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1 Introduction

In [F2], Fefferman initiated a program of writing down all local invariants
of strictly pseudoconvex real hypersurfaces in Cn, in explicit, computable
form (we here call such invariants CR invariants). His aim was to express
the asymptotic expansion of the Bergman kernel of a strictly pseudoconvex
domain in terms of these invariants. This program has been continued by
the works [G1], [G2], [EG], [BEG], [HKN]. In particular, Bailey, Eastwood
and Graham [BEG] gave a complete description of CR invariants of weight
≤ n (for weight ≤ n − 19, it had been obtained in [F2]). This result was
applied to express the Bergman kernel up to the logarithmic singularity.

Recently, the author [H] has generalize their result so that we can also
express the logarithmic singularity. The main idea of [H] is to consider the
local invariants of the pair (M, r), where M is a strictly pseudoconvex hy-
persurface and r is a defining function of M . We here assume that r is
normalized by a complex Monge–Ampère equation; this normalization de-
termines r uniquely modulo On+2(M), see Sections 3 and 4. CR invariants
are then characterized as invariants of the pair (M, r) that are independent
of r. It is shown that all invariants of the pair (M, r) are expressed as Weyl
invariants, that is, linear combinations of complete contractions of curvature
tensors of a metric associated with r. For weight ≤ n + 1, or ≤ 5 in case
n = 2, all Weyl invariants are shown to be independent of r, and we obtain
an expression of CR invariants in terms of Weyl invariants. This is a natural
generalization of the result of [BEG] mentioned above. For higher weight,
however, we do not know a practical way of constructing CR invariants.

In this note, we compute CR invariants of weight ≤ 6 in case n = 2 by
two different methods. The result for weight 6 is new and is obtained by
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using a computer algebra program.
The first method, explained in Section 2, is based on a direct computation

of Moser’s normal form. By definition, CR invariants are polynomials in
Moser’s normal form coefficients A = (A`

pq) that are invariant under the
action of the structure group H. For each weight, it is shown that all CR
invariants are linear combinations of a finite list of monomials of A. Thus
we can determine all CR invariants of given weight by computing the action
of H on each monomials in the list. Such computation for weight ≤ 5 has
been done in Graham [G1] and [HKN]. A straightforward generalization of
this procedure also gives the result for weight 6 (Theorem 2.1), while it is
much longer and a use of computer is inevitable.

The second method is an application of the theory for the invariants of
the pair (M, r) in [H], explained in Sections 3 and 4. We reduce the problem
of finding all CR invariants to that of determining Weyl invariants that are
independent of r. For each weight, the vector space of all Weyl invariants is
of finite dimension. Thus dependence of Weyl invariants on r is completely
known by writing down generators of Weyl invariants in terms of the Taylor
coefficients of r. For weight ≤ 5, such computation has been done in [HKN].
For weight 6, we can proceed similarly, while the computation is much longer
and we have used a computer. The result is described in Section 5.

The expression of CR invariants obtained by the second method is much
simpler than that for the first one and the construction itself is geometric. It
is hopeful that the basis of CR invariants given here could be obtained by an
invariant-theoretic argument, without a computer-aided computation. For
n > 3 and weight ≤ n− 1, [BEG] has explicitly given basis of CR invariants
in terms of Weyl invariants (see Theorem 3.2 below). Our result for n = 2
and weight ≤ 6 is analogous to their result. We include an observation about
this analogy at the end of Section 5.

2 Definition of CR invariants

We start by recalling the definition of (local scalar) CR invariants of strictly
pseudoconvex real hypersurfaces in Cn. We here follow [F2] and utilize
Moser’s theory of normal form [CM] to describe the curvatures of the sur-
faces.

Let M be a real-analytic strictly pseudoconvex hypersurface in Cn. It is
shown in [CM] that, for each point p ∈ M , there exists a local coordinate
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system z such that p = 0 and M is locally given by the equation

ρ(z) = 2u− |z′|2 −
∑

|α|,|β|≥2,`≥0

A`
αβ
z′αz

′
βv

` = 0, (2.1)

where z′ = (z1, . . . , zn−1), zn = u + i v, and z′α = zα1 . . . zαp . Here the
coefficients A`

αβ
satisfy the following three conditions:

(i) A`
αβ

= A`
βα;

(ii) for each p, q, `,
A`

pq = (A`
αβ

)|α|=p,|β|=q

is a bisymmetric tensor of type (p, q) on Cn−1;
(iii) for p, q ≤ 3, ` ≥ 0,

trp+q−3 A`
pq = 0, (2.2)

where the trace is taken for the standard metric on Cn−1.

We denote the (germ of) surface (2.1) by N(A), where A = (A`
pq) is the list

of coefficients of ρ, and call it a normal form of (M, p) with respect to the
normal coordinates z. Note that a normal form and coordinates for (M, p)
are not uniquely determined, that is, two different surfaces in normal form
may be biholomorphically equivalent. Keeping this fact in mind, we make
the following definition of CR invariants.

Definition A CR invariant of weight w ∈ N is a polynomial P (A) in the
normal form coefficients A = (A`

pq) that satisfies the following transformation
law: If Φ is a local biholomorphic map which preserves 0 and maps a surface
in normal form N(A) to another surface in normal form N(Ã) = Φ(N(A)),
then

P (Ã) = | det Φ′(0)|−2w/(n+1)P (A), (2.3)

where Φ′ is the holomorphic Jacobi matrix of Φ.

Remark 2.1 A CR invariant P (A) gives an assignment to each real-analytic
strictly pseudoconvex hypersurface M of a function PM : M → C: for p ∈M
take a local biholomorphic map Φ such that Φ(p) = 0 and Φ(M) is in normal
form N(A), and set

PM(p) := | det Φ′(p)|2w/(n+1)P (A).
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This definition is independent of the choice of Φ because of (2.3). The func-
tionals PM naturally appear in several problems of Several Complex Vari-
ables, e.g. in the expansion of the Bergman kernel. Note also that the
functional PM can be also defined for C∞ surfaces M , and the assumption of
real-analyticity of M is not essential in the definition of CR invariants. See
[HKN].

In order to verify that a given polynomial P (A) is a CR invariant, we
need to know all the equivalence classes of surfaces in normal form together
with the maps Φ. In case M = N(0), the boundary of the Siegel domain
D0 = {2u > |z′|2}, the set of all normal coordinates for (∂D0, 0) is just
the isotropy group H of D0 at 0. For general M = N(A), the set of all
normal coordinates for (N(A), 0) is naturally parameterized by H. If we
denote the change of coordinates corresponding to h ∈ H by Φ(h,A), then
{Φ(h,A)(N(A)) : h ∈ H} gives the set of all surfaces in normal form that are
equivalent to N(A).

Let N be the space of all surfaces in normal form

N =
{
A = (A`

αβ
)|α|,|β|≥2,`≥0 : A satisfies (i), (ii), and (iii)

}
.

For (h,A) ∈ H × N , take Ã ∈ N such that N(Ã) = Φ(h,A)(N(A)) and set

h.A := Ã. Then the map

H ×N 3 (h,A) 7→ h.A ∈ N

defines an action of H on N . Clearly, the H-orbits in N are the equivalence
classes of surfaces in normal form.

In terms of this H-action, we may rewrite (2.3) as

P (h.A) = σw(h)P (A) (2.4)

for any (h,A) ∈ H × N , where σw(h) = | det Φ′
(h,A)(0)|−2w/(n+1) (the right-

hand side is shown to be independent of A). Thus we can say that CR
invariants are H-invariant polynomials on N .

Using this expression, Graham [G1] (see also [HKN]) determined all CR
invariants of weight ≤ 5 in case n = 2. We recall his result together with its
generalization to weight 6, which is based on a computer-aided calculation.
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We first introduce a notation which is specific to the 2-dimensional case.
In case n = 2, the tensor A`

pq has only one component. If we denote the
component by A`

pq, then the trace conditions (2.2) are reduced to

A`
22 = A`

23 = A`
32 = A`

33 = 0 for ` ≥ 0. (2.5)

Thus we may write CR invariants as polynomials in the variables

A`
24, A

`
42, and A`

pq with p+ q ≥ 7, ` ≥ 0.

Theorem 2.1 Let n = 2 and ICR
w be the vector space of all CR invariants

of weight w. Then a basis of ICR
w for w ≤ 6 is given by

weight base of ICR
w

0 1

1 or 2 0

3 A0
44

4 |A0
24
|2 = A0

24
A0

42

5 P1(A), P2(A)

6 P3(A), P4(A), (A0
44

)2

Table I

Here P1, P2, P3, P4 are given by

P1(A) =|A0
52|

2 + 18 |A0
43|

2 + Re
(
18A0

35A
0
42 − 5i A1

24A
0
42

)
,

P2(A) =|A0
52|

2 +
171

20
|A0

43|
2 + Re

(15

2
A0

35A
0
42 −

37

20
i A1

24A
0
42

)
,

P3(A) =|A0
26|

2 − 10 |A0
35|

2 +
3

2
|A1

24|
2 +

61

5
|A0

44|
2

+ Re
(
48A0

43A
0
45 + 26A0

42A
0
46 − 28A0

36A
0
52 −

5

2
A0

42A
2
24

)
+ Im

(
2A3

50A
1
24 − 10A0

52A
1
25 + 12A0

43A
1
34 + 9A0

42A
1
35

)
,

P4(A) =|A0
26|

2 + 11 |A0
35|

2 − 1

4
|A1

24|
2 − 2

5
|A0

44|
2

+ Re
(
− 36A0

43A
0
45 − 16A0

42A
0
46 + 14A0

36A
0
52 + A0

42A
2
24

)
+ Im

(
2A0

53A
1
24 + 4A0

52A
1
25 − 9A0

43A
1
34 − 5A0

42A
1
35

)
.
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Remark 2.2 There are many choice of a basis of ICR
w , and Pj(A) above have

no special meaning as CR invariants. These Pj(A) will appear again in the
computation in Section 5. This is the only reason we take them as a basis.

This theorem for weight ≤ 5 has been obtained in [G1] and [HKN]. For
w = 6, this result is new, while the procedure of computation is exactly same
as that of [G1]. We here only explain the procedure of the computation.

We first recall that H is generated by the following two subgroups:

H0 = {φλ : λ ∈ C∗ = C \ {0}},
H1 = {ψ(ξ,r) : (ξ, r) ∈ C× R},

where

φλ(z1, z2) = (λz1, |λ|2z2),

ψ(ξ,r)(z1, z2) =
(z1 − ξ z2, z2)

1 + ξ z1 − η z2

(
η = −|ξ|

2

2
+ i r

)
.

The action of H0 on N is explicitly given by

Ã`
pq = λ1−p−`λ1−q−`A`

pq, where Ã = φλ.A, (2.6)

which is equivalent to φλ(N(A)) = N(φλ.A). In view of this formula, we
define biweight of a monomial P (A) of A = (A`

pq) to be the pair of integers
(w′, w′′) such that

P (Ã) = λ−w′
λ
−w′′

P (A) for A and Ã in (2.6).

In particular, A`
pq has biweight (p + ` − 1, q + ` − 1). We also define weight

to be the average of biweight (w′ + w′′)/2. For Φ = φλ, the transformation
law (2.3) is written as

P (Ã) = |λ|−2wP (A) for every λ ∈ C∗.

This is equivalent to the condition that each monomial of P (A) has biweight
(w,w).

We next consider the action of H1. It is shown that σw(h) = 1 for h ∈ H1.
Thus (2.4) for h ∈ H1 is reduced to

P (h.A) = P (A) for h ∈ H1.
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Therefore, we can give all CR invariants by determining all H1-invariant
polynomials P (A) of homogeneous biweight.

For w ≤ 2, there are no monomials of biweight (w,w). Hence there are
no CR invariants of weight ≤ 2.

For w = 3, the only monomial of biweight (3, 3) is A0
44

(up to a constant
multiple). By computing the action of H1 on this component, we see that
A0

44
is a CR invariant.

For w = 4, there are 3 monomials of biweight (4, 4):

A0
24A

0
42, A

0
55, A

1
44.

Again, by computing the action of H1 on the components appearing here, we
see that const.A0

24
A0

42
is the only H1-invariant linear combinations of these

monomials.
For w = 5, there are 9 monomials of biweight (5, 5):

A0
35A

0
42, A

1
24A

0
42, A

0
53A

0
24, A

1
42A

0
24,

|A0
25|

2, |A0
34|

2, A0
66, A

1
55, A

2
44.

In this case, the condition that a linear combination of these monomials to
be H1-invariant is given by a system of 10 linear equations of 9 variables.
(The number of equations is the number of monomials of biweight (5, 4) or
(4, 5); see Section 4 of [HKN].) The space of solutions is two dimensional and
{P1(A), P2(A)} gives a basis.

For w = 6, there are 24 monomials of biweight (6, 6). In this case, the
condition to beH1-invariant is reduced to a system of 31 linear equations of 24
variables. The computation for making the equations is just a straightforward
generalization of the method of [G1]. This procedure is purely algebraic and
it is not hard to implement it on a computer algebra program. We have used
Mathematica to obtain P3 and P4.

3 Fefferman’s Weyl invariants

In this section we describe a geometric procedure of constructing CR in-
variants, which is called ambient metric construction, by following [F2] and
[BEG]. This procedure is shown to produce all CR invariants of weight ≤ n.
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Let Ω be a strictly pseudoconvex domain in Cn. It is shown by Fefferman
[F1] that there exists a C∞ defining function r of Ω, positive in Ω, satisfying

J [r] := (−1)n det

(
r rj

rk rjk

)
= 1 +On+1(∂Ω),

where

rjk =
∂2r

∂zj∂zk

for 1 ≤ i, k ≤ n,

and that such defining function is unique up to On+2(∂Ω). Here O`(∂Ω)
denotes a term which vanishes to ` th order along the boundary ∂Ω. We call
such a defining function a Fefferman’s defining function and denote by rF.
One of the most important property of Fefferman’s defining function is its
transformation law: if Φ: Ω → Ω̃ is a biholomorphic map, then

r̃F ◦ Φ = rF | det Φ′|−1/(n+1) +On+2(∂Ω), (3.1)

where rF and r̃F are Fefferman’s defining functions of Ω and Ω̃, respectively.
Using this transformation law, Fefferman gave a procedure of constructing
CR invariants, which is called ambient metric construction. Introducing a
new variable z0 ∈ C∗, we define a Lorentz-Kähler metric g = g[rF] in a
neighborhood of C∗ ×M in Cn+1 by

gjk =
∂2rF

#

∂zj∂zk

, where rF
#(z0, z) := |z0|2rF(z).

We call g[rF] the ambient metric for ∂Ω. Let R[rF] be the curvature tensor
of g[rF] and let R(p,q)[rF] = ∇q−2∇p−2R be its covariant derivatives, where ∇
(resp. ∇) is the covariant derivative of type (1, 0) (resp. (0, 1)). Then make
complete contractions of tensor product of several curvature tensors:

W = contr
(
R(p1,q1) ⊗ · · · ⊗R(ps,qs)

)
. (3.2)

We define the weight of W to be

w =
s∑

j=1

(pj + qj)/2− s

and define Weyl invariants of weight w ∈ N to be linear combinations of
complete contractions of the form (3.2) of weight w.
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Now we consider the case ∂Ω is in normal form N(A) in a neighborhood
of 0. Then, for a Weyl invariant of weight ≤ n, the value W |(z0,z)=(1,0) is given
by a polynomial of A, which is denoted by PW (A). This polynomial is shown
to be a CR invariant of weight w by using the transformation law (3.1). The
following theorem states that this procedure gives all CR invariants of weight
≤ n.

Theorem 3.1 ([F2], [BEG]) For w ≤ n, every CR invariant of weight w is
expressed as PW (A) for a Weyl invariant W of weight w.

The restriction on the weight comes from the fact that rF is defined only
up to On+2(∂Ω), while the estimate is not optimal. We can replace n by n+1
(or 5 in case n = 2) in Theorem 4.2 below.

The proof of Theorem 3.1 in [BEG] also gives a basis of CR invariants.
To state their result, we recall some definitions from [BEG]. We say that
a complete contraction (3.2) is traceless if it does not involve any internal
traces, that is, no two indices on the same tensor are contracted together.
We say that two complete contractions are equivalent if they can be made
to coincide by permuting the tensors and by permuting the indices of each
of the tensors. Choose a representative from each such equivalence class of
traceless complete contractions and call the chosen contractions allowable.

Theorem 3.2 ([BEG]) Let w ≤ n−1. If {W1, . . . ,Wd} is a list of allowable
complete contractions, then PW1(A), . . . , PWd

(A) form a basis of ICR
w .

Note that the restriction on weight is sharp. For w = n, there is a relation
among allowable Weyl invariants, which is obtained by skew symmetrizing n
indices in (3.2).

Remark 3.1 In the proof of Theorem 3.2, the following argument is used.
First make linear combinations of complete contractions of the form

contr
(
A0

p1q1
⊗ · · · ⊗A0

psqs

)
(3.3)

that involves no internal traces. Then formally replace each A0
pq by R(p,q)

and replace the trace for the standard metric δij on Cn−1 by the ambient
metric gij. This replacement gives an injection from the space of linear
combinations of complete contractions of the form (3.3) to the vector space
of Weyl invariants. Thus the study of linear relations among allowable Weyl
invariants is reduced to study of that for complete contractions (3.3). For
such complete contractions, we can apply the invariant theory for U(n − 1)
and obtain the desired linear independence.
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4 Generalized Weyl invariants

For weight w > n, Fefferman’s ambient metric construction breaks down. In
particular, if n = 2, Theorems 3.1 and 3.2 give no information; there are no
CR invariants of weight ≤ 2 (see Theorem 2.1). In this section, following [H],
we generalize Fefferman’s method by introducing parameters that describe
the ambiguity of rF. We apply this result, in the next section, to obtain
Table I in Theorem 2.1.

We lift the equation J [r] = 1 to the C∗-bundle, on which the ambient
metric is defined,

J#[u] := (−1)n det
(
ujk

)
0≤j, k≤n

= |z0|2

and consider its asymptotic solutions along C∗×N(A) ⊂ C∗×Cn of the form

u = r# + r#

∞∑
j=1

ηj ·
(
rn+2 log r#

)j
,

where r is a smooth defining function of N(A) ⊂ Cn, r# := |z0|2r, and ηj are
smooth functions in a neighborhood of 0 ∈ Cn. Such an asymptotic solution
exists for any N(A) and is uniquely determined (modulo flat function along
∂Ω) by the additional initial condition:

∂n+2r

∂ρn+2

∣∣∣
ρ=0

= f(z′, z′, v) ∈ C∞(N(A)).

Here ρ-partial differentiation is defined with respect to the real coordinates
(z′, z′, ρ, v). If we write the Taylor expansion of f(z′, z′, v) as

f(z′, z′, v) =
∑

|α|,|β|, `≥0

C`
αβ
z′αz

′
βv

`,

then the Taylor expansion of r at 0 is determined by A and C = (C`
αβ

). Thus

we may write the germ of r at 0 as r[A,C].
Now we follow Fefferman’s ambient metric construction and define Weyl

invariants W for the metric g[A,C] = (∂2r[A,C]/∂zj∂zk), which is a germ
of Lorentz-Kähler metric at (1, 0) ∈ C∗ × Cn. In this case, the value of a
Weyl invariant W at (z0, z) = (1, 0) is given by a polynomial in (A,C) for
any weight. We denote this polynomial by PW (A,C). In case PW (A,C) is
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independent of C, we say that W is C-independent; then PW (A) gives a CR
invariant. The following theorem claims that all CR invariants are given by
C-independent Weyl invariants.

Theorem 4.1 ([H]) For each CR invariant P (A), there exists a C-independent
Weyl invariant W such that P (A) = PW (A).

For n ≥ 3 (resp. n = 2), all Weyl invariantW of weight ≤ n+1 (resp. ≤ 5)
are C-independent. We thus obtain a generalization of Theorem 3.1.

Theorem 4.2 ([H]) Let n ≥ 3 (resp. n = 2). Then, for w ≤ n+ 1 (resp. ≤
5), every CR invariant is expressed as PW (A) for a Weyl invariant W of
weight w.

The restriction on weight is optimal: there is a C-dependent Weyl invari-
ant of weight n + 2 (or weight 6 in case n = 2). See also the computations
in the next section.

Note that r = r[A,C] satisfies J [r] = 1+On+1(N(A)); hence r is a Feffer-
man’s defining function. We thus see, for weight ≤ n, that the CR invariants
PW (A) in the previous section coincide with those given in Theorem 4.2.

Remark 4.1 The terminology used here is different from those of [H]. In [H]
we first consider (3.2) as a formal expression and call it Weyl polynomial ;
then define Weyl functional to be the assignment of functions obtained by
evaluating a Weyl polynomial for ambient metrics. Two different Weyl poly-
nomials may give the same Weyl functional. Thus the distinction is essential
in the proof of the theorems.

5 Explicit computation in case n = 2

In this section we always assume n = 2. Let

IWeyl
w = {PW (A,C) : W is a Weyl invariant of weight w}

and identify a Weyl invariant W with the polynomial PW (A,C). Then The-
orem 4.2 is written as

ICR
w = IWeyl

w for w ≤ 5.
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As an application of this theorem, we give an alternative proof Theorem 2.1
for weight ≤ 5.

Let E(p,q) be a tensor of type (p, q) defined by

E(p,q) := tr4
(
R(p+4,p+4)

)
,

where the trace is taken for the metric g. In particular, E(0,0) is a scalar. It is
then easy to show that IWeyl

w is generated by traceless complete contractions
of the tensor products of

R(p,q) p, q ≥ 2 and E(p,q) p, q ≥ 0.

(Follow the arguments in Section 5 of [H].) Using this fact, we list up gener-
ators of IWeyl

w . The table for weight ≤ 6 is

weight generators of IWeyl
w

1 0

2 W2,2

3 W2,3, E
(0,0)

4 W2,4, W3,3

5 W2,5, W3,4

6 W2,6, W3,5, W4,4, W̃2,2, (E(0,0))2

Table II

Here Wp,q and W̃p,q are traceless complete contractions of the from

Wp,q := contr
(
R(p,q) ⊗R(q,p)

)
and W̃p,q := contr

(
R(p,q) ⊗ E(q,p)

)
.

There are several ways to make such complete contractions. The results of
this section are independent of the choice.

To select a basis from the generators in Table II, we need to determine
linear relations among these Weyl invariants. A computation in [HKN] gives

W2,2 = W2,3 = 0,

E(0,0) = −(4!)2A0
44,

W2,4 =
3

7
W3,3 = 7 · 28 |A0

24|
2
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and

‖R(2,5)‖2 = −4 (5!)2 P1(A), ‖R(3,4)‖2 = −16 (5!)2

3
P2(A),

where P1 and P2 are defined in Theorem 2.1. We thus obtain:

weight basis of IWeyl
w = ICR

w

1 0

2 0

3 E(0,0)

4 W2,4 (or W3,3)

5 W2,5, W3,4

Table III

We can also apply the same procedure to express Weyl invariants of weight
6 in terms of (A,C). A computation using Mathematica gives

W2,6 = F1(A) + 51840Q(A,C) + 14929920A0
44C

0
00,

W3,5 = F2(A) + 25920Q(A,C) + 7257600A0
44C

0
00,

W4,4 = F3(A) + 20736Q(A,C) + 5723136A0
44C

0
00,

W̃2,2 = F4(A)− 576A0
44C

0
00,

(E(0,0))2 = (4!)4 (A0
44)

2,

where

Q(A,C) = (C0
00)

2 − 64 ReA0
43C

0
01 −

16

3
ReA0

42C
0
02

and Fj are polynomials of A. From these formulas, we see that C-independent
Weyl invariants are generated by

W2,6 −
5

2
W4,4 + 1080 W̃2,2,

W3,5 −
5

4
W4,4 + 180 W̃2,2,

(E(0,0))2.

(5.1)
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By computing Fj(A) explicitly, we see that the first two Weyl invariants are
respectively given by

F1 −
5

2
F3 + 1080F4 = 1382400P3(A),

F2 −
5

4
F3 + 180F4 = −345600P4(A),

where P3 and P4 are given in Theorem 2.1. Thus by Theorem 4.1 we have

Proposition 5.1 The Weyl invariants (5.1) form a basis of ICR
6 .

We close this note by giving an analogy of Theorem 3.2 in case n = 2. It
is clear that the allowable Weyl invariants in the sense of Section 3 do not
give basis (as W2,2 = 0). To define allowable Weyl invariants for n = 2, in
view of Remark 3.1, we first define allowable monomial in A of weight w to
be the monomials of A0

pq of biweight (w,w). All allowable (monic) monomials
of A0

pq for weight ≤ 6 are

weight allowable monomials

1 or 2 0

3 A0
44

4 |A0
24
|2

5 |A0
25
|2, |A0

34
|2

6 |A0
26
|2, |A0

35
|2, (A0

44
)2

Table IV

For weight ≤ 5, we can relate Tables III and IV by replacing A0
pq by

R(p,q) and taking complete contractions. This is an analogy of the formal
replacement explained in Remark 3.1. If we call the Weyl invariants obtained
by this replacement allowable Weyl invariants, then we obtain the analogy
of Theorem 3.2 for n = 2 and weight ≤ 5.

For weight 6, the same replacement gives three Weyl invariants:

W2,6, W3,5, (E(0,0))2.

14



In this case, we can obtain three linearly independent CR invariants by
adding W4,4 and W̃2,2 (which are missing in the list above) to the first two
Weyl invariants as in (5.1). So, we can say that there is a basis of ICR

6 each of
them corresponds to an allowable monomial. This result is obtained by a di-
rect computation and we do not know the reason why such a correspondence
holds.

Remark 5.2 For weight 7, there are nontrivial cubic Weyl invariants and for
such invariants the discussion about allowable invariants breaks down. In
fact, there are 7 cubic allowable monomials of A of weight 7

A0
44|A

0
24|

2, A0
24A

0
24A

0
62, A0

34A
0
34A

0
42, A0

24A
0
24A

0
62

and their conjugates, but only CR invariant of degree three is const.A0
44
|A0

24
|2,

which is the product of invariants of weight 3 and weight 4. Therefore other
cubic allowable monomials have no relation to CR invariants.
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