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Abstract

We use reduction maps to study the minimal model program. Our main result is that
the existence of a good minimal model for a klt pair (X,∆) can be detected on a
birational model of the base of the (KX +∆)-trivial reduction map. We then interpret
the main conjectures of the minimal model program as a natural statement about the
existence of curves on X.

Contents

1 Introduction 1
2 Preliminaries 3

2.1 Log pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 R-Cartier divisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Exceptional divisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Reduction maps and τ̃(X,∆) 6
4 Applications to the minimal model program 10

4.1 Abundance and the existence of good minimal models . . . . . . . . . . 10
4.2 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

References 13

1. Introduction

The minimal model program relates the geometry of a complex projective variety X to properties
of its canonical divisor KX . One of the central ideas of the program is that X should admit a
birational model X ′ where KX′ has particularly close ties to geometry. More precisely:

Definition 1.1. Let (X,∆) be a Q-factorial projective kawamata log terminal pair. We say
that (X,∆) has a good minimal model if there is a sequence of (KX + ∆)-flips and divisorial
contractions φ : X 99K X ′ such that some multiple of KX′ + φ∗∆ is basepoint free.

The following conjecture, implicit in [Ka1], lies at the heart of the minimal model program:

Conjecture 1.2. Let (X,∆) be a Q-factorial projective kawamata log terminal pair such that
KX +∆ is pseudo-effective. Then (X,∆) has a good minimal model.

An important principle from [Ka1] is that Conjecture 1.2 can be naturally interpreted using
numerical properties of KX +∆. Recall that the numerical dimension ν(D) of a pseudo-effective
divisor D as defined by [N] and [BDPP] is a numerical measure of the “positivity” of D (see
Definition 2.10). Conjecture 1.2 is known in the two extremal cases: when ν(KX +∆) = dimX
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by [BCHM] and when ν(KX + ∆) = 0 by [N] and [D] (cf. [G]). Furthermore, recent results of
[Lai] show that the existence of a good minimal model is equivalent to the equality κ(KX+∆) =
ν(KX +∆).

From this viewpoint, it is very natural to focus on morphisms f : X → Z for which KX +∆
has good numerical behavior along the fibers. Our main theorem shows that the existence of a
good minimal model can be detected on (birational models of) the base of such maps.

Theorem 1.3 (=Corollary 4.5). Let (X,∆) be a Q-factorial projective kawamata log terminal
pair. Suppose that f : X → Z is a morphism with connected fibers to a normal projective variety
Z such that for a general fiber F of f we have ν((KX +∆)|F ) = 0. Then there exist a smooth
projective birational model Z ′ of Z and a kawamata log terminal pair (Z ′,∆Z′) such that (X,∆)
has a good minimal model if and only if (Z ′,∆Z′) has a good minimal model.

We use the techniques of [A1] which proves the special case of Theorem 1.3 when KX + ∆
is nef. Our theorem has the important advantage that it can be applied to deduce the existence
of a minimal model (rather than requiring that KX + ∆ be nef in the first place). Some low
dimension cases were worked out in [BDPP]; related results appear in [Fu] and independently in
the recent preprint [Siu].

In order to apply Theorem 1.3 in practice, the key question is whether, perhaps after a
birational modification, one can find a map such that the numerical dimension of (KX + ∆)|F
vanishes for a general fiber F . The (KX+∆)-trivial reduction map constructed in [Leh1] satisfies
precisely this property. We develop a birational version of this theory better suited for working
with the minimal model program. Finally, we reinterpret the existence of good minimal models
as a statement about curves. Recall that an irreducible curve C is said to be movable if it is a
member of a family of curves dominating X. Movable curves are used to construct the (KX+∆)-
reduction map and are thus related to the existence of good minimal models by Theorem 1.3.
Conjecture 1.2 implies the following well-known prediction:

Conjecture 1.4. Let (X,∆) be a Q-factorial projective kawamata log terminal pair. Suppose
that (KX +∆).C > 0 for every movable curve C on X. Then KX +∆ is big.

We show that the two conjectures are equivalent:

Theorem 1.5 (=Corollary 4.7). Conjecture 1.4 holds up to dimension n if and only if Conjecture
1.2 holds up to dimension n.

The paper is organized as follows. Section 2 is devoted to preliminary definitions and results.
Section 3 develops the theory of the D-trivial reduction map to allow for applications to the
minimal model program. In Section 4, we first discuss the relationship between abundance and
the existence of good minimal models. We then prove Theorem 1.3 and Theorem 1.5.
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for his advice and support. He is supported under a National Science Foundation Graduate
Research Fellowship. The authors also thank the referee for the detailed suggestions and Chen
Jiang for pointing out an error in an earlier draft.
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2. Preliminaries

In this section, we introduce definitions and collect some lemmas for the proof of main results.

Convention 2.1. Throughout this paper we work over C.

2.1 Log pairs

We start by discussing log pairs and their resolutions.

Definition 2.2. A log pair (X,∆) consists of a normal variety X and an effective Q-Weil divisor
∆ such that KX+∆ is Q-Cartier. We say that (X,∆) is kawamata log terminal if the discrepancy
a(E,X,∆) > −1 for every prime divisor E over X.

Definition 2.3. Let (X,∆) be a kawamata log terminal pair and φ : W → X a log resolution
of (X,∆). Choose ∆W so that

KW +∆W = φ∗(KX +∆) + E

where ∆W and E are effective Q-Weil divisors that have no common component. We call (W,∆W )
a log smooth model of (X,∆).

Note that a minimal model of (W,∆W ) may not be a minimal model of (X,∆). To compensate
for this deficiency, define for any ϵ > 0

F =
∑

Fi a φ-exceptional prime divisor

Fi and ∆ϵ
W = ∆W + ϵF.

We call (W,∆ϵ
W ) an ϵ-log smooth model.

Remark 2.4. Note that our definition of a log smooth model differs from that of Birkar and
Shokurov (cf. [Bi]). Under our definition, for sufficiently small ϵ a good minimal model for
(W,∆ϵ

W ) is also a good minimal model for (X,∆) ([BCHM, Lemma 3.6.10]).

2.2 R-Cartier divisors

We next turn to the birational theory of pseudo-effective R-Cartier divisors.
Suppose that D =

∑r
j=1 djDj is an R-Weil divisor such that Dj is a prime divisor for every

j and Di ̸= Dj for i ̸= j. We define the round-down xDy =
∑r

j=1xdjyDj , where for every real
number x, xxy is the integer defined by x− 1 < xxy 6 x.

Definition 2.5. For an R-Cartier divisor D on a normal projective variety X, the Iitaka dimen-
sion is

κ(D) = max{k ∈ Z>0| lim sup
m→∞

m−kdimH0(X, xmDy) > 0}

if H0(X, xmDy) ̸= 0 for infinitely many m ∈ N or κ(D) = −∞ otherwise.

Definition 2.6 cf. [ELMNP]. Let X be a normal projective variety and D be an R-Cartier
divisor on X. Fix an ample divisor A. Define

B(D) =
∩

D∼RE,E>0

SuppE, and B−(D) =
∪

ϵ∈R>0

B(D + ϵA).

As suggested by the notation B−(D) is independent of the choice of A.

As mentioned in the introduction, numerical properties of divisors play an important role this
paper. The essential technical tools we need were first introduced in [N]: the σ-decomposition
and the numerical dimension.
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Definition 2.7. Let X be a smooth projective variety and D be a pseudo-effective R-Cartier
divisor on X. Fix an ample divisor A on X. Given a prime divisor Γ on X, define

σΓ(D) = min{multΓ(D
′)|D′ > 0 and D′ ∼Q D + ϵA for some ϵ > 0}.

This definition is independent of the choice of A.

It is shown in [N] that for any pseudo-effective divisor D there are only finitely many prime
divisors Γ such that σΓ(D) > 0. Thus, the following definition make sense:

Definition 2.8. Let X be a smooth projective variety and D be a pseudo-effective R-Cartier
divisor on X. Define the R-Cartier divisors Nσ(D) =

∑
Γ σΓ(D)Γ and Pσ(D) = D−Nσ(D). The

decomposition

D = Pσ(D) +Nσ(D)

is known as the σ-decomposition. It is also known as the sectional decomposition ([Ka2]), the
divisorial Zariski decomposition ([Bo]), and the numerical Zariski decomposition ([Ka3]).

The basic properties of the σ-decomposition are:

Lemma 2.9 [N]. Let X be a smooth projective variety and D a pseudo-effective R-Cartier divisor.
Then

(1) κ(D) = κ(Pσ(D)),

(2) Supp(Nσ(D)) ⊂ B−(D),

(3) for any prime divisor Γ on X, Pσ(D)|Γ is pseudo-effective, and

(4) if 0 6 D′ 6 Nσ(D), then D −D′ is pseudo-effective and Nσ(D −D′) = Nσ(D)−D′.

Proof. The proof of [Bo, Theorem 5.5] shows that the inclusion

im : H0(X,OX(⌊mPσ(D)⌋)) → H0(X,OX(⌊mD⌋))

is an isomorphism for any positive integer m. This implies (1). (2) is immediate from the def-
inition. We see (4) by [N, III, 1.8 Lemma]. (3) follows from (4) and [N, III, 1.14 Proposition
(1)].

Closely related to the σ-decomposition is the numerical dimension, a numerical measure of
the positivity of a divisor.

Definition 2.10. Let X be a normal projective variety, D an R-Cartier divisor and A an ample
divisor on X. Set

ν(D,A) = max{k ∈ Z>0| lim sup
m→∞

m−kdimH0(X, xmDy+A) > 0}

if H0(X, xmDy+A) ̸= 0 for infinitely many m ∈ N or σ(D,A) = −∞ otherwise. Define

ν(D) = max
A ample

ν(D,A).

Remark 2.11. By the results of [Leh2], this definition coincides with the notions of κν(D) from
[N, V, 2.20, Definition] and ν(D) from [BDPP, 3.6, Definition].

Lemma 2.12 [N, V, 2.7 Proposition], [Leh2, Theorem 6.7]. Let X be a normal projective variety,
D be an R-Cartier divisor on X, and φ :W → X be a birational map from a normal projective
variety W . Then:
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(1) ν(D) = ν(D′) for any R-Cartier divisor D′ such that D′ ≡ D,

(2) ν(φ∗D) = ν(D),

(3) ν(D) > κ(D), and

(4) if X is smooth then ν(D) = ν(Pσ(D)).

Furthermore, if X is smooth then ν(D) = 0 if and only if Pσ(D) ≡ 0.

2.3 Exceptional divisors

Finally, we identify several different ways a divisor can be “exceptional” for a morphism.

Definition 2.13. Let f : X → Y be a morphism of normal projective varieties and let D be an
R-Cartier divisor on X. We say that D is f -horizontal if f(Supp(D)) = Y or that D is f -vertical
otherwise.

Definition 2.14 [N, III, Section 5.a], [Lai, Definition 2.9] and [Ta, Definition 2.4]. Let f : X → Y
be a surjective morphism of normal projective varieties with connected fibers and D be an
effective f -vertical R-Cartier divisor. We say that D is f -exceptional if

codim f(SuppD) > 2.

We call D f -degenerate if for any prime divisor P on Y there is some prime divisor Γ on X
such that f(Γ) = P and Γ ̸⊂ Supp(D). Note that every f -exceptional divisor is also f -degenerate.

Lemma 2.15. Let f : X → Y be a surjective morphism of normal projective varieties where Y is
Q-factorial. Suppose thatD is an effective f -vertical R-Cartier divisor such that f∗OX(xkDy)∗∗ ∼=
OY for every positive integer k. Then D is f -degenerate.

Proof. If D were not f -degenerate, there would be an effective f -exceptional divisor E on X and
a nonzero effective Q-Cartier divisor T on Y such that f∗T 6 D+E. But since E is f -exceptional
we have f∗OX(xk(D + E)y)∗∗ ∼= OY for every k, yielding a contradiction.

Degenerate divisors behave well with respect to the σ-decomposition.

Lemma 2.16 cf. [N, III.5.7 Proposition]. Let f : X → Y be a surjective morphism from a
smooth projective variety to a normal projective variety and let D be an effective f -degenerate
divisor. For any pseudo-effective R-Cartier divisor L on Y we have D 6 Nσ(f

∗L + D) and
Pσ(f

∗L+D) = Pσ(f
∗L).

Proof. [N, III.5.1 Lemma] and [N, III.5.2 Lemma] together show that for an f -degenerate divisor
D there is some component Γ ⊂ Supp(D) such that D|Γ is not pseudo-effective. Since Pσ(f

∗L+
D)|Γ is pseudo-effective, we see that Γ must occur in Nσ(f

∗L+D) with positive coefficient.

Set D′ to be the coefficient-wise minimum of the effective divisors Nσ(f
∗L+D) and D. Since

D′ 6 Nσ(f
∗L+D), we may apply Lemma 2.9 (4) to see that

Nσ(f
∗L+D) = Nσ(f

∗L+D −D′) +D′.

Suppose that D′ < D. Then D−D′ is still f -degenerate, so there is some component of D−D′

that appears in Nσ(f
∗L+(D−D′)) = Nσ(f

∗L+D)−D′ with positive coefficient, a contradiction.
Thus D = D′ 6 Nσ(f

∗L+D). The final claim follows from Lemma 2.9 (4).
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3. Reduction maps and τ̃(X,∆)

For a pseudo-effective divisor D on a variety X, the D-trivial reduction map can be thought of
as the “quotient” of X by all movable curves C satisfying D.C = 0. A priori the (KX+∆)-trivial
reduction map may change if we pass to a log smooth model. The main goal of this section is to
develop a birational theory that takes this discrepancy into account.

Theorem 3.1 [Leh1, Theorem 1.1]. Let X be a normal projective variety and D be a pseudo-
effective R-Cartier divisor on X. Then there exist a birational morphism φ : W → X from a
smooth projective variety W and a surjective morphism f : W → Y with connected fibers such
that

(1) ν(φ∗D|F ) = 0 for a general fiber F of f ,

(2) if w ∈W is a very general point and C is an irreducible curve through w with dim f(C) = 1,
then φ∗D.C > 0, and

(3) for any birational morphism φ′ : W ′ → X from a smooth projective variety W ′ and dom-
inant morphism f ′ : W ′ → Y ′ with connected fibers satisfying condition (2), f ′ factors
birationally through f .

We call the composition f ◦ φ−1 : X 99K Y the D-trivial reduction map. Note that it is only
unique up to birational equivalence.

Remark 3.2. Property (2) is equivalent to the following:

(2’) if C is an irreducible movable curve with dim f(C) = 1, then φ∗D.C > 0.

Remark 3.3. The D-trivial reduction map is different from the pseudo-effective reduction map
(cf. [E2] and [Leh1]), the partial nef reduction map (cf. [BDPP]), and Tsuji’s numerically trivial
fibration with minimal singular metrics (cf. [Ts] and [E1]).

Definition 3.4. Let X be a normal projective variety and D be a pseudo-effective R-Cartier
divisor on X. If f : X 99K Y denotes the D-trivial reduction map, we define

τ(D) := dim Y.

Lemma 3.5. Let X be a normal projective variety and D be a pseudo-effective R-Cartier divisor
on X. Then

(1) τ(D) > ν(D) > κ(D),

(2) if D′ is a pseudo-effective R-Cartier divisor on X such that D′ > D, then τ(D′) > τ(D),
and

(3) τ(f∗D) = τ(D) for every surjective morphism f : Y → X from a normal variety.

Proof. Since κ(D) 6 ν(D) by Lemma 2.12, it suffices to prove the first inequality of (1). Write
f : W → Y for the D-trivial reduction map as in Theorem 3.1. [N, V, 2.22 Proposition] states
that ν(D) 6 ν(D|F ) + dimY for a general fiber F of f . Since ν(D|F ) = 0, we find ν(D) 6
dimY = τ(D). (2) and (3) follow easily from the definition.

As mentioned above, a priori τ(KX +∆) may change if we replace (X,∆) by a log smooth
model. Thus we need to introduce a variant of this construction that accounts for every ϵ-log
smooth model simultaneously.
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Definition 3.6. Let (X,∆) be a kawamata log terminal pair such that KX + ∆ is pseudo-
effective. We define

τ̃(X,∆) = max{ τ(KW +∆ϵ
W ) | (W,∆ϵ

W ) is an ϵ-log smooth model of (X,∆) for some ϵ > 0 }.

Remark 3.7. Note that the maximum value of τ in the previous definition can be achieved by
any sufficiently small ϵ > 0. More precisely, suppose that (X,∆) is a kamawata log terminal pair
with KX +∆ pseudo-effective and that φ :W → X is a log resolution of (X,∆). Then the value
of τ(KW + ∆ϵ

W ) for the ϵ-log smooth model (W,∆ϵ
W ) is independent of the choice of ϵ > 0: if

C is a movable curve with (KW +∆ϵ
W ).C = 0 then (by the pseudo-effectiveness of KX +∆ and

[BDPP, 0.2, Theorem]) we must have φ∗(KX + ∆).C = 0 and E.C = 0 for any φ-exceptional
divisor E.

Lemma 3.8. Let (X,∆) be a projective kawamata log terminal pair such that KX+∆ is pseudo-
effective. For any ϵ > 0, there exists an ϵ-log smooth model φ : (W,∆ϵ

W ) → (X,∆) such that
the (KW + ∆ϵ

W )-trivial reduction map can be realized as a morphism on W whose image has
dimension τ̃(X,∆).

Proof. By Remark 3.7, the construction of the reduction map for any ϵ-log smooth model is
completely independent of the choice of ϵ > 0. So we may fix an arbitrary ϵ > 0 for the remainder
of the proof.

First choose an ϵ-log smooth model (W ′,∆ϵ
W ′) such that τ(KW ′ + ∆ϵ

W ′) = τ̃(X,∆). Let
(W,∆ϵ

W ) be an ϵ-log smooth model such that there is a birational map φ : W → W ′ and a
morphism f :W → Z resolving the (KW ′ +∆ϵ

W ′)-trivial reduction map. Note that there is some
effective φ-exceptional divisor E such that KW + ∆ϵ

W + E > φ∗(KW ′ + ∆ϵ
W ′). If KW + ∆ϵ

W

has vanishing intersection with a movable curve on W , then E does as well, and hence so does
φ∗(KW ′+∆ϵ

W ′). This means that f factors birationally through the (KW+∆ϵ
W )-trivial reduction

map by the universal property of reduction maps. Since τ(KW ′ +∆ϵ
W ′) is maximal over all ϵ-log

smooth models, f must in fact be (birationally equivalent to) the (KW +∆ϵ
W )-trivial reduction

map.

Remark 3.9. If D is a nef divisor, the D-trivial reduction map is birationally equivalent to the
nef reduction map of D (see [BCEK+]). Thus n(D) = τ(D), where n(D) is the nef dimension of
D in [BCEK+, Definition 2.7]. Moreover, for a projective kawamata log terminal pair (X,∆) such
that KX +∆ is nef, τ(KX +∆) = τ̃(X,∆) since the nef reduction map is almost holomorphic.

The remainder of this section is devoted to proving that τ̃(X,∆) is preserved upon passing
to a minimal model. In fact τ̃ does not change under any flip or divisorial contraction.

Definition 3.10. Let X be a normal projective variety and T ⊂ Chow(X) be an irreducible
proper subvariety parametrizing 1-cycles. We say that the family of 1-cycles {Ct}t∈T is a covering
family if the map to X is dominant.

Let D be a R-Cartier divisor on X. A covering family {Ct}t∈T is D-trivial if D.Ct = 0 for all
t ∈ T . A covering family {Ct}t∈T is 1-connected if for general points x and y ∈ X there is t ∈ T
such that Ct is an irreducible curve containing x and y.

Proposition 3.11 cf. [Leh1, Proposition 4.8]. Let X be a normal projective variety and D an R-
Cartier divisor on X. Suppose that there exists a D-trivial 1-connected covering family {Ct}t∈T .
Then ν(D) = 0.
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Proof. For any birational map φ : W → X, the strict transforms of the curves Ct are still 1-
connecting. Thus, the generic quotient (in the sense of [Leh1, Construction 3.2]) of X by the
family {Ct}t∈T contracts X to a point. Thus ν(D) = ν(f∗D) = 0 by [Leh1, Theorem 1.1].

Proposition 3.12. Let (X,∆) be a projective kawamata log terminal pair. Then ν(KX+∆) = 0
if and only if there exists a (KX + ∆)-trivial 1-connected covering family {Ct}t∈T such that
Ct ∩B−(KX +∆) = ∅ for general t ∈ T .

Proof. The reverse implication follows from Proposition 3.11. Now assume that ν(KX +∆) = 0.
By [D, Corollaire 3.4], there is a good minimal model φ : X 99K X ′ of (X,∆) with KX′+φ∗∆ ∼Q
0. Take a log resolution of (X,∆) and (X ′, φ∗∆):

W
p

~~}}
}}
}}
}} q

!!C
CC

CC
CC

C

X //_______ X ′.

Set E to be the effective q-exceptional divisor such that

p∗(KX +∆) = q∗(KX′ + φ∗∆) + E.

Now, since KX′ + φ∗∆ ∼Q 0,

p∗(KX +∆) ∼Q E.

Because codim q(SuppE) > 2, there exists a complete intersection irreducible curve C on X ′

with respect to very ample divisors H1, . . . ,Hn−1 containing two general points x, y such that
C ∩ q(SuppE) = ∅. Let C̄ be the strict transform of C on X. Then

(KX +∆).C̄ = 0.

In general, B−(D) ⊆ SuppD for an effective R-Cartier divisor D. Moreover, when ν(D) = 0,
B−(D) = SuppD by the equality D = Nσ(D) and Lemma 2.9 (2). Thus we have p(SuppE) =
B−(KX +∆). (See [BBP, Theorem A (i)] and [CD, Theorem 1.2] for more general results.) The
desired family can be constructed by taking the strict transform of deformations of C which
avoid q(SuppE).

Proposition 3.13. Let (X,∆) be a Q-factorial projective kawamata log terminal pair such that
KX +∆ is pseudo-effective. Suppose that

φ : (X,∆) 99K (X ′,∆′)

is a (KX +∆)-flip or divisorial contraction. Then τ̃(X,∆) = τ̃(X ′,∆′).

Proof. Consider a log resolution of (X,∆) and (X ′,∆′):

W
p

~~}}
}}
}}
}} q

!!C
CC

CC
CC

C

X //_______ X ′.

For a sufficiently small positive number ϵ, write

KW +∆ϵ
W = p∗(KX +∆) +G

for the ϵ-log smooth structure induced by (X,∆) and

KW +∆′ϵ
W = q∗(KX′ +∆′) +G′,
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for the ϵ-log smooth structure induced by (X ′,∆′). (Note that these structures might differ, if
for example φ is centered in a locus along which the discrepancy is negative.) Using Lemma 3.8,
we may assume that the log resolution W satisfies

(1) the (KW + ∆ϵ
W )-trivial reduction map is a morphism f : W → Y with dim Y = τ̃(X,∆),

and

(2) the (KW +∆′ϵ
W )-trivial reduction map is a morphism f ′ :W → Y ′ with dim Y ′ = τ̃(X ′,∆′)

and Y ′ is smooth.

When φ is a flip, then there is some effective q-exceptional divisor E′ such that KW + ∆ϵ
W =

KW +∆′ϵ
W +E′. From Lemma 3.5 (2), it holds that τ̃(X,∆) > τ̃(X ′,∆′). When φ is a divisorial

contraction, then there is some effective q-exceptional divisor E′ such that KW + ∆ϵ
W + ϵT =

KW + ∆′ϵ
W + E′, where T denotes the strict transform on W of the φ-exceptional divisor. In

this case, we know that KW + ∆ϵ
W − δT is pseudo-effective for some δ > 0. Thus any movable

curve C with (KW + ∆ϵ
W ).C = 0 also satisfies (KW + ∆ϵ

W + ϵT ).C = 0, and in particular
τ̃(X,∆) = τ(KW + ∆ϵ

W + ϵT ). Again applying Lemma 3.5 (2) we have τ̃(X,∆) > τ̃(X ′,∆′).
Conversely, by Proposition 3.12 a very general fiber F ′ of f ′ admits a 1-connecting covering family
ofKW+∆′ϵ

W -trivial curves {Ct}t∈T such that Ct∩B−((KW+∆′ϵ
W )|F ′) = ∅ for general t ∈ T . Let E′

denote the q-exceptional divisor defined earlier. Note that since E′ is q-exceptional and (W,∆′ϵ
W )

is an ϵ-log smooth model with ϵ > 0, we have µE′ 6 Nσ(KW+∆′ϵ
W ) for some µ > 0. Furthermore,

since E′|F ′ is effective and ν((KW +∆′ϵ
W )|F ′) = 0, we know that µE′|F ′ 6 Nσ((KW +∆′ϵ

W )|F ′).
Thus E′.Ct = 0 for general t since Ct avoids B−((KW +∆′ϵ

W )|F ′). So

(KW +∆ϵ
W ).Ct 6 (KW +∆′ϵ

W + E′).Ct

= 0.

Since the Ct form a 1-connected covering family in a very general fiber of f ′, the universal
property of the (KW +∆′ϵ

W )-trivial reduction map implies that f factors birationally through f ′.
This demonstrates the reverse inequality τ̃(X,∆) 6 τ̃(X ′,∆′).

Corollary 3.14. Let (X,∆) be a Q-factorial projective kawamata log terminal pair such that
KX +∆ is pseudo-effective. Suppose that (X,∆) has a good minimal model. Then

τ̃(X,∆) = τ(KX +∆) = κ(KX +∆).

Proof. We always have τ̃(X,∆) > τ(KX +∆) > κ(KX +∆). Since τ̃(X,∆) is preserved by steps
of the minimal model program, the equality of the outer two quantities can be checked on the
good minimal model.

So suppose that KX + ∆ is semiample and let f : X → Z denote the morphism defined by
a sufficiently high multiple of KX +∆. For any birational map φ : W → X, we can intersect a
general fiber F of f with general very ample divisors to find a movable curve C contained in F
and avoiding the image of the φ-exceptional locus. In particular, if (W,∆ϵ

W ) is an ϵ-log smooth

model of (X,∆), the strict transform C̃ of C satisfies (KW +∆ϵ
W ).C̃ = 0 and the (KW +∆ϵ

W )-
trivial reduction map is f ◦φ. This shows that τ(KW +∆ϵ

W ) = κ(KX+∆) for every ϵ-log smooth
model (W,∆ϵ

W ).

9
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4. Applications to the minimal model program

In this section we first discuss how the existence of a good minimal model can be reinterpreted
using the notion of abundance. We then prove Lemma 4.4, the main technical tool, and conclude
with proofs of the theorems.

4.1 Abundance and the existence of good minimal models

The notion of abundance was introduced to capture those divisors with particularly good nu-
merical behavior.

Lemma 4.1 [N, V.4.2 Corollary]. Let (X,∆) be a projective kawamata log terminal pair such
that KX +∆ is pseudo-effective. Then the following are equivalent:

(i) κ(KX +∆) = ν(KX +∆).

(ii) κ(KX +∆) > 0 and if φ : X ′ → X is a birational morphism and f : X ′ → Z ′ a morphism
resolving the Iitaka fibration for KX +∆, then

ν(φ∗(KX +∆)|F ) = 0

for a general fiber F of f .

If either of these equivalent conditions hold, we say that KX +∆ is abundant.

To relate abundance to the existence of minimal models, we will use the following special
case.

Theorem 4.2 [N, V.4.9 Corollary] and [D, Corollaire 3.4] (cf. [G]). Let (X,∆) be a Q-factorial
projective kawamata log terminal pair such that ν(KX +∆) = 0. Then KX +∆ is abundant and
(X,∆) admits a good minimal model.

The following theorem is known to experts; for example, see [DHP, Remark 2.6]. The theorem
is a consequence of [Lai, Theorem 4.4]. Note that the statement does not involve any inductive
assumptions.

Theorem 4.3 cf. [DHP]. Let (X,∆) be a Q-factorial projective kawamata log terminal pair.
Then KX +∆ is abundant if and only if (X,∆) has a good minimal model.

Proof. First suppose that (X,∆) has a good minimal model (X ′,∆′). Let Y be a common
resolution of X and X ′ (with morphisms f and g respectively) and write

f∗(KX +∆) = g∗(KX′ +∆′) + E

where E is an effective g-exceptional Q-divisor. Thus

Pσ(f
∗(KX +∆)) = Pσ(g

∗(KX′ +∆′))

and since the latter divisor is semi-ample, the first is semi-ample as well. The abundance of
KX + ∆ follows from the fact that the Iitaka and numerical dimensions are invariant under
pulling-back and passing to the positive part.

Conversely, suppose that KX +∆ is abundant. Let f : (X,∆) 99K Z be the Iitaka fibration
of KX + ∆. Choose an ϵ-log smooth model φ : (W,∆ϵ

W ) → X with sufficiently small ϵ > 0 so
that f is resolved on W . By [BCHM, Lemma 3.6.10] we can find a minimal model for (X,∆) by
constructing a minimal model of (W,∆ϵ

W ) . Moreover we see that f ◦φ is also the Iitaka fibration

10
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of KW +∆ϵ
W and ν(KW +∆ϵ

W ) = ν(KX +∆). Replacing (X,∆) by (W,∆ϵ
W ), we may suppose

that the Iitaka fibration f is a morphism on X.

By [N, V.4.2 Corollary], ν(KF + ∆F ) = 0 where F is a general fiber of f and KF + ∆F =
(KX +∆)|F . Thus (F,∆F ) has a good minimal model by Theorem 4.2. The arguments of [Lai,
Theorem 4.4] for (X,∆) now show that (X,∆) has a good minimal model.

4.2 Main results

The following lemma is key for proving our main results.

Lemma 4.4. Let (X,∆) be a projective kawamata log terminal pair. Suppose that f : X →
Z is a projective morphism with connected fibers to a projective normal variety Z such that
ν((KX +∆)|F ) = 0 for a general fiber F of f . Then there exists a log resolution µ : X ′ → X of
(X,∆), a projective smooth birational model Z ′ of Z, a kawamata log terminal pair (Z ′,∆Z′),
and a morphism f ′ : X ′ → Z ′ birationally equivalent to f such that

Pσ(µ
∗(KX +∆)) ∼Q Pσ(f

′∗(KZ′ +∆Z′)).

Proof. We first reduce to the case when f satisfies the stronger property that (KX +∆)|F ∼Q 0
for a general fiber F of f . Run the relative minimal model program with scaling of an ample
divisor on (X,∆) over Z. By [F, Theorem 2.3], after finitely many steps we obtain a birational
model ψ : X 99K Xi with a morphism fi : Xi → Z such that B−((KXi+ψ∗∆)|Fi) has no divisorial
components for a general fiber Fi of fi. Moreover ν((KXi + ψ∗∆)|Fi) = κ((KXi + ψ∗∆)|Fi) = 0
by Theorem 4.2. Thus we have the property (KXi + ψ∗∆)|Fi ∼Q 0 (see the proof of Proposition
3.12).

Furthermore, recall that for any common log resolution W of (X,∆) and (Xi, ψ∗∆)

W
p

~~}}
}}
}}
}} q

!!C
CC

CC
CC

C

X
ψ //_______ Xi.

there is an effective q-exceptional divisor M on W such that p∗(KX +∆) = q∗(KXi +ψ∗∆)+M .
In particular Pσ(p

∗(KX +∆)) = Pσ(q
∗(KXi + ψ∗∆)) by Lemma 2.16. If we prove the statement

of the theorem for (Xi, ψ∗∆) for the morphism f : X ′ → Z ′, the conclusion also holds for any
composition f ◦ q′ : W → X ′ → Z ′ where W is a smooth birational model of X ′. Letting W be
a common log resolution as above, we conclude the statement of the theorem for (X,∆).

So we assume from now on that (KX +∆)|F ∼Q 0 for a general fiber F of f . We may apply
the techniques of [FM, 4.4] to find a morphism birationally equivalent to f that satisfies nice
properties. That is, there exist:

– a log smooth model (X ′,∆′) of (X,∆) with birational map µ : X ′ → X, where we write
KX′ +∆′ = µ∗(KX +∆) + E for an effective µ-exceptional divisor E,

– a Q-Cartier divisor B on X ′ which we express as the difference B = B+ − B− of effective
divisors B+ and B− with no common components,

– a smooth variety Z ′ and a divisor ∆Z′ , and

– a morphism f ′ : X ′ → Z ′ birationally equivalent to f

satisfying the properties:

(1) KX′ +∆′ ∼Q f
′∗(KZ′ +∆Z′) +B,

11
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(2) there is a positive integer b such that

H0(X ′,mb(KX′ +∆′)) = H0(Z ′,mb(KZ′ +∆Z′))

for any positive integer m,

(3) B− is f ′-exceptional and µ-exceptional, and

(4) f ′∗OX′(xlB+y) = OZ′ for every positive integer l.

We next apply the results of [A2]. Choose an integer m so that m(KX +∆) is a Cartier divisor
and m(KX + ∆)|F ∼ 0 for the general fiber F of f . Then f∗OX(m(KX + ∆)) ̸= 0 since it
is invertible over an open subset of Z by Grauert’s theorem. Thus there is an ample divisor
A on Z so that H0(X,m(KX + ∆) + f∗A) ̸= 0. Choose an effective divisor Ω in this linear
system. Ω must be f -vertical since Ω|F ≡ 0 for the general fiber F of f . In the notation of [A2],
f : (X,∆ − 1

mΩ) → Z is an LC-trivial fibration. [A2, Theorem 3.3] allows us to conclude the
additional key property that (Z ′,∆Z′) may be taken to be a kawamata log terminal pair (perhaps
after additional birational modifications which we absorb into the notation).

We conclude by comparing Pσ(KX +∆) and Pσ(KZ′ +∆Z′). Write B+ = B+
h + B+

v for the
decomposition into the f ′-horizontal components B+

h and the f ′-vertical components B+
v . We

analyze in turn B−, then B+
h , then B

+
v .

First consider B−. Since B− and E are µ-exceptional, Lemma 2.16 shows that E + B− 6
Nσ(µ

∗(KX +∆) + E +B−). Thus we may apply Lemma 2.9 (4) to B− to obtain

Nσ(KX′ +∆′ +B−) = Nσ(µ
∗(KX +∆) + E +B−)

= Nσ(µ
∗(KX +∆) + E) +B− by Lemma 2.9 (4),

= Nσ(KX′ +∆′) +B−. (∗)

Next consider B+
h . Note that ν((KX′ + ∆′)|F ′) = 0 for a general fiber F ′ of f ′. Indeed,

for a general F ′ the map µ|F ′ is birational so that E|F ′ is µ|F ′-exceptional. By Lemma 2.16
Pσ((KX′ +∆′)|F ′) = Pσ(µ

∗(KX +∆)|F ′) and so by Lemma 2.12

ν((KX′ +∆′)|F ) = ν(µ∗(KX +∆)|F ′) = 0.

This implies that if D is an effective divisor on F ′ such that (KX′ +∆′)|F ′ −D is pseudo-effective
then D 6 Nσ((KX′ +∆′)|F ′). Applying this fact to B+

h |F ′ we obtain

B+
h |F ′ 6 Nσ((KX′ +∆′)|F ′) 6 Nσ(KX′ +∆′)|F ′ .

As F ′ is general, this equation implies that B+
h 6 Nσ(KX′ +∆′). By our earlier work for B−, it

is also true that B+
h 6 Nσ(KX′ +∆′ +B−).

Finally, consider B+
v . By Lemma 2.15, property (4) shows that B+

v is f ′-degenerate. Again
applying Lemma 2.16,

Pσ(f
′∗(KZ′ +∆Z′) +B+

v ) = Pσ(f
′∗(KZ′ +∆Z′)). (∗∗)

Putting it all together, we find

Pσ(µ
∗(KX +∆)) = Pσ(KX′ +∆′) since E is µ-exceptional,

= Pσ(KX′ +∆′ +B−) by (∗),
= Pσ(KX′ +∆′ +B− −B+

h ) by analysis of B+
h ,

∼Q Pσ(f
′∗(KZ′ +∆Z′) +B+

v ) by property (1),

= Pσ(f
′∗(KZ′ +∆Z′)) by (∗∗).

12
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Corollary 4.5. Let (X,∆) be a projective Q-factorial kawamata log terminal pair. Suppose
that f : X → Z is a morphism with connected fibers to a projective normal variety Z such that
ν((KX +∆)|F ) = 0 for a general fiber F of f . Then there exists a smooth projective birational
model Z ′ of Z and a kawamata log terminal pair (Z ′,∆Z′) such that (X,∆) has a good minimal
model if and only if (Z ′,∆Z′) has a good minimal model.

Proof. By Lemma 4.4 and the fact that the Iitaka and numerical dimensions are invariant under
pull-back and under passing to the positive part Pσ, we see that KX +∆ is abundant if and only
if KZ′ +∆Z′ is abundant. We conclude by Theorem 4.3.

Theorem 4.6. Assume the existence of good minimal models forQ-factorial projective kawamata
log terminal pairs in dimension d. Let (X,∆) be a Q-factorial projective kawamata log terminal
pair such that KX+∆ is pseudo-effective and τ̃(X,∆) = d. Then there exists a good log minimal
model of (X,∆).

Proof. Using Lemma 3.8, we can find a birational morphism φ : W → X from an ϵ-log smooth
model (W,∆ϵ

W ) of (X,∆) for a sufficiently small positive number ϵ and a morphism f :W → Z
with connected fibers such that

(i) ν((KW +∆ϵ
W )|F ) = 0 for the general fiber F of f and

(ii) dim Z = τ̃(X,∆).

Corollary 4.5 implies that (W,∆ϵ
W ) has a good minimal model. (X,∆) then has a good minimal

model by [BCHM, Lemma 3.6.10].

Corollary 4.7. Conjecture 1.4 holds up to dimension n if and only Conjecture 1.2 holds up to
dimension n.

Proof. Assume that Conjecture 1.4 holds up to dimension n. By induction on dimension, we may
assume that Conjecture 1.2 holds up to dimension n − 1. Let (X,∆) be a projective kawamata
log terminal pair of dimension n. If τ̃(X,∆) < n then KX +∆ is abundant by Theorem 4.6 and
the induction hypothesis. If τ̃(X,∆) = n then some ϵ-log smooth model (W,∆ϵ

W ) does not admit
a (KW +∆ϵ

W )-trivial covering family of curves. Since we are assuming Conjecture 1.4, KW +∆ϵ
W

must be big. [BCHM] then gives the existence of a good minimal model for (W,∆ϵ
W ) and hence

also for (X,∆).

Conversely, assume that Conjecture 1.2 holds up to dimension n. Suppose that (X,∆) is a
projective kawamata log terminal pair of dimension at most n admitting a (KX + ∆)-trivial
covering family of curves. Then τ(KX +∆) < dimX. Corollary 3.14 shows that κ(KX +∆) <
dimX so KX +∆ is not big.

Remark 4.8. It seems likely that one could formulate a stronger version of Corollary 4.7 using
the pseudo-effective reduction map for KX + ∆ (cf. [E2] and [Leh1]). The difficulty is that the
pseudo-effective reduction map only satisfies the weaker condition ν(Pσ(KX + ∆)|F ) = 0 on a
general fiber F , so it is unclear how to use the inductive hypothesis to relate F with X.
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