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Abstract. We prove the abundance theorem for numerically triv-
ial log canonical divisors of log canonical pairs and semi-log canon-
ical pairs.
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1. Introduction

Throughout this paper, we work over C, the complex number field.
We will make use of the standard notation and definitions as in [KaMM].
The abundance conjecture is the following:

Conjecture 1.1 (Abundance conjecture). Let (X,∆) be a projective
log canonical pair. Then ν(KX +∆) = κ(KX +∆). Moreover, KX +∆
is semi-ample if it is nef.

For the definition of ν(KX + ∆) and κ(KX + ∆), we refer to [N].
The numerical Kodaira dimension ν is denoted as κσ in [N]. The above
conjecture is a very important conjecture in the minimal model theory.
Indeed, Conjecture 1.1 implies the minimal model conjecture (cf. [B1],
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[B2]). Conjecture 1.1 also says that every minimal model is of general
type or has a structure of a Calabi-Yau fiber space, where a Calabi-Yau
variety means that its canonical divisor is Q-linearly trivial. Conjec-
ture 1.1 in dimension ≤ 3 is proved by Fujita, Kawamata, Miyaoka,
Keel, Matsuki, and McKernan (cf. [Ka2], [Ka3], [KeMM]). Moreover,
Nakayama proved the conjecture when (X,∆) is klt and ν(KX+∆) = 0
(cf. [N]). Recently, Simpson’s result (cf. [Sim]) seems to be effective
for the proof of the conjecture (cf. [CKP], [CPT], [Ka4], [Siu]).

In this paper, we consider Conjecture 1.1 in the case where (X,∆)
is minimal and ν(KX +∆) = 0, i.e., KX +∆ ≡ 0.

This case for a klt pair is a special case of Nakayama’s result. Ambro
also gave another proof of the conjecture for klt pairs in this case by
using the higher dimensional canonical bundle formula (cf. [A]). Hence
we consider the conjecture in the case where (X,∆) is log canonical and
KX + ∆ ≡ 0. In Section 3, we prove the following theorem by using
their results and [BCHM]:

Theorem 1.2 (=Theorem 3.1). Let (X,∆) be a projective log canonical
pair. Suppose that KX +∆ ≡ 0. Then KX +∆ ∼Q 0.

Moreover, we consider the abundance conjecture for semi-log canon-
ical pairs.

Definition 1.3 (Semi-log canonical). ([Fj1, Definition 1.1]). Let X be
a reduced S2-scheme. We assume that it is pure n-dimensional and is
normal crossing in codimension 1. Let ∆ be an effective Q-Weil divisor
on X such that KX +∆ is Q-Cartier.

Let X =
∪
Xi be the decomposition into irreducible components,

and ν : X ′ :=
⨿
X ′

i → X =
∪
Xi the normalization, where the nor-

malization ν : X ′ =
⨿
X ′

i → X =
∪
Xi means that ν|X′

i
: X ′

i → Xi is
the usual normalization for any i. We call X a normal scheme if ν is
isomorphic. Define the Q-divisor Θ on X ′ by KX′ +Θ = ν∗(KX +∆)
and set Θi = Θ|X′

i
.

We say that (X,∆) is semi-log canonical (for short, slc) if (X ′
i,Θi)

is an lc pair for every i. Moreover, we call (X,∆) a semi-divisorial log
terminal (for short, sdlt) pair if Xi is normal, that is, X ′

i is isomorphic
to Xi, and (X ′

i,Θi) is dlt for every i.

Conjecture 1.4. Let (X,∆) be a projective semi-log canonical pair.
Suppose that KX +∆ is nef. Then KX +∆ is semi-ample.

Comparing Conjecture 1.4 to Conjecture 1.1, we find that Conjecture
1.4 is stated only in the case where KX +∆ is nef. In general, it seems
that the minimal model program for reducible schemes is difficult. To
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prove Conjecture 1.1 in dimension d, most probably, one needs to prove
Conjecture 1.4 in dimension d−1 first (cf. [Fj1], [Fk1]). Conjecture 1.4
is proved in dimension ≤ 3 by Kawamata, Abramovich, Fong, Kollár,
McKernan, and Fujino (cf. [Ka2], [AFKM], [Fj1]). We give an affirma-
tive answer to Conjecture 1.4 in the case where KX +∆ ≡ 0.

Theorem 1.5. Let (X,∆) be a projective semi-log canonical pair. Sup-
pose that KX +∆ ≡ 0. Then KX +∆ ∼Q 0.

We prove it along the lines of Fujino in [Fj1]. We take the nor-
malization ν : X ′ :=

⨿
X ′

i → X =
∪
Xi and a dlt blow-up on each

X ′
i (Theorem 2.4). We get φ : (Y,Γ) → (X,∆) such that (Y,Γ) is

a (not necessarily connected) dlt pair and KY + Γ = φ∗(KX + ∆).
We decompose Y =

⨿
Y ′
i such that Yi → Xi is birational and put

(KY + Γ)|Yi
= KYi

+ Γi for every i. By Theorem 1.2, it holds that
KY +Γ ∼Q 0. Letm be a sufficiently large and divisible positive integer.
Here we need to consider when a section {si} ∈

⊕
H0(Yi,m(KYi

+Γi))
descends to a section of H0(X,m(KX + ∆)). Fujino introduced the
notion of pre-admissible section and admissible section for construct-
ing such sections by induction (Definition 5.1). The pre-admissible
sections on Y are descending sections. Moreover Fujino introduced
B-pluricanonical representation

ρm : Bir(X,∆) → AutC(H
0(X,m(KX +∆)))

for this purpose (cf. Definition 4.2, Definition 4.3). The basic conjec-
ture of B-pluricanonical representation is the following:

Conjecture 1.6 (Finiteness of B-pluricanonical representations, cf.
[Fj1, Conjecture 3.1]). Let (X,∆) be a projective (not necessarily con-
nected) dlt pair. Suppose that KX +∆ is nef. Then ρm(Bir(X,∆)) is
finite for a sufficiently large and divisible positive integer m.

This conjecture is proved affirmatively in dimension ≤ 2 by Fujino
(cf. [Fj1, Theorem 3.3, Theorem 3.4]). To show Theorem 1.5, it suf-
fices to give an affirmative answer to Conjecture 1.6 in the case where
KX + ∆ ≡ 0. By virtue of Theorem 1.2, it turns out that we may
assume KX +∆ ∼Q 0. First, in Section 4, we prove Conjecture 1.6 in
the case where (X,∆) is klt and KX +∆ ∼Q 0 affirmatively. The proof
is almost the same as the arguments of Nakamura–Ueno and Sakai
([NU], [S]). Next, in Section 5, we give an affirmative answer to Con-
jecture 1.6 under the assumption that KX + ∆ ∼Q 0 and x∆y ̸= 0 as
in Fujino (Theorem B, cf. [Fj1]). Then we also prove the existence of
pre-admissible sections for a (not necessarily connected) dlt pair such
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that KX + ∆ ∼Q 0 (Theorem A). In Section 6, we give some applica-
tions of Theorem 1.2 and Theorem 1.5. In particular, we remove the
assumption of the abundance conjecture from one of the main results
in [G] (cf. Theorem 6.4).

After the author submitted this paper to the arXiv, he learned that
Theorem 1.2 is proved by the same argument as [CKP] in the latest
version of [Ka4] and [CKP]. However, in our proof of Theorem 1.2, we
do not need Simpson’s result.

Acknowledgments. The author wishes to express his deep gratitude
to his supervisor Professor Hiromichi Takagi for various comments and
many suggestions. He also would like to thank Professor Osamu Fu-
jino for fruitful discussions and pointing out his mistakes. He wishes
to thank Professor Yoichi Miyaoka for his encouragement. He is also
indebted to Doctor Shin-ichi Matsumura for teaching him some knowl-
edge of L2-methods. He is grateful to Professor Yujiro Kawamata for
many suggestions. In particular, Professor Kawamata suggested to re-
move the assumption of the abundance conjecture from [G, Theorem
1.7]. He is supported by the Research Fellowships of the Japan Society
for the Promotion of Science for Young Scientists. He also thanks the
referee for useful comments and suggestions.

2. Preliminaries

In this section, we introduce some notation and lemmas for the proof
of Theorem 1.2 and Theorem 1.5. For fixing notation, we start by some
basic definitions. The following is the definition of singularities of pairs.
Remark that the definitions in [KaMM] or [KoM] are slightly different
from ours because the base space is not necessarily connected in our
definitions.

Definition 2.1. Let X be a pure n-dimensional normal scheme and ∆
a Q-Weil divisor on X such that KX + ∆ is a Q-Cartier divisor. Let
φ : Y → X be a log resolution of (X,∆). We set

KY = φ∗(KX +∆) +
∑

aiEi,

where Ei is a prime divisor. The pair (X,∆) is called

(a) sub kawamata log terminal (subklt, for short) if ai > −1 for all
i, or

(b) sub log canonical (sublc, for short) if ai ≥ −1 for all i.

If ∆ is effective, we simply call it a klt (resp. lc) pair. Moreover, we
call X a log terminal (resp. log canonical) variety when (X, 0) is klt
(resp. lc) and X is connected.
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Definition 2.2. Let X be a pure n-dimensional normal scheme and
∆ an effective Q-Weil divisor on X such that KX + ∆ is a Q-Cartier
divisor. We set an irreducible decompositionX =

⨿
Xi and ∆i = ∆|Xi

.
We say that (X,∆) is divisorial log terminal (for short dlt) if (Xi,∆i)
is divisorial log terminal for any i, where we use the notion of divisorial
log terminal in [KoM] for varieties.

Ambro and Nakayama prove the abundance theorem for klt pairs
whose log canonical divisors are numerically trivial, i.e.,

Theorem 2.3 (cf. [A, Theorem 4.2], [N, V, 4.9. Corollary]). Let
(X,∆) be a projective klt pair. Suppose that KX + ∆ ≡ 0. Then
KX +∆ ∼Q 0.

Next, we introduce a dlt blow-up. The following theorem is originally
proved by Hacon:

Theorem 2.4 (Dlt blow-up, [Fj5, Theorem 10.4], [KoKo, Theorem
3.1]). Let X be a normal quasi-projective variety and ∆ an effective
Q-divisor on X such that KX + ∆ is Q-Cartier. Suppose that (X,∆)
is lc. Then there exists a projective birational morphism φ : Y → X
from a normal quasi-projective variety with the following properties:

(i) Y is Q-factorial,
(ii) a(E,X,∆) = −1 for every φ-exceptional divisor E on Y , and
(iii) for

Γ = φ−1
∗ ∆+

∑
E:φ-exceptional

E,

it holds that (Y,Γ) is dlt and KY + Γ = φ∗(KX +∆).

The above theorem is very useful for studying log canonical singu-
larities (cf. [Fj2], [Fj5], [G], [KoKo]).
The following elementary lemma is used when we use the MMP as in
Theorem 2.7 ([BCHM, Corollary 1.3.3]):

Lemma 2.5. Let X be an n-dimensional normal projective variety
such that n ≥ 1 and D an R-Cartier divisor. Suppose that there exists
a nonzero effective R-Cartier divisor E such that D ≡ −E. Then D is
not pseudo-effective.

Proof. We take general ample divisors H1, . . . , Hn−1. If D is pseudo-
effective, then (D.

∩
Hi) ≥ 0. But (E.

∩
Hi) > 0. This is a contradic-

tion. �
Remark 2.6. Lemma 2.5 is not true in the relative setting as in
[KaMM] and [BCHM]. For example, let π : X → U be a projective bi-
rational morphism. Then every R-Cartier divisor is π-pseudo-effective.
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By Birkar–Cascini–Hacon–McKernan, we see the following:

Theorem 2.7 ([BCHM, Corollary 1.3.3]). Let π : X → U be a pro-
jective morphism of normal quasi-projective varieties and (X,∆) a klt
pair. Suppose that KX + ∆ is not π-pseudo-effective. Then there ex-
ists a birational map ψ : X 99K X ′ such that ψ is a composition of
(KX +∆)-log flips and (KX +∆)-divisorial contractions, and X ′ is a
Mori fiber space for (X,∆), i.e. there exists an algebraic fiber space
f : X ′ → Y ′ such that ρ(X ′/Y ′) = 1 and −(KX′ + ∆′) is f -ample,
where ∆′ is the strict transform of ∆.

3. Log canonical case

In this section, we prove the follwing:

Theorem 3.1. Let (X,∆) be a projective log canonical pair. Suppose
that KX +∆ ≡ 0. Then KX +∆ ∼Q 0.

Proof. We may assume that dimX ≥ 1 and X is connected. By taking
a dlt blow-up (Theorem 2.4), we also may assume that (X,∆) is a Q-
factorial dlt pair. By Theorem 2.3, we may assume that x∆y ̸= 0. We
set

S = ϵx∆y and Γ = ∆− S

for some sufficiently small positive number ϵ. Then (X,Γ) is klt,
KX +Γ ≡ −S is not pseudo-effective by Lemma 2.5. By Theorem 2.7,
there exist a composition of (KX +Γ)-log flips and (KX +Γ)-divisorial
contractions

ψ : X 99K X ′,

and a Mori fiber space
f ′ : X ′ → Y ′

for (X,Γ). It holds that KX′ +∆′ ≡ 0, where ∆′ is the strict transform
of ∆ on X ′. By the negativity lemma, it suffices to show that KX′ +
∆′ ∼Q 0. We put S ′ = ψ∗S and Γ′ = ψ∗Γ. Since (S ′.C) > 0 for
any f ′-contracting curve C, we conclude that S ′ ̸= 0 and the support
of S ′ dominates Y ′. Since KX′ + ∆′ ≡ 0 and f ′ is a (KX′ + Γ′)-
extremal contraction, there exists a Q-Cartier divisor D′ on Y ′ such
that KX′ +∆′ ∼Q f

′∗D′ and D′ ≡ 0 (cf. [KaMM, Lemma 3-2-5]). We
remark that (X ′,∆′) is not necessarily dlt, but it is a Q-factorial log
canonical pair. Hence we can take a dlt blow-up

φ : (X ′′,∆′′) → (X ′,∆′)

of (X ′,∆′). Since the support of S ′ dominates Y ′, there exists an lc
center C ′′ of (X ′′,∆′′) such that C ′′ dominates Y ′. Then we see that

KC′′ +∆
′′

C′′ ∼Q (f ′′
C′′)∗D′,
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where (KX′′+∆′′)|C′′ = KC′′+∆′′
C′′ and f ′′

C′′ = f ′◦φ|C′′ . From induction
on the dimension of X, it holds that KC′′ + ∆

′′

C′′ ∼Q 0. In particular,
we conclude that D′ ∼Q 0. Thus we see that

KX′ +∆′ ∼Q 0.

We finish the proof of Theorem 1.2. �
The above argument does not necessarily hold as it is for a relative

setting (cf. Remark 2.6).

4. Finiteness of B-pluricanonical representations

Nakamura–Ueno and Deligne proved the following theorem:

Theorem 4.1 (Finiteness of pluricanonical representations, [U, Theo-
rem 14.10]). Let X be a compact connected Moishezon complex mani-
fold. Then the image of the group homomorphism

ρm : Bim(X) → AutC(H
0(X,mKX))

is finite for any positive integer m, where Bim(X) is the group of
bimeromorphic maps from X to itself.

In this section, we extend Theorem 4.1 to klt pairs under the assump-
tion that their log canonical divisors are Q-linearly trivial (Theorem
4.5). This is also a generalization of [Fj2, Proposition 3.1] for a suf-
ficiently large and divisible positive integer m. The result is used in
the proof of Theorem 1.5. Now, we review the notions of B-birational
maps and B-pluricanonical representations introduced by Fujino (cf.
[Fj1]).

Definition 4.2 ([Fj1, Definition 3.1]). Let (X,∆) (resp. (Y,Γ)) be a
pair such that X (resp. Y ) is a normal scheme with a Q-divisor ∆
(resp. Γ) such that KX +∆ (resp. KY +Γ) is Q-Cartier. We say that
a proper birational map f : (X,∆) 99K (Y,Γ) is B-birational if there
exist a common resolution α : W → X and β : W → Y such that
α∗(KX +∆) = β∗(KY +Γ). This means that it holds that E = F when
we put KW = α∗(KX + ∆) + E and KW = β∗(KY + Γ) + F . We put
Bir(X,∆) = {σ|σ : (X,∆) 99K (X,∆) is B-birational}.

Definition 4.3 ([Fj1, Definition 3.2]). Let X be a pure n-dimensional
normal scheme and ∆ a Q-divisor, and let m be a nonnegative integer
such that m(KX + ∆) is Cartier. A B-birational map σ ∈ Bir(X,∆)
defines a linear automorphism of H0(X,m(KX +∆)). Thus we get the
group homomorphism

ρm : Bir(X,∆) → AutC(H
0(X,m(KX +∆))).
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The homomorphism ρm is called a B-pluricanonical representation for
(X,∆) .

Let X be a pure n-dimensional normal scheme and g : X 99K X
a proper birational (or bimeromorphic) map. Set X =

⨿k
i=1Xi. The

map g defines σ ∈ Sk such that g|Xi
: Xi 99K Xσ(i), where Sk is the

symmetric group of degree k. Hence gk! induces gk!|Xi
: Xi 99K Xi. By

Burnside’s theorem ([CR, (36.1) Theorem]), we remark the following:

Remark 4.4. For the proof of Conjecture 1.6, we can check that it
suffices to show it under the assumption that X is connected. Moreover,
Theorem 4.1 for a pure dimensional disjoint union of some compact
Moishezon complex manifolds holds.

Now, we show the finiteness of B-pluricanonical representations for
klt pairs whose log canonical divisors are Q-linearly trivial. Indeed,
this result holds for subklt pairs as follows:

Theorem 4.5. Let (X,∆) be a projective subklt pair. Suppose that
KX +∆ ∼Q 0. Then ρm(Bir(X,∆)) is a finite group for a sufficiently
large and divisible positive integer m.

For the proof of Theorem 4.5, the following integrable condition plays
an important role:

Definition 4.6. Let X be an n-dimensional connected complex mani-
fold and ω a meromorphic m-ple n-form. Let {Uα} be an open covering
of X with holomorphic coordinates

(z1α, z
2
α, · · · , znα).

We write

ω|Uα = φα(dz
1
α ∧ · · · ∧ dznα)m,

where φα is a meromorphic function on Uα. We give (ω ∧ ω̄)1/m by

(ω ∧ ω̄)1/m|Uα =

(√
−1

2π

)n

|φα|2/mdz1α ∧ dz̄1α · · · ∧ dznα ∧ dz̄nα.

We say that a meromorphic m-ple n-form ω is L2/m-integrable if
∫
X
(ω∧

ω̄)1/m <∞.

Lemma 4.7. Let X be a compact connected complex manifold, D a
reduced normal crossing divisor on X. Set U = X \ D. If ω is an
L2-integrable meromorphic n-form such that ω|U is holomorphic, then
ω is a holomorphic n-form.

Proof. See [S, Theorem 2.1] or [Ka1, Proposition 16]. �
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Lemma 4.8. Let (X,∆) be a projective subklt pair such that X is a
connected smooth variety and ∆ is a simple normal crossing divisor.
Let m be a sufficiently large and divisible positive integer, and let ω ∈
H0(X,OX(m(KX + ∆))) be a meromorphic m-ple n-form. Then ω is
L2/m-integrable.

Proof. Since (X,∆) is subklt, we may write ∆ =
∑

i ai∆i, where ∆i is
a prime divisor and ai < 1. We take a sufficiently large and divisible
positive integer m such that 1 − 1/m > ai and mai is an integer for
any i. Thus ω is a meromorphic m-ple n-form with at most (m−1)-ple
pole along ∆i for all i. By [S, Theorem 2.1] and holomorphicity of ω|U ,∫
X
(ω ∧ ω̄)1/m =

∫
U
(ω|U ∧ ω̄|U)1/m <∞, where U = X \ Supp∆. �

By Lemma 4.8, we see the following proposition by almost the same
way as [NU, Proposition 1], [U, Proposition 14.4], and [S, Lemma 5.1].

Proposition 4.9. Let (X,∆) be an n-dimensional projective subklt
pair such that X is smooth and connected, and ∆ is a simple normal
crossing divisor. Let g ∈ Bir(X,∆) be a B-birational map, m a suffi-
ciently large and divisible positive integer, and let ω ∈ H0(X,m(KX +
∆)) be a nonzero meromorphic m-ple n-form. Suppose that g∗ω = λω
for some λ ∈ C. Then there exists a positive integer Nm,ω such that
λNm,ω = 1 and Nm,ω does not depend on g.

In the last part of the proof of Proposition 4.9, we can avoid the
arguments of [S, Lemma 5.2] (cf. [NU, Proposition 2], [U, Proposition
14.5]) by using Theorem 4.1 directly. For the reader’s convenience, we
include the proof of Proposition 4.9.

Proof of Proposition 4.9. We consider the projective space bundle

π :M := PX(OX(−KX)
⊕

OX) → X.

Set ∆ = ∆+ − ∆−, where ∆+ and ∆− are effective, and have no
common components. Let {Uα} be coordinate neighborhoods ofX with
holomorphic coordinates (z1α, z

2
α, · · · , znα). Since ω ∈ H0(X,m(KX +

∆)), we can write ω locally as

ω|Uα =
φα

δα
(dz1α ∧ · · · ∧ dznα)m,

where φα and δα are holomorphic with no common factors, and φα

δα

has poles at most m∆+. We may assume that {Uα} gives a local
trivialization ofM , i.e. M |Uα := π−1Uα ≃ Uα×P1. We set a coordinate
(z1α, z

2
α, · · · , znα, ξ1α : ξ2α) of Uα × P1 with homogeneous coordinates (ξ1α :
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ξ2α) of P1. Note that

ξ1α
ξ2α

= kαβ
ξ1β
ξ2β

in M |Uα
∩

Uβ
,

where kαβ = det(∂ziβ/∂z
j
α)1≤i,j≤n. Set

YUα = {(ξ1α)mδα − (ξ2α)
mφα = 0} ⊂ Uα × P1.

We can patch {YUα} easily and denote the patching by Y . Note that
Y may have singularities and be reducible. Let π1 : M

′ → M be a log
resolution of (M,Y ∪ π−1(Supp∆)) such that Y ′ is smooth, where Y ′

is the strict transform of Y on M ′. We set F ′ = π ◦ π1 and f ′ = F ′|Y ′ .
Remark that Y ′ may be disconnected and a general fiber of f ′ is m
points. Define a meromorphic n-form on M by

Θ|M |Uα
=
ξ1α
ξ2α
dz1α ∧ · · · ∧ dznα.

We put θ′ = π∗
1Θ|Y ′ . By the definition,

(θ′)m = f ′∗ω.

Since
∫
X
(ω ∧ ω̄)1/m < ∞ by Lemma 4.8, it holds that

∫
Y ′ θ

′ ∧ θ̄′ <
∞. Hence θ′ is L2-integrable. Since f ′−1(Supp∆) is simple normal
crossings, θ′ is a holomorphic n-form on Y ′ by Lemma 4.7.

We take a ν ∈ R such that νm = λ. We define a birational map
ḡν :M 99KM by

ḡν : (z1α, z
2
α, · · · , znα, ξ1α : ξ2α) → (g(z1α, z

2
α, · · · , znα), ν(det(∂g/∂zα))−1ξ1α : ξ2α)

on Uα. Then ḡν induces a birational map h′ : Y ′ 99K Y ′. It satisfies
that

Y ′

f ′

��

h′
//___

	

Y ′

f ′

��
X

g //___ X.

Thus we see

h′∗(θ′)m = h′∗f ′∗ω = f ′∗g∗ω = λf ′∗ω = λ(θ′)m.

Because Theorem 4.1 holds for pure dimensional possibly discon-
nected projective manifolds (Remark 4.4), there exists a positive inte-
ger Nm,ω such that λNm,ω = 1 and Nm,ω does not depend on g. We
finish the proof of Proposition 4.9.

�
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Proof of Theorem 4.5. By taking a log resolution of (X,∆), we may
assume that X is smooth and ∆ has a simple normal crossing sup-
port. Let m be a sufficiently large and divisible positive integer. Since
dimCH

0(X,m(KX + ∆)) = 1 by the assumption that KX + ∆ ∼Q 0,
we see that ρm(g) ∈ C∗ for any g ∈ Bir(X,∆). Proposition 4.9 implies
that (ρm(g))

Nm,ω = 1. Hence ρm(Bir(X,∆)) is a finite group because
it is a subgroup of C∗. �

5. Semi-log canonical case

In this section, following the framework of [Fj1] in the case where
KX + ∆ ≡ 0, we prove Theorem 1.5. Here we recall the definition of
sdlt pairs as in Definition 1.3.

Definition 5.1 (cf. [Fj1, Definition 4.1]). Let (X,∆) be an n-dimensional
proper sdlt pair and m a sufficiently divisible integer. We take the nor-
malization ν : X ′ :=

⨿
X ′

i → X =
∪
Xi. We define admissible and

pre-admissible sections inductively on dimension as follows:

• s ∈ H0(X,m(KX +∆)) is pre-admissible if the restriction

ν∗s|(⨿ixΘiy) ∈ H0(⨿ixΘiy,m(KX′ +Θ)|(⨿ixΘiy))

is admissible.
• s ∈ H0(X,m(KX +∆)) is admissible if s is pre-admissible and
g∗(s|Xj

) = s|Xi
for every B-birational map g : (Xi,Θi) 99K

(Xj,Θj) for every i, j.

Note that if s ∈ H0(X,m(KX +∆)) is admissible, then the restriction
s|Xi

is Bir(Xi,Θi)-invariant for every i.

Remark 5.2. Let (X,∆) be an n-dimensional proper sdlt pair and
m a positive integer such that m(KX + ∆) is Cartier. We take the
normalization ν : X ′ → X. Then it is clear by definition that s ∈
H0(X,m(KX +∆)) is admissible (resp. pre-admissible) if and only if
so is ν∗s ∈ H0(X ′,m(KX′ +∆′)).

For the normalization ν : X ′ → X, any pre-admissible section on
X ′ descends on X (cf. [Fj1, Lemma 4.2]). Therefore in our case it is
sufficient to prove the existence of nonzero pre-admissible sections on
X ′. Including this statement, we prove the following three theorems
by induction on the dimension:

Theorem A. Let (X,∆) be an n-dimensional projective (not neces-
sarily connected) dlt pair. Suppose that KX + ∆ ∼Q 0. Then there
exists a nonzero pre-admissible section s ∈ H0(X,m(KX + ∆)) for a
sufficiently large and divisible positive integer m.
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Theorem B. Let (X,∆) be an n-dimensional projective (not nec-
essarily connected) dlt pair. Suppose that KX + ∆ ∼Q 0. Then
ρm(Bir(X,∆)) is a finite group for a sufficiently large and divisible
positive integer m.

Theorem C. Let (X,∆) be an n-dimensional projective (not necessar-
ily connected) dlt pair. Suppose that KX +∆ ∼Q 0. Then there exists
a nonzero admissible section s ∈ H0(X,m(KX +∆)) for a sufficiently
large and divisible positive integer m.

Step 1. Theorem Cn−1 implies Theorem An.

we claim the following by using Theorem 2.7:

Claim 5.3 (cf. [AFKM, 12.3.2. Proposition], [Fj1, Proposition 2.1],
[Fj2, Proposition 2.4], [KoKo, Proposition 5.1]). Let (X,∆) be an n-
dimensional Q-factorial connected dlt pair such that n ≥ 2. Suppose
that KX +∆ ∼Q 0. Then one of the following holds:

(i) x∆y is connected, or
(ii) x∆y has two connected components ∆1 and ∆2. Moreover, there

exist a birational map φ : X 99K X ′ and an algebraic fiber space
f ′ : X ′ → Y ′ with a general fiber P1 such that they satisfy the
following:

(ii-a) φ is a composition of (KX + ∆)-log flops and (KX + ∆)-
crepant divisorial contractions, and X ′ is log terminal,

(ii-b) Y ′ is an (n− 1)-dimensional Q-factorial projective log ter-
minal variety, and

(ii-c) there exists an effective Q-divisor Ω′ on Y ′ such that (Y ′,Ω′)
is an lc pair and f ′∗(KY ′+Ω′) = KX′+∆′, where ∆′ = φ∗∆.

Furthermore, there exists an irreducible component Di ⊂ ∆i

such that f ′|D′
i
: (D′

i,∆
′
D′

i
) → (Y ′,Ω′) is a B-birational iso-

morphism for i = 1, 2, where D′
i := φ∗Di and KD′

i
+ ∆′

D′
i
=

(KX′ +∆′)|D′
i
. In particular, (f ′ ◦φ)|Di

: (Di,∆Di
) 99K (Y ′,Ω′)

is a B-birational map, where KDi
+∆Di

= (KX +∆)|Di
.

Proof. We set S = ϵx∆y and Γ := ∆ − S for some sufficiently small
positive number ϵ. We can get a Mori fiber space f ′ : X ′ → Y ′ for
(X,Γ) such that the birational map φ : X 99K X ′ is a composition
of (KX + Γ)-log flips and (KX + Γ)-divisorial contractions. It holds
that KX′ +∆′ ∼Q 0, where ∆′ is the strict transform of ∆ on X ′. We
put S ′ = φ∗S. Since S ′|F is ample on a general fiber F , SuppS ′|F
is connected if dimF ≥ 2. Then this and the relative ampleness also
imply the connectedness of SuppS ′. Moreover if SuppS ′ is connected,
then SuppS is connected by [Fj1, Lemma 2.4]. Thus we may assume
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that SuppS ′ is not connected and dimX ′ = dimY ′ − 1. In particular,
the general fibers of f ′ are smooth rational curves. Hence there exist S ′

1

and S ′
2 such that SuppS ′ = S ′

1 ⊔ S ′
2 from [Fj1, Lemma 2.3]. Moreover,

we see that f ′|S′
i
: S ′

i → Y ′′ is birational for i = 1, 2 since the general
fibers of f ′ are smooth rational curves. By the f ′-ampleness of S ′, it
holds that f |S′

i
: S ′

i → Y ′ is finite for i = 1, 2. We have S ′
i ≃ Y ′ by

Zariski’s main theorem. This implies (ii) by [Fj1, Lemma 2.4]. Thus
we see Claim 5.3.

�
Thus the following claim holds for an n-dimensional dlt pair (X,∆)

such that KX + ∆ ∼Q 0 from the same way as [Fj1, Proposition 4.5]
by Claim 5.3.

Claim 5.4 (cf. [Fj1, Proposition 4.5], [Fj2, Proposition 4.15]). Let
(X,∆) be an n-dimensional Q-factorial (not necessarily connected) dlt
pair. Suppose that KX + ∆ ∼Q 0. Let m be a sufficiently large and
divisible positive integer, and put S = x∆y. For a nonzero admissible
section s ∈ H0(X,m(KS +∆S)), there exists a nonzero pre-admissible
section t ∈ H0(X,m(KX + ∆)) such that s|S = t, where KS + ∆S =
(KX +∆)|S. In particular, Theorem Cn−1 implies Theorem An.

We finish the proof of Step 1.
Next, we see the following:

Step 2. Theorem An implies Theorem Bn.

Proof. (cf. [Fj1, Theorem 3.5]). By Remark 4.4, we may assume thatX
is connected. We may assume that x∆y ̸= 0 by Theorem 4.5. Because
we assume that Theorem An holds, we can take a nowhere vanishing
section s ∈ H0(X,m(KX + ∆)) for a sufficiently large and divisible
positive integer m. Since dimCH

0(X,m(KX + ∆)) = 1, we see that
ρm(g) ∈ C∗ for any g ∈ Bir(X,∆). By [Fj1, Lemma 4.9], it holds that
ρm(g)s|x∆y = g∗s|x∆y = s|x∆y for any g ∈ Bir(X,∆). Thus, it holds
that ρm(g) = 1 for any g ∈ Bir(X,∆). Hence the action of Bir(X,∆)
on H0(X,m(KX +∆)) is trivial. �

Lastly, the following step follows directly by [Fj1, Lemma 4.9].

Step 3. Theorem An and Theorem Bn imply Theorem Cn.

Thus we obtain Theorem A, Theorem B, and Theorem C.
Finally, we show Theorem 1.5:

Proof of Theorem 1.5. We take the normalization ν : X ′ :=
⨿
X ′

i →
X =

∪
Xi and a dlt blow-up on each X ′

i. We get φ : (Y,Γ) → (X,∆)
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such that (Y,Γ) is a (not necessarily connected) dlt pair and KY +Γ =
φ∗(KX + ∆). By Theorem 1.2, it holds that KY + Γ ∼Q 0. Thus
there exists a nonzero pre-admissible section s ∈ H0(Y,m(KY + Γ))
for a sufficiently large and divisible positive integer m by Theorem A.
Therefore s descends on X by [Fj1, Lemma 4.2]. Because the descend-
ing section of s is nonzero, it holds that KX +∆ ∼Q 0. We finish the
proof of Theorem 1.5. �

6. Applications

In this section, we give some applications of Theorem 1.2 and The-
orem 1.5.

First, we expand the following Fukuda’s theorem to 4-dimensional
log canonical pairs.

Theorem 6.1 ([Fk2, Theorem 0.1]). Let (X,∆) be a projective klt
pair. Suppose that there exists a semi-ample Q-divisor D such that
KX +∆ ≡ D. Then KX +∆ is semi-ample.

Theorem 6.2. Let (X,∆) be a 4-dimensional projective log canonical
pair. Suppose that there exists a semi-ample Q-divisor D such that
KX +∆ ≡ D. Then KX +∆ is semi-ample.

We obtain Theorem 6.2 from the same argument as [Fk2] by re-
placing Kawamata’s theorem ([Ka2, Theorem 4.3], [KaMM, Theorem
6-1-11] [Fj4, Theorem1.1]) with the following theorem:

Theorem 6.3 ([Fj3, Corollary 6.7]). Let (X,B) be an lc pair and
π : X → S a proper morphism onto a variety S. Assume the following
conditions:

(a) H is a π-nef Q-Cartier divisor on X,
(b) H − (KX +B) is π-nef and π-abundant,
(c) κ(Xη, (aH − (KX +B))η) ≥ 0 and ν(Xη, (aH − (KX +B))η) =

ν(Xη, (H − (KX +B))η) for some a ∈ Q with a > 1, where η is
the generic point of S, and

(d) there is a positive integer c such that cH is Cartier and OT (cH|T )
is π-generated, where T = Nklt(X,B) is the non-klt locus of
(X,B).

Then H is π-semi-ample.

Proof of Theorem 6.2. (cf. [Fk2]). By taking a dlt blow up, we may
assume that (X,∆) is a Q-factorial dlt pair. Since D is semi-ample,
We get an algebraic fiber space f : X → Y such that D = f ∗A for
some Q-ample divisor on Y .
By Theorem 1.2 and the abundance theorem for semi-log canonical
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threefolds (cf. [Fj1]), f : X → Y satisfies the condition of the as-
sumption in Theorem 6.3. Thus KX + ∆ is f -semi-ample. We get an
algebraic fiber space g : X → Z over Y such that there exists some
Q-ample divisor B over Y such that KX +∆ = g∗B.

Because KX +∆ ≡ D, it holds that f ≃ g as algebraic fiber spaces.
Since A ≡ B, B is ample. Thus we see that KX +∆ is semi-ample.

We finish the proof of Theorem 6.2. �
Next, as an application of Theorem 1.2, we obtain the following

theorem by [G, Theorem 1.7]:

Theorem 6.4 ([G, Theorem 1.7]). Let (X,∆) be an n-dimensional lc
weak log Fano pair, that is −(KX + ∆) is nef and big, and (X,∆) is
lc. Suppose that dimNklt(X,∆) ≤ 1. Then −(KX +∆) is semi-ample.

By the same way as the proof of [G, Theorem 1.7], we also see the
following:

Theorem 6.5. Let (X,∆) be an n-dimensional lc pair such that KX +
∆ is nef and big. Suppose that dimNklt(X,∆) ≤ 1. Then KX + ∆ is
semi-ample.
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