα1β1α2β2;α3···αpβ3···βq

of the covariant derivatives of the curvature R evaluated at e0, where α =
α1 · · ·αp and β = β1 · · ·βq are lists of holomorphic indices 0, 1, . . . , n.
We now introduce the notion of weight for the components Rαβ , as a
generalization of that for Weyl invariants, by setting

w(Rαβ) = w(αβ) =
‖αβ‖

2
− 1 with ‖αβ‖ =

p∑

j=1

‖αj‖+
q∑

j=1

‖βj‖,

where ‖0‖ = 0, ‖j‖ = 1 for j = 1, . . . , n− 1 and ‖n‖ = 2.
Let us next restrict ourselves to the components Rαβ of weight ≤ n.

We then see, as in the proof of Proposition 2.1, that Rαβ is a polynomial
in A, so that we may write Rαβ as Rαβ(A). Furthermore,

(5.1)1 Rαβ(A) is a polynomial in A of homogeneous weight w(αβ),

(5.1)2 Rαβ(A) = 0 (−1 ≤ w(αβ) < 1).
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These are seen as follows. Given h# = (hi
j) ∈ H#, we consider the

curvature corresponding to h#.A ∈ N . Then the components of weight
≤ n and of type (p, q) are transformed by

(5.2) Rαβ(h#.A) = λp−1 λq−1
∑

|α′|=p,|β′|=q

hα
α′hβ

β′ Rα′β′(A)

with λ ∈ C defined by h#e0 = λ e0, where hα
α′ = hα1

α′1 · · ·hαp

α′p and
hβ

β′ = hβ1
β′1 · · ·hβq

β′q . The transformation law is thus weighted by the
factor λp−1λq−1. If in particular h# corresponds to a dilation φr, then
Rαβ(h#.A) = r−2w(αβ)Rαβ(A). Thus (5.1)1 is obtained. The proof
of (5.1)2 is simple. Since components of A ∈ N satisfy w(A`

αβ
) ≥ 1,

it follows that each Rαβ(A) with w(αβ) < 1 is a constant, which is 0
because Rαβ(0) = 0.

Regarding Rαβ ∈ C = R + iR with |α|, |β| ≥ 2 as independent
variables, we denote byRaux the totality of the points R = (Rαβ)|α|,|β|≥2

satisfying

(5.3) Rαβ = 0 (−1 ≤ w(αβ) < 1).

Thus Raux is a countable dimensional real vector space. Truncating
components of R = (Rαβ) ∈ Raux by w(αβ) ≤ n, we obtain an infinite
dimensional vector space Raux

n as the quotient space of Raux. This space
Raux

n admits an H#-action

H# ×Raux
n 3 (h#, Rn) 7→ h#.Rn ∈ Raux

n

given by the right side of (5.2) with Rα′β′ in place of Rα′β′(A). In fact,
since hi

j = 0 for ‖i‖ < ‖j‖, it follows that the H#-action on Raux
n above

is well-defined.
Returning to the components of the curvature R = (Rαβ)|α|,|β|≥2,

we write Rn(A) = (Rαβ(A))w(αβ)≤n and denote by Rn the image of
the map N 3 A 7→ Rn(A) ∈ Raux

n . It then follows from (5.2) and the
definition of the H#-action on Raux

n that

h#.(Rn(A)) = Rn(h#.A) ∈ Raux
n .

That is, the map A 7→ Rn(A) is H#-equivariant and Rn is an H#-
invariant subset of Raux

n . In what follows, we sometimes abbreviate the
variable Rn ∈ Raux

n by writing R.
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Definition. A polynomial P = P (R) in R ∈ Raux
n is called an

H#-invariant of Rn of weight w ≤ n if

P (h#.R) = |λ|2wP (R) for any (h#, R) ∈ H# ×Rn.

Two H#-invariants are identified if these are identical as functions on
Rn. The totality of H#-invariants of Rn is denoted by Iw(Rn).

For R ∈ Raux, let us consider complete contractions

(5.4) W (R) = contr
(
R(p1,q1) ⊗ · · · ⊗R(ps,qs)

)

of the tensors R(p,q) = (Rαβ)|α|=p,|β|=q with respect to the flat metric
g0. Then W (R) is a polynomial in R ∈ Raux of homogeneous weight. If
w(W (R)) ≤ n, then W (R) depends only on R ∈ Raux

n because of (5.3),
and thus W (R) gives an H#-invariant of Rn. We define Weyl invariants
of Rn as linear combinations of the complete contractions of the form
(5.4) which are of homogeneous weight ≤ n. Denoting by IW

w (Rn) the
totality of Weyl invariants of weight w, we have IW

w (Rn) ⊂ Iw(Rn) for
w ≤ n.

The surjection N 3 A 7→ R(A) ∈ Rn induces a map

(5.5) Iw(Rn) 3 P (R) 7→ P (R(A)) ∈ ICR
w (w ≤ n).

Therefore, Theorem 2.1 follows from:

Theorem 2.1′. (I) The map (5.5) is surjective (and thus bijec-
tive).

(II) IW
w (Rn) = Iw(Rn) for w ≤ n.

We outline the proofs of (I) and (II) in Subsections 5.2 and 5.3,
respectively.

5.2 Bijectivity of (5.5)

The proof of the part (I) in Theorem 2.1′ is done by giving the
inverse of the map (5.5). We first note by w ≤ n that any Q(A) ∈ ICR

w

depends only on

An = (A`
αβ

)w(αβ`)≤n for A = (A`
αβ

) ∈ N ,

so that one may write Q(A) = Q(An). Let Nn denote the totality of
such An, that is, Nn = {An; A ∈ N}. Then, R(A) ∈ Rn for A ∈ N
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depends only on An ∈ Nn, and thus the map N 3 A 7→ R(A) ∈ Rn

induces a surjection

(5.6) F : Nn 3 An 7→ R(An) ∈ Rn, where R(An) = R(A).

This surjection is H#-equivariant, where the H#-action

H# ×Nn 3 (h#, An) 7→ h#.An ∈ Nn

is well-defined from the H#-action on N . We have:

Theorem 5.1. The surjection F in (5.6) is bijective and the in-
verse G = F−1 extends to a polynomial map Raux

n → Nn, in the sense
that the components are polynomials in R ∈ Raux

n . (The map G is auto-
matically H#-equivariant.)

Assuming for a while the validity of Theorem 5.1, let us first prove
the bijectivity of the map (5.5). Given Q(An) ∈ ICR

w arbitrarily, we set
P (R) = Q(G(R)) for R ∈ Rn. Then

P (F(An)) = Q(G ◦ F(An)) = Q(An),

and the H#-equivariance of G implies P (R) ∈ Iw(Rn). Conversely, given
P (R) ∈ Iw(Rn) arbitrarily, we set Q(An) = P (F(An)) for An ∈ Nn.
Then

Q(G(R)) = P (F ◦ G(R)) = P (R),

and the H#-equivariance of F implies Q(An) ∈ ICR
w . Consequently, the

pull-back by G gives the inverse map of (5.5), and thus (I) in Theorem
2.1′ is proved.

To prove Theorem 5.1, we extend the target space Rn of the map
F in (5.6) to Raux

n . That is, if we denote this new map again by F ,

(5.7) F : Nn → Raux
n (and F(Nn) = Rn) .

Now note that F is finite dimensional in the sense that Nn is a finite
dimensional vector space. Then the injectivity of F follows from the
following proposition.

Proposition 5.1. The differential F ′(0) : Nn → Raux
n of F in

(5.7) at the origin is injective. Consequently, F is an embedding and
Rn ⊂ Raux

n is a finite dimensional manifold. (We are always working
near the origin.)

To complete the proof of Theorem 5.1, it remains to show that G
extends to a polynomial map. By Proposition 5.1, we get an extension
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of G,
Raux

n 3 R 7→ A(R) = (A`
αβ

(R)) ∈ Nn,

such that each component A`
αβ

(R) is a formal power series in R of ho-

mogeneous weight w(αβ`). In addition, the series A`
αβ

(R) depends only
on a finite number of components of R and is convergent near the ori-
gin. Using (5.1)2, we can remove monomials of degree > w(αβ`) from
A`

αβ
(R) without changing the value on Rn. The resulting polynomials

give a polynomial extension of G.
We conclude this subsection by sketching the proof of Proposition

5.1. Setting Rn = F ′(0)An, we wish to show that Rn = 0 implies
An = 0. To express Rn = (Rαβ) explicitly, we take Fefferman’s defining
functions rεA of N(εA) given in Subsection 3.2, (B), and denote by r̃F

A

the first variation at ε = 0. Then

(5.8) Rαβ = ∂α
ζ ∂β

ζ
(r̃F

A)#|e0 , where (r̃F
A)#(ζ, ζ) = |z0|2r̃F

A(z, z).

Turning from ∂ζ and ∂ζ to ∂z and ∂z, we see that the assumption Rn = 0
is equivalent to

(5.9) ∂α
z ∂β

z (r̃F
A)#(0, 0) = 0 (w(αβ) ≤ n, |α|, |β| ≥ 2).

On the other hand, we have seen in Subsection 3.2, (C) that r̃F
A is

uniquely determined modulo On+2(ρ0) as a solution of the linear equa-
tion

(5.10) Lρ0(r̃
F
A)# = On+1(ρ0), r̃F

A|2u=|z′|2 = −
∑

w(αβ`)≤n

A`
αβ

z′α z′β v`.

Now An = 0 follows from (5.9) via (5.10). The proof is similar to that of
the uniqueness of Moser’s normal form, where the trace conditions (1.3)
are used crucially.

5.3 H#-invariants of Rn are Weyl invariants.

Let T0Rn denote the tangent space of Rn at the origin, and thus

T0Rn = F ′(0)T0Nn ⊂ Raux
n (T0Nn = Nn as a set).

Then the H#-action onRn induces an H#-action on T0Rn, which agrees
with that on Raux

n restricted to T0Rn. The H#-invariants of T0Rn is
defined as in the definition of those of Rn, in which Rn is literally
replaced by T0Rn. Now the proof of the part (II) in Theorem 2.1′ is
reduced to:
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Theorem 5.2. Every H#-invariant of T0Rn of weight ≤ n is a
Weyl invariant.

Assuming the validity of Theorem 5.2 above for a moment, we first
prove the statement (II). Let P (R) be an H#-invariant of Rn of weight
≤ n. We denote by p(R) the lowest degree part of P (R). Then p(R)
is an H#-invariant on T0Rn. It then follows from Theorem 5.2 that
there exists a Weyl invariant W (R) such that p(R) = W (R) on T0Rn.
Though W (R) differs p(R) from on Rn, the difference consists of terms
of higher degree. Thus we can repeat this procedure and write P (R) as
a sum of Weyl invariants. This proves (II).

The proof of Theorem 5.2 requires a defining system of equations of
T0Rn. In view of (5.8), we have

T0Rn = {(Rαβ) ∈ Raux
n ; Rαβ = ∂α

ζ ∂β

ζ
(r̃F

A)#|e0 , A ∈ Nn}.

From this expression, we obtain a defining system of T0Rn in terms of
the variables (Rαβ) ∈ Raux

n :

(5.11)1 Rαβ = Rβ′α′ (for any permutation α′ β′ of α β ),

(5.11)2 R0αβ = (1− |α|)Rαβ , Rα0β = (1− |β|)Rαβ ,

(5.11)3
n∑

j,k=0

gjk
0 Rjαkβ = R0αnβ + Rnα0β −

n−1∑

j=1

Rjαjβ = 0.

Here (gjk
0 ) = (g0)−1 = g0. The Hermitian symmetry (5.11)1 is equivalent

to the fact that (r̃F
A)# is real. The reduction rule (5.11)2 is a consequence

of the homogeneity of (r̃F
A)# in ζ and ζ. (Here we have set Rαβ = 0

if |α| ≤ 1 or |β| ≤ 1.) The relation (5.11)3 comes from ∆0(r̃F
A)# =

On+1((ρ0)#) of (3.15).
Disregarding the weight restriction, we consider H#-invariants of

H =
{
(Rαβ)|α|,|β|≥2; Rαβ satisfy (5.11)1, (5.11)2 and (5.11)3

}
.

As far as H#-invariants of weight ≤ n are concerned, an invariant of
T0Rn is an invariant of H, and vice versa. Consequently, Theorem 5.2
is contained in a more general:

Theorem 5.3. Every H#-invariant of H is a Weyl invariant.

Fefferman [F3] proved this result for invariants of weight ≤ n− 19.
The weight restriction was later removed by Bailey-Eastwood-Graham
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[BEG]. The proof in [BEG] is constructive and gives an algorithm of
writing the given H#-invariant as a linear combination of complete con-
tractions. In what follows, we explain this algorithm.

Let R = (Rαβ) ∈ H. Then each Rαβ is written as a linear combina-
tion of

Ã`
α′β′

= Rα′n···nβ′

where α′ and β′ are lists of {1, . . . , n−1} of length ≥ 2, and the number
of n is `. In fact, indices 0, 0, n in Rαβ can be deleted by repeated use

of (5.11)2 and (5.11)3. Setting Ã`
pq = (Ã`

αβ
)|α|=p,|β|=q, we regard it as

a symmetric tensor on Cn−1 of type (p, q). Then the U(n − 1)-action
on Ã`

pq is the restriction of the H#-action to U(n − 1) ⊂ H#. Thus

an H#-invariant P (R) can be regarded as a U(n− 1)-invariant P (Ã) of
Ã`

αβ
. (This procedure amounts to rewriting polynomials in R as those

in A`
αβ

.) Using Weyl’s invariant theory for U(n− 1), we can write P (Ã)

as a linear combination of complete contractions on Cn−1, that is, those
with respect to (δjk):

(5.12) contr
(
Ã`1

p1q1
⊗ · · · ⊗ Ã`d

pdqd

)
.

In addition, we can make so that these contractions do not contain

trÃ`
22

, (tr)2Ã`
23

, (tr)2Ã`
32

, (tr)3Ã`
33

.

From these contractions on Cn−1, we manufacture complete contractions
with respect to the ambient metric g0, depending on the degree d of the
polynomial P (Ã), as follows.

At first, let d < n. From the linear combination P (Ã) of complete
contractions of the form (5.12), we make a partial sum consisting of
terms corresponding to `1 = · · · = `d = 0, and replace the complete
contractions there formally by those with respect to g0:

contr
(
R(p1,q1) ⊗ · · · ⊗R(pd,qd)

)
.

Then we get a Weyl invariant, which agrees with the given H#-invariant
P (R). The proof of this fact requires careful examination of the H#-
action on complete contractions of the form (5.12).

When d ≥ n, we cannot expect this. In fact, if for instance an
H#-invariant P (R) of degree d ≥ n contains an alternating sum of n
indices, then P (R) is not manufactured by the procedure above. We
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thus proceed as follows. Let us first recall that, in the case d < n, we
have formally replaced complete contractions with respect to (δjk) by
those with respect to g0. That is, we have ignored the right side of

n−1∑

j,k=1

δjkTjk +
n∑

j,k=0

gjk
0 Tjk = T0n + Tn0

for an arbitrary tensor (Tjk) of type (1, 1). Taking account of the right
side, we now express complete contractions of the form (5.12) in terms of
partial contractions with respect to g0. That is, we manufacture tensors
(Tαβ) by partially contracting R(p1,q1)⊗· · ·⊗R(ps,qs) in such a way that
(5.12) is given by a linear combination of components of (Tαβ) of the form
T0···0n···n 0···0n···n. The indices 0 and 0 can be eliminated by repeated use
of (5.11)2. We then get an expression of the given H#-invariant P (R)
as a linear combination of components Tn···n n···n of (Tαβ). Let us recall

by the definition of T0Rn that Rαβ = ∂α
ζ ∂β

ζ
(r̃F

A)#|e0 . Likewise, Tαβ are
given by the “values” of formal power series at e0. Then Tαβ are ex-
tended to jets at e0, and the partial derivatives of the extensions of Tαβ

make sense. If these are used as substitutes for the covariant derivatives,
then a scalar is obtained by the complete contraction. We do this proce-
dure after some algebraic manipulations which are technical. Then the
scalar above is a Weyl invariant, which coincides with the original H#-
invariant P (R) up to a multiple. It turns out that components of (Tαβ)
other than Tn···n n···n do not contribute to the resulting Weyl invariant.

§6 Full invariant expansion of the Bergman kernel

So far, we have considered an invariant expression of the singularity
of the Bergman kernel KB = ϕBr−n−1 + ψB log r by using Fefferman’s
defining function r = rF. Because of the ambiguity of rF, it was only
possible to express ϕB modulo On+1(r) in general (Theorem 2.2), and
ψB modulo O2(r) even in the case n = 2 (Theorems 3.1 and 3.2). In
this section, we express ψB modulo O∞(r) invariantly by using a special
family of Fefferman’s defining functions. (The details are found in [Hi].)
That family, which we denote by RF

∂Ω, is parametrized by C∞(∂Ω) and
satisfies

(6.1) r1 := | detΦ′|−2/(n+1)r2 ◦ Φ ∈ RF
∂Ω1

for r2 ∈ RF
∂Ω2

for biholomorphic mappings Φ : Ω1 → Ω2. This can be regarded as an
exact transformation law of weight −1 without error.
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In Subsection 6.1 below, we lift the Monge-Ampère boundary value
problem (1.12) to a C∗-bundle over Ω. Then the lifted problem admits
asymptotic solutions which are similar to those of the original problem
(1.12) in Theorem 1.3. Elements of RF

∂Ω are obtained as the “smooth
parts” of these asymptotic solutions. Using r ∈ RF

∂Ω, we define as before
Weyl invariants, which inherit the ambiguity measured by RF

∂Ω. These
Weyl invariants with ambiguity, together with r, are used in expressing
a full expansion of ψB in the Bergman kernel.

6.1 A special family of Fefferman’s defining functions

Given a strictly pseudoconvex domain Ω with C∞ boundary, we take
a thin one-sided neighborhood V ⊂ Ω of ∂Ω and consider the following
equation for a function U = U(z0, z) on C∗ × V :

(6.2) (−1)n det
(
∂2U/∂zj∂zk

)
j,k=0,...,n

= |z0|2n.

In terms of differential forms, (6.2) is intrinsically written as

(6.3) (−1)n(∂∂U)n+1 = dv,

where dv = (n + 1)!|z0|2ndz0 ∧ dz0 ∧ · · · ∧ dzn ∧ dzn. If U is of the form
U(z0, z) = |z0|2u(z), then (6.2) is reduced to the equation J [u] = 1.
That is, (6.2) is a lift of the complex Monge-Ampère equation to the
C∗-bundle C∗ × V . The bundle structure on C∗ × V is given by Φ# in
(2.3), where Φ is a local (or formal) biholomorphic change of coordinates
near a point of ∂Ω. The transition function Φ# preserves dv. Thus Φ#

preserves the equation (6.3) in the sense that if U2 satisfies (6.3) so does
U1 = U2 ◦ Φ#.

We consider asymptotic solutions to (6.2) of the form

(6.4) U = r# + r#

∞∑

k=1

ηk · (rn+1 log r#)k with r# = |z0|2r,

where ηk ∈ C∞(V ), and r is a defining function of Ω, r > 0 in Ω.
Let us identify two such formal series if the corresponding r and ηk

agree modulo O∞(∂Ω). Then the totality of such asymptotic solutions
is parametrized by C∞(∂Ω) as follows.

Proposition 6.1. Let X be a C∞ vector field on V which is
transversal to ∂Ω. Then, for any f ∈ C∞(∂Ω), there exists a unique
asymptotic solution U of the form (6.4) to the equation (6.2) such that

Xn+2r|∂Ω = f.
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If U2 is an asymptotic solution of the form (6.4) in V2 ⊃ ∂Ω2 so
is U1 = U2 ◦ Φ# in V1 ⊃ ∂Ω1, where Φ : V1 → V2 is a biholomorphic
mapping satisfying Φ(∂Ω1) = ∂Ω2. This transformation law is rewritten
as r1 = | detΦ′|−2/(n+1)r2 ◦ Φ and η1,k = | detΦ′|2kη2,k ◦ Φ, where

Uj = (rj)# + (rj)#
∞∑

k=1

ηj,k ·
(
rn+1
j log(rj)#

)k
(j = 1, 2).

For an asymptotic solution U to (6.2) of the form (6.4), we call r

in (6.4) the smooth part of U , and denote by RF
∂Ω the totality of the

smooth parts. Then the transformation law (6.1) for RF
∂Ω is valid. In

addition, each smooth part r is a Fefferman’s defining function, that is,
r satisfies J [r] = 1 + On+1(r).

Remark 6.1. If we drop the subscript # from r# in (6.4), then we
get Graham’s asymptotic solutions (1.17) with ηG

0 = 1. However, the
transformation law (6.1) breaks down. Similarly, if we add the subscript
# to r in rn+1 log r#, then again (6.1) breaks down.

6.2 A refinement of Theorem 2.2

Starting from a Fefferman’s defining function r ∈ RF
∂Ω, we construct

Weyl invariants as in Subsection 2.2. That is, for the Lorentz-Kähler
metric g with potential r# in a thin neighborhood C∗ × V ⊂ C∗ × Ω
of C∗ × ∂Ω, we consider the curvature R of g and successive covariant
derivatives R(p,q) = ∇q−2∇p−2R. Then a Weyl invariant of weight w is
defined as a linear combination of the complete contractions of the form

contr
(
R(p1,q1) ⊗ · · · ⊗R(ps,qs)

)
with

1
2

s∑

j=1

(pj + qj)− s = w.

By definition, a Weyl invariant W# is a functional of r ∈ RF
∂Ω, and thus

we write W# = W#[r]. As in Section 2, we also use this terminology
for the composite function (z0, z) 7→ W#[r]. We denote the restriction
of W#[r] to z0 = 1 by W [r], and still call it a Weyl invariant. It follows
from the construction that the transformation law (6.1) for RF

∂Ω implies

W [r1] = | detΦ′|2w/(n+1)W [r2] ◦ Φ

for a Weyl invariant of weight w, cf. (2.4) in Subsection 2.3.
With r ∈ RF

∂Ω, let us consider the expression (1.10) in Theorem 1.2
for the Bergman kernel. Observe that ψB is uniquely determined modulo
O∞(r) and independent of the choice of r. Nevertheless, we regard ψB

as a functional of r ∈ RF
∂Ω and write ψB = ψB[r]. Then we have:
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Theorem 6.1. For each j ≥ n + 1, there exists a Weyl invariant
Wj of weight j such that if r ∈ RF

∂Ω then

ψB[r] =
∞∑

k=0

Wk+n+1[r] rk mod O∞(r).

That is, for each m > 0, ψB[r] =
∑m

k=0 Wk+n+1[r] rk mod Om+1(r).

This theorem refines Theorem 2.2 (cf. Remark 6.2 below).

6.3 Generalization of the CR invariant

Recall that Theorem 2.2 follows from Theorem 2.1. In order to refine
Theorem 2.1, we need to generalize the notion of CR invariant taking
account of the ambiguity described by RF

∂Ω. Let us begin by recalling
that Proposition 6.1 gives a bijection C∞(∂Ω) → RF

∂Ω as far as a vector
field X is specified. For a reference point p ∈ ∂Ω, this parametrization
is localizable to a neighborhood of p, but we rather consider formally.
We have a bijection C∞∂Ω,p → RF

∂Ω,p, where C∞∂Ω,p and RF
∂Ω,p denote

the spaces of all Taylor expansions about p of elements of C∞(∂Ω) and
RF

∂Ω, respectively. Thus C∞∂Ω,p and RF
∂Ω,p consist of formal power series,

though the notation C∞∂Ω,p might be somewhat confusing.
The family RF

∂Ω,p satisfies a formal transformation law correspond-
ing to (6.1), and this transformation law is transplanted to C∞∂Ω,p. To
write it down explicitly, we assume that ∂Ω near p is in Moser’s normal
form N(A), and take X = ∂/∂ρA with respect to the coordinate system
(z′, z′, ρA, v). Each element f ∈ C∞∂Ω,p is written in the form

f(z′, z′, v) =
∑

α,β,`

C`
αβ

z′α z′β v`.

We denote by C the totality of collections of the coefficients C = (C`
αβ

).

Thus C∞∂Ω,p is identified with C. If r ∈ RF
∂Ω,p is in the image of f under

the bijection C∞∂Ω,p → RF
∂Ω,p, then

r =
∑

α,β,`,m

P `m
αβ

(A,C) z′α z′β v`ρm
A ,

where P `m
αβ

(A,C) are polynomials in (A,C) ∈ N × C. We thus write

r = r(A,C), and use the notation RF
N(A) for the totality of r = r(A,C)

with (A,C) ∈ N ×C. Thus RF
∂Ω,p is identified with RF

N(A), and we have
a bijection C → RF

N(A) as far as A ∈ N is specified.
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The H-action (1.4) on N extends to that on N × C as follows. For
(A,C) ∈ N × C and h ∈ H, we define (Ã, C̃) = h.(A,C) by Ã = h.A

and r(Ã, C̃) = |det E′
h,A|−2/(n+1) r(A,C) ◦ h, where Eh,A is defined by

(1.4)′. Then we have, as a generalization of (1.4), a group action

(6.5) H ×N × C 3 (h,A, C) 7→ h.(A,C) ∈ N × C,

which is regarded as a transformation law for C∞∂Ω,p parametrizingRF
∂Ω,p.

We now recall that CR invariants are defined by (1.5). This notion
is generalized as follows. Let ICR

w (C) denote the totality of polynomials
P in (A,C) ∈ N × C such that

P (A, C) = | deth′(0)|2w/(n+1) P (h.(A,C)) for any h ∈ H.

Then ICR
w = Iw(N ) ⊂ Iw(N ×C) = ICR

w (C), where Iw(N ×C) stands for
the space of H-invariants of N × C, and similarly for Iw(N ). As in the
case of CR invariants, elements of ICR

w (C) can be identified with smooth
(C∞ or real analytic) functions on ∂Ω.

6.4 Boundary values of C-dependent Weyl invariants

We want to refine Theorem 2.1 in such a way that the refinement
implies Theorem 6.1. As in the previous subsection, let us consider a
surface in Moser’s normal form N(A), and take X = ∂/∂ρA with respect
to the coordinate system (z′, z′, ρA, v). For a Weyl invariant W = W [r]
of weight w, the value at the origin is a polynomial in (A,C). We thus
write it as W (A,C), and denote the totality of these polynomials by
IW
w (N × C). Let IW

w (N ) denote the totality of W (A,C) ∈ IW
w (N × C)

which do not contain the variable C ∈ C. Then Proposition 2.1 implies
IW
w (N × C) = IW

w (N ) for w ≤ n, and Theorem 2.2 is restated as

IW
w (N × C) = IW

w (N ) = ICR
w for w ≤ n.

Improving this, we have:

Theorem 6.2. For any w ∈ N0, IW
w (N × C) = ICR

w (C) and thus
IW
w (N ) = ICR

w .

Theorem 6.3. If n ≥ 3, then IW
w (N ×C) = IW

w (N ) for w ≤ n+2
and IW

n+3(N × C) 6= IW
n+3(N ). If n = 2, then IW

w (N × C) = IW
w (N ) for

w ≤ 5 and IW
6 (N × C) 6= IW

6 (N ).

In the case n = 2, these theorems imply IW
w (N×C) = IW

w (N ) = ICR
w

for w ≤ 5 (cf. Remark 3.2).
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Remark 6.2. By direct computation, we can show that if n = 2
then W6(A,C) /∈ IW

6 (N ) for the Weyl invariant W6 in Theorem 6.1.
This fact will be published elsewhere.

Theorem 6.1 is proved by using Theorem 6.2 if we recall the proof of
Theorem 2.2 which uses Theorem 2.1. In the next subsection, we outline
the proof of Theorem 6.2, which is analogous to that of Theorems 2.1.
We omit the proof of Theorem 6.3, which is technical and consists of
careful inspection of the proof of Theorem 6.2.

6.5 C-dependent invariant theory

Recalling that Theorem 2.1 follows from Theorem 2.1′ at the end of
Subsection 5.1, let us first formulate a substitute for Theorem 2.1′. We
have to remove the weight restriction by using N × C in place of N .

For a surface in Moser’s normal form N(A) with X = ∂/∂ρA, we
take r = r(A,C) ∈ RF

N(A) and consider the curvature R of the Lorentz-
Kähler metric g with potential r#. As in Subsection 5.1, we identify R
with the collection of the components Rαβ of the covariant derivatives
at e0, and write R = (Rαβ). Then each Rαβ is a polynomial in (A,C) ∈
N × C. We thus write Rαβ = Rαβ(A,C) and define a map

F : N × C 3 (A,C) 7→ R(A,C) ∈ Raux,

where R(A,C) = (Rαβ(A,C)), and set R = F(N ×C). This map F and
R are refinements of the map in (5.7) and Rn.

Let us recall that the H#-action on N induces that on Rn via (5.2).
Likewise, the H#-action on N × C, defined by h#.(A,C) = h.(A,C),
induces that on R. Thus we can define H#-invariants of weight w on
R, and we denote the totality of these by Iw(R). The map F is H#-
equivariant and induces an injection

F∗: Iw(R) 3 P (R) 7→ P (F(A,C)) ∈ Iw(N × C) = ICR
w (C),

which corresponds to the map in (5.5). Let IW
w (R) denote the subspace

of Iw(R) consisting of elements which are given by linear combinations
of complete contractions of the form (5.4) of weight w. Then we can
state a substitute for Theorem 2.1′ as follows.

Theorem 6.2′. (I) The map F∗ is bijective.
(II) Iw(R) = IW

w (R) for each w ∈ N0.

Theorem 6.2 follows from Theorem 6.2′.
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As in the case of Theorem 2.1′, the proof of (I) is reduced to proving
the injectivity of F ′(0).

The statement (II) for w ≤ n is equivalent to that in Theorem 2.1′,
and most parts of the proof work as well for the case w > n. The point
is to show

(6.6) IW
w (T0R) = Iw(T0R),

where T0R ⊂ Raux is the tangent space of R at 0. In Subsection 5.3, we
outlined the proof of (6.6) for w ≤ n, where (5.11)3 was used crucially.
The equality (5.11)3, stating that (Rαβ) is trace-free, follows from the
equation

(6.7) ∆0(r̃F
A)# = On+1((ρ0)#).

where ∆0 and (ρ0)# are those in (3.15). To prove (6.6) in the case
w > n, we need to compute explicitly the error term On+1((ρ0)#) of
(6.7) when r̃F

A is replaced by

r̃A,C =
d

dε
r(εA, εC)

∣∣∣∣
ε=0

.

The result is:

∆0r̃A,C = cn µn+1∆n+2
0 r̃A,C , where cn =

(−1)n+1

(n + 1)!2
.

Using this equality in place of (6.7), we can remove the restriction w ≤ n
in the argument of Subsection 5.3, and obtain (6.6) with the aid of the
invariant theory of [BEG].

Remark 6.3. In general, the Weyl invariants Wk in Theorem 6.1
are not uniquely determined, since there are linear relations among the
boundary values of complete contractions of the form (2.1). For instance,
in the case n = 2, the boundary values of ‖R(4,2)‖2 and ‖R(3,3)‖2 are
linearly dependent (and, accordingly, Theorem 3.1 includes two expres-
sions for W4 and W5). Under the terminology of this section, ‖R(3,3)‖2
and ‖R(2,4)‖2 are polynomials on Raux such that the restrictions to the
submanifold R are linearly dependent functions.

The situation is similar for the Weyl invariants Wk in Theorem 2.2,
though we do not know specific examples of non-uniqueness. (Note that
‖R(3,3)‖2 and ‖R(2,4)‖2 for n = 2 are irrelevant to Theorem 2.2 because
of the weight restriction.) It should be mentioned that a basis of Weyl
invariants of degree d < n is given in [BEG]; in particular, it is shown
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that, if d = 2 < n, then ‖R(p,q)‖2 (p ≥ q ≥ 2) form a basis of quadratic
Weyl invariants.
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