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TWO METHODS OF DETERMINING LOCAL

INVARIANTS IN THE SZEGÖ KERNEL

Kengo Hirachi∗, Gen Komatsu∗ and Noriyuki Nakazawa∗∗

Introduction.

In this note, we shall express invariantly the asymptotic expansion of the Szegö kernel of
a bounded strictly pseudoconvex domain in C2 with C∞ smooth boundary equipped
with an invariant surface element. The corresponding problem for the Bergman kernel
was investigated by Robin Graham [G1]. Adopting Fefferman’s approximate solution to
the Dirichlet problem for the complex Monge-Ampère equation as a defining function
of the domain, Graham determined all the three coefficients of the pole-type singularity
of the Bergman kernel and the first two coefficients of the logarithmic singularity, up
to the identification of a universal non-vanishing constant which is independent of the
choice of a domain. By following his argument, it is not difficult to obtain a similar
expression for the Szegö kernel – as will be observed in Section 1 – and the problem
is reduced to determining two universal constants. Our aim is to present two different
methods of computing these constants.

The first method presented in Section 2 has its origin in Kashiwara’s observation
[Ka] which was later developed by Boutet de Monvel [B1], [B2]. The domains under
consideration are assumed to have analytic boundary. Kashiwara pointed out that
the Bergman kernel is the unique solution (modulo real analytic error) of a simple
holonomic system. His argument applies also to the Szegö kernel case, and we are
reduced to constructing an asymptotic solution of the simple holonomic system which
characterizes the Szegö kernel. We shall follow a computation by Boutet de Monvel [B2]
of the Bergman kernel case.

The second method uses an explicit asymptotic expansion for the class of complete
Reinhardt domains. The third named author obtained in [N2] the corresponding formula
for the Bergman kernel by improving the analysis of Boichu and Coeuré [BC]. A fairly
simple expression was obtained in [N2] by introducing new independent and dependent
variables – the one dimensional hodograph transformation – and the same idea applies
to the Szegö kernel. We shall indicate in Section 3 how we have to modify the argument
of the Bergman kernel case, together with the procedure of rewriting that expansion
formula to the one adapted to the local boundary invariants in the general setting.

Both methods are still valid for the higher dimensional case, and the results are stated
corresponding to those in [G1] for the Bergman kernel. However, our understanding of
the higher dimensional invariant theory is still at an early stage. We hope these methods
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when applied to that case will be helpful in the invariant theoretic studies of both the
Bergman and the Szegö kernels.

§1. Local boundary invariants in the Szegö kernel.

1.1. Universal constants in the asymptotic expansion. Let Ω be a bounded do-
main in Cn with C∞ smooth boundary. If a surface element σ on ∂Ω is specified, then
the Szegö kernel KS(z, w) for z, w ∈ Ω is defined as the reproducing kernel associated
with the Hardy space H2

σ(Ω) consisting of holomorphic functions in Ω having L2 bound-
ary values with respect to σ. Namely, the Szegö kernel is characterized by the following
three properties: KS(·, w) ∈ H2

σ(Ω) for every w ∈ Ω fixed; KS(z, w) = KS(w, z) for
z, w ∈ Ω; and

f(z) =
∫

∂Ω

KS(z, w) f(w) σ(w) for any f ∈ H2
σ(Ω) and z ∈ Ω.

Assuming that Ω is strictly pseudoconvex, let us recall that the boundary behavior
of the restriction to the diagonal z = w ∈ Ω of the Szegö kernel is analogous to that of
the Bergman kernel. It was observed by Fefferman [F1], [F3] (see also Boutet-Sjöstrand
[BS]) that if r ∈ C∞(Ω) is a defining function in the sense Ω = {r > 0} with dr 6= 0 on
∂Ω, then the singularity on the diagonal of the boundary is of the form

(1.1) KS(z) := KS(z, z) =
(n− 1)!

πn

[
ϕS(z)
r(z)n

+ ψS(z) log r(z)
]

near ∂Ω,

where ϕS and ψS are C∞ smooth functions up to the boundary. This is compared with
the case of the Bergman kernel KB(z, w), of which the singularity on the diagonal of
the boundary takes the form

(1.1B) KB(z) := KB(z, z) =
n!
πn

[
ϕB(z)

r(z)n+1
+ ψB(z) log r(z)

]
near ∂Ω,

where ϕB and ψB are functions C∞ smooth up to the boundary.
In order to make the Szegö kernel invariant under biholomorphic change of coordi-

nates, let us require the surface element σ to be subject to the normalization

(1.2) σ ∧ dr = J [r]1/(n+1) dV (z) on ∂Ω with dV (z) :=
n∧

j=1

dzj ∧ dzj

−2
√−1

,

where J [·] denotes the complex Monge-Ampère operator defined by

(1.3) J [r] := (−1)n det
(

r rk

rj rjk

)
,

with the subscripts j, k standing for differentiation with respect to zj , zk for j, k =
1, · · · , n. Thus the condition (1.2) is independent of the choice of r. We next require
the defining function r = rF to satisfy

(1.4) J [r] = 1 + O(rn+1) near ∂Ω (and r > 0 in Ω, r = 0 on ∂Ω);
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namely, rF ∈ C∞(Ω) is Fefferman’s approximate solution to the Dirichlet problem (see
[F2] or the next Subsection):

(1.5) J [uMA] = 1 and uMA > 0 in Ω; uMA = 0 on ∂Ω.

In the case of the Bergman kernel, Graham [G1] showed that if n = 2 then

(1.6B) ϕB = 1 + O(r3), ψB = −3 η1 + kB |A0
24|2 r + O(r2),

with a constant kB 6= 0 independent of the choice of Ω, and that if n = 3 then

(1.7B) ϕB = 1 + cB
n ‖A0

22‖2 r2 + O(r3), ‖A0
22‖2 :=

∑

|α|=|β|=2

|A0
αβ
|2,

with a constant cB
n 6= 0 depending only on n. Here, A0

αβ
with α, β ∈ Nn−1

0 are co-
efficients of Moser’s normal form of ∂Ω, and η1 stands for the first coefficient of the
asymptotic solution to (1.5); see the next Subsection for the precise definition.

Similar expressions hold also for the Szegö kernel. We shall show at the end of this
Section that:

Proposition 1. Let Ω ⊂ Cn be a bounded strictly pseudoconvex domain with C∞

smooth boundary. Suppose given a surface element σ on the boundary and a defining
function r = rF ∈ C∞(Ω) satisfying (1.2) and (1.4), respectively. Then ϕS and ψS in
(1.1) have the following asymptotic behavior near the boundary: If n = 2, then there
exist constants kS

1 and kS
2 independent of the choice of Ω such that

(1.6) ϕS = 1 + O(r2), ψS = kS
1 η1 r + kS

2 |A0
24|2 r2 + O(r3).

If n = 3, then there exists a constant cS
n depending only on n such that

(1.7) ϕS = 1 + cS
n ‖A0

22‖2 r2 + O(r3).

In Sections 2 and 3, we shall give two proofs of the following:

Theorem 1. The universal constants in (1.6) and (1.7) of Proposition 1 above are
given by kS

1 = −2, kS
2 = 8/15 and (n− 1) (n− 2) cS

n = 2/3.

Remark 1. Applying our methods to the Bergman kernel, we can show that the
constants in (1.6B) and (1.7B) are given by kB = 24/5 and n (n− 1) cB

n = 2/3.
Remark 2. Let us consider the case Ω ⊂ C2. It is known that ψB = O(r2) near a

boundary point if and only if ∂Ω is spherical there, that is, Ω is locally biholomorphic
to a ball (cf. [G1]). By virtue of Theorem 1, this condition is equivalent to ψS = O(r3).
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1.2. Review of Graham’s results on local invariants. In order to obtain the
expansions (1.6B) and (1.7B) for the Bergman kernel, Graham [G1] identified explicitly
local boundary invariants of low weight, and discussed the invariance of the asymptotic
solution to the Monge-Ampère boundary value problem (1.5) (cf. also [G2]). In the
proof of Proposition 1, we shall use his results in the same context. Let us here give an
overview of Graham’s results we need, together with precedent theories of Chern-Moser
[CM], Fefferman [F2], and others.

The first observation we need is the local dependence on ∂Ω of ϕS, ψS and ϕB, ψB.
Inspection of the proof in [F1] or [BS] shows that every one of the Taylor coefficients of
ϕS, ψS and ϕB, ψB at a given boundary point is uniquely determined by a finite number
of the Taylor coefficients of r at that point. This fact enables us to work locally near
an arbitrarily prescribed boundary point, say, the origin 0 ∈ Cn.

Let us take a small neighborhood M of 0 ∈ ∂Ω, which is a strictly pseudoconvex
real hypersurface of Cn. We assume for a moment that M is real analytic. After a
biholomorphic change of coordinates about the origin, the domain Ω is locally given
by 2 u > |z′|2 + F (z′, z′, v) with (z′, u + i v) ∈ Cn−1 × C, so that M takes the form
2 u = |z′|2 + F (z′, z′, v), where F is a real analytic function having the expansion

(1.8) F (z′, z′, v) =
∑

|α|, |β|=2

Aαβ(v) z′α z′β with Aαβ(v) :=
∞∑

`=0

A`
αβ

v`.

Here, z′α = zα1 · · · zαa with a = |α| for z′ = (z1, · · · , zn−1) and α = (α1, · · · , αa) ∈
{1, · · · , n− 1}a, and similarly for z′β . Without loss of generality, we may assume A`

αβ
=

A`
βα and that the coefficients A`

αβ
are unchanged under permutation of α and that of

β. Recall M is said to be in Moser’s normal form if the following three conditions are
satisfied:

(1.9) tr A22(v) = 0, (tr)2 A23(v) = 0, (tr)3 A33(v) = 0,

where tr stands for the usual trace obtained by contraction with respect to δjk. In
case M is merely C∞ smooth, expansions in (1.8) are regarded as formal power series.
Abusing notation, we denote by N(A`

αβ
) a real hypersurface in normal form (1.8) even

when it is not real analytic.

Definition ([F3], [G1]). A polynomial P in variables A`
αβ

is said to be an invariant
of weight w ∈ N0 if it satisfies the transformation law

P (A`
αβ

) = |detΦ′(0)|2w/(n+1) P (B`
αβ

)

for any biholomorphic mapping Φ : N(A`
αβ

) → N(B`
αβ

) which preserves the origin.

Given an invariant P of weight w, a function PM ∈ C∞(M) is defined by setting

PM (o) := |detΦ′(o)|2w/(n+1) P (A`
αβ

) for o ∈ M,
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where Φ : M → N(A`
αβ

) is biholomorphic and satisfies Φ(o) = 0. Conversely, if an
assignment M 7→ PM ∈ C∞(M) is specified in such a way that the transformation law

(1.10) PM = | detΦ′|−2w/(n+1) P
M̃
◦ Φ (Φ : M → M̃ biholomorphic)

is valid, then PM defines an invariant, provided the dependence of PM on M is local.
All invariants of low weight were identified by Graham ([G1], Theorem 2.1). In order

to state his result, let Iw denote the totality of invariants of weight w ∈ N0. Clearly,
each Iw is a vector space and I0 = C. Graham [G1] showed that:

Lemma 1.1 ([G1]). (i) Let n = 2. Then I1 = I2 = {0} and dim I3 = dim I4 =
dim I5 = 1. For w = 3, 4, 5, the space Iw is respectively spanned by A0

44
, |A0

24
|2,

5|A0
25
|2 + 9|A0

34
|2 − 2 Im (A0

42
A1

24
).

(ii) Let n = 3. Then I1 = {0} and dim I2 = 1. The space I2 is spanned by ‖A0
22
‖2 =∑ |A0

αβ
|2, where the summation runs over |α| = |β| = 2.

Let us next turn to the complex Monge-Ampère boundary value problem (1.5), of
which the unique existence of a solution was guaranteed by Cheng-Yau [CY]; the solution
has a finite degree of smoothness up to the boundary u := uMA ∈ C∞(Ω)∩Cn+3/2−ε(Ω)
for any ε > 0 small. Before this was proved, Fefferman [F2] constructed, locally near
a given boundary point, a C∞ smooth approximate solution r = rF satisfying (1.4),
which turns out to be unique modulo O(rn+2). His procedure breaks down in the next
step, because of the appearance of logarithmic terms. An asymptotic expansion of the
solution was obtained by Lee-Melrose [LM]; they proved that

(1.11) u ∼ r

∞∑

k=0

ηk(rn+1 log r)k, ηk ∈ C∞(Ω),

and that ηk mod O(rn+1) is unique. This in particular improves the above mentioned
regularity, so that u ∈ Cn+2−ε(Ω) for any ε > 0 small.

What we need is that the expansion (1.11) can be localized. Given an arbitrary
function a ∈ C∞(M), where M is as before a small portion of ∂Ω, Graham [G2] proved
the unique existence of an asymptotic solution u of the form (1.11) to the problem

J [u] = 1 + O(r∞) near M, η0 = 1 + a rn+1 + O(rn+2);

furthermore, ηk modulo O(rn+1) for each k = 1 is independent of the choice of a ∈
C∞(M) and that of C∞ smooth local defining function r of Ω satisfying (1.4).

Let us proceed to the invariant properties of (1.11), hence we shall work locally with-
out any emphasis on it. Let us begin by recalling that the solution to (1.5) transforms
like an invariant of weight −1:

(1.12) u = |det Φ′|−2/(n+1) ũ ◦ Φ, (Φ : Ω → Ω̃ biholomorphic),
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where ũ corresponds to Ω̃. More precisely, (1.12) implies J [u] = J [ũ] ◦ Φ (cf. [F2]).
Since r and ηk are uniquely determined modulo O(rn+2) and O(rn+1), respectively, it
is possible to consider the transformation laws for these; the results are:

r̃ ◦ Φ = | detΦ′|2/(n+1) r mod O(rn+2),(1.13)

η̃k ◦ Φ = | detΦ′|−2k ηk mod O(rn+1).(1.14)

In particular, the boundary value bηk := ηk|∂Ω is an invariant of weight k (n + 1). The
simplest non-trivial case is k = 1. Graham [G1], [G2] determined the linear part of bη1.
If n = 2, then bη1 itself is linear. More precisely,

Lemma 1.2 ([G1], [G2]). If n = 2 then η1 = 4A0
44

+ O(r).

1.3. Proof of Proposition 1. Let us drop the superscript S, because we are only
concerned with the Szegö kernel here. It follows from (1.2) and (1.13) that the Szegö
kernel satisfies the transformation law

(1.15) K(z) = |det Φ′(z)|2n/(n+1) K̃
(
Φ(z)

)
, (Φ : Ω → Ω̃ biholomorphic),

as far as a branch of [detΦ′(z)]n/(n+1) is defined globally (cf. [H] for an intrinsic treat-
ment). In general, (1.15) remains valid for the singularity of the Szegö kernel, for it can
be localized modulo C∞ smooth error to a neighborhood of a small portion M of ∂Ω.
Thus, by (1.1) and (1.13),

(1.16) ϕ̃ ◦ Φ = ϕ mod O(rn), ψ̃ ◦ Φ = | detΦ′|−2n/(n+1) ψ mod O(r∞).

In particular, the boundary values ϕ|M and ψ|M transform like invariants of weight 0
and n, respectively, in the sense of (1.10). These are indeed invariant polynomials in
Moser’s normal form coefficients, since their dependence on the boundary ∂Ω is local
as noted before. More can be said by using (1.16) as follows.

Let us first extract invariants from ϕ with the aid of Lemma 1.1. We first observe
that ϕ|M is constant, for it is an invariant of weight 0. Evaluating it in the case of the
ball, we find ϕ|M = 1. Next, if we write ϕ = 1 + P1 r + O(r2) with P1 ∈ C∞(M), then
P1 is an invariant of weight 1, so that P1 = 0. Thus in case n = 2 we are done. In
case n = 3, we further expand as follows: ϕ = 1 + P2 r2 + O(r3) with P2 ∈ C∞(M).
Then P2 is an invariant of weight 2, so that P2 = cn ‖A0

22
‖2 with a constant cn. This

completes the proof of (1.6) and (1.7) for ϕ.
It remains to consider ψ for n = 2, again by using Lemma 1.1 but this time with

the aid of Lemma 1.2. We have observed that ψ|M is an invariant of weight 2. It then
follows from Lemma 1.1 that ψ|M = 0, so that we can write ψ = Q1 r + O(r2) with
Q1 ∈ C∞(M). Then Q1 is an invariant of weight 3, so that, by Lemma 1.1, it is a
multiple of A0

44
. By virtue of Lemma 1.2, A0

44
has an extension η1, so that we may set

ψ = k1 η1 r + Q2 r2 + O(r3) with Q2 ∈ C∞(M). By the transformation law (1.14) for
η1, we see that Q2 is an invariant of weight 4, which is a multiple of |A0

24
|2 by Lemma

1.1. Therefore, we obtain (1.6) for n = 2, and the proof is complete.
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§2. Application of microlocal analysis of Kashiwara and Boutet de Monvel.

In this Section, we shall give a proof of Theorem 1 by using the theory of micro-
differential systems. Assuming that the boundary ∂Ω is real analytic, we shall construct
an asymptotic series which actually converges and gives the Szegö kernel. It should be
mentioned that the same construction works even in the C∞ smooth category, and in
that case we obtain a formal series giving rise to an asymptotic expansion of the Szegö
kernel. This and the next Sections are self-contained, and can be read independently.

2.1. Reformulation of Theorem 1. In order to prove Theorem 1, we shall compute
the asymptotic expansion of the Szegö kernel in the following form.

Theorem 2. Assume that M := ∂Ω ⊂ Cn is in normal form. Consider the behavior
of the invariant Szegö kernel at points γt = (0, . . . , 0, t/2) as t → +0. If n = 2, then the
singularity of π2 KS(γt) at t = +0 is given by 1/t2 +

(
C1(t) + O(t3)

)
log t, where

C1(t) := −8A0
44 t +

(
40A0

55 −
440
3
|A0

24|2
)

t2.

If n = 3 then
πn

(n− 1)!
KS(γt) =

1
tn
− 2(n− 3)

(n− 2) (n2 − 1)
‖A0

22
‖2 1

tn−2
+ O

(
1

tn−3

)
.

Observe that Theorem 2 together with Lemma 1.2 implies kS
1 = −2. To determine

other universal constants, we need to know more about the asymptotic behavior of the
solution u = uMA to the problem (1.5). Such information is given by the following:

Corollary. If n = 2, then u(γt) = t + C2(t) t4 log t + O(t6| log t|), that is, rF(γt) =
t + O(t4) and η1(γt) = C2(t) + O(t2), where

C2(t) := 4 A0
44 +

(
−20 A0

55 +
368
5
|A0

24|2
)
t.

If n = 3 then u(γt) = t +
8

3n (n2 − 1)
‖A0

22
‖2 t3 + O(t4).

Let us first observe that Theorem 1 follows from Theorem 2 and its Corollary.

Proof of Theorem 1 via Theorem 2. If n = 2, then Proposition 1 and the Corollary above
imply ϕS(γt) = 1+O(t2) and ψS(γt) = kS

1 C2(t) t+kS
2 |A0

24
|2 t2 +O(t3). Comparing this

with Theorem 2, we obtain the desired conclusion kS
2 = 8/15 (and kS

1 = −2).
In case n = 3, we have by Proposition 1 and the Corollary above that ϕS(γt) = 1 +

cS
n ‖A0

22
‖2 t2+O(t3), while Theorem 2 and its Corollary permit us to write c1 tn KS(γt) =

1 + c2 ‖A0
22
‖2 t2 + O(t3) and u(γt)/t = 1 + c3 ‖A0

22
‖2 t2 + O(t3) with explicit constants

c1 :=
πn

(n− 1)!
, c2 :=

−2 (n− 3)
(n− 2) (n2 − 1)

, c3 :=
8

3 n (n2 − 1)
,

so that c1 u(γt)n KS(γt) = 1 + (n c3 + c2) ‖A0
22
‖2 t2 + O(t3). Thus cS

n = n c3 + c2, which
yields the desired conclusion (n− 1) (n− 2) cS

n = 2/3.
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We shall here present a proof of the Corollary for n = 2; the case n = 3 will be
discussed in Subsection 2.4.

Proof of Corollary for n = 2. Following the algorithm given in [F2], we first compute
the smooth part. Then we see that Fefferman’s approximate solution satisfies rF(γt) =
t+O(t4). This, together with Proposition 1, implies ψS(γt) = kS

1 η1(γt) t+kS
2 |A0

24|2 t2 +
O(t3), with kS

1 = −2 via Lemma 1.2 as noted before. On the other hand, Theorem 2
yields ψS(γt) = C1(t)+O(t3), so that η1(γt) = 4A0

44
+(−20A0

55
+c |A0

24
|2) t+O(t2) with a

constant c. It remains to determine this c. It was observed by Graham [G1] that η1 = 0
whenever A0

44
= 0 identically. Thus, the constant c will be identified by computing A0

55

and A0
24

for such a hypersurface M . Taking M defined by (z1 + z1)2 (z2 + z2) = 1, we
make a holomorphic change of coordinates and get

2Re z2 = |z1|2 +
1
6

∑

p+q=3, p,q=1

(−1)p+q (p + q + 1)!
p! q!

zp
1 zq

1.

Then by the procedure in Chern-Moser [CM] starting from the expression above, we
can find a normal form at each point such that A0

44
= 0, A0

55
= 23/9 and A0

24
= 5/6.

This gives c = 368/5, which is the desired conclusion.

2.2. A microdifferential system characterizing the Szegö kernel, and the
construction of an asymptotic solution. The proof of Theorem 2 will be done by
formulating the Szegö kernel analogue of Microlocal Analysis of the Bergman kernel
which was carried out by Kashiwara [Ka] and Boutet de Monvel [B1], [B2]. In what
follows, we shall restrict ourselves to the case where Ω is a bounded strictly pseudo-
convex domain in Cn having (real) analytic boundary. Note that if an analytic defining
function ρ = ρ(z, z) (> 0 in Ω) is specified near a boundary point, then the coefficients
ϕ = ϕS, ϕB and ψ = ψS, ψB in (1.1), (1.1B) are analytic there. This fact is contained
implicitly in Boutet-Sjöstrand [BS].

Denoting by X the complex conjugate of X := Cn, we regard X × X as the com-
plexification of the diagonal XR := {(z, w); z = w}, which is identified with X. Re-
call that a microdifferential operator on X is an analytic pseudodifferential operator
P = P (z, z,Dz, Dz) with Dz := ∂/∂z which is classical in the sense that the symbol
admits a homogeneous expansion of integral degree. Each operand, called a micro-
function, is the microlocal singularity of a hyperfunction decomposed into holomorphic
extensions to conic sets in the complexification X × X. More generally, we also con-
sider microdifferential operators P = P (z, w,Dz, Dw) which are sesqui-holomorphic in
X ×X. By abusing notation, we write z in place of w, and identify a (hyper-) function
on XR ' X with its complex extension to X ×X.

We are concerned with singularities of the form ϕρ−N +ψ log ρ with N ∈ N. Typical
ones are log ρ and 1/ρ, which respectively represent, up to a multiple, the Heaviside
function Y = Y (ρ) of Ω and the Delta measure δ = δ(ρ) on ∂Ω with surface element
σ satisfying σ ∧ dρ = dV (z). Let us now recall Kashiwara’s observation [Ka] on the
Bergman kernel:

(a) Given a holomorphic microdifferential operator P = P (z, Dz), there exists a
unique antiholomorphic microdifferential operator QB = QB(z, Dz) such that (P −
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QB)Y = 0. In this case, the Bergman kernel KB = KB(z, z) satisfies (P−QB)∗KB = 0,
where P ∗ = P ∗(z, Dz) and (QB)∗ = (QB)∗(z, Dz) are formal adjoints of P and QB,
respectively.

(b) If holomorphic microdifferential operators P1, · · · , P2n are chosen appropriately,
e.g., Pj = zj and Pn+j = Dj = ∂/∂zj for j = 1, · · · , n, then the system (Pk−QB

k )Y = 0
for k = 1, · · · , 2n, with QB

k corresponding to Pk as in (a) above, characterizes Y up
to a multiple. Furthermore, the system of formal adjoints characterizes the Bergman
kernel. Namely, the (analytic) singularity of KB is given by a microfunction solution
which exists uniquely up to a multiple.

The proof of the above facts (a) and (b) applies equally to the Szegö kernel with an
arbitrary surface element, and we obtain:

Lemma 2.1. Assume that a Delta measure δ = δ(ρ) on ∂Ω is uniquely determined by
a microdifferential system (Pk − QS

k)δ = 0 for k = 1, · · · , 2n with Pk = Pk(z,Dz) and
QB

k = QB
k (z, Dz). Then, the Szegö kernel KS = KS(z, z) associated with σ satisfying

σ ∧ dρ = dV (z) is characterized by the system (Pk − QS
k)∗KS = 0 for k = 1, · · · , 2n.

In particular, the invariant Szegö kernel is obtained by the choice ρ = J [r]−1/(n+1) r,
where r is an arbitrary defining function, so that δ(ρ) = J [r]1/(n+1) δ(r).

In order to compute the Szegö kernel asymptotically by using Lemma 2.1 above, we
follow the argument in [B1], [B2] for the Bergman kernel. This begins with the following
observation, where (d) has been previously used implicitly in [Ka]:

(c) Let Y0 = Y (U0), where U0(z, z) := zn + zn − z′ · z′, so that Ω0 := {U0 > 0} is
biholomorphically equivalent to a ball. Then, it is possible to construct explicitly an
invertible holomorphic microdifferential operator AB = AB(z, Dz) of infinite order such
that Y = AB Y0.

(d) Let KB
0 = KB

0 (z, z) denote the Bergman kernel associated with Ω0, so that KB
0

is a multiple of U−n−1
0 . Then KB = (AB)∗−1 KB

0 , where (AB)∗ = (AB)∗(z,Dz) is a
formal adjoint of AB.

Note that (AB)∗−1 is a variant of the Fourier integral operator which is regarded
as a pseudodifferential operator of infinite order. A crucial point is that (AB)∗−1 is a
holomorphic operator. To realize the step (c) above, it is convenient to introduce a
complex normal form as in [B1], [B2], more precisely, a defining function U := U0 −H
of ∂Ω in X ×X, where H is defined by setting

(2.1) H(z, z′) :=
∑

|α|, |β|=2

Cαβ(zn) z′α z′β with Cαβ(zn) :=
∞∑

`=0

C`
αβ

z`
n,

where the coefficients Cαβ(zn) are subject to the trace conditions as in the case of
Moser’s normal form (1.8) with (1.9), as well as the symmetrization on the permutation
of α and that of β. The coefficients C`

αβ
are computed from A`

αβ
via the implicit function

theorem (see the next Subsection). Noting that Dj D−1
n U0 = −zj U0 for 1 5 j 5 n− 1,

we see that Y = AB Y0 is satisfied by AB = AB(z, Dz) with the symbol

(2.2) AB(z, ζ) = exp[−H(z,−ζ ′/ζn) ζn], where ζ = (ζ ′, ζn).
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We are concerned with an operator AS = AS(z, Dz) satisfying AS δ(U0) = δ(ρ) and
thus (AS)∗−1 KS

0 = KS, where KS
0 = KS

0 (z, z) stands for the (invariant) Szegö kernel
associated with the domain Ω0, so that KS

0 is a multiple of U−n
0 . Recalling that the

invariant Szegö kernel corresponds to the choice ρ = J [U ]−1/(n+1) U , we see that the
symbol in this case is given by

(2.3) AS(z, ζ) = V (z,−ζ ′/ζn) AB(z, ζ) with V (z, z′) := J [U ](z, z′)1/(n+1).

In the case of an arbitrary surface element on ∂Ω, we have δ(ρ) = V δ(U), where
V = V (z, z) is nonvanishing. The argument above remains valid by eliminating the
variable zn in the factor V (z, z). This is done by substituting zn = −zn+z′ ·z′+H(z, z′),
since only the boundary value is concerned. Therefore, we have obtained, as in (c) and
(d) for the Bergman kernel, the following:

Lemma 2.2. Let AS = AS(z,Dz) be a holomorphic microdifferential operator of infi-
nite order having the symbol given by (2.3) with U = U0−H, where H and AB(z, ζ) are
defined by (2.1) and (2.2). Then δ(ρ) = AS δ(U0) with ρ = J [U ]−1/(n+1) U , so that the
invariant Szegö kernel is given by KS = (AS)∗−1 KS

0 , where KS
0 is a multiple of U−n

0 .
The Szegö kernel corresponding to an arbitrary surface element on ∂Ω is obtained by a
modification of the definition of V (z, z′) as described above.

Proof. We have already observed δ(ρ) = ASδ(U0), and thus it remains only to prove
KS = (AS)∗−1 KS

0 . Let us use Lemma 2.1. If δ(ρ) is characterized by (Pk−QS
k)δ(ρ) = 0

for k = 1, · · · , 2n, then (Pk −QS
k)∗KS = 0. Recalling that δ(ρ) = ASδ(U0), we have

((
AS

)−1
PkAS −QS

k

)
δ(U0) = 0, and thus

(
Pk −QS

k

)∗ (
AS

)∗−1
KS

0 = 0.

This is because AS is an invertible holomorphic operator such that (AS)−1PkAS are
operators of finite order. Hence, (AS)∗−1KS

0 satisfies a microdifferential system char-
acterizing KS, so that KS = c(AS)∗−1KS

0 with some constant c. Regarding KS as a
perturbation of KS

0 , we obtain the desired conclusion c = 1.

By virtue of Lemma 2.2 above, one can construct an asymptotic expansion of the
invariant Szegö kernel by using the Neumann series expansion A∗−1 = 1+(1−A∗)+· · · ,
where A = AS. To explain this, we follow [B2] and introduce the biweight by setting
w2(z′) = (1, 0) = −w2(D′) and w2(zn) = (1, 1) = −w2(Dn), where D′ := ∂/∂z′. This
notion extends naturally to holomorphic microdifferential operators of infinite order.
We also set w2(z′) = (0, 1), w2(zn) = (1, 1) and w2(log U0) = (0, 0), so that the notion
of biweight extends also to the operands. Then, the weight is defined by w(·) := p + q
when w2(·) = (p, q). In the next Subsection, we shall observe that w(1 − A) = 4 and
thus w(1 − A∗) = 4, since the biweight is unchanged by taking the formal adjoint.
Therefore, the Neumann series makes sense as an asymptotic series. The case of a
general surface element is similar if we note under obvious notation that AS

inv(z, ζ) =
E(z, ζ ′/ζn)AS

gen(z, ζ) with a nonvanishing E(z, ζ ′/ζn), so that w(1−E(z, D′D−1
n )) = 1.
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2.3. Proof of Theorem 2 for n = 2. Let us begin by recalling that

(2.4) D−m
2 U−2

0 =
−1

(m− 2)!
tm−2 log t evaluated at z = z = γt for 2 5 m ∈ N,

where we are only concerned with the singularity at t = +0. Since w2(U−2
0 ) = (−2,−2)

and thus w(U−2
0 ) = −4, it suffices to compute the Neumann series expansion of (AS)∗−1

up to terms of weight 5 8. Furthermore, we can ignore terms of biweight (p, q) satisfying
p 6= q and 4 < p + q 5 8, since these terms vanish when evaluated at z1 = z1 = 0.

By direct computation, we have

V (z, z1) = 1 + B0
13 z1z

3
1 + B0

31 z3
1z1 +

∑
B`

αβ
zα
1 zβ

1 z`
2 ,

where the summation is taken over ` ∈ N0 and α, β = 1 with α + β = 5. (We shall later
write down the coefficients B`

αβ
we need in terms of C`

αβ
.) By using this, we obtain

AS(z, Dz) = 1 + a13 + a31 + a33 + a44 + · · · ,

where aαβ = aαβ(z, Dz) are terms of biweight (α, β) given by

aαβ = aB
αβ
−B0

αβ
zα
1 (D1D

−1
2 )β with aB

αβ
= −C0

α+1 β+1
zα+1
1 (D1D

−1
2 )β+1 D2

for (α, β) = (1, 3), (3, 1), (3, 3), and

a44 = aB
44 + B0

44 z4
1 (D1D

−1
2 )4 −B1

33 z3
1 z2 (D1D

−1
2 )3

+(C0
24 B0

31 + C0
42 B0

13)z
5
1 (D1D

−1
2 )5 D2

with

aB
44 = C0

55 z5
1 (D1D

−1
2 )5 D2 − C1

44 z4
1z2 (D1D

−1
2 )4 D2 + C0

24 C0
42 z6

1 (D1D
−1
2 )6 D2

2 .

This implies, in particular, w(1−AS) = 4. Furthermore,

Lemma 2.3. The singularity of π2 KS(γt) at t = +0 modulo O(t3) log t is given by
(c1 D−3

2 + c2 D−3
2 z2 + c3 D−4

2 )U−2
0 evaluated at z = z = γt , where z2 in D−3

2 z2 stands
for a multiplication operator, and

c1 := −4! C0
44 + 3! B0

33 , c2 := −4!C1
44 + 3! B1

33 ,

c3 := 5! (C0
55 + C0

24 B0
31 + C0

42 B0
13)− 6! C0

24 C0
42 − 4!B0

44

+2 (12 C0
24 − 3 B0

13) (12 C0
42 − 3 B0

31).

Proof. Writing A = AS, we have A∗−1 = 1 + (1 − A∗) + (1 − A∗)2 + · · · , where · · ·
stands for terms which are irrelevant to the singularity modulo O(t3) log t. Considering
biweight, we get 1−A∗ = −a∗

33
− a∗

44
+ · · · and

(1−A∗)2 = (a∗13 + a∗31)
2 + · · · = a∗13 a∗31 + a∗31 a∗13 + · · · = a∗13 a∗31 + · · · ,
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where the last equality follows from the expression of a31. Then, the desired conclusion
is obtained by the explicit form of a13, a31, a33 and a44.

By virtue of (2.4) and Lemma 2.3 above together with the commutation relation
[D−m

2 , z2] = −mD−m−1
2 for m ∈ N, we get an expression of the singularity of π2 KS(γt)

in terms of the coefficients B`
αβ

and C`
αβ

. The desired conclusion follows from

B0
13 =

8
3

C0
24 , B0

31 =
8
3

C0
42 , B0

33 =
16
3

C0
44 , B1

33 =
16
3

C1
44 ,

B0
44 =

25
3

C0
55 + C1

44 −
128
9

C0
24 C0

42 ,

C0
24 = A0

24 , C0
42 = A0

42 , C0
44 = A0

44 , C1
44 = −i A1

44 , C0
55 = A0

55 +
i

2
A1

44 .

These are obtained by direct computation which is simple but long.
Remark 3. The formal substitution B`

αβ
= 0 yields the Bergman kernel analogue of

Theorem 2 for n = 2, that is, the singularity of (π2/2) KB(γt) at t = +0 is given by

1
t3

+
(
CB(t) + O(t2)

)
log t, where CB(t) := −12A0

44 +
(
60A0

55 − 216|A0
24|2

)
t.

This first implies the Corollary of Theorem 2 and then the statement of Remark 1 in
Subsection 1.1 for n = 2, that is, kB = 24/5 in (1.6B).

2.4. The higher dimensional case.

Proof of Theorem 2. By direct computation, we have uMA(γt) = t + O(t3). Thus by
Proposition 1, it suffices to determine the coefficient of ‖A0

22
‖2/tn−2. For this sake, we

consider a domain given by F = 2 εRe (z2
1 z2

2) with ε > 0 small, and thus ‖A0
22
‖2 = 2 ε2.

It is easily seen that J [U ] = 1− 16 ε2 |z1z2|2, so that

AS(z, Dz) = 1 + ε (z2
1D2

2 + z2
2D2

1) D−1
n +

ε2

2
(z4

1D4
2 + z4

2D4
1 + 2 z2

1z2
2 D2

1D
2
2) D−2

n

− 16 ε2

n + 1
(z1z2D1D2)D−2

n + (terms of weight = 6).

This yields (AS)∗ = 1 + c ε2 D−2
n + · · · and thus (AS)∗−1 = 1 − c ε2 D−2

n + · · · , where
c := 4 (n− 3) (n + 1). Applying this expression of (AS)∗−1 to U−n

0 , we get the desired
conclusion.

Proof of Corollary to Theorem 2 for n = 3. Recall that Fefferman’s approximate so-
lution r = rF is unique modulo O(rn+2). Following the procedure in [F2], we get
r = rF(γt) which is a formal power series in t of the form r = t + c1t

3 + O(t4). It then
follows from Theorem 2 that

ϕS(γt) =
(
1 + c1t

2
)n

(1− c2 ‖A0
22‖2 t2) + O(t3) = 1 + (n c1 − c2 ‖A0

22‖2) t2 + O(t3),
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where c2 := 2 (n− 3)/{(n− 2) (n2− 1)}. On the other hand, Proposition 1 implies that
ϕS(γt) = 1 + cS

n ‖A0
22
‖2 t2 + O(t3), so that c1 = c3 ‖A0

22
‖2 with a universal constant c3.

We wish to show that c3 = 8/
{
3n (n2 − 1)

}
. In order to prove this, we consider the

same domain as in the proof of Theorem 2 above, and thus J [U ] = 1−16 ε2 |z1z2|2 with
2 ε2 = ‖A0

22
‖2, where U = 2 Re zn − |z′|2 − 2 εRe (z2

1 z2
2). We now use the construction

in [F2] crucially. Recall that if we define Uk for k ∈ N by

U1 = J [U ]−1/(n+1) U and Uk/Uk−1 = 1 +
1− J [Uk−1]
k (n + 2− k)

for 2 5 k 5 n + 1,

then J [Uk] = 1 + O(rk) and thus Uk = (1 + O(rk))Uk+1 = r + O(rk+1). We thus
need to compute U3 restricted to z = z = γt . By direct computation, we have J [U1] ∼
1 − {

1− 16 ε2/(n + 1)
}

(|z1|2 + |z2|2)U , which gives an approximate expression for
U2/U1. It is then easy to obtain the desired conclusion for U3 evaluated at z = z = γt.

Remark 4. The difference between AS(z, Dz) and AB(z, Dz) modulo terms of weight
= 6 is −16 ε2 (n+1)−1 (z1z2D1D2)D−2

n , so that (AB)∗−1 = 1+4 ε2 D−2
n + · · · , and thus

πn

n!
KB(γt) =

1
tn+1

(
1− 2

n (n− 1)
‖A0

22‖2 t2 + O(t3)
)

,

which corresponds to Theorem 2 for n = 3. This implies the Corollary as above, and
we obtain the statement in Remark 1 for n = 3, that is, n (n− 1) cB

n = 2/3 in (1.7B).

§3. Analysis on complete Reinhardt domains.

3.1. An asymptotic expansion of the Szegö kernel in Reinhardt domains. As
in Section 1, let us consider a bounded strictly pseudoconvex domain Ω in Cn with
C∞ smooth boundary, together with a surface element σ on the boundary satisfying
(1.2). We now further assume that Ω is a Reinhardt domain, that is, Ω is invariant
under a natural action of the unit torus. Let us denote by B, and call the base domain
associated with Ω, the minus-signed logarithmic real representative domain − log |Ω| =
{(x, y) ∈ Rn−1 × R; (e−x1 , · · · , e−xn−1 , e−y) ∈ Ω}. Introducing a system of multi-polar
coordinates z = (z1, · · · , zn) = (e−x1−iθ1 , · · · , e−xn−1−iθn−1 , e−y−iθn) with θ1, · · · , θn ∈
[0, 2π), we see that σ = σ∂B ∧ dθ1 ∧ · · · ∧ dθn, where σ∂B is a surface element on ∂B.
This change of coordinates provides a locally biholomorphic mapping E− : TB 3 w 7→
z = e−w := (e−w1 , · · · , e−wn) ∈ Ω∩{z1 · · · zn 6= 0}, where TB denotes the corresponding
tube domain B + i Rn ⊂ Cn, and thus det E′

−(w) = (−1)n z1 · · · zn.
For simplicity, let us restrict ourselves to the case n = 2 and assume that Ω is a

complete Reinhardt domain, that is, Ω is invariant under a natural action of the closed
unit polydisc. Then B = {y > f(x)}, where f ∈ C∞(I) satisfies f ′′ > 0 and I is
a half line of the form (x−,∞). In order to flatten the boundary of B, we make a
change of variables (x, y) → (ρ, v) defined by ρ := y − f(x) and v := f ′(x), so that
B = {ρ > 0, v < 0}. We now set p(v) := f ′′(x) —— the one dimensional hodograph
transformation. Then

(3.1) σ∂B =
1
16

J [ρ]−2/3 dv, where J [ρ] =
p(v)

|4z1z2|2 =
p(v)

16 | detE′−(w)|2 .
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Furthermore, it is possible to express the Szegö kernel asymptotically by using p and
its derivatives. In order to state it more precisely, observe that (1.1) takes the form

(3.2) KS(z) =
1
π2

J [ρ](z)2/3

[
ϕ̃S(v, ρ)

ρ2
+ ψ̃S(v, ρ) log ρ

]
near ∂Ω ∩ {z1z2 6= 0},

where ϕ̃S and ψ̃S are functions of v < 0 and ρ > 0 which are C∞ smooth up to ρ = 0,
so that they have the Taylor expansions

(3.3) ϕ̃S(v, ρ) = ϕS
0(v) + ϕS

1(v) ρ + O(ρ2), ψ̃S(v, ρ) ∼
∞∑

k=0

ψS
k(v) ρk.

We then have the following main result of this Section.

Theorem 3. In addition to the hypotheses of Proposition 1 in Section 1, assume n = 2
and that Ω is a complete Reinhardt domain with base B = {ρ := y − f(x) > 0}. Define
p(v) := f ′′(x) with v := f ′(x), and consider the Szegö kernel (3.2) with (3.3). Then,

ϕS
0 = 1, ϕS

1 =
1
6

e1, ψS
0 = 0, ψS

1 =
−1
72

e3, ψS
2 =

1
360

e42 +
1

4320
(e43 − e41),

where e1 := p′′, e3 := (p2 p(4))′′, e41 := e1e3, e42 := (p e′3)
′ and e43 := (p p(4))2.

Remark 5. A similar formula for the Bergman kernel is given in [N2], where the
normalization is slightly different from ours. In our notation, this is stated as follows:

KB(z) =
2
π2

J [ρ](z)
[
ϕ̃B(v, ρ)

ρ3
+ ψ̃B(v, ρ) log ρ

]
near ∂Ω ∩ {z1z2 6= 0},

where ϕ̃B(v, ρ) = 1 + e1 ρ/4 + e2 ρ2/12 + O(ρ3) with e2 := (p p(3))′ and

ψ̃B(v, ρ) =
−1
48

e3 + (2 e42 + e43 − e41)
ρ

480
+ O(ρ2).

Remark 6. It is easily seen that ∂Ω is spherical if and only if p is an at most cubic
polynomial (cf. [Ko]). Thus, Remark 2 is clear directly from Theorem 3 for our class of
Reinhardt domains. Also, a global characterization of the ball is given in [N2] by using
the Bergman kernel. This is immediately translated to the Szegö kernel by comparing
Theorem 3 and Remark 5 above. That is, Ω is a ball if and only if ψS

1 = 0 on the whole
portion of the boundary ∂B. Such a characterization of globally spherical boundary
extends to general Reinhardt domains which are bounded and strictly pseudoconvex
(cf. [Ko]), for the completeness assumption in Theorem 3 can be eliminated after an
obvious modification of the statement.

3.2. Proof of Theorem 1 by using Theorem 3. In order to prove Theorem 1 by
using Theorem 3 above, we need to express the expansion (1.1) approximately in terms
of (v, ρ). This is done by the following:
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Lemma 3.1. Consider the complex Monge-Ampère boundary value problem in the
complete Reinhardt domain Ω ⊂ C2. Then, rF = J [ρ]−1/3 r̃ + O(ρ4) and η1 = J [ρ] η̃1 +
O(ρ2), where

r̃ := ρ− ρ2

12
e1 − ρ3

36
(e42 − 1

2
e2
1), η̃1 :=

1
144

e3 − ρ

720
(e42 − 1

2
e41).

Proof. Setting u = J [ρ]−1/3ũ(v, ρ), we have J [u] = M [ũ]Lũ− pQ[ũ], where

M [ũ] = ũ2
ρ − ũũρρ , Lũ = ũρ +

1
3

p′′ũ− (p ũv)v , Q[ũ] = ũρρũ
2
v − 2ũρũvũρv + ũũ2

ρv

with ũρ = ∂ũ/∂ρ, ũv = ∂ũ/∂v, and so on. We thus seek a solution u of J [u] = 1+O(ρ4)
in the form ũ = r̃ + η̃1r̃

4 log r̃ with r̃ = ρ + r2(v)ρ2 + r3(v)ρ3 and η̃1 = η10(v) + η11(v)ρ.
Noting that Q[ũ] = O(ρ4), we are reduced to solving

M [r̃] Lr̃ = 1 + O(ρ3), M [ũ] Lũ = 1 + O(ρ4).

The first equation is satisfied if and only if r2 = −e1/12 and r3 = −(2e2 − e2
1)/72. In

order to solve the second equation, we set ũ1 = r̃ +(γ10 +γ11ρ)ρ4 log ρ, where γ10 = η10

and γ11 = η11 + 4r2γ10 . Then ũ = ũ1 + O(ρ5), so that M [ũ]Lũ = M [ũ1] Lũ1 + O(ρ4).
Writing M [ũ1] = m1 + m2ρ

3 log ρ + O(ρ5) and Lũ1 = `1 + `2ρ
3 log ρ + O(ρ5) with

polynomials m1, m2, `1, `2 of ρ depending on v, we see that the equation for ũ is
equivalent to m1`1 = 1 + O(ρ4) and m1`2 + m2`1 = O(ρ2). Since r̃ has been identified,
the first equation has a unique solution γ10 = −(p r′3)

′/4. The second equation consists
of two relations, one of which is identically satisfied. Another one determines γ11, that
is, γ11 = −(p γ′10)

′/5− (7/30)p′′γ10. Thus η10 and η11 are identified as in the statement.

Lemma 3.2. |A0
24
|2 = J [ρ]4/3α24, where α24 := (p p(4)/48)2 = e43/482.

Proof. In order to reduce computations, we use Proposition 1 or the corresponding
result (1.6B) for the Bergman kernel. It then follows from Lemma 3.1 and Theorem 3
(or Remark 5) that J [ρ]4/3 e43 is an invariant of weight 4, so that Lemma 1.1 implies
the existence of a constant c such that |A0

24
|2 = c J [ρ]4/3 e43. In order to identify c, we

consider a tube domain TB = B + i R2 in C2 such that the boundary of the base domain
B is locally given near the origin by y = f(x), where f(x) = −x + x2/2 + x6/6! + · · · .
Then, v = −1 + x + x5/5! + · · · and p(−1) = p(4)(−1) = 1, so that J [ρ] = 1/16 at
x = y = 0. By a simple change of variables, the boundary ∂TB is transformed to

z2 + z2 = |z1|2 +
4∑

j=2

zj
1 z6−j

1

j! (6− j)!
+ · · · = |z1|2 +

z2
1 z4

1

48
+

z3
1 z3

1

36
+

z4
1 z2

1

48
+ · · · ,

where the Jacobian factor 1/16 comes out. It remains to show that this real hypersurface
has a normal form such that A0

24
= 1/48. This is verified by inspecting the procedure

of constructing a normal form in Chern-Moser [CM].

Proof of Theorem 1. By virtue of Theorem 3 together with Lemmas 3.1 and 3.2, we
can prove Proposition 1 and Theorem 1 for our class of Reinhardt domains. In Lemma
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3.1, we identified the coefficients of r̃ = ρ+ r2(v)ρ2 + r3(v)ρ3 and η̃1 = η10(v)+ η11(v)ρ.
Since ϕS

1 +2r2 = 0, it follows that ϕS = (1+ϕS
1ρ)(1+ r2ρ)2 +O(ρ2) = 1+O(r2), which

is the first relation of (1.6) in Proposition 1. We next seek constants kS
1 and kS

2 in such
a way that the second relation of (1.6) holds. Comparing the coefficients of ρ and ρ2,
we get ψS

1 = kS
1η10 and ψS

2 = kS
1 (η11 +η10r2)+kS

2α24, where α24 is given by Lemma 3.2.
Applying Theorem 3 together with Lemmas 3.1 and 3.2, we obtain

(kS
1 + 2)e3 = 0, (kS

1 + 2)
( 1

12
e41 − e42

)
+

( 5
16

kS
2 −

1
6

)
e43 = 0.

These relations determine the constants kS
1 and kS

2 uniquely as in Theorem 1, since there
are domains in our class such that e3 6= 0 and e43 6= 0 locally.

Remark 7. A similar argument is applied to the Bergman kernel (see Remarks 1 and
5). The first relation in (1.6B) follows from ϕB

1 +3r2 = 0 and ϕB
2 +3ϕB

1 r2+3(r2
2+r3) = 0,

where the notation will be self-explanatory. Observe that r3 is involved in ϕB
2 . The

second one, or, rather ψB = kB
1 η1+kB

2 |A0
24
|2r+O(r2), which is equivalent to ψB

0 = kB
1 η10

and ψB
1 = kB

1 η11 + kB
2 α24, takes the form

(kB
1 + 3)e3 = 0, (kB

1 + 3)(e41 − 2e42) +
(5

8
kB
2 − 3

)
e43 = 0.

3.3. Proof of Theorem 3. Given (x, ρ) ∈ I × R+ with x arbitrarily fixed, we set

Kx(ρ) := π2 J [ρ](z)−2/3 KS(z) with − log(|z1|, |z2|) = (x, ρ + f(x)),

and consider the behavior as ρ → 0 (see (3.2)). Since a complete orthonormal system
of H2

σ(Ω) is given by normalizing monomials, it follows that KS(z) =
∑ |zα|2/||ζα||2,

where the summation runs over α ∈ N2
0. Observe by (3.1) that

||ζα||2 =
∫

∂Ω

|ζα|2 σ(ζ) = (2π)2
∫

I

e−2β·Ξ
{

f ′′(ξ)
16

}1/3

dξ,

where β = β(α) := α + (2/3, 2/3) and Ξ := (ξ, f(ξ)). We then get

Kx(ρ) =
16

f ′′(x)

∑

α∈N2
0

exp[−2β2ρ]

D̃x(2β)
=

∞∑
a=0

M̃x(2b) e−2bρ with b := a +
2
3

,

where D̃x(2β) := 4
∫

I

e−2β·(Ξ−X)
{
f ′′(ξ)/f ′′(x)

}1/3
dξ with X := (x, f(x)), and thus

M̃x(2β2) is the sum of 16/{f ′′(x) D̃x(2β)} with respect to α1 ∈ N0. Noting that

∞∑
a=0

e−2bρ =
e−ρ/3

2 sinh ρ
=

1
2ρ
· ρ e−ρ/3

sinh ρ
=

1
2ρ

(1 + · · · ),
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which admits termwise indefinite integration and differentiation near ρ = +0, we have
Dk

ρ

∑
e−2bρ =

∑
(−2b)k e−2bρ for every k ∈ Z, where Dρ := d/dρ. One may thus

expect

Kx(ρ) = Mx(−Dρ)
(
−2 Dρ

∞∑
a=0

e−2bρ
)

with Mx(2b) :=
1
4b

M̃x(2b)

at least formally. The expression (3.2) suggests that Mx(−Dρ) is a pseudodifferential
operator of the form 1 + m1(x)D−1

ρ + m2(x)D−2
ρ + · · · , so that the desired asymptotic

expansion will be given by Mx(−Dρ) applied to the singularity 1/ρ2 which corresponds
to the spherical boundary. Thus, Mx(−Dρ) will be obtained from the Fourier integral
operator which transplants the boundary ∂Ω near the reference point to a spherical
model (cf. Section 2). In what follows, we regard b = β2 > 0 as a continuous variable.

The symbol Mx(2b) is computed by constructing a smooth family of base domains
Bt

x for 05t51 in such a way that B1
x = B and that B0

x is the quadratic spherical model
which osculates B at the reference point (x, f(x)). In order to state it more precisely,
we first consider a translation (ξx, ηf(x)) := (ξ−x, η− f(x)), so that the reference point
is the origin in the new coordinates. Dropping the subscripts in (ξx, ηf(x)), we next set

(3.4) Qx(ξ) := f(x) + f ′(x) ξ +
f ′′(x)

2
ξ2, Rt

x(ξ) :=
1
t2
{f(x + tξ)−Qx(tξ)}.

Then, Bt
x := {η > f t

x(ξ)} with f t
x(ξ) := Qx(ξ) + Rt

x(ξ) for ξ∈It
x := (1/t)(I − x) has

the required properties. Observe that (f t
x)′′(ξ) = f ′′(x + tξ), so that the dependence on

the parameter t of the surface element is fairly simple. Let M t
x(2b) and Dt

x(2β) denote
Mx(2b) and Dx(2β) with Bt

x in place of B, where Dx(2β) := 4β2D̃x(2β). Then the
symbol Mx(2b) as a formal series will be given by the Taylor expansion of M t

x(2b) about
t = 0 evaluated at t = 1. This idea goes back to Boichu-Coeuré [BC].

In order to compute M t
x(2b) at t = 1 asymptotically, it is convenient to introduce

µ = µx(2β) := β1/β2+f ′(x), which measures the deviation of β from the inward normal
of ∂B at the reference point. We then have M t

x(2β2) =
∑∞

α1=0 {16/f ′′(x)}/Dt
x(2β) with

Dt
x(2β) = 16 β2

∫

It
x

exp [−2β2 Φx(ξ, µ)] At
x(ξ; 2β2) dξ, where

(3.5) Φx(ξ, µ) := µξ +
1
2

f ′′(x) ξ2, At
x(ξ; 2b) := exp[−2bRt

x(ξ)]
{

f ′′(x + tξ)
f ′′(x)

}1/3

.

Let us identify At
x(ξ; 2b) with its Taylor expansion about t = 0. Then, the localization

of ∂B will permit us to replace the half line It
x by R in the expression of Dt

x(2β). After
a change of scale given by τ := t/

√
2b, λ :=

√
2b µ and ζ :=

√
2b ξ, we are led to

1/8√
2β2

Dt
x(2β) ∼

∫

R
exp[−Φx(ζ, λ)] Aτ

x(ζ; 1) dζ = Aτ
x(−Dλ; 1)

∫

R
exp[−Φx(ζ, λ)] dζ,
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where Dλ := ∂/∂λ. That is, we first replace λ by λ̃ ∈ R, do the operation with respect
to λ̃, and then set λ = λ̃. Evaluating the integral in the last expression and recalling
that the Taylor expansion of Aτ

x(ζ; 1) about τ = 0 takes the form 1 + · · · , we see that

(3.6) M t
x(2β2) ∼ C1√

2β2

∞∑
α1=0

Ãτ
x(−Dλ) exp[−λ2/C2]

with positive constants C1 := 2/
√

2π f ′′(x) and C2 := 2f ′′(x), where Ãτ
x(−Dλ) defined

by Ãτ
x(−Dλ) exp[−λ2/C2] = 1/

{
Aτ

x(−Dλ; 1) exp[λ2/C2]
}

is a formal power series of τ
of the form 1+ · · · such that the coefficients are polynomials of −Dλ. Setting t = 1 and
thus τ = 1/

√
2b in (3.6), let us consider the dependence on τ of the right side.

Lemma 3.3. Given E ∈ S(R), C3 ∈ R and C4 < 0, consider the Taylor expansion,
about τ = +0, of τ

∑∞
k=0 E(λ) with λ := τ(k + C3) + C4/τ . Then, all the coefficients

vanish except for the constant term given by Ê(0), where Ê(ζ) :=
∫

R
e−iλ̃ζ E(λ̃) dλ̃.

Proof. Applying the Fourier inversion formula and then changing scale, we have

Eτ := τ

∞∑

k=0

E(λ) =
∫

R
∆τ (ζ) Ê(ζ/τ) dζ, where ∆τ (ζ) :=

1
2π

∞∑

k=0

eiλζ/τ .

It then follows that only the singularity of ∆τ (ζ) at ζ = 0 is concerned, and thus it
suffices to show that Eτ → Ê(0) as τ → 0. This is obvious, because Eτ is an approximate
Riemann sum of the integral Ê(0).

It follows from Lemma 3.3 that (3.6) yields

(3.7) Mx(2b) ∼ C1

∫

R
Ãτ

x(−Dλ) exp[−λ2/C2] dλ = 2Ãτ
x(0) with τ =

1√
2b

.

We have thus arrived at the Taylor expansion of the symbol Mx(2b) with respect to
τ2 = 1/(2b). This is because, in the expansion of Ãτ

x(−Dλ; 1) and thus of Ãτ
x(−Dλ),

the coefficients of the odd (resp. even) powers of τ are polynomials of odd (resp. even)
powers of −Dλ. Let us summarize the first expression of (3.7) as follows.

Proposition 3. Under the same assumption as in Theorem 3, the asymptotic expan-
sion of ϕ̃S/ρ2 + ψ̃S log ρ about the base reference point (x, f(x)) is given by Mx(−∂/∂ρ)
applied to 1/ρ2, where Mx(1/τ2) is a formal power series of τ2 given by

Mx(1/τ2) =
∫

R

{ ∫

R
exp[−Φx(ξ, λ)]Aτ

x(ξ; 1) dξ

}−1

dλ.

Here Φx(ξ, λ) and Aτ
x(ξ; 1) are defined by (3.5) with (3.4).

Proof. It remains to justify the heuristic argument above; this will be done elsewhere in
a more general setting. Here we shall rather follow the proof in the case of the Bergman
kernel given in [BC] and supplemented in [N2]. We first (micro-)localize the index set
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of summation, N2
0 + (2/3, 2/3), to a conic neighborhood of µ = β1/β2 + f ′(x). We then

consider the Taylor expansion corresponding to (3.4), where the remainder estimate
amounts to the localization of ∂B around the reference point (x, f(x)). There is no
essential difficulty in translating the argument for the Bergman kernel to the present
case, because of the strict pseudoconvexity assumption on ∂Ω at points (z1, z2) satisfying
z1z2 = 0.

Once Proposition 3 is established, the proof of Theorem 3 is easy, though actual
computation is very long. By virtue of the second expression of (3.7), we can write
down explicitly the coefficients of Mx(Dρ) = m0(x) + m1(x)D−1

ρ + · · · in terms of
f (2+j)(x) with j ∈ N0. Using the relation d/dx = p(v) d/dv on the boundary ∂B,
we get an expression of mk(x) in terms of p(j)(v) with 05j52k. We thus first obtain
ϕS

0(v) = m0(x) = 1 and ϕS
1(v) = −m1(x) = p′′(v)/6. Recalling an elementary equality

D−1
ρ (ρk log ρ) =

ρk+1

k + 1

(
log ρ− 1

k + 1

)
∼ ρk+1

k + 1
log ρ for k ∈ N0 ,

we get ψS
k(v) = −mk+2(x)/k! for k ∈ N0. This yields the desired expression for ψS

k(v)
with k = 0, 1, 2.

3.4. Special domains of higher dimension. Let us describe a method of proving
Theorem 1 and Remark 1 for n = 3, by using bounded strictly pseudoconvex complete
Reinhardt domains Ω in Cn with C∞ smooth boundary. For our purpose, it suffices
to consider Ω such that the base domain B = {ρ := y − f(x) > 0} is locally given
near a point (x0, y0) ∈ ∂B by f(x) = f1(x1) + · · ·+ fn−1(xn−1), so that the hodograph
variables are given there by v = (v1, · · · , vn−1) and p = diag (p1, · · · , pn−1), where
vj := f ′j(xj) < 0 and pj(vj) := f ′′j (xj) > 0. Thus,

σ∂B =
dv1 ∧ · · · ∧dvn−1

4n J [ρ]n/(n+1)
, where J [ρ] =

p1(v) · · · pn−1(v)
4n|z1 · · · zn|2 =

det p(v)
4n | detE′−(w)|2 .

In order to state results corresponding to Theorem 3 with Lemmas 3.1 and 3.2, it is
convenient to introduce

e1 :=
n−1∑

j=1

p′′j , e21 :=
n−1∑

j=1

(pj p′′′j )′, e22 :=
n−1∑

j=1

(p′′j )2, e23 :=
∑

j 6=k

p′′j p′′k ,

so that e2
1 = e22 + e23. Recalling near ∂Ω ∩ {z1 · · · zn 6= 0} that

KS(z) =
(n− 1)!

πn
J [ρ](z)n/(n+1)

[
ϕ̃S(v, ρ)

ρn
+ ψ̃S(v, ρ) log ρ

]
, ϕ̃S, ψ̃S∈C∞(ρ = 0),

we write ϕ̃S(v, ρ) = ϕS
0(v) + ϕS

1(v) ρ + · · ·+ ϕS
n−1(v) ρn−1 + O(ρn); then we first have

ϕS
0 = 1, ϕS

1 =
1

2 (n + 1)
e1, ϕS

2 =
1

6 (n2 − 1)
e21 +

n− 1
8 (n + 1)2 (n− 2)

e23 .
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The corresponding result for the Bergman kernel is, under obvious notation,

ϕB
0 = 1, ϕB

1 =
1

2 n
e1, ϕB

2 =
1

n (n− 1)

(
1
6

e21 +
1
8

e23

)
.

Both are valid near the reference point (x0, y0). These provide the desired results when
combined with rF = J [ρ]−1/(n+1) r̃F and ||A0

22
||2 = J [ρ]2/(n+1)α22 , where

r̃F := ρ− e1

2 n (n + 1)
ρ2 +

−n (n + 1) e21 + (n2 − 1) e22 − e23

6 (n− 1) n2 (n + 1)2
ρ3 + O(ρ4),

α22 :=
1

16 n (n + 1)
{(n− 2) (n− 1) e22 + 2 e23} .
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