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In this paper we shall study Fefferman’s asymptotic expansion of the Bergman
kernel of (real) ellipsoids in Cn, n ≥ 2. Regarding ellipsoids as perturbations of
the ball, we compute the variations of the Bergman kernel, and give the Taylor
expansion of the log term coefficient to the second order in Webster’s invariants.
(The ellipsoids in normal form are parametrized by n real numbers, which we call
Webster’s invariants, and we shall consider the ellipsoids with small parameters.)
As a consequence, we show that the vanishing of the log term of the Bergman
kernel characterizes the ball among these ellipsoids. In addition, we derive, from
the procedure of computing the variation, a relation among the Bergman kernels
of different dimensional ellipsoids.

Let Ω be a smoothly bounded strictly pseudoconvex domain in Cn, with defining
function f > 0 in Ω. It has been known since the work of Fefferman [5] that the
Bergman kernel of Ω is written in the form

K(z, z) = ϕ(z)f(z)−n−1 + ψ(z) log f(z), where ϕ, ψ ∈ C∞(Ω).

The coefficients ϕ,ψ were studied in Fefferman [6] and Graham [7], where they wrote
down parts of the expansions of ϕ,ψ by using invariant polynomials in Moser’s
normal form coefficients. Fefferman expressed ϕ mod O(fn−19) in terms of the
Weyl invariants, and Graham in case n = 2 determined ϕ explicitly. For further
information on ϕ, in case n ≥ 3, see [1].

In 2-dimensional case, Graham [7] further expressed the log term coefficient ψ
mod O(f2) in an invariant manner, and showed that ψ vanishes if and only if the
boundary is spherical, that is, locally biholomorphically equivalent to the sphere.
(It is mentioned in [7] that an unpublished computation of D. Burns plays an
essential role in characterizing spherical boundaries in terms of ψ.) The situation
is rather simple in this 2-dimensional case, because the first invariant polynomial
in ψ is linear. That polynomial is no longer linear in the higher dimensional case
n ≥ 3, and the analysis of Graham only gives its linear part. We are thus interested
in getting information on the non-linear part.

We shall here compute the second variation of the log term for the class of
ellipsoids of arbitrary dimension; the first variation always vanishes. This class
provides a typical example of strictly pseudoconvex perturbations of the ball.

In computing these variations, we shall make use of Kashiwara’s micro-local
calculus for the Bergman kernel in [10], which is summarized in §3. He reduced
the study of the Bergman kernel to that of a system of micro-differential equations,
a simple holonomic system, of which a unique solution is given by the Bergman
kernel. In order to study the parameter dependence of the Bergman kernel, we need
to modify this characterization. Our idea is to consider a new simple holonomic
system with more variables, regarding the parameters as additional variables, see
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§§4 and 5. From that system, we derive an algorithm of computing the variations of
the Bergman kernel in §6, and apply it to the ellipsoids in §7. The first variational
formula was obtained in [10] by a formal calculus. We generalize the calculus to
our algorithm; a justification is also given. Finally in §8 we examine the dimension
dependence of the variational formula.

We would like to mention that our algorithm of computing the variation is in-
spired by an article of Boutet de Monvel [2]; our Proposition 3 is obtained as an
analogy of Theorem 3 in [2], see also Remark 5.3 below. Applying that Theorem
3, in [2, 3], he derived results similar to that of Graham [7] independently.

I am grateful to Professor Gen Komatsu for his suggestion to try to compute
the Bergman kernel of ellipsoids and for encouragement and valuable advice, and
to Professor Akira Kaneko for help with the justification of Kashiwara’s formal
calculus in [10].

1. Webster’s classification of ellipsoids

In [13], Webster showed that two ellipsoids in Cn, n ≥ 2, are biholomorphically
equivalent only when they are already equivalent by a complex linear transformation
and that any ellipsoid other than the ball has no biholomorphic self-map except for
linear transformations. As a corollary of these facts, he gave the following normal
form for ellipsoids: After a linear change of coordinates, any ellipsoid

n∑

i,j=1

(aijxixj + bijyiyj + cijxiyj) < 1, where zj = xj +
√−1yj ,

is written in the form

E(A1, . . . , An) =
{

z ∈ Cn : fA(z, z) = 1− |z|2 −
n∑

j=1

Aj(z2
j + z2

j ) > 0
}

,

where −1/2 < Aj < 1/2, and two ellipsoids E(A) and E(A′) are biholomorphically
equivalent if and only if A = (A1, . . . , An) is equivalent to A′ = (A′1, . . . , A

′
n) up to

changes of signatures and a permutation.

2. Results

Let KA(z, z) be the Bergman kernel of E(A) on the diagonal. Then,

Main Theorem. The Bergman kernel KA has the expansion

KA = ϕAf−n−1
A + ψA log fA,

where ϕA and ψA are real-analytic functions in a neighborhood of ∂E(A). The log
term coefficient ψA depends real-analytically on the parameters A1, . . . , An and has
the Taylor expansion

ψA(z, z) =
1
πn

(
2 n! 〈A2〉

(f0 − 1)n+1
+

4 (n + 1)! 〈A2zz〉
(f0 − 1)n+2

+
(n + 2)! 〈Az2〉〈Az2〉

(f0 − 1)n+3

)

+ (terms of degree ≥ 3 in A1, . . . , An),

where

〈A2〉 =
n∑

j=1

A2
j , 〈A2zz〉 =

n∑

j=1

A2
jzjzj , 〈Az2〉 = 〈Az2〉 =

n∑

j=1

Ajz
2
j .
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From this formula we can see, for small Aj , that ψA vanishes identically if and
only if E(A) is the ball, i.e., all Aj = 0. See Remark 7.8.

Note also that the second order term of ψA, for n-dimansional ellipsoid, can be
considered a function ψn of five variables 〈Az2〉, 〈Az2〉, 〈A2zz〉, 〈A2〉, and f0. If
we regard them as formal independent variables, then ψn satisfies the following
relation

ψn =
(−1

π

∂

∂f0

)n−2

ψ2.

In Proposition 8.1, we generalize this relation to the one among the whole ex-
pansions in A of the Bergman kernels of different dimensional ellipsoids. In that
formula, the kernel functions are regarded as functions of infinite number of vari-
ables

〈Apz2〉, 〈Apz2〉, 〈Apzz〉, 〈Ap〉, p = 1, 2, . . . , and f0.

See Lemma 7.7 below for their definition. If we consider the convergence of the
formula, we can get a relation in micro-local sense, see Corollary 8.4 below.

We prove the real-analytic dependence of the log term coefficient on an arbi-
trary finite dimensional real-analytic perturbation of strictly pseudoconvex domains
{Ωt}t∈Rm : Let f(z, z, t) be a (complex-valued) real-analytic function on an open
set U×{t : |t| < ε} ⊂ Cn×Rm ∼= R2n×Rm such that ∂Ωt = {z ∈ U : f(z, z, t) = 0}
and dzf 6= 0 on ∂Ωt × {t} for each t, and let Kt(z, z) be the Bergman kernel of Ωt

on the diagonal.

Proposition 1. There exist real-analytic functions ϕ, ψ defined in a neighborhood
of f(z, z, t) = 0 in Cn × Rn such that, for each fixed t,

Kt(z, z) ≡ ϕ(z, z, t)f−n−1(z, z, t) + ψ(z, z, t) log f(z, z, t)

modulo real-analytic functions in a neighborhood of ∂Ωt in Cn.

Namely, the Bergman kernel regarded as a (holomorphic) microfunction depends
analytically on parameters.

In particular, the log term coefficient of Kt depends real-analytically on t, be-
cause ψ is uniquely determined by the modulo class, whereas ϕ is not.

The proof of Proposition 1 will be done (in §§4 and 5) by finding the simple
holonomic system which characterizes Kt(z, w) as a function of (z, w, t)-variables;
the right side of (2.1) is obtained by solving that system. See Proposition 2 in §4;
there (2.1) is written in an intrinsic form (4.5).

3. Kashiwara’s analysis

In this section we shall recall Kashiwara’s analysis [10] of the Bergman kernel.
In [10], he used some fundamental facts from the theory of simple holonomic sys-
tems, which are contained in Sato, Kawai and Kashiwara [11]. A self-contained
introduction to the theory is now given e.g. by Chap.I of [12]; we shall cite this
book when we use those facts.

We begin with the following observation: Let Ω1, Ω2 be strictly pseudoconvex
domains with real-analytic boundaries which coincide near a point z0. Then their
Bergman kernels K1(z, w),K2(z, w) differ by a holomorphic function in a neighbor-
hood of (z0, z0) ∈ Cn × Cn. Namely, the Bergman kernel is determined, modulo
holomorphic functions in a neighborhood of the complexification of the boundary,
by local information of the boundary. (This fact is implicitly contained in [10];
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for a proof of it see [9].) Since we are now interested in Fefferman’s asymptotic
expansion of the Bergman kernel, we shall work locally near a boundary point and
consider the modulo classes. Such a class is called a holomorphic microfunction.

Let us recall the definition of holomorphic microfunctions. Let Y be a complex
hypersurface in a complex manifold X defined by f = 0. For a point (x, ξ) in T̊ ∗Y X,
the conormal bundle of Y with the zero section deleted, a germ of holomorphic
microfunction at (x, ξ) is a class of a multi-valued function af−k + b log f mod
OX,x, where a, b ∈ OX,x and k ∈ N. The sheaf of holomorphic microfunctions
with support T̊ ∗Y X is denoted by CY |X . In the case of the Bergman kernel, we
take f(z, w) to be the complexification of a defining function of a domain and
let Y = {(z, w) : f(z, w) = 0} ⊂ X = Cn × Cn; so that the Bergman kernel
K(z, w) = ϕ(z, w)f−n−1(z, w) + ψ(z, w) log f(z, w), mod OX , defines a section of
CY |X (see Theorem 0 [10] and Remark 3.3 below).

By the general theory of holonomic systems, a holomorphic microfunction is
characterized as a unique solution, up to constant multiple, of a system of micro-
differential (i.e., classical analytic pseudo-differential) equations, which is called a
simple holonomic system. See Lemma 2.1 [10] and §4.2 of [12]. In the case of
the Bergman kernel, the corresponding simple holonomic system is given by the
following theorem.

Kashiwara’s Theorem ([10]). Let Ω be a strictly pseudoconvex domain with real-
analytic defining function f(z, z). Then the Bergman kernel of Ω satisfies the simple
holonomic system

(3.1)

{ (
zj + Pj(w,Dw)

)
K(z, w) = 0, j = 1, . . . , n,(

∂/∂zj + Qj(w,Dw)
)
K(z, w) = 0, j = 1, . . . , n,

where Pj , Qj are the micro-differential operators uniquely determined by the rela-
tions { (

zj + P ∗j (w, Dw)
)
log f(z, w) = 0, j = 1, . . . , n,(

∂/∂zj −Q∗j (w,Dw)
)
log f(z, w) = 0, j = 1, . . . , n.

Here the Bergman kernel and log f are regarded as holomorphic microfunctions and
P ∗j , Q∗j denote the adjoint operators of Pj , Qj.

Remark 3.2. In [10], this theorem is stated as
(
P (z, Dz) + Q(w,Dw)

)
K = 0, whenever

(
P ∗(z,Dz) + Q∗(w, Dw)

)
log f = 0.

The 2n equations in (3.1) give generators of this system.

Remark 3.3. The theorem above is stated in Kashiwara [10] with only a heuristic
proof. A justification of the proof is now available in Kaneko [9], which is based
on Kashiwara’s lectures at Kyushu University in 1979; this article also contains a
proof of Theorem 0 [10].

4. Parameter dependence of the Bergman kernel

In this and next sections we prove Proposition 1.
We begin by recalling Hörmander’s formula (Theorem 3.5.1 [8]) which determines

ϕ mod O(f), the principal part of Kt:

(4.1) Kt(z, z) =
n!
πn

J(f)f−n−1 + O(f−n),
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where J denotes the complex Monge-Ampère operator

(4.2) J(f) = (−1)n det
(

f ∂f/∂zk

∂f/∂zj ∂2f/∂zj∂zk

)
.

Using this formula and Kashiwara’s theorem, we shall find ϕ,ψ satisfying (2.1)
by the following process: By Kashiwara’s theorem, we have 2n equations (3.1)
which characterize Kt, up to a constant multiple, for each t. We add m equations
containing t derivatives to (3.1) in such a way that the resulting 2n + m equations
form a simple holonomic system and a solution of the system has the principle part
given by (4.1). Then that solution gives the right side of (2.1), because it satisfies
(3.1) for each fixed t.

In order to state the 2n + m equations, we set X̃ = Cn × Cn × Cm and con-
tinue f(z, z, t) to a holomorphic function f(z, w, t) on an open set of X̃. We
then regard log f(z, w, t) as a holomorphic microfunction, a section of CeY | eX , where

Ỹ = {(z, w, t) ∈ X̃ : f(z, w, t) = 0}.
Proposition 2. The Bergman kernel Kt(z, w) satisfies the simple holonomic sys-
tem

(4.3)





(
zj + Pj(w, t, Dw)

)
Kt(z, w) = 0, j = 1, . . . , n,(

∂/∂zj + Qj(w, t, Dw)
)
Kt(z, w) = 0, j = 1, . . . , n,(

∂/∂tk + Rk(w, t, Dw)
)
Kt(z, w) = 0, k = 1, . . . ,m,

where Pj , Qj , Rk are the micro-differential operators in w-variable with holomorphic
parameter t which are uniquely determined by the relations

(4.4)





(
zj + P ∗j (w, t, Dw)

)
log f(z, w, t) = 0, j = 1, . . . , n,(

∂/∂zj −Q∗
j (w, t, Dw)

)
log f(z, w, t) = 0, j = 1, . . . , n,(

∂/∂tk −R∗k(w, t,Dw)
)
log f(z, w, t) = 0, k = 1, . . . , m.

More precisely, (4.3) means that there exists a solution u(z, w, t) of the system (4.3)
in CeY | eX which satisfies

(4.5) u(z, w, t) = Kt(z, w) in CYt|X for each fixed t ∈ Rm,

where Yt = {(z, w) : f(z, w, t) = 0} ⊂ X = Cn × Cn.

If u in (4.5) is the class modulo O eX of ϕf−n−1 + ψ log f , then the restriction of
(4.5) on the diagonal w = z gives (2.1).

It is possible to prove this proposition without using Hörmander’s formula, by
generalizing the proof of Kashiwara’s theorem; however, the proof requires some
preparations from the theory of holonomic systems, which are out of the aim of
this paper. We thus give here a proof which uses (4.1) and the calculus in Boutet
de Monvel [2].

5. Proof of Proposition 2

We first examine the relations (4.4).

Lemma. For any micro-differential operator P (z, w, t, Dz, Dw, Dt) defined in a
neighborhood of a point of T̊ ∗eY X̃, there exists a unique micro-differential operator
Q(w, t,Dw) in w-variable with holomorphic parameter t such that (P −Q) log f =
0.
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There is no difficulty in generalizing the proof of the existence of quantizations of
contact transformations to this case, see [12] Chap. I §5. The key is the following
fact. The projection p : T̊ ∗eY X̃ → T ∗Cm(Cn × Cm) induced by T ∗X̃ = T ∗(Cn × Cn ×
Cm) → T ∗(Cn × Cm) is an open immersion, i.e., dp is bijective; this follows from
the strict pseudoconvexity of Ωt. The surjectivity and the injectivity of dp imply
the existence and the uniqueness of Q respectively.

By the Lemma above, we can find the operators

zj+P ∗j (w, t,Dw), ∂/∂zj −Q∗
j (w, t, Dw), j = 1, . . . , n,

∂/∂tk −R∗k(w, t,Dw), k = 1, . . . ,m,

satisfying (4.4). In order to show that their adjoints (4.3) form a simple holonomic
system, let us recall a sufficient condition for a system of microdifferential equations
to be holonomic, that is, a system P1u = · · · = Pnu = 0 is holonomic if Pj

commute each other and if the principal symbols of Pj form a defining system
of a Lagrangian manifold, see Proposition 4.1.5 of [12]. In the present case, the
operators in (4.3) commute, because their adjoint operators (4.4) commute, and
their principal symbols form a definning system of the conormal bundle T̊ ∗eY X̃ .
Thus (4.3) is a simple holonomic system.

If we take a solution u ∈ CeY | eX of the system (4.3), then for each fixed t we have
Kt(z, w) = ct u(z, w, t) in CYt|X with a constant ct. This is because the first 2n
equations of (4.3) coincide with the holonomic system for the Bergman kernel of Ωt

given by Kashiwara’s theorem and its solution is unique up to a constant multiple.
It therefore suffices to show that ct does not depend on t.

First we consider the case in which {∂Ωt}t∈Rm is locally in Moser’s partial normal
form (we do not require the trace conditions):

(5.1) 2Re z1 + |z′|2 + F (z′, z′, Re z1, t) = 0.

Here F is a real-analytic function in a neighborhood of the origin of Cn−1×R×Rm

such that F
(
z′, w′, (z1 − w1)/2i, t

)
= O

(|z′|2|w′|2), where z′ = (z2, . . . , zn), w′ =
(w2, . . . , wn). If we replace z in (5.1) by w and solve the resulting equation for
z1-variable, we obtain a defining function f of the complexification of ∂Ωt such
that

f(z, w, t) = z1 + w1 + z′ · w′ + ρ(z′, w, t), with ρ(z′, w, t) = O
(|z′|2|w′|2).

In this case, we can compute R∗k in (4.4) by using the calculus in §5 of Boutet de
Monvel [2], see also Remark 5.3 below. Differentiating (31) of [2] with respect to
our parameter t, we get

(5.2) R∗k(w, t, Dw) =
[
∂/∂tk, A(w, t,Dw)

] ◦A−1(w, t, Dw),

where A(w, t, Dw) is the formal micro-differential operator of infinite order with the
total symbol

A(w, t, ω) = exp
(
ρ(ω′/ω1, w, t)ω1

)
.

Thus ρ(z′, w, t) = O(|w′|2) implies R∗k(w, t, ω) = O(|w′|2). So, in view of Rk(w, t, ω) =
e〈Dw,Dω〉R∗k(w, t,−ω), we see that Rk(w1, 0, . . . , 0, t, Dw) has order at most −1.
Hence ∂

∂tk
u = −Rku gives ∂

∂tk
u
∣∣
z′=w′=0

= O
(
(z1 + w1)−n

)
. In particular, writing

u = ϕf−n−1 +ψ log f , we have ∂
∂tk

ϕ
∣∣
z=w=0

= 0. Therefore (4.1) and J(f)
∣∣
z=w=0

=
(−1)n+1 imply that ct is independent of t.
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In order to reduce the general case to the case we studied above, it suffices
to construct a real analytic family of partial normal forms for a given family of
domains. This is because the Bergman kernel and the solution of the system (4.3)
satisfy the same transformation rule under a change of coordinates. It is almost
clear by inspecting Moser’s construction in [4] that the partial normal form (and in
fact also the normal form) can be chosen so that they vary real analytically with
a parameter. To explain it more precisely, let us first recall that a partial normal
form was uniquely specified in [4] by giving a curve γ in the boundary ∂Ω, where
γ is to be transformed into the Im z1-axis. In [4], it was shown that the partial
normal form depends real analytically on a parameter t if so does the curve γt in ∂Ω.
And, the proof was done by using only the implicit function theorem and Schmidt’s
orthognalization procedure. Therefore, the same proof applies to the present case,
in which both the boundary ∂Ωt and the curve γt in ∂Ωt depend real analytically
on a parameter t.

Remark 5.3. In order to explain the meaning of the formula (5.2) above, we shall
briefly recall the calculus in §5 of Boutet de Monvel [2]. For strictly pseudo-convex
domains which are locally written in Moser’s normal form, he introduced a weight —
similar to the one used by Moser in [4] — on micro-differential operators and holo-
morphic microfunctions, and considered the asymptotic expansions of the micro-
differential operators with respect to the weight. He also considered the formal
micro-differential operators of infinite order which admit such asymptotic expan-
sions (e.g. A(w, t, Dw) above) and showed that the compositions and the adjoints
for these operators are defined naturally. By using these operators, he derived an
asymptotic expansion formula of the Bergman kernel with respect to the weight
(Theorem 3 [2]).

The formula (5.2) means that the asymptotic expansion of R∗k with respect to the
weight is given by the right side: the existence of R∗k as a micro-differential operator
is known from the lemma stated in this section, and its asymptotic expansion with
respect to the weight can be explicitly computed by the calculus explained above.

6. Variational formula

Using Proposition 2, we shall derive an algorithm of computing the variations of
the Bergman kernel.

The first variation is obtained easily: Substituting t = 0 to the last m equations
in (4.3) and (4.4), we get

(6.1)
∂

∂tj
Kt(z, w)

∣∣∣
t=0

= −Rj(z, 0, Dz)K0(z, w), j = 1, . . . , m,

(6.2)
∂

∂tj
log f(z, w, 0) = R∗j (z, 0, Dz) log f(z, w, 0), j = 1, . . . ,m.

We can determine Rj(z, 0, Dz) by the relation (6.2), and then (6.1) gives ∂
∂tj

Kt(z, w)
∣∣
t=0

from K0. If we consider the Taylor expansions of Kt and log f in t, these formulas
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can be written as

Kt(z, w) ≡
(

1−
m∑

j=1

tjRj(z, 0, Dz)
)
K0(z, w) mod O(t2),

log f(z, w, t) ≡
(

1 +
m∑

j=1

tjR
∗
j (z, 0, Dz)

)
log f(z, w, 0) mod O(t2).

These formulas were obtained in [10] (Proposition 7.1); the arguments above gives
a justification of the formal calculus used there.

In order to generalize these formulas to a higher order, let us introduce the
notion of asymptotic expansions of holomorphic microfunctions in parameters. For
a germ u(z, w, t) ∈ CeY | eX , we consider the formal power series

∑
α uα(x, y) tα

α! with
coefficients uα(z, w) = ( ∂

∂t )
αu(z, w, 0) ∈ CY0|X . This power series is called the

asymptotic expansion of u in t and expressed as

u(x, y, t) ∼
∑
α

uα(x, y)
tα

α!
.

We do not discuss the convergence of this series. However, we can easily show that
the map u 7→ ∑

α uα
tα

α! is injective, and thus the expansion uniquely determines u.

Proposition 3. If Pα(z, Dz) are the micro-differential operators satisfying

(6.3) log f(z, w, t) ∼
∑
α

tα

α!
Pα(z, Dz) log f0(z, w), where f0(z, w) = f(z, w, 0),

then the Bergman kernel has the asymptotic expansion

(6.4) Kt ∼
∞∑

l=0

(
1−

∑
α

tα

α!
P ∗α

)l

K0.

In particular, if Ω0 is the unit ball, then

(6.5) Kt(z, w) ∼ n!
πn

∞∑

l=0

(
1−

∑
α

tα

α!
P ∗α(z, Dz)

)l

(1− z · w)−n−1.

In the right side of (6.4), since P0 = 1, the Neumann series of
∑

α
tα

α! P
∗
α defines

a formal power series in t with coefficients in micro-differential operators. Note
that the set of formal sums of the form

∑
α Pα(z, w,Dz, Dw)tα naturally forms a

ring, where each Pα is a micro-differential operator in (z, w). This ring contains
the subring consisting of micro-differential operators in (z, w) with holomorphic
parameter t, and acts on formal power series in t with coefficients in CY0|X .

Proof of Proposition 3. The micro-differential operators Pα are determined by the
relations

(
∂
∂t

)α
log f |t=0 = Pα(z, Dz) log f0. We set P(z, t, Dz) =

∑
α

tα

α! Pα(z, Dz)
and write (6.3) as log f ∼ P log f0. Substituting this expansion into (∂/∂tk −
R∗k) log f = 0, we have ( ∂

∂tk
P−R∗k ◦ P) log f0 = 0, or,

(6.6)
(
P−1(z, t, Dz) ◦ ∂

∂tk
P(z, t,Dz)−R∗k(w, t, Dw)

)
log f0(z, w) = 0,

where P−1 is defined by the Neumann series P−1 =
∑∞

l=0(1− P)l.



BERGMAN KERNEL OF ELLIPSOIDS 9

Similarly, if we write Kt(z, w) ∼ Q(z, t,Dz)K0(z, w), the last m equations in
(4.3) are written as

(6.7)
(
Q−1(z, t,Dz) ◦ ∂

∂tk
Q(z, t, Dz) + Rk(w, t,Dw)

)
K0(z, w) = 0.

Thus, applying Kashiwara’s theorem (see also Remark 3.2) to each coefficient of tα

in (6.6) and (6.7), we get (P−1 ◦ ∂
∂tk
P)∗ = −Q−1 ◦ ∂

∂tk
Q, or, ( ∂

∂tk
P∗) ◦ (P∗)−1 =

−Q−1◦ ∂
∂tk
Q. Hence ∂

∂tk
(Q◦P∗) = ∂

∂tk
Q◦P∗+Q◦ ∂

∂tk
P∗ = 0. Therefore Q(z, 0, Dz)◦

P∗(z, 0, Dz) = 1 implies that Q = (P∗)−1, which proves the proposition.

7. Computation of the log term for ellipsoids

In this section we shall apply Proposition 3 to ellipsoids and prove Main Theorem.
In the case of ellipsoids, the defining function fA(z, w) is a symmetric polynomial

in the triples (Aj , zj , wj), i.e., fA(z, w) = fσA(σz, σw) for any permutation σ of n
elements. Thus the algorithm of computing the Bergman kernel can be carried out
by using only the operators having the same symmetry, so we set

〈zw〉 =
n∑

j=1

zjwj , 〈Az2〉 =
n∑

j=1

Ajz
2
j , 〈Aw2〉 =

n∑

j=1

Ajw
2
j ,

and, replacing wj by Dj = ∂/∂zj , we also set

〈zD〉 =
n∑

j=1

zjDj , 〈AD2〉 =
n∑

j=1

AjD
2
j .

Then we can write down the explicit formulas of the operators appearing in Propo-
sition 3.

Proposition 7.1. The micro-differential operator of infinite order

P(z, A,D) = 1 +
∑

p+q≥1

〈Az2〉p
p!

〈AD2〉q
q!

Lp−q

(〈zD〉)

satisfies log fA ∼ P(z,A, D) log f0. Here Lm(x) are rational functions

Lm(x) =





x(x + 1) . . . (x + m− 1), m > 0,

1, m = 0,

(x− 1)−1(x− 2)−1 . . . (x + m)−1, m < 0.

Then the Bergman kernel KA of ellipsoids E(A) satisfies KA ∼ n!
πn
P∗−1f−n−1

0 ,

and the operator P∗−1 can be written

(7.2)
P∗−1 = 1 +

∞∑

l=1

∑

pj+qj≥1

〈AD2〉q1〈Az2〉p1〈AD2〉q2〈Az2〉p2 . . .

. . . 〈AD2〉ql〈Az2〉plΦp,q

(〈zD〉∗),
where Φp,q(x) are rational functions

Φp,q(x) =
1

p! q!

l∏

j=1

−Lmj

(
x− 2(mj + · · ·+ ml)

)
, mj = pj − qj .
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Proof. The expansion of log fA in A is expressed as

log fA ∼ log f0 −
∞∑

l=0

1
l

(〈Az2〉+ 〈Aw2〉)l
f−l
0

= log f0 −
∑

p+q≥1

(p + q − 1)!
p! q!

〈Az2〉p〈Aw2〉qf−p−q
0 ,

and the sum in p, q can be written
∑
p>q

(p− q − 1)!
p! q!

〈Az2〉p〈AD2〉qf−p+q
0

−
∑

p≤q

〈Az2〉p〈AD2〉q
p! q! (q − p)!

(−f0)−p+q log f0.

Therefore, in view of

Lm

(〈zD〉) log f0 =




−(m− 1)! f−m

0 , m > 0,
(−f0)−m

(−m)!
log f0, m ≤ 0,

we get

log fA ∼
[
1 +

∑

p+q≥1

〈Az2〉p
p!

〈AD2〉q
q!

Lp−q

(〈zD〉)
]
log f0.

The formula (7.2) is obtained by expanding the Neumann series P∗−1 =
∑∞

l=0(1−
P∗)l and using the relation

Φ
(〈zD〉∗)〈AD2〉q〈Az2〉p = 〈AD2〉q〈Az2〉pΦ(〈zD〉∗ − 2p + 2q

)
,

where Φ(x) is any rational function. ¤

In order to compute the operation of each term in the right side of (7.2), we
prepare two lemmas. First, in order to compute

(7.3) Φp,q

(〈zD〉∗)n! f−n−1
0 = Φp,q

(−〈zD〉 − n
)
n!

(
1− 〈zw〉)−n−1

we derive the following formulas in the one-variable case.

Lemma 7.4. (i) Let Φ(x) be a rational function and Dx = d
dx . Then

(7.5) Φ(xDx + n)n! (1− x)−n−1 = Dn
xΦ(xDx)(1− x)−1 in C{1}|C.

(ii) If l, m ∈ Z and l ≥ 1, then

(7.6) (xDx −m)−l(1− x)−1 = −xm(log x)l−1

(l − 1)!
log(1− x) in C{1}|C.

Proof. (i) The equation (7.5) follows from

Dn
xΦ(xDx) = Φ

(
Dn

x (xDx)D−n
x

)
Dn

x = Φ(xDx + n)Dn
x .

(ii) Let ψ(x) be a holomorphic function near 1 satisfying

(xDx −m)−l(1− x)−1 = ψ(x) log(1− x).
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Then we must have (xDx − m)lψ(x) = 0, because the logarithmic singularity at
x = 1 of (xDx−m)l

(
ψ(x) log(1−x)

)
is equal to that of

(
(xDx−m)lψ(x)

)
log(1−x)

and it must vanish. Thus ψ is written in the form

ψ(x) =
l−1∑

k=0

ck xm(log x)k.

To determine the constants ck, we compare (1− x)−1 with

(xDx −m)lψ(x) log(1− x) = −
l−1∑

k=0

k! ck(xDx −m)l−k−1(1− x)−1.

Then we get c0 = c2 = · · · = cl−2 = 0 and −(l − 1)! cl−1 = 1. ¤
The operation of 〈AD2〉 and 〈Az2〉 can be computed by using:

Lemma 7.7. Define

〈Ap〉 =
n∑

j=1

Ap
j , 〈Apz2〉 =

n∑

j=1

Ap
jz

2
j , 〈Apzw〉 =

n∑

j=1

Ap
jzjwj

and, with zj replaced by wj or Dj = ∂/∂zj, define also 〈Apw2〉, 〈ApzD〉, 〈ApwD〉,
〈ApD2〉 in the same manner. Then the following commutation relations hold

[〈ApD2〉, 〈Aqz2〉] = 4〈Ap+qzD〉+ 2〈Ap+q〉, [〈ApD2〉, 〈Aqzw〉] = 2〈Ap+qwD〉,
[〈ApzD〉, 〈Aqz2〉] = 2〈Ap+qz2〉, [〈ApzD〉, 〈Aqzw〉] = 〈Ap+qzw〉,
[〈ApwD〉, 〈Aqz2〉] = 2〈Ap+qzw〉, [〈ApwD〉, 〈Aqzw〉] = 〈Ap+qw2〉,

and, for any ψ(x) ∈ C{1}|C, we have

〈ApD2〉ψ(〈zw〉) = 〈Apw2〉ψ′′(〈zw〉),
〈ApzD〉ψ(〈zw〉) = 〈Apzw〉ψ′(〈zw〉),
〈ApwD〉ψ(〈zw〉) = 〈Apw2〉ψ′(〈zw〉).

The proof is straightforward, and we will omit it.

Now we are ready to compute the explicit formula of the Bergman kernel for
ellipsoids.
Proof of Main Theorem. If we differentiate both sides of the formula KA =
ϕAf−n−1

A +ψA log fA in A, we have
(

∂
∂A

)α
KA

∣∣
A=0

=
(

∂
∂A

)α
ψA

∣∣
A=0

log f0 +(terms
without logarithmic singularity). It follows that ψA is equal to the sum of the co-
efficients of log f0 in the expansion of KA in A, and thus the computation of ψA is

reduced to that of the log terms in
n!
πn
P∗−1f−n−1

0 .

When we compute the log terms in P∗−1f−n−1
0 , it suffices to examine the terms

in (7.2) with indices p = (p1, . . . , pl), q = (q1, . . . , ql) satisfying:

(i) There exists a number j such that pj < qj .

This is because Φp,q

(〈zD〉∗)f−n−1
0 contains no log term if Φp,q(x) has no pole.

Moreover, since the Bergman kernel is hermitian symmetric, we can restrict our
attention to the terms of which the degree in z is equal or greater than that in w,
i.e., the terms with indices satisfying:
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(ii) p1 + p2 + · · ·+ pl ≥ q1 + q2 + · · ·+ ql.

As long as we look at the terms having order less than 3, i.e., the terms with
indices satisfying

(iii) p1 + p2 + · · ·+ pl + q1 + q2 + · · ·+ ql < 3,

the conditions (i) (ii) are satisfied by only two pairs of indices: p = (1, 0), q = (0, 1)
and p = (0, 1), q = (1, 0). In each case Φp,q is given by

Φ(1,0),(0,1)(x) = L1(x)L−1(x + 2) =
x

x + 1
= 1− 1

x + 1
,

Φ(0,1),(1,0)(x) = L−1(x)L1(x− 2) =
x− 2
x− 1

= 1− 1
x− 1

.

Therefore Lemma 7.4 implies that the log term of the Bergman kernel modulo
O(A3) is contained in

−1
πn

[
〈Az2〉〈AD2〉Dn

x

∣∣∣
x=〈zw〉

(
x log(1−x)

)
+〈AD2〉〈Az2〉Dn

x

∣∣∣
x=〈zw〉

(
x−1 log(1−x)

)]
.

We can omit the first term because Dn
x

(
x log(1 − x)

)
, with n ≥ 2, contains no

logarithmic singularity at x = 1. In the second term, its logarithmic singularity
at 〈zw〉 = 1 equals to

(〈AD2〉〈Az2〉Dn
x

∣∣
x=〈zw〉x

−1
)
log f0. Therefore, using Lemma

7.7, we have

πnψA(z, w) = −〈AD2〉〈Az2〉Dn
x

∣∣
x=〈zw〉x

−1 + O(A3)

= −
(
〈Az2〉〈AD2〉+ 4〈A2zD〉+ 2〈A2〉

)
Dn

x

∣∣
x=〈zw〉x

−1 + O(A3)

= −
(
〈Az2〉〈Aw2〉D2

x + 4〈A2zw〉Dx + 2〈A2〉
)
Dn

xx−1
∣∣∣
x=〈zw〉

+ O(A3)

= 〈Az2〉〈Aw2〉(n + 2)!
(−〈zw〉)−n−3 + 4〈A2zw〉(n + 1)!

(−〈zw〉)−n−2

+ 2〈A2〉n!
(−〈zw〉)−n−1 + O(A3).

Note that the last formula is real, and thus no term is omitted by the condition
(ii). Therefore, substituting 〈zw〉 = 1− f0, we get Main Theorem.

Remark 7.8. If we substitute, for example, z0 = (1, 0, . . . , 0) in ψA, we get

(−1)n+1 πn

n!
ψA(z0, z0) = 2〈A2〉+ (n− 2)(n + 1)A2

1 + O(A3)

≥ 2〈A2〉+ O(A3).

This implies that (−1)n+1ψA(z0, z0) is positive if 〈A2〉 > 0 small.

8. Relation among the Bergman kernels of different dimensional
ellipsoids

In the procedure of computing the Bergman kernel of ellipsoids, the dimension n
only appears in the formula (7.3). In (7.3), replacing n by n+1 is equivalent to dif-
ferentiating both sides formally with respect to the variable f0, see (7.5). Namely,
we can write the relation among the Bergman kernels of different dimensional el-
lipsoids by utilizing the f0-derivatives.
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Proposition 8.1. Let Kn be the Bergman kernel of ellipsoid E(A1, . . . , An) in Cn.
(i) Consider the asymptotic expansion of Kn in A

Kn ∼
∞∑

l=0

Kn,l ,

where Kn,l is homogeneous degree l in A1, . . . , An. Then each Kn,l is written

(8.2) Kn,l =
−∞∑

j=−1

ϕn,l,jf
j
0 +

∞∑

j=0

ϕn,l,jf
j
0 log f0,

where ϕn,l,j are polynomials in 〈Ap〉, 〈Apz2〉, 〈Apzw〉, 〈Apw2〉, p = 1, 2, . . . .
(ii) Let us identify Kn, n = 2, 3, . . . with their asymptotic expansions in A and
regard them as functions of f0, 〈Ap〉, 〈Apz2〉, 〈Apzw〉, 〈Apw2〉 which are now con-
sidered as formal independent variables. Then

(8.3) Kn =
(−1

π

∂

∂f0

)n−2

K2.

If we evaluate the formal variables and consider the convergence of (8.3), we get
a micro-local relation between the Bergman kernel of E(A1, . . . , An−1) in Cn−1 and
that of E(A1, . . . , An−1, 0) in Cn.

Corollary 8.4. Let F : Cn−1 × Cn−1 → Cn × Cn be an embedding defined by
F (z, w) = (z, 0, w, 1). Then

(8.5) Kn−1(z, w) = π

(
∂

∂zn

)−1

Kn ◦ F (z, w)
∣∣∣
An=0

in the sense of holomorphic microfunctions of 3(n−1) variables z, w, and A1, . . . , An−1.

Proof of Proposition 8.1. For each pair of indices p, q, we examine

(8.6) 〈AD2〉q1〈Az2〉p1 . . . 〈AD2〉ql〈Az2〉plΦp,q

(〈zD〉∗) n!
πn

f−n−1
0 .

Let us take a holomorphic microfunction ϕn,p,q(x) ∈ C{1}|C such that ϕn,p,q

(〈zw〉) =
Φp,q

(〈zD〉∗) n!
πn f−n−1

0 . Then, using Lemma 7.7, we can write (8.6) in the form

(8.7)
2(q1+···+ql)∑

m=0

Fm Dm
x ϕn,p,q(x)

∣∣∣
x=〈zw〉

,

where Fm is polynomial in 〈Ap〉, 〈Apz2〉, 〈Apzw〉, 〈Apw2〉, p = 1, 2, . . . which has
homogeneous degree m in w. So, substituting 〈zw〉 = 1− f0 into (8.7), we get the
expansion of the form (8.2).

On the other hand, in view of (7.3) and (7.5), we have

ϕn,p,q(x) =
(
π−1Dx

)n−2
ϕ2,p,q(x).

Thus, noting that Fm is independent of n, we can write (8.7) as

(π−1Dx)n−2

2|q|∑
m=0

FmDm
x ϕ2,p,q(x)

∣∣∣
x=1−f0

.
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If we regard 〈Ap〉, 〈Apz2〉, 〈Apzw〉, 〈Apw2〉, and f0 as independent variables, the
formula above can be expressed as

(−1
π

∂

∂f0

)n−2 2|q|∑
m=0

Fm · (Dm
x ϕ2,p,q)(1− f0).

Therefore summing up over indices p, q, we get (8.3). ¤
Proof of Corollary 8.4. From (8.3), we get

(8.8) Kn−1 = −π

(
∂

∂f0

)−1

Kn

in the sense of expansions in formal variables 〈Ap〉, 〈Apz2〉, 〈Apzw〉, 〈Apw2〉, f0.
Now we regard the variables as functions on Cn × Cn. Then we have

−(
Dxϕ

) ◦ f0 ◦ F =
(

∂

∂zn
(ϕ ◦ f0)

)
◦ F for any ϕ(x) ∈ C{0}|C,

and
∂

∂zn
〈Apz2〉

∣∣∣
An=0

=
∂

∂zn
〈Apzw〉

∣∣∣
An=0

= 0.

If we apply these rules to each term in the formal relation (8.8), we get

(8.9) Kn−1 = π

(
∂

∂zn

)−1

Kn ◦ F
∣∣∣
An=0

in the sense that the asymptotic expansions in A1, . . . , An−1 of each side coincide.

Here π
(

∂
∂zn

)−1

Kn ◦ F
∣∣
An=0

is defined as a holomorphic microfunction which has
the same support as that of the Bergman kernel Kn−1. Since the expansion in A
uniquely determines a holomorphic microfunction, (8.9) implies the corollary.
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