ON FATOU-JULIA DECOMPOSITIONS
TARO ASUKE

ABSTRACT. We propose a Fatou-Julia decomposition for holomorphic pseudo-
semigroups. It will be shown that the limit sets of finitely generated Kleinian
groups, the Julia sets of mapping iterations and Julia sets of complex codimension-
one regular foliations can be seen as particular cases of the decomposition. The
decomposition is applied in order to introduce a Fatou-Julia decomposition for
singular holomorphic foliations. In the well-studied cases, the decomposition be-
haves as expected.

INTRODUCTION

Iterations of rational mappings and actions of finitely generated Kleinian groups
are typical dynamical systems @P!. The notion of the Julia sets [15], [16] and
the limit sets [14] are significant in their study. Sullivan’s dictionary [18] says that
they are in a close correspondence (see also [12, pp. 98-99]). More generally, the
Julia sets are defined also for actions of semigroups generated by rational maps on
CP? (cf. [9], [19]). These complex dynamical systems are one-dimensional and
on closed manifolds. Transversely holomorphic foliations of complex codimension
one yield dynamical systems of a similar kind. Indeed, the holonomy pseudogroups
of such foliations act on one-dimensional complex manifolds. If foliations are given
on closed manifolds, then the holonomy pseudogroups have certain compactness
called ‘compact generation’. The notion of the Julia sets is also known for complex
codimension-one transversely holomorphic foliations of closed manifolds [6], [8],
[1]. One of the aims of this article is to give a unified definition of these Julia sets
and limit sets. For this purpose, we will introduce a notion of compactly generated
pseudosemigroups and a Fatou-Julia decomposition for them.

The Julia sets are also defined for entire map<Conin addition, if we con-
sider transversely holomorphic foliations of open manifolds, or the regular parts of
singular holomorphic foliations, then their holonomy pseudogroups are no longer
compactly generated in general. We will introduce a Fatou-Julia decomposition also
for non-compactly generated pseudosemigroups, which coincides with the classical
one if iterations of entire maps dd are considered. The correspondence between
typical dynamical systems and pseudo(semi)groups will be as follows.
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In the first section, we will introduce pseudosemigroups (psg for short), which
have appeared in a slightly different way, e.g. in [11], [13], [22]. In the second
section, a Fatou-Julia decomposition of psg’s and pseudogroups are defined and
some fundamental properties are shown. Although pseudogroups generate psg’s,
decompositions for psg’s and pseudogroups do not coincide in general. In the third
section, compactly generated psg’s are introduced. They are a version of compactly
generated pseudogroups [8]. In the fourth section, Fatou-Julia decompositions of
compactly generated psg’s are discussed. It will be shown that Julia sets of com-
pactly generated pseudogroups as psg’s and the ones as pseudogroups coincide. It
will be also shown that we can find Hermitian metrics adapted to actions of psg’s
on Fatou sets. In the last section, we will study Fatou-Julia decompositions for
one-dimensional singular foliations.

The author expresses gratitude to members of Dosemi, Saturday seminar held at
Tokyo Institute of Technology, for helpful comments.

1. PSEUDOSEMIGROUPS

In order to compare Julia sets for pseudogroups with the Julia sets for mapping
iterations, it is convenient to introduce a generalization of pseudogroups.

Definition 1.1. Let T andSbe topological spaces. lcal continuous map fror
to Sis a continuous map from an open seffahto S. A local continuous map from
T to T is also called a local continuous map ®n If f is a local continuous map
from T to S, then thedomainand therangeof f is denoted bydomf andrangef,
respectively. IV is an open subset dbmf, then the restriction of toV is denoted
by f|v. Let f be a local continuous map froimto S

1) If f isahomeomorphism (resp. diffeomorphism) frdomf to rangef, then
f is called docal homeomorphisrresp.local diffeomorphism
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2) If T is equipped with a complex structure and ifs holomorphic, therf is
called alocal holomorphic mapIf moreoverf is a diffeomorphism, thefh
is called docal biholomorphic diffeomorphism

3) Letf be alocal map. Suppose thakiE domf, then there is a neighborhood
U of x such thatf|y is a homeomorphism to the image. Thehnis said
to beétale

4) If f is a ramified covering frondomf to rangef, thenf is called alocal
ramified covering

5) Assume thaf is a local holomorphic map o@. Theset of singularitieof
f is denoted bysingf, namely,Singf = {zc U | f’(z) = 0}.

6) The germ of a local mappinfyat a pointx € domf is denoted byfy.

Definition 1.2. Let T be a topological space amdbe a family of local continuous
mappings onl. Then, Il is a pseudosemigroufpsg for short) if the following
conditions are satisfied.

1) idt € I', whereidt denotes the identity map af.

2) If ye I, theny|y € I for any open subsét of domy.

3) If y1,y» € ' andrangey; C domys, theny,oy €T

4) LetU be an open subset @f andy a local continuous mapping defined on
U. If for eachx € U, there is an open neighborhood, 43y of x such that
ylu, belongs ta™, theny e I.

If in addition " consists of local homeomorphisms, theéns a pseudogroupf I
satisfies 1), 2), 3) and the following conditions.

4’) Let U be an open subset df andy a homeomorphism frord to y(U). If
for eachx € U, there is an open neighborhood, sy of x such thaty|y,
belongs td™, theny e I'".

5) Ifyerl, theny ter.
If I" is either a psg or pseudogroup, then we sekferT

Ix = {|x € domy}.

By abuse of notation, an element/gfis considered as an element/ofdefined on
a neighborhood af.

The terminology ‘pseudosemigroup’ has appeared in a slightly different way,
e.g.in [13], [22], [11].

Definition 1.3. Let T be a topological space artél a set which consists of local
continuous mappings om. The psggenerated byG is the smallest psg which
containsG, and denoted byG). If I is a pseudogroup, then we dendjgythe psg
generated by . If there is a finite number of elements, shy.. ., f;, of ' such that
= (fy,...,f), thenl is said to bdinitely generated

In what follows, then-th iteration of a mappind, if defined, is denoted by",
wheren € Z. If n= 0, thenf? is considered as the identity map.
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Remarkl.4. One of differences between pseudo(semi)groups and (semi)groups is
illustrated as follows. Lef be a rational mapping o8P! andl” the psg generated

by f. LetU =V ={ze C| |z <1+¢} and¢(z) =1/z If we setUp =V = {z ¢
C|1/(1+¢) < |7l < 1+ ¢} and identifyUp andVp by ¢, then the resulting space is
CP!. LetT be the disjoint union o) andV. Then,I", ¢ and¢ ! generate a psg

I" which acts orT. LetW be a small open subset 0f such thatf (W) c T and
f2(p(W)) CT. By the condition 4), the mappirgonW U ¢ (W) such thagjw = f
andg|yw) = = f2 belongs tol . The psgl’ is obtained from/", indeed (I‘ T)is
equivalent to(I",CP') (see Definition 1.20). Howeveg cannot be realized as a
single element of althoughw and¢ (W) correspond to the same region GR*,

Remarkl1.5. Let (I",T) be a pseudogroup. Suppose tbats an open subset of
T and thaty is a mapping defined od. If the restriction ofy to a neighborhood
of x belongs tol" for eachx € U, then it is always true thag € Iysgbuty € I

if and only if y is a homeomorphism. Le? € R\ Q and definey: CP* — CP?
by y(z) = €™ ~107 where we regar@P! = CU{w}. Let[" be the pseudogroup
generated by, namely, the smallest pseudogroup which contginé we setU =
{ze C||z—1] < €}, wheree is a small positive number, thery € . We set
V ={zeC||z—v-1| < €}. We may assume that NV = &, however, for a
suitable choice of, we havey"(V)NU # @. Lety be the mapping frory ITV to
CPl by y|u = yandy|v = y™1. Theny ¢ I' because/ is not a homeomorphism
buty' € MNpsg

Definition 1.6. Let (", T) be a psg. IfT is ag-dimensional, possibly non-connected
manifold and if consists of holomorphic mappings, th@n, T) is called aholo-
morphic pseudosemigroup orgedimensional complex manifald

Definition 1.7. A pseudosemigroup is said to bettaleif I consists oktale map-
pings. A holomorphic pseudosemigrolippn a one-dimensional complex manifold
is said to beamifiedif I" is generated by local ramified coverings and holomorphic
étale mappings.

Note thatl" consists of open mappingslifis étale or ramified.

Although we are interested in holomorphic pseudosemigroups on complex mani-
folds, we will discuss some more fundamental definitions and properties of psg’s.
Many of them are borrowed from those of pseudogroups which can be found in
[7, 8§ 1-2].

Definition 1.8. We denote by ;" the subset of which consists of invertible elem-
ents, namely,

o ={yer|ytery.
We denote by * the subset of” which consists of locally invertible elements,
namely,

=(yellyter)=(y).
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Note that/;* is a pseudogroup, arfd* is anétale pseudosemigroup.

Definition 1.9. Let (I, T) be a psg. IiX C T, then we set
F(X)={yeT|3IxeX, yerl sty=yX)},
r=x)=Jy .

yer
A subsetX of T is said to beforward invariantif I (X) = X, backward invariant
if F=1(X). If X is forward and backward invariant, thénis said to becompletely
invariantor I" -invariant

Definition 1.10. A subsetX of T is said to be -connectedf X satisfies the fol-
lowing condition: if X = J],.5 Xy is the decomposition oK into its connected
components, then for any,A’ € A, there exists a sequengg=A,A1,..., A, = A’
such that™ (X, ) "X, 1 # @ holds fori =0,...,r — 1.

Remarkl.11 T is I -connected if and only if \T is connected with the quotient
topology. If X C T, then\X C I"'\T is connected ifX is I-connected. The
converse also holds X is I -invariant, and is not always true everrifis a pseudo-
group. Indeed, leT = T, 11 T,, whereT, = T, = R, and equipl with the natural
topology. Letl" be the pseudogroup generatedyhyT; — To given by y(X) = X,
Xy = (—,0] C Ty, Xo = (0,00) C To andX = X3 UXp. ThenX is notl -connected
butF\X=r\T =R.

If (I, T) is the holonomy pseudogroup of a foliation, therconnected compo-
nents ofl -invariant sets correspond to connected components of saturated sets.
The notions of morphisms and equivalences are given as follows.

Definition 1.12. Let (I, T) and(A,S) be psg’s. Amorphism®: [ — A is a col-
lection ® of local continuous mappings from to Swith the following properties.
i) {domg|@ € ®} is an open covering of.
i) If @ € ®, then any restriction o to an open set alomg also belongs t@.
iii) Let U be an open subset ®fand¢ a continuous map frod to S. If for any
X € U, there exists an open neighborhddgof x such thatg|y, € ®, then
Qe .
V) If pe ®,yel “andd € A*,thendo@oyc ®,
v) Suppose thay € I' andx € domy. If x € domg andy(x) € dom¢’, where
@, ¢ € d, then there is an elemedtc A such thatp(x) € domd, anddo =
@ o yon a neighborhood of.

A morphism from(I", T) to itself is called arendomorphisnof (I, T).

The properties ii) and iii) are sometimes referred as the ‘maximality’.
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Definition 1.13 (cf. Definition 1.9) Let ®: (I',T) — (A,S) be a morphism. If
X C T andY C S then we set

P(X)={seS|Ixe X, Jpc Ps.t.s=@(X)},

oY) = | o (V).
PED

Definition 1.14. Let (I, T) and(A,S) be psg’s andb a morphism fronT” to A.

1) @ is called arétale morphisnif ® consists oktale mappings.

2) If  andA are holomorphic psg’s, and & consists of holomorphic map-
pings, thend is said to beholomorphic

3) Suppose that andA are psg’s on complex one-dimensional manifolds. A
holomorphic morphism is said to bamifiedif ¢ € ® andx € domg, then
there exists an open neighborhddgof x such thatp|y, is the restriction of
the composite of ramified coverings and holomorg#tale mappings.

In what follows, we will consider only holomorphic morphisms if holomorphic
psg’s are considered.

Definition 1.15. Let (I, T) and(A,S) be pseudogroups. A collectiah of local
homeomorphisms front to Sis anétale morphism of pseudogroupsdif satis-
fies the conditions in Definition 1.12 but ‘a continuous map fidno S in iii) is

replaced by ‘a local homeomorphism frohto S.

Definition 1.15 is equivalent to the usual definition of morphisms of pseudo-
groups [7, 1.4].

Definition 1.16. Let { f) }, A be a family of local continuous mappings fromto
S. Suppose thafdomf), }, < is an open covering of and that ify € I, x € domy,

x € domf, andy(x) € domf,, whereA,u € A, then there is & € A such that
fuoy= 00 f, onaneighborhood of. Then, themorphism generated Bjyf) }  ca

is by definition the smallest morphism which contaifis } <A and denoted by
(fa)ren. If every f, is étale (resp. holomorphic, ramified), then t@le (resp.
holomorphic, ramified) morphism generated{fy } A is defined in the same way.

Definition 1.17. Let " andA be pseudogroups and kétbe a morphism (resjgtale
morphism) of pseudogroups fromto A. We denote byppsgthe morphism (resiitale
morphism) of psg’s fronf,sgto Apsg generated byp.

If ® is anétale morphism of pseudogroups, thertonsists of local homeomor-
phisms butbpsg needs not so.

Definition 1.18. Let (I, T) be a pseudosemigroup. Assume that there is a covering
mapp: T — T which satisfies the followingovering property
1) For eachy € I', there is a unique mappingsuch thadomy = p~*(domy)
and thatpo Y= yo p holds onp~*(domy).
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2) If yi, o €T, thenyaoyi = Yoo i,
3) If U is an open subset df, thenidy = idp—l(u).

The psg: generated byy} < together with the morphism generatedibig called

the coveringof ' associated wittp. If p is a Galois covering with Galois group
G and the action commutes with, then(f,f) and p are calledGalois covering
with Galois groupG. If (I, T) is a holomorphic psg, then we always assume that
(f,f) andp are holomorphic. If in additiofi/, T) is a holomorphic psg on a one-
dimensional complex manifold, then we allgnto be a ramified covering. In this
case we cal{f ,T) with the morphism generated lpyaramified covering

Note that the morphism generated jpys anétale or a ramified morphism.

Definition 1.19. If ®1: I — L and®,: [, — 3 are morphisms of pseudosemi-
groups, then theomposited, o ®4 is defined by

Drody = (o | € P1, @ € Py, rangep, C domey).

Definition 1.20. An étale morphisn®: I — A is anequivalencéf there is arétale
morphismW: A — I suchthatlo® =T * and®oW = A*. Such &V is unique so
that it is denoted byp—1. We calld~1 theinverse morphismof ®. An equivalence
from (I, T) to itself is calledautomorphism

If ®; and®, are equivalences, theby, o @1 is also an equivalence.

Example 1.21.Let f be an endomorphism @P! andg an automorphism of PL.
Theng naturally induces an equivalence frdi) to (o fo@™1).

Remarkl.22 If (I, T) is a psg, then the identity map dhgenerates a morphism
which is equal td” *. In fact,I” * is an automorphism f”, T). On the other hand,
" is an endomorphism of,T) if and only if © =TI *. Indeed, if{ € I', then
applying the condition v) tap = {, ¢’ = y = idt, we see that for anx € dom(,
there exists an open neighborhddaf x andd € I such that o { =idy holds. If
we setp = 9, ¢’ = y = idr, then there exists an open neighborhdbdf {(x) and
&' €I such tha®’ o d =idy. It follows thatd’ = &’ oidy = &' o (60 ) = { holds
on a neighborhood of. Therefore{ €I *.

Lemma 1.23. An étale morphisn is an equivalence if and only if

W' = {etale maps fronsto T which are locally of the fornp ! for somegp ¢ d}

is a morphism. Indeedy’ = o1,

Proof. Suppose thab is an equivalence and |8t be as in Definition 1.20. Iy € W
andx € domy, then there is an elemegt € @ such thaty/(x) € domg. Since
®oW =A%, there is an elemerdt € A* such thatpo ¢y = é on a neighborhood of

X. We may assume thagt and d are local homeomorphisms by restriction. Since
@ is a morphism{(d) 1o @ € ®. Therefore, € ¥'. Conversely, ify’ ¢ W' and
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y € domy/, theny’ = ¢! holds on a neighborhood gf wherep € ®. Let € ¥
such thaty € domy. SinceWo® =T *, we may assume thal o ¢ = y for some
yer*. Hencey' = ¢! = y~1oy holds on a neighborhood gf SinceV¥ is a
morphism, this implies thap’ € W. Itis easy to see tha¥’ = ®~1 holds if W' is a
morphism. O

If we work on pseudogroups, we hade! = {¢~!|p € ®}. Indeed, arétale

morphism® of pseudogroups is said to be an equivalencgypif!| @ € @} is an
étale morphism of pseudogroups [7].

2. FATOU-JULIA DECOMPOSITION OF PSEUDOSEMIGROUPS
We pose the following assumption in this section.

Assumption 2.1. (I, T) is a holomorphicétale psg on a-dimensional complex
manifold. Ifg = 1, then we allow™ to be ramified.

Note thatl" consists of open mappings under the above assumption.

Definition 2.2. Let (I, T) be a psg. IfT’ C T be a relatively compact subset, then
we denote by, the restriction of” to T/, that is

[t ={yer |domyc T andrangey C T'}.
We say that an open connected suli$edf T’ has theproperty (wWF) orU is a
wF-open sefor short if the following conditions are satisfied:

wF1) If xe U andny € (I7/)x, then there exists an elemeamf I" such thatlomy =
U andy = nx. We cally anextensiorof ny toU.
wF2) If we set

ryv_ {ye - |domy=U, andy is an extension of the germ df

an element of 1/ as above
={yerl|domy=U andy(U)NT' # &},
thenY is a normal family.

We say that an open connected subsetf T’ has theproperty (F) orV is an
F-open sefor short if the following conditions are satisfied:

F1) V has the property (WF).

F2) If y € I anddomy C V, thenrangey is the union of wF-open sets.

Let F*(I7/) be the union of F-open subsets©f andJ*(l7/) the complement of
F*(I7/)inT’. We set
()= U (),
T'eT
I(r) =d(r),
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where.7 = {T' C T|T'is relatively compagt We callJ(I") the Julia setof I".

The Fatou setof I is by definition the complement af(I") in T. We call I -
connected componentsBf I ) andJ(I" ) Fatou componentandJulia components
respectively. Fatou sets and Julia sets obtained using by the property (wF) instead of
(F) are denoted by adding/, e.g. Fatou sets in this sense are denoted/byl ).

Needless to say that the ‘property (F)’ stands for the ‘property Fatou’. By ‘(WF)’
we mean ‘weak-F’. Note that fl is an F-open set fofl7/,T’) and if y € It/ such
thatdomy C U, thenrangey is the union of F-open sets. To see thisdet 1/ such
thatdom c rangey. If we setV = y~1(dom{), then{ o y|y € I andrangel =
{(y(V)) so thatrang€{ is the union of wF-open sets.

Example 2.3(see also Example 3.6).et f: CP* — CP! be a rational map. If we
denote by(f) the psg generated bfy, thenJ((f)) = J(f), whereJ(f) denotes the
Julia set off in the usual sense. ¢f: C — C is an entire map, then we can regard
as a local holomorphic map defined ®®* with domg = C, and(g) as a psg which
acts onCP!. If we denote byd(g) the Julia set ofy in the usual sense, which is a
subset ofC, then we havd((g)) = J(g) U {}.

LetT' € 7. If U is an F-open set i/, thenU is a wF-open set by definition. If
y € [T theny(U) is the union of wF-open sets butU ) itself is not necessarily a
wF-open set.

Example 2.4. Let T = CP! and we defingy,{: CP! — CP! by y(z) = 2, and
{(2) = 2%, wherea > 1 anda ¢ Z. The mapping] is not well-defined orCP?! so
that we regard as local mappings defined on suitable open subseE®bf {0, o}
and take all branches. Lét be the psg generated lyyand {. Then,F(I") =
CP\ ({0,0} U{|Zl = 1}). LetU be a small open disc i@P*\ ({0,00} U{|Z| = 1}).

If nis large enough, thex*(U) contains a circle aroun@ or . Hence no germ
of ¢ at a point iny"(U) is the germ of any element &f defined ony"(U) so that
y"(U) does not have the property (wF). However if y'(U), then by choosing a
neighborhood ok small enough, we see that the germ of any elemeiit can be
extended to an element bf.

Some remarks are in order.

Remark2.5. Let F*(I7/) be the complement aF (/) in T. If we denote byro(I")
the complement odp(I") in T, then we have

Fo(F)= () F*(m)
TeT
andF (") is the interior offy(I") (see also Lemma 2.16).

Remark2.6. A related construction for holomorphic correspondences is given in [3].

Remark2.7. Although the difference between the conditions (F) and (wF) seems
quite large, there are several cases where they are equivalénts enerated by
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a pseudogroup, then these conditions are equivalent. They are also equivalent if
I = (f), wheref is an endomorphism @P* or an entire map oft. We will show

that if I is compactly generated, then the conditions (F) and (wF) are equivalent
(Proposition 4.5).

Remark2.8. As holomorphic mappings are considered, extensions in wF1) of the
property (WwF) are unique. The extensionyis usually denoted by.

Example 2.9. Let T1, T, and T3 be open unit discs it andT = T, LI T, 11 T3. We
denote by the standard coordinates @n We definey: Ty — Tz by yi(z1) = z‘l and
(i: T, —T3by () = z"2 butdom¢; = {|z| < 1/i}, wherei is a positive integer.
Let n: Ty — T be the identity map, anf the psg generated by, {j,n}i j>o.
Then,F (1) = T\ ({01,02} UUR5{|z1| = 1/i} UUZ{|z2] = 1/i}) andwF () =
T\ ({02} UUZ{|22| = 1/i}), where0; denotes the origin iff;. Indeed,{ is not
well-defined on a fixed neighborhood@f if i is large. Note thaf (F (")) =F(I")
butr (wk (")) 2 wk(I).

Definition 2.10. If (I, T) is a pseudogroup, théw ("), Jo(I"), F(I) andJ(I") are
defined formally in the same way as in Definition 2.2. Thus obtained Fatou and
Julia sets are denoted Bygo(I" ), Jogo(I"), Fpg(l") andJpg(I" ), respectively.

Recall that ifl” is a pseudogroup, then the conditions (wF) and (F) are equivalent.
If (I, T) is a pseudogroup, thefyy(") C F(Ipsg). The difference betweef,g(I)
andF (psg) occurs in wF1) of Definition 2.2.

Example 2.11(see also Example 4.21)et T = {0< |Z < 1} ¢ C and se¥(2) = 7.
Let I be the pseudogroup generatedybgnd its local inverses, namely, lét =
{U C T |U is an open subset such thatU — y(U) is a homeomorphisiy and let
I = (Ylu,y yu))uen- ThenF (Msg) = Fog(I") = T. On the other hand, I&t be
the open unit disc and we regayas a local mapping defined dnwith domy =T,
and let” be the pseudogroup generatedymnd its local inverses. Theﬁﬂ(ﬁ,sg) =
T\ {0}. On the other handspg(I") = @. Indeed, once an open subtebf T is
fixed, y" is not injective orlJ for largen.

The equalityFpg(I" ) = F(Ipsg) holds if " is compactly generated. See Propos-
ition 4.11.

Remark2.12 If g > 1, then the Julia sets in Definitions 2.2 and 2.10 are tentative.
We will need the notion of Green functions for a right definition of them, which
we do not discuss in this paper. On the other hand, we can apply Definition 2.2 to
rational mappings fron®P" to CP", and obtain the Fatou set in the usual sense. We
refer to [4] and [21] for dynamics oGP".

In generalf (") = F(I") does not hold even if is finitely generated.
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Example 2.13.LetA= {ze C|1 < |7 < 2} and define a local mapping on A by

a(2) = Z, if1<|2 <2,
1 A/2, ifV2<|7 <2

If we setlp = (a), thenJ(lp) = A. We regarda as a local mapping oft. For a
positive integeii, we setT; = C, andT = [[j~; Ti. We definey,{: Ti — Tiy1 by
¥i(z2) = a(z) and(i(z) = 4z Lety and{ be local mappings of such thaty|t = ¢
and{|t = ¢, respectively. If we sefft = (y, (), then we have

Jo(MNT = on{ze Cla < |7 <2-471,
i=0
Ir)NT = {0} ud(r).
for anyi.

Example 2.14(cf. [1, Example 2.15], see also Theorem 2.1B¢t T, =C, i =
1,2,...,andT =] [~, Ti. We definey : T; — Ti1 to be the restriction of the identity
map to{ze C||z] < 1/i}. Lety be the local diffeomorphism frofi to T such
thaty|, = y. If we denote by" the pseudogroup generated yaythenJogo(M) N

Ti = Ui {|Z = 1/k} but Jog(I" ) NTi = (Jpgo(I) NTi) U{0}. Note that(I",T) is

not equivalent to the holonomy pseudogroup of the trivial foliation on a foliation
chart. On the other hand, if we s8f=C, S ={zeC| |7 <1/i—1} fori>1
andS=[]~,S, theny is a local diffeomorphism os. If we denote byF the
pseudogroup generated thheang(I:) =S Indeed,(F,S) is equivalent to the
holonomy pseudogroup of the trivial foliation on a foliation chart.

The equalityFo(I" ) = F(I") holds in some important cases. See Theorems 4.1,
5.9 and Corollary 5.8.

Remark2.15 In what follows, we will discuss Fatou and Julia sets of psg’s. How-
ever, the results apply to Fatou and Julia sets of pseudogroups without changes.

The following property is frequently used.

Lemma 2.16.Let (", T) be a psg, and leTy, T, € 7. If Ty C Ty, thenF*(IT,) D
F*(IT,).

The proof is easy and omitted. Lemma 2.16 implies that it suffices to consider a
sequencgTi} in 7 such thafl; C Ti,; and thatJ> ; Ti = T when defininglo(I")
andFo(I).

Unlike the classical caseB(I" ) andJ(I" ) need not be completely invariant.

Example 2.17.Let Ty =T, =CP! =CU {0} andT =T1 I T,. Letf: T4 — Ty
be such thaff (z) = /—1zon C c CP%, and let¢: T, — Ty be the identity map.
Letg: T, — T, be a rational map such that the classical Julialégt is the whole
CP!, for example, a Laléts map. If we sef = (f,g,¢), thenF () = T; and
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J(r) =T,. We havel “Y(F(I")) = T andl" ~1(J(I")) = J(I"). On the other hand,
r(F(r)=F()andr(J(r))=T.

Example 2.17 is an example of compactly generated psg’s. See Sections 3 and 4.
In general, we have the following.

Lemma 2.18. 1) Fy(IM) andF(I") are forwardl™ -invariant, and we have (I ) =
Nyer (v X(F (M) U(T \ (domy))).
2) Jo(I") andJ(I") are backward™ -invariant.
3) Fo(lr), (M), F(r) andJ(r) are I *-invariant.

Proof. If U is an F-open set fofl7/,T’) and if y € It/ such thadomy c U, then
y(U) is the union of F-open sets. Hence we h&ydF*(I7/)) C F*(I7/) for any
T' € 7. Hencel (Fy(I")) C Fo(IM). On the other hand, since the local identity maps
belong to, the inclusions are in fact equalities. Siriceonsists of open mappings,
we also have (F(I)) =F(I). If ye I, theny(F (") n(domy)) C F(I"). Hence
F(r)n(domy) c y"X(F(I")). Therefore

F(r) = () ((F(F)n(domy))u(T\ (domy)))

yer

c My U (T \ (domy))).
yel
If we sety = idr, theny 1(F(I")) U (T \ (domy)) = F(I") so that the above inclu-
sion is in fact the equality. The part 2) follows from 1). The part 3) is easy. [

We have the following.

Theorem 2.19(see also Proposition 4.10)et (", T) and (A, S) be psg’s.

1) If ®: ' — A is either a covering or ramified covering, th@m(F(A)) c
F(I). If ®is a Galois covering with a finite Galois group, them!(F(A)) =
F(r).

2) If ®: ' — Ais an equivalence, thetd(F (")) =F(4A).

Proof. We will show 1), because 2) can be shown by similar arguments\Wie¢
an open subset & Then,W is contained irF (A) if and only if W C F*(Ag) for
anyS € ., where. denotes the set of relatively compact subsetS dfote that
the latter condition is equivalent W NS c F*(Ag) for anyS € .7.

Let U be an open subset @1(F(A)). Assume thatp € ® is defined orlJ
and thatg(U) C F(A). If ¢ € ® andU C domg,, theng(U) C F(A). Indeed,
if xe U, theng = 8o ¢ holds for somed € A on a neighborhood of by v) of
Definition 1.12. Hencep(x) € F(A) by Lemma 2.18.

Letx € @~ 1(F(A))NT’ and letT/,...,T, be the connected componentsTdf
whereT’ € .7. SinceT’ is relatively compact, we can find a finite number of
elementsyp,, ..., @ of ® such that{dom@} IS an open coverlng of’ and that each
¢ is the restrlctlon of an elemem; of ® such thablomqq< > domg. Moreover, we
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may assume that ea«ﬁa is a local ramified covering with a single singularity, or a
local biholomorphic diffeomorphism. If we s& = Uj_; U5_1 ¢ (T N (domgy)),
thenS € .. We may assume thate domg,. Thengi(x) € F(A)NS by the above
arguments.

LetU be an open connected neighborhooa afhich is contained ifdomg; ) N
®~1(F(A))NT’. We may assume that if we sét= ¢ (U) thenV is an F-open
set inF*(Ag). We may further assume thatdfc AV and &(V) Nrangey # 9,
thend(V) C rangep. Letze U andy, € (I7/),. If y(z) € domq, then there is
an elemen® € A such thatd o ¢ = @ o y on a neighborhood c. SinceV is an
F-open setd extends to an element df defined orV. Hence(5o @), = (@ o ).
As @ is a covering or ramified covering, there exists an elendeot I such that
@ol =doq@ anddoml =U. If y(z) is not a branching point af, then{; = y,. If
y(z) is a branching point ofi, then we can find a point which is close enough
and is not a branching point. We still ha@(o Y)w = (¢@o {)w SO that{y = . By
analyticity, we have; = y,. If ¢ is a local biholomorphic diffeomorphism, then for
eachye rv, @(V) oyo (pl‘l c AV, wherek(y) is determined by as above. Since
the number ofy’s is finite, this implies thar' ¥ is a normal family. 1fq = 1 and
@ is ramified atp € U, thenr Y lu\py is @ normal family. Since elements bt
are obtained via\V, elements of Y is bounded on a neighborhood pf Hence
Y is a normal family also in this case. Therefttds a wF-open set. Let e I
such thatdomy c U. If y(x) € domg@, then there is an open connected Yebf
domy such thak € U’, y(U’) € domq, and that there is an elemehbf A such that
do@ = @oyholds orlJ’. Sinced(@(U")) =q@(y(U")) C S, d € Ag and@(y(U"))
is the union of F-open sets. Let y(U’) andn; € (7). If n(z) € domg, then
there is an element € Ag such that(to@); = (@on)z Since@(y(U’)) is the
union of F-open sets, we may assume by shrinkiighat u is well-defined on
@(y(U")) as an element of. Moreoveru(q(y(U’))) C rangep by the choice
of V, because we have(@a(y(U’))) = u(d(@(U’))) C pod(V). Now sinced
is a (ramified) covering, there is an eleménof I such thatuo @ = @ o  with
dom = y(U’). We have(go ), = (@on),. By similar arguments as above,
we can verify thatl, = n, and that™ YY) is a normal family. Hence/(U') is a
wF-open set so thal is an F-open set. Suppose tldais a Galois covering with
a finite Galois group. Let) C Fy(I") and assume thad|; is a homeomorphism.
We setU = p(U), wherep is the projection which generat@s Letx € U and
S € .7 such thaix € S. If we setT’ = p~1(S), thenT’ € .7 because is a finite
covering. LeX € U such thap(X) = x andU’ an F-open set fof, which contains
X. We set’ = p(U"). If y e U’ andd, € (Ag)y, then there is & < (I7)y such that
(poy)y= (80 p)y, wherey € T’ such thatp(y) = y. Then,y; extends to an element
of I" defined or)’. If ze U’, then(po )z = (&' o p) holds for someY’ € A, where
7 the unique element db’ such thatp(z) = z. Sincep is a homeomorphism, we
haved’ = poyo p~1 on a neighborhood af Hencepo yo p~! belongs taA, and
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its domain isJ’. As Y’ is a normal familyAY' is also. Henc&)’ is a wF-open set
for Ag. Letd € Ag such thadomd c U’. We seV = domd andV = p~1(V)NU’.
Then, there is an elememte " such thatpo y = d o p becauseab is a covering.
Moreover,y € 7/ by the definition ofT’. As y(\7) is the union of wF-open sets,
o(V) is also the union of wF-open sets. Hetds an F-open set fatg. Therefore
U is the union of F-open sets fdig, andU C Fy(A). O

Example 2.20.We definef : CP! — CP! by f(z) = 2. LetI" be the psg generated
by f and its local inverses ofiP*\ {0, 0}, thenF (I") = CP*\ ({0,%0} U{|Z| = 1}).
We definef: C — C by f( z) = 2z, and letl” the psg onC generated bf and
f~1. ThenF () = C\ {0}. Let p: C— C\ {0} be the exponential map. Then
is a morphism fron(I",C) to (I",CP!), and a covering morphism froii, C) to
(r’,C\ {0}), wherel"" denotes the restriction df to C\ {0}. We haveF (') =

F(r)andp Y(F(I'")) = C\v—=1R C F(I).

Example 2.21.1) of Theorem 2.19 does not always hold if we simply assume that
® is a morphism. Lefl; =T, =C andT = T;IIT,. We definey;: Ty — T by

v1(z2) = z. Let y» be the restriction of to the unit disc inT;. Then, we have
F((y1)) =T andF((y2)) =T\ {z€ T1| |7 = 1}. The identity map ofl induces a

morphism®: ((y5),T) — ((y1),T) but®1(F((y1)) 2 F({y2)).

In the next section, we will introduce the notion of compactly generated psg’s.
Here we present two examples of non-compactly generated psg’s in advance. Fatou-
Julia decompositions of these psg’s are examined under a tentative definition in
[1]. The decompositions are as follows under Definition 2.2. Note that these psg’s
are generated by pseudogroups so that the conditions (wF) and (F) are equivalent.
Results are the same as in [1] but we proceed by correcting typographic errors.

Example 2.22([1, Examples 8.8 and 8.9]Let y: C — C be the mapping given
by y(z) = 2z, and(y) the group generated by LetT = (C\ {0})/(y) andS=
{ze C| |7l < 1+ ¢}, wheree is a small positive real number. L& be a subset
of Sdefined by0' = {ze C|1< |z <1+¢€}, and letn: O — T be the mapping
induced by the inclusion o® into C. We defineé: T — T by &(2) = 2, and
let I' be the pseudogroup generateddgwundn which acts onl, = TIIS. Then
J(Mpsg) = TIIO/, whereQ’ denotes the closure @ in S(J(Mpsg) is Written in [1] as
Ty in error). Although™ andlysgare not compactly generated, we haygl" ) =

Example 2.23([1, Example 8.10]) Let D5, ¢(0) be the open disc of radius+

€ centered ab and letT = T, 11 T,, whereT; = T, = Ds,(0). We denote the
natural coordinates af; andT, by zandw, respectively. Lef” be the pseudogroup
generated byp, y1 andys defined as follows. First set

S={zeT|25/(5+¢) < |7 <5+¢€},i=12
and defingp: S — S by y(2) = 25/z Second, let
U ={re¥ TeTy|l<r<2 |t| <85},
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whered is chosen so small tha4: U; — Ty defined byy (z) = Z is a diffeomor-
phism onto its image. Finally set

Vi={reV e |2<r <4, |t| <3}

and defings: U1 — V1 by y»(2) = 2z. The action of” is essentially org;, andS,
andyp is added in order to be able to consider thas acting onCP?.
The pseudogroup is not compactly generated. If we set

lh={& “VI{|1<t<4), fork=0,1,...
A= {2/ eV Bli=0,... 2, |5 <2718}, forl =0,1,...,
(the definitions ol andA, are incorrect in [1]) then

J(lpsg) = Jpg(M) = [1,4]U 0 kU O AL
k=0 =1

Adding an irrational rotation té as a generator, one can obtain a pseudogfeup
such that)((n)psg) = Jpg(l1) = {z€ T1|1 < |z < 4}. The pseudogroufy is not
compactly generated, either.

In general, it is almost impossible to tell if a given pointlobelongs td= (") or
not. As in the classical cases¢ T belongs tal(I") if, for example,

1) there existy € I such thaty(x) = xand|y'|, > 1 (repelling fixed point),
2) there there existg € I" such thaty(x) = x and|y’/| = 1 but y¥ # id for any
positive integek (parabolic or irrationally indifferent).

The dynamics offr (I" ) is expected to be tame. We will later show thdt if=I" *,
thenF (I") admits a -invariant Hermitian metric which is locally Lipschitz continu-
ous (Theorem 4.20). If is compactly generated, thér/" ) admits a semi-invariant
metric which is locally Lipschitz continuous (Proposition 4.19 and Theorem 4.17).

3. COMPACTLY GENERATED PSEUDOSEMIGROUPS
The notion of compactly generated pseudogroups [8] is also valid for pseudogroups.

Definition 3.1. A pseudosemigrouff™, T) is compactly generateifithere is a rela-
tively compact open sét’ in T, and a finite collection of elementss, ...,y } of I
of which the domains and the ranges are containdd such that

1) {w1,..., %} generatesy,, wherelT is the restriction of to T,

2) for eachy, there exists an element of I such thatdomy; contains the
closure ofdomy, ¥|domy = ¥ and thaty is étale on a neighborhood of
domy; \ domy,

3) the inclusion ofT’ into T induces an equivalence frofp, to I" .

(l/,T') is called areductionof (I, T).
A reduction of(I", T) is also denoted by’, T’).
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Remarlk3.2 If I is a compactly generated psg on a one-dimensional complex mani-
fold, thenl” is étale or ramified. In addition, the last condition in 2) is equivalent to
Singy; = Singy;.

Remark3.3. If pseudogroups are considered, then the condition 3) can be replaced
with a much weaker condition th@t meets every orbit of .

Lemma 3.4.1f (', T') is a reduction of I, T), thenl” *x meetsT’ for anyx € T.

Proof. Let @ be the morphism front/"’,T’) to (I, T) generated by the inclusion,
which is an equivalence. Thé#h= ®~1is an equivalence froff", T) to (I, T'). If

x € T, then there is an elemegite W defined on a neighborhood wandy (x) € T'.
We may assume that is a diffeomorphism ang/—! € ®. Since® is a morphism,
there are elemenigs{ € I such thatyo (y—1)x = idy and({ oid)x = (¢~ 1)x. There-
fore {y = (rl)x andwal(x) = Yy-1() SO that the restriction af to a neighborhood
of x belongs ta™ *. O

Lemma 3.5. If I" is a compactly generated pseudogroup, tifigsyis a compactly
generated psg.

Proof. Let ("', T’) be areduction of ", T) and suppose th&t' = (y1,..., y). If y€
" and ifx € domy, then there are elemengse '’ anda, 3 € I such thaty = o
y oo holds on a neighborhood &f If { € Mysgandy € dom, then the restriction of
{ to a neighborhood of belongs tad™. Hence{ = 3o’ o a holds for som&’ € I’
anda, 3 € I". Thisimplies thatl s, T') is equivalent tqlpsg, T) becausé C I3

psg
Sincel'p’sgis generated byy,.... v, i L, ... % L osgis compactly generated.[]

Example 3.6.Let f be an endomorphism @P!, whereCP! = CU {e}. If we set
I = (f), then(I",CP?!) is a compactly generated psg. Indegd, CP?) itself is a
reduction. Another reduction can be chosen as followsULet{ze C| |7 < 1+ ¢}
andV ={ze C| |7 > 1— €} U{w}, wheree > 0is a fixed small number. L&t =
(f,idy~v) andT =UIIV. Then(I",T) is equivalent to the psg o8P generated
by f. Note that we can embel into C. Let nowU’ ={ze€ C||Z7 <1+ €'} and
V' ={zeC||7 >1-¢€}uU{w}, wheree > ¢ > 0. If we setT’ =U’IIV’' and
" =T |1, then(l'’,T") is a reduction of I, T). On the other hand, if is an entire
map onC and if we regardf as a local mapping o8P* with domf = C, then(f)
is not compactly generated.

Example 3.7.Let " be the holonomy pseudogroup of a complex codimension-one
transversely holomorphic foliation of a closed manifold. ThHers a compactly
generated pseudogroup, aidyis a compactly generated pseudosemigroup.

Example 3.8.Evenifl is a compactly generated pg$g; needs not be a compactly
generated pseudogroup. Indeed,/Tebe the psg generated Hy. z+— Z2. Then
(I ,CP?) is compactly generated b(f *,CP?) is not.

The following properties are fundamental.
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Lemma 3.9. Let®: ' — A be a morphism which consists of open mappings. If
(I, T) is compactly generated, thapis also compactly generated. That is, there
is a finite subsef@ } of ® with the following properties

1) For any @ € ® andx € dome, there areq, yc I * andd € A* such that
@ = do@oyon aneighborhood of.

2) For eachi, domgq is relatively compact, and there is an elem&]dz ® such
thatdom@ C dom@ and @ = @ |domg-

Proof. Let (I'’,T’) be a reduction of/", T). SinceT’ is compact, we can find finite
subsets @} and{(Nn} of ® such thadomq is relatively compactT’ C Jdoma,
dom@ < dom@ and @|domg = @- Letx € T and suppose thap € ® is defined
on a neighborhood at. Then, there is an elememte ' * such thaty(x) € T/,
and somey is defined on a neighborhood pfx). By taking a restriction, we may
assume thate I';*. Since® is a morphism, there are elemettsy’ € A* such that
@oy t=3d0@ andd’ o p=qoy. As® consists of open mappings,o & = id g,y
anddod’ = idy(x), Whereidy denotes the identity map on a neighborhoog efS
Henced € A* andg = d o @ o y on a neighborhood of. O

Lemma 3.10. Let (I',T), (A,S) be psg’s and suppose théf,T) is compactly
generated.
1) If ®: I — A is a covering or ramified covering, thei,S) is compactly
generated.
2) If (A,9) is equivalenttql",T), then(A,S) is compactly generated.

Proof. First we show 1). Le{l"’,T’) be a reduction of",T). Then,® is com-
pactly generated with a set of generatpgs}ic| as in Lemma 3.9. We may assume
that eachy is a homeomorphism or a ramified covering with a single singularity.
Suppose that’ = (y, ..., %). We may assume that domains and rangeg'©fre
contained in domains af’s. Then, for each, @j o yi = 6 o ¢ holds for somej, k
andd € A. If we denote byA’ the collection of elements &f obtained in this way,
thenA’ is a finite set. If we se8 = (Jic; @(T' N (dom@)), thenS is relatively
compact andA’, S) is a reduction ofA, S).

The proof of 2) is almost parallel. Lef™’, T') be a reduction of",T) and
suppose thaf’ = (y,...,%). Let ® be an equivalence from to A. Then,® is
compactly generated with a set of generafapg as in Lemma 3.9. Leb = {@ o
yj o cg(*l}, where the composition in the right hand side is taken after restrictions
if necessary. Theb is a finite set. We se8 = (J[_; @(T' N (dom@)). ThenS is
relatively compact. 1D € A, then we may assume that there are elemenig € ®
such thatpz‘lo do@ €I by taking restrictions. Henc®|+- is an equivalence from
(r', 7"y to ((D),S). LetW be the equivalence froT’,T’) to (I, T) induced by
the inclusion. Theng o Wo (d|/)~1 is equal to the morphism fror(D),S) to
(4,9) induced by the inclusion. O

The next lemma is easy.
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Lemma 3.11. Assume thatl",T) is compactly generated and I6T’, T’) be a re-
duction. If T CcV C T andV is relatively compact, theffy,V) is also a reduction
of (I, T).

4. FATOU SETS OF COMPACTLY GENERATED PSEUDOSEMIGROUPS

We pose the same assumption as Assumption 2.1 in this section.
Let (I",T) be a compactly generated pseudosemigroup(/lGetT’) be a reduc-
tion and®: I+ — I" the equivalence induced by the inclusion.

Theorem4.1.Let(I", T) a compactly generated psg atig, T’) a reduction. Then
F(r) =®(F*()) andJ(I) = ®(J*([7)). In addition, we havéo(l) = F(I")
andJo(I) =J(I").

Proof. LetT" € 7. If T C T/, thenF*(I+/)NT"” C F*(I») by Lemma 2.16. If
T” > T/, then® induces an equivalence frofif to T”, which we denote by'.
We haved'(F*(I7/)) = F*(I1+) by Lemma 2.19. Moreover, singg is induced
by the inclusionsF*(I7/) = F*(I7»)NT'. It follows thatFy(IM) N T' = F*(I1) if
(F/,T’) isareduction. Therefore, ' D T, then we hav&o(M)NT" =F*(I7n) =
®'(F*(I7+)). On the other handp’ (F*(I7/)) = ®(F*(I+)) N T” by the definition
of @'. Since we can find an increasing sequefde .7 such thafl = J?~; T, we
haveFy(I") = ®(F*(7/)). By taking the complement, we hadgl" ) = ®(J3*(I7/)).
The above arguments show tlgt/" ) is an open subset af. HenceF (M) = Fy(IN)
andJ(I) = Jo(IN). O

Remarl4.2 Theorem 4.1 also holds for compactly generated pseudogroups (cf. [1]).
The proof is essentially the same and omitted.

Remark4.3. If (I, T) is compactly generated and(if’,T’) be a reduction, then
F(r')y=F*(y)andJd(r'’) = J*(Iv).

Remarkd4.4. Let (I, T) be apsg. Le{D, } < be an open covering df by balls in

CY. If we setD = [ [, A D, then elements af can be naturally regarded as local
mappings orD if their domains and ranges are containedin The psg(/p,D)

is equivalent to(I", T), indeed, the inclusions db, to T induce an equivalence.
Hence, if we discuss Fatou-Julia decompositions, we may assumdé tisathe
disjoint union of open balls if9, and that the closure of each balls are also disjoint.
Suppose now that™, T) is compactly generated and Igt’, T’) be a reduction of
(I, T). Then, we can find a finite covering f by open ballgD/}!_, such that for
anyi, there exists & such thaD{ c D,. If we setD’ = [[|_, D}, then(I'y,,D’) is
equivalent to ', T'). Hence we may assume that each connected compong&ht of
is an open ball and its closure is contained in a connected componéntrofvhat
follows, we assumél,T) and (", T’) are as above unless otherwise mentioned.
Finally note that ifg = 1 and ifU is a wF-open set fofl/, T’), then the family™Y

as in wF2) of Definition 2.2 is always normal by virtue of Montel’'s theorem.
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Proposition 4.5. If " is compactly generated, then wF-open sets are F-open sets.
ThereforewF (") = F(I") holds and so on.

Proof. Let (', T') be a reduction ofl",T), {yi,..., %} a set of generators &t’,
and®: I’ — [’ the equivalence which is the inverse of the inclusion. d & a
positive real number such that any germyadt a pointze T’ extends to an element
of I defined onD,(d). LetV be a wF-open set i’ and lety € '’ such that
domy c V. We setJ =domy. If x € U, then we can find an open sub&Etof U
such thatx € U’ and that the radius of(U’) is less thard/2 for anyy € V. Let

y € y(U’) and assume that an elemegtc I/ is given. We denote bff’(k)y the set
of the germs of elements @’ which can be represented as the composite of at most
k generators. Then/ = UI''(K)y. If ny € I''(1)y, namely,ny = (y)y for somei,
theny is well-defined ory(U’) by the choice ofl. Moreover, sincgjoyc 'V, the
radius ofy(y(U’)) is less thard/2. Suppose that ifyy € I’ (k)y, thenny extends
to an element of” andn(y(U’)) is of radius less thad/2. If ny € I''(k+ 1)y,
then we havepy = (y o {)y for somei and{y € I''(k)y. By the assumption, we
may assume that is well-defined ory(U’), and the radius of (y(U’)) is less than
d/2. Again by the choice ofl, y; o { extends to an element, séy which is well-
defined ony(U’). Since@oy e 'V, the radius of@(y(U’)) is less thard/2. By
the constructiong, = (yio {)y = ny. SincerlV is a normal family and/ is an open
mapping,[ YY" is also a normal family. TherefongU’) is a wF-open set. Singe
is arbitrary,y(U) is the union of wF-open sets. O

Theorem 4.1 and Proposition 4.5 imply that the definition of Fatou and Julia sets
of compactly generated psg’s (and pseudogroups) can be quite reduced compared
with those of general psg’s. Indeed they be defined without taking infinite number
of intersections and unions, nor taking interiors and closures. Moreover, it suffices
to deal with wF-open sets instead of F-open sets.

Remark4.6. The technique using’(k)y in the proof of Proposition 4.5 is from
[5, Lemme 2.2]. Itis frequently used in what follows.

Fatou sets of compactly generated semigroups have a property similar to those of
finitely generated semigroups acting GR? [9], [19].

Lemma 4.7. Suppose thafl, T) is compactly generated. LéE’, T') be a reduc-
tion of (I, T) and{y,..., %} a set of generators di’. Then

F(r) = H(Fr)u(T"\ (domy))).

LD~

Proof. It suffices to show tha (I') > N{_y (v 2(F(I'"))U(T’\ (domy))) by Lemma 2.18.
Suppose that € N_(y *(F(I")) U(T’\ (domy))). If x € domy;, then there is an

open neighborhoad; of x such tha; (U;) is an F-open set. We sét=ycqomy Ui

If y €Iy, wherey € U, theny, = ({ o %)y holds for somei and ¢y, € Iy
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unlessy, = (idr)y. Sincedyy,) extends to an element éf defined ony(U), ¥,
extends toJ. ThereforeU is an F-open set which contaixs HenceF(I'’) D
O

Nz (W HFF))U(T'\ (domy))).

Remark4.8. If ' = (f), wheref is an endomorphism dEP?, then Lemmata 2.18
and 4.7 are reduced to the usual equalifiésf)) = f(F((f))) = f~X(F((f))) and
J((F)) = F(I((F))) = F=XI((f))). Similarly, if f1,..., f, are endomorphisms of
CP?, thendomf; = CP! for anyi so that we have (I'’) = N_, f,*(F(I'’)), where
"= (fy,..., ;). Thisis the case studied in [9] and [19].

Example 4.9. Lemma 4.7 fails ifl" is not compactly generated and if we do not
includeidt in the set of generators. L& = T, = CP! and definey: T1 — To

by yi(2) =iz, and{: T, — T, by {(2) = 2. If we setl, = ({,y1,...,\n) andl =
({,w1,--..), thenl, is compactly generated aifidis not. We have(l,) = (UL 1{z€
Ti||Z =1/ih)ust andI(N) = (U2 1{z€ T1| |7 = 1/i} U {01}) US', where0;

is the origin inT; and St is the unit circle inT,. It is easy to see tha(},) =

(¢ HF(Mm)UT)NAL (Y (F (M) UTz) and(dH(F (M) UTe) NNy (v H(F (M) U
T2) = (T\ (Ua{ze al 2 = 1/i})) N(T2\ S) 2 F(M).

1) of Theorem 2.19 holds in a strong form for compactly generated psg’s.

Proposition 4.10. Let (I, T) and (A,S) be psg’s and assume thét,T) is com-
pactly generated. b: ' — A is either anétale morphism or a ramified morphism
if g=1, thend1(F(A)) Cc F(I").

Proof. We proceed as in the proof of Theorem 2.19 but it suffices to deal with wF-
open sets instead of F-open sets by Proposition 4.5(/Lef’) be a reduction of
(F,T)with I'" = (y,...,%). Letdy > 0 such that the germ of any at a point
pin T’ extends to an element 6f defined onDp(dp). We retain other notations
in the proof of Theorem 2.19. L& be an open subset @f~1(F(A)) andW an
open subset df (A) Nrangep;. We assume thal/ is a wF-open set iff “(Ag). By
shrinkingW if necessary, we may assume thadi€ AW and if 5(W) N rangep, #
@, thend(W) C rangeg and the radius o), 1(5(W)) is less thardg/2. Finally, let
V be a connected open subset@l(W) such that the radius &f is less thart.
Lety €V and{y € I/. Then,{, € I''(m)y for somem. If m= 1, then is well-
defined orV by the choice ofl. If {(y) € domg, then there is an elemedte A
such that(go {)y = (6o @r)y. Note thatd is defined orlW as an element ofl.
Sinced (V) C g (8o @ (V)), the radius of (V) is less thamlp/2. Assume that the
same holds fom, and lety € I''(m+1),. We havely = (yi o n)y for somei and
n € r''(m). By the assumptiony is well-defined orV and the radius of (V) is
less thardp/2. Suppose thap (y) € domg; andy(n(y)) € dom@. Then there is an
elementd; € AW such thatgjo ) = 510 ¢n. Note thairange(ij D0(@(V)). Onthe
other hand, there is an elemeiite Ag such thal(@ o i) (y) = (8" 0 @) (y)- Then,
yion is well-defined oV, and(@ o (yion))y= (8" o@on)y=((d'0d1)o@)y.
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Sinced’ o &y is well-defined oW, we havegi o (yion) = (&' o &) o ¢r. Therefore,
the radius of(y; o n)(V) is less thardy /2, and if we se, = &' o &, thend, € AW
andfn o(yion) = &o . Finally sinceAY is a normal family/™V is also a normal
family. HenceV is a wF-open set fof ' = . O

Proposition 4.11.If I is a compactly generated pseudogroup, thgg(l) =

Proof. Let (I'',T) be a reduction of/",T) in the sense of pseudogroups. Then,
(Fpsg T') is @ reduction of(fpsg T). By Theorem 4.1, it suffices to show that
Jog(l") = J*(Fgsg)- LetU be a wF-open subset &f,(') andx € U. If yis
the germ of an element o)T)’sg atx, theny is the germ of an element éf'. Hence

y extends to an element &F defined onJ, and(lsg® = Y. ThereforeU is a
wF-open set fof 5,

Conversely let) C F*(I,) be a wF-open set in the sense of psg’s. Thea
Fog(l"’). Indeed, lef y1, ...,y } be a set of generators bf. There is a; > 0 such
that if y is the germ of one of thg'’s at a point, say, in T’, theny is extends to
an element of” defined onDy(2d;). Letx € U andV = Dy(d;). By shrinking
V if necessary, we may assume that_ U and thaty(V) is contained in ball of
radiusd; for any y e I'pgg. Lety € V andl'’(k)y the set of germs of elements
of I'" which can be represented as the composite of at kgsnerators. Then
Iy = Uk-ol '(K)y.- Lety € '(K)y. If k=1, theny, extends to an element 6t
defined orV. Suppose that germs of elementd dfk)y extends to an element bf
defined orV, and lety, an element of /(k+1)y. If we decomposegy = (yio{)y,
where(y € I''(K)y, then{y extends to an element 6f defined orV. Sincel (V) is
contained in a disc of radiuy and{(y) € T', y o { is well-defined orV. As being
the composite of diffeomorphismg,o { belongs ta™. Sincel™V C (IpsgV, MV is
a normal family. O

Proposition 4.12. Let (I, T) be a compactly generated pseudogroup, and denote
by F'(I") andJ'(I) its Fatou and Julia sets in the sense[df, respectively. Then
F/(I) = Fpg(l") = F(Mpsg) andJ'(I") = Jog(l") = I(Tpsg).

Proof. Let (I'',T’) be a reduction of", T) and® be the equivalence froif™’, T')
to (I, T) induced by the inclusion. The# (") = ®(F, (/) andd' (I ) = ®(J54(I77)).
Hence the claim follows from Theorem 4.1 and Proposition 4.11. OJ

Example 2.3, Proposition 4.11 and [1, Example 8.3] are summarized as follows.

Theorem 4.13.The Julia sets of rational mappings @i, the limit sets of finitely
generated Kleinian groups acting @P* and the Julia set of compactly generated
pseudogroups in the sense [df can be regarded as Julia sets of compactly gen-
erated pseudosemigroups. If we regard entire mapping8 as local mapping on

CP?Y, then their Julia sets can be regarded as Julia sets of non-compactly generated
pseudosemigroups.
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Proof. If T is a finitely generated Kleinian group, thEmgenerates a compactly gen-
erated pseudogroup @@P?. If we denote this pseudogroup Byg, thenJog(T pg)
coincides with the limit set of ([1, Example 8.3]). O

We refer to [15] and [16] for properties of the Julia sets of mapping iterations, to
[14] for properties of the limit sets of Kleinian groups.

Remark4.14 Even if I is a Kleinian group but not finitely generated, we can re-
gard (I',CP?!) as a pseudogroup or a pseudosemigroup, which are not compactly
generated.

Remarkd.15 Let (I, T) be a compactly generated pseudosemigroup.=4f CP?,

then it is natural to assume thatis generated by rational mappings and biholo-
morphic diffeomorphisms defined @@P*. It is well-known that the Julia sets are
infinite set (in fact, perfect) and the limit sets are also infinite unless they consist
of at most2 points. In view of Theorem 4.13, such a property can be seen as
one of common properties of Julia sets of groups and semigroups actiG§’on

On the other hand, iT # CP?, then there are examples of compactly generated
pseudogroups of which Julia sets are finite but consist of morezpamts [1, Ex-
amples 8.1 and 8.2].

Dynamics onF(I") is expected to be tame. For example, on the Julia sets of
rational mappings and on the limit sets of finitely generated Kleinian groups, the
["-action is contracting or isometric with respect to the hyperbolic metric except
elementary cases. We can find a volume form which has a similar property. If
g= 1, then we can find a metric.

Let (", T") be a reduction ofl",T). We may assume tha = [[_, T, where
eachT/ is the unit open ball iCY (see Remark 4.4). Let:, 0 < € < 1, be a smooth
non-negative function oR such that

1) ne(t)=1on(—o,1—¢],
2) ng is strictly decreasing ofi — €, 1],
3) nNe(t) =00n[1,+c0).

Definition 4.16. Let z = (Z',...,Z") be the standard coordinates @ and set
hi(z) =ne(||z||), where|| - || denotes the standard norm®R. The set of functions
{hi} is denoted byr and considered as a function ©h We will represent functions
and differential forms o’ in the same way. We define a functibron T’ by

f(x) = sup [Jy[h(v(x)),

ye(l)x

where|Jy| denotes the absolute value of the Jacobiap afx. We setg = f2gg
if q=1, w= f2ug if q> 1, wheregy and iy denote the standard Hermitian metric
and volume form orC9, respectively. We denofg also bydz® dz.
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A metric or a volume form as above is said to be lower semicontinuous (resp. lo-
cally Lipschitz continuous) iff is lower semicontinuous (resp. locally Lipschitz
continuous).

Theorem 4.17(cf. [1, Lemmata 3.8 and 3.9])The metricg and volume fornw in
Definition 4.16 are lower semicontinuous ®h Moreover,g and w are finite and
locally Lipschitz continuous oR (I").

Proof. The first part is easy. We will show the second part. xetF(Ir'’) andU
a wF-open set which contaims Thenl™Y is a normal family so thasup,cru |Iw|
and f(x) are finite. By slightly shrinkindJ, we may assume that there exists an
m> 0 such thafJy,| < mholds for anyy € U andy, € I/ because™" is a normal
family. We may also assume thHat= Dy(d). We will show the following
Claim. There aree; > 0, d; andc > 0 such that ify € Dy(d1) andh(y(y)) |Jy| >
f(y) — &, theny € [/ induces an element df’ defined onDy(d;), and|Jyw| > ¢
for anyw € Dy(dy).

Let &1 be a positive real number less th&(x)/2. Then there is a positive real
numberd, such thatf (y) — f(x) > &; for y € Dy(d;) by the lower semicontinuity
of f. It follows that f (y) — &1 > f(x) > @ becausef (x) > 0. Hence, ifx—y| <

min{d,d,} andh(y(y)) |Jy| > f(y) — €1, thenh(y(y)) > % > 0. It follows that
there is a compact subs€t of T’ independent of such thah(y(y)) |Jy| > f(y) —
&1 holds only ify(y) € K’. Note that under the same assumptions, we hayg >
f(y)—&> @ SincerV is a normal family, there isds > 0 such thatJy,| > @
holds if [w—y| < d3. Let & be a positive real number such tHag: (&) C T,
andd, a positive real number such that the radius/@x(ds)) is less tharey/2
if yerY. We setd; = min{d,d,,d3/2,ds} andc = f(x)/3. If y € Dx(d;) and
h(y(y)) |dy| > f(y) — &, theny(y) € K'. If we denote again by the extension
of i to an element of Y, theny(Dx(d1)) C Dyy)(&2) C T'. Henceyc ', If
w € Dy(ds1), then|y —w| < d3 so that|Jyy| > c. This completes the proof of Claim.
Note that such g belongs ta™V.

Let e3 be any positive real number less thanand assume that z € Dy(dy).
Lety € I/ such thah(y(y)) |Jy| > f(y) — &3. Theny, € I} so thath(y(2)) [Jys| <
f(2). Hencef(y) — f(2) < h(y(y))|Iw| —h(¥(2)) |9ys| + &3. Sincel¥ is a normal
family and eachh; is Lipschitz continuous, there is a Lipschitz constariibr ho y
independent ofy, namely, |h(y(y)) —h(y(z))| < L|y— 2 holds independent of
(note that it suffices to assume that edchs locally Lipschitz continuous if we
reduced; if necessary). On the other hand, for eaclwe have

w1

9w =y = o <

sup 2[dyw|a'La(y)¥ La(y) ly—12,
BT I AL ()T LoV ly 2

2C \weDy(dh)
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onU, where
oy 92y
SO N L R P o
weDx(dy) weDy(dh)

Again sincelVY is a normal family, the above inequality implies that there is a
constant’ independent o such thafJy | — |Jy;| < L'y — 2. Therefore,

f(y) — f(2) — &3 < h(y(y)) (]3| — 13yl) + (h(y(y)) —h(¥(2))) [Iv4]
gL’Iy—ZI+L!y—Z|m
=(L"+Lm)ly—27.

Since this estimate is independent of the choicg,afs can be arbitrarily small.
Hencef(y) — f(z) < (L'+Lm)|y—Z.

By exchanging the role of andz, we havef(z) — f(y) < (L' +Lm)|y—Z if
Y,z € Dyx(d1). This completes the proof. O

Note that we need only the compactnesd bin the construction. The fact that
" is compactly generated is used only to regard the metri€ @) as a metric
onF ().

Definition 4.18. Let g; andg, be Hermitian metrics o (I"). If z€ F(I"), then
we denote by(g;), the metric onT,F(I"). Suppose that we hawg = f2dz® dz
andg, = f2dz® dzon a neighborhood & If f1(2) < f,(2), then we write(g;); <
(g2)z- Note that this condition is independent of the choice of charts abolit
(01)z < (92)z holds onF (I"), then we writeg; < gp. If a andw, are volume forms
onF(I), then we sayy < wy in the same way.

The action of” onF (I") has the following property which we caémi-invariance

Proposition 4.19.1f xe F(I'") and ify € '’ is defined on a neighborhood xfthen
y'g<gandy'w< w. If ye (I')*, theny*g=gandy*w = w.

Note that ifx € F(I'’), y € '’ andJy = 0, then(y*g)x = 0 so that there is no
["’-invariant metric (nor volume form) oR (I"').
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Proof. If |Jy| =0, then(y*g)x = 0. Suppose thatly| # 0. If we setl'y’(x) oy=
{Coy|Z el } thenl ), oy C I. Itfollows that

y(x)
F(y(x)) = sup 3¢y h({(y(x)))

Z€ly

= oo sup [Indh(n(x)
‘ ’ nel” oY
SN |,;5'€u,_9unx|h( nx)

=—f(x
|J | ().

Hence(y*g)x < gx and(y*w)x < wx. O

Theorem 4.20.Let (", T) be a psg which is not necessarily compactly generated.
Suppose that =TI *. If g= 1, then there is an invariant Hermitian metric &(/")
which is locally Lipschitz continuous. In general, there is an invariant volume form
onF(I") which is locally Lipschitz continuous.

Note thatl” = I * holds if and only ifl" is generated by a pseudogroup. Indeed,
[~ =(ry*). See Definition 1.8.

Proof. We show the theorem fay because the proof fap is completely parallel.
By replacing(l", T) by equivalence we may assume tfiat- C. We will construct
a metric onF (). Let{Ti}{>, C .7 such thafl; C Ti;1 andT = Ui, Ti. We have
F(I) =int(NZ{F*([%)) by Lemma 2.16, wherint denotes the interior. Lé;,
wherei > 1, be a smooth function on such that

1) hj is positive on;.

2) h=1onT_1.

3) If x,ye T\ Ti_1and ifd(x, Ti_1) < d(y, Ti—1) thenh;(x) > hi(y).

4) hy=00nT\Tj,

whered denotes the distance with respect to the standard Hermitian metfic on
We set = F (I )NT;. Letg, be the metric o *(/+, ) obtained fronh%dz@ dzasin
Definition 4.16, namely, we sdt(z) = SURcrs, || ho(y(x)) andg, = f2dz® dz.
Then, g is invariant under thdT,-action. We have a metrig; on F; with the
following properties withk = 1.

1) Gk is invariant under thé& -action.

2) There are a neighborhod¥) of F;NF (") in F(I") and a locally Lipschitz
continuous/ -invariant metricg, on F,; such that the restriction @ to K
is equal togi (indeed it suffices to defingj, = 9k+1’Fl;)-

We call this condition the condition (M. We extendd; to a metricg; on I, (F;)
by thelT,-action. This is indeed possible. Let I,(F;) and letys, y» € I, such
thatyi (X), ya(X) € F{. If |(Iya)x| # |(Jy2)x|, then we set) = y0 (y4) L. The family
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{n"}nez cannot be normal on any neighborhoodkoHence|(Jy1)x| = [(Jy2)x| SO
that the extension exists.

If we denote byG; the closure of 7,(F1) in F3, thenG; C I,(F{). Indeed, let
x € G; andU an F-open set fofr, which containsx. We can find a sequende; }
in Fp and a sequencly } in I, such that{y(x)} converges tx. We may assume
thaty(x) € U. Letd > 0 such thatDy(d) C F{ if x€ F;. We may also assume
thatif y € 'Y, then the radius of(U) < d/8. We regardy; * as an element of Y
and sety; = yl‘ly.(xi). As {y(x)} converges tc, {y;} converges ty = yl‘l(x).
On the other hand, if we denote dyp,q) the Euclidean distance betweprandg,
thend(yi,y) < d(yi,y1) +d(y.y1) <d/4+d/4 < d. Thereforey € F] and we have
X= Vl(Z) € Ity(Fp). IR R

Let f; be the function o1, such thaty; = f?dz@ dz, and letf; = f1/(1+ fq1).
Then, we can find an extensiap of f1 to F3 such thatgs is locally Lipschitz
continuous an® < ¢3 < 1 holds. We setys = hzds/(1— ¢3) andg = Y2dz@ dz.
Let g3 be the metric orz constructed frongj as in Definition 4.16, namely, we
set f(2) = super, M| hs(V(X)Ws(y(X) andgs = f%dz@ dz Sincegy|r, = Gi,
%],—Tg(pl) < @1 and sinceg; is [,-invariant, we havejs|r, = 1. If we set@, =
03|r,, thenQy satisfies the condition (b). By repeating this procedure inductively,
we obtain a Hermitian metric oR (I") which is " -invariant and locally Lipschitz
continuous. OJ

Example 4.21(see also Example 2.11)Ve definey: CP' — CP! by y(z) = 7.
Then,J(y) = {|z2] = 1}. If we set

1 if |2 <3,

K2t frFT<|d<2
K|z~21 i 2%k < |7 < 2F 1,
ﬁz if |2 > 2,

f(z) =

theng = f?dz® dz gives a Hermitian metric o€P*\ {|z| = 1} which is locally
Lipschitz continuous and semi-invariant under the actiorf pfwherel” = (y).
On the other hand, if we consider the Poiricanetric on the unit disc, thepis
contracting by the Schwarz lemma. Hence the Poincaetrics on the unit disc
andCP!\ {|Z < 1} give rise to a Hermitian metric o8P\ {|z = 1} which is
of classC® and semi-invariant under the actionof On the other hand, there is
no I -invariant metric onF(I"). Indeed,0 € F(I") but (y*g)o = 0 for any metric
gonF(I).

Let I be the psg generated e (0,0) @Nd its local inverses. The(I")
C\ (StU{0}). An invariant metric onF (") is given bydz® dz/(|z|log|z])?
{0< |7 < 1}. We can find o{1 < |z} a metric of the same kind.

on
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Remark4.22 If I is a compactly generated pseudogroup, then we can classify
Fatou components. By using the classification, we can always findraariant
metric of clas<C? [1, Theorem 4.21]. See also Theorem 5.9.

Remark4.23 Let S = S = C and we denote b;(r) the open disc ir§ of radius

r and centered at the origin. Lgt S; — S be the identity map. We sét= S 11S,
andl" = (y). ThenF(I') =T. We defineT; € .7 by settingT; = D1(i) LID(i).
Then the metric obtained frodil;} is equal to the one induced from the standard
Hermitian metric orCC.

A kind of the converse of Theorem 4.17 holds for compactly generated psg’s. A
metricg on an open subsét of T is said to bebounded from belowf there exists
¢ > Osuch thatgy < g holds onU, whereqg is the standard metric ‘.

Proposition 4.24(cf. [1, Lemma 2.6]) Let (", T) be a compactly generated psg. If
U is forward I -invariant and ifU admits a continuous Hermitian metric which is
semi-invariant and bounded from below, thérC F (7).

Proof. By Proposition 4.5, it suffices to show thdtis contained inwF(I"). Let
(', T") be a reduction of ", T) and suppose thdt’ = (y1,...,%). Then, there
existsd > 0 such that the germ of atx € T’ extends to an element 6f defined
on Dy(d), whereDx(d) denotes thel-ball centered at with respect to the standard
metric. Ify € U, then letV = D{(cd/4), whereD{(cd/4) denotes theod/4)-ball
centered ay with respect tay. SinceD§(cd/4) C Dy(d/2), we may assume that
V CU. LetzeV andy, € '’ (k),, wherel’(k), denotes the set of germs of elements
of '’ which can be represented at most the compositiohgénerators. 1k =1,
theny, extends to an element, sgyof I defined orVV. Moreover, sinceg is semi-
invariant, we havey(V) = y(D§(cd/4)) C D?/(y)(cd/4) C Dyy)(d/2) C Dy (d).
Assume thay; € "'’ (k), extends to an element, sgyof I defined oV, andy(V) C
Dyz(d). If yz € I'"(k+ 1)z then we have, = (Vi o {), for some(; € ''(k); and
. By the assumption{, extends to an element, sgy of I" defined onV, and
{(V) C D¢z (d). Asy also extends t®; , (d) becaus€ (z) € T', (y o {); extends
to an element, say, of I" defined orV, and we have) (V) C D, (d) by the same
argument as above. O

If g is not bounded from below, then the conclusion fails. See Example 5.13. If
(I, T) is not compactly generated, then there is also a counterexample.

Example 4.25.Let Ty = T, = C and letf: T; — T, be the inclusion of the open
unit disc viewed as a local mapping. Then, the metridod T, induced from the
standard metric oft is invariant undef f) butJ((f)) = {ze T1| |2 = 1}.

5. FATOU-JULIA DECOMPOSITION FOR SINGULAR HOLOMORPHIC FOLIATIONS

For generalities on singular holomorphic foliations we refer to [2] and [20]. Here we
follow the latter. LetM be a connected complex manifold aht¥l the holomorphic
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tangent bundle dM. We denote by’ the tangent sheaf &fl. If . is a coherent
sheaf orM, then we set

Sing.) = {x € M| . is notOw x-free},

where.#; and O x denote the stalks atof . and Oy, respectively. Theank of
- is defined to be the rank of the locally free sh&f\ sing.»), and denoted by
rank.s .

Definition 5.1. The tangent sheaf# of a singular foliation ofM is an integrable
coherent subsheaf afy, that is,.# is a coherent subsheaf 6}, such that

[P, Fx] C Fx forxe M\ §(F),
where
S(F) = Sing(Ow/F).
The setS(.%) is called thesingular set of#. Thedimension of# is defined to be

rank# and denoted bgim.#. The codimension of# is defined to bedimM —
rank.Z and denoted bgodim.#.

We call.# a singular foliation by abuse of notation.
Remarks.2 S(.#) is an analytic set which contailgng.# .

Let M be a complex manifold ané a singular foliation oM. Then,.# defines
a non-singular foliation of codimensia@odim.# on M\ §(.%), which we denote
by .7"€q,

Let M be a complex manifold an& a singular foliation ofM. We choose a
complete transversdl for .79, and letl" be the holonomy pseudogroup .69
with respect tar . Note thatFyg(I") andJpg(I" ) arel -invariant.

Definition 5.3. We set
Fo(.#) = the saturation oFyg (/") by leaves of7 ™,
Joo(F) =M\ FR(F),
F (%) = the saturation oFpg(I" ) by leaves of#"9,
J(F)=M\F(ZF).
If we replaceT by another complete transverddl then the holonomy pseudo-

group with respect td’ is equivalent td”. HenceFy(.%), Jo(#), F (%) andJ(F)
are well-defined.

Remark5.4. Note thatF (%) is the interior ofFy(.#) andJ(.%) = Jp(.%#). Note
also thatS(.%) C Jo(.#) C J(.%) by the definition. ActuallyJ(.%)\ S(%) is the
saturation oflog(I" ), wherel™ is the holonomy pseudogroup &f.

We can find- (%) andJ(.%) as follows. We denote by andq the real dimension
and complex codimension of"®9, respectively. Let” = {U, } < be a foliation
atlas for.#"¢9 namely,
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1) eachU, is homeomorphic t&/, x D,, whereV, is an open subset &P and
D, is an open subset @9, and
2) the connected components of the intersection of leave&'8 with U, is
given byV, x {p}, p€ D,.
We may assuméU, },cn is a refinement of a foliation atlas, and edghis rela-
tively compact. In addition, we assume without loss of generality thatBgaék an
open ball. We set =[],.,D, and letl" be the holonomy pseudogroup with re-
spect tol . We assume without generality thiats countable, and denote the indices
byi. If we setTy = ]_[!‘:1 Dk, thenFpgo() = Nik_q Fiy(M,) (see also Lemma 2.16).

1"pg
The following is a direct consequence of Theorem 4.20.

Theorem 5.5.If = 1, thenF (.#) admits a transverse invariant Hermitian metric

which is transversely Lipschitz continuous. In gendfal”) admits a transverse
invariant volume form which is transversely Lipschitz continuous.

Indeed, ifl" is the holonomy pseudogroup o9 with respect to a complete
transversall, thenT admits al -invariant Hermitian metric which is Lipschitz
continuous. Transverse invariant volume form can be constructed in the same way.

If M is closed and5(.%#) = @, thenl” is compactly generated so that we may
assumé/, T) is equivalent tq/T,, Ty) for somek. If moreover.# is of codimension
one, then we have a transversely holomorphic foliation of complex codimension
one, and a Fatou-Julia decomposition of such a foliation is given in [6], [8] and [1].
We denote the Fatou and Julia sets®in the sense of [1] b¥e (-7 ) andJ (-7 ),
respectively. Then by the definitions, we have the following

Proposition 5.6. If M is closed and¥ is regular, then we haveg (%) = F (%) =
Fo(F) andJoi(F) = I(F) = Jo(F).

In what follows, we will study holomorphic foliations by curves with isolated
singularities. Let# be such a foliation of a complgx+ 1)-dimensional manifold
M and letS(.#) = {pa,..., pr}. The following is well-known.

Lemma 5.7. LetU; be an open neighborhood pf. Then, no leaf 0f#"™9is con-
tained inU;.

Proof. We may assume théat; is the unit open ball irC™* and p; is the origin.
Then, it is well-known that there is a holomorphic vector fiZldbn U; such that
SingX = {x € Uj | X(x) = 0} = {0} and thatX is tangent to%|y,. LetZ(t) be an
integral curve oiX. If we denote b)¢|Z(t)||2 the square of distance @ft) from the
origin with respect to the standard metric, tHg&(t)|| is a subharmonic function.
If moreover{Z(t)} is entirely contained itJ;, then||Z(t)||? is defined onC and
bounded. HencﬁZ(t)H2 is constant ([17, Corollary 2.3.4]). If we represefias

X = zi“jll fiaizp where(zy,...,z,,1) are the standard coordinates@#, then we

havey ™l fi(Z(t))Zi(t) = 0, whereZ(t) = (Zy(t),...,Zn;1(t)). By differentiating
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with respect ta, we havey ™! fi(Z(t)) fi(Z(t)) = 0. HenceZ(t) is identically zero
by the choice oK. O

Let X be a holomorphic vector field 0&"* and.Z the singular foliation asso-
ciated withX. Suppose thabingX consists of Poincértype singularities, and let
SingX = {p1,..., pr}. LetU; be an small round ball g so that# is transversal
to dU;. Then, a foliation is induced on eadkl;, which we denote by#;. Note that
S(.#) = SingX. By removingU;’s from C"! and taking the double, we can obtain
a non-singular transversely holomorphic foliation of a closed manifold. This kind
of examples are studied in [6] when= 1.

Corollary 5.8. 1) If M is closed, then the holonomy pseudogroup/df9 is
finitely generated.

2) If moreover for each, there exists an open neighborhoddof p; homeo-
morphic to a ball such that# is transversal todU;, then, the holonomy
pseudogroup of#"®9is compactly generated arfel.% ) = Fp(.%). We have
JF) =IF9)US.Z) and U, I(.F) c I(F)NU_,0U;. If M is the
double ofM and if.Z is the foliation ofVl obtained fromZ'e9, thend(.Z ) is
the double ofl(.Z7"9) N M.

We do not know any example where the inclusion is strict. On the other hand,
if one of dUj’s is not transversal to#, then there is an example wheieZ;) C
J(#)NdUj, wheredU; is transversal to# . See Example 5.11.

Proof. Let U; be an open neighborhood pf, wherei = 1,...,r. LetV be an open
neighborhood oM \ |J{_; U; such thatv N S§(%) = @. SinceV is compact, we
can find an open covering, sa¥, of V by a finite number of foliation charts
for #™9, Suppose that” = {V1,...,Vs} andV; = W x T;, where the leaves of
F'®)y, are given by{W x {z}}, z€ Ti. If we setT = [[>_; T, thenT is a com-
plete transversal fog7"®9 by Lemma 5.7. Therefore the holonomy pseudogroup of
F'"0is finitely generated. If7 is transversal t@U;, then it is shown in [10] that
Zauiuup\ {p} is biholomorphically diffeomorphic to# |5y, x (0,1]. Therefore the
holonomy pseudogroup o ™9 is equivalent to that of”™9y,\y,. The last part
follows directly from definitions. O

Theorem 5.9. Suppose thalimcM = 2 and S(.%) = {p1,...,pr}. If for eachi,
there exists an open neighborhoog of p; homeomorphic to a ball such tha#
is transversal taU;, then the holonomy pseudogroup.#f€9is compactly gener-
ated and we have (%) = Fy(.#). Moreover,# 9 admits an invariant transverse
Hermitian metric orF (.%) which is transversely of clag&®”.

Proof. Let I' be the holonomy pseudogroup &9, If .% is transversal t@U;,
then[” is equivalent to the holonomy pseudogroup®f®9yy, by Corollary 5.8.
Hence, by [1, Theorem 4.21], there exists a Hermitian metric of €&ssn Fog(I")
invariant under the action df. O
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Remark5.10. We made use oFpg(I") in defining F(.#). The same decompos-
ition is obtained even if we repladgg(/) by F (I ) under the assumptions of The-
orem 5.9 becausk is compactly generated.

Example 5.11.Let X be a holomorphic vector field oB* defined by

17} 7}
X _Aza—z+uwa—w,

whereA andu are non-zero complex numbers afzgw) are the standard coordin-
ates forC?. Let.# be the singular foliation o€ P? induced by the integral curves of
X. A =p,thend(.7)=9.%#)={[1:0:0} and a transverse invariant Hermitian
metric onF (.%#) is given by
_|wdz— zdw?
(122 + w2
where for al-form w, we denotev @ @ by |w|?.

If A # u, then the codimension &(.%) is greater than one. Léty : z; : 2] be
the homogeneous coordinates P> and conside€? = {[1 :z: w]}. We set

Lo={[0:2:2)] e CP?},

Ly = {[20: 0 :2) € CP?},

Lo = {[z:z1: 0] € CP?}.
ThenS(#)={[1:0:0,[0:1:0,[0:0: 1}, andJ(.#) is described as follows.
1) If u/A € C\R, thend(F) = LoUL1ULy. An invariant metric orF (%) is

given by
| uwdz— A zdw?
(12 |wi)?
2) If u/A > 1, thend(.#) = LoULy. An invariant metric orf (.%) is given by
| uwdz— A zdw?
|W|2(1+A/u)
3)If 1> u/A >0, thenJ(.F) = LoUL1. An invariant metric onF (%) is
given by
|uwdz— A zdw?
|Z‘2(1—HJ/)\)
4) If 0> u/A, thend(.#) = L1 ULy. An invariant metric orf (.%) is given by
|uwdz— A zdw?
(12 wiP)2

wherea = (A —2u) /(A —u) andp = (2A — u)/(A — ). Note thata > 1,
B>1a+B=3andaA +LBu=A+p.
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If u/A >0, then.Z is transversal to the unit sphe®in C2. We denote by#’
the induced foliation or$®. Then,.#’ is transversely Hermitian, namely, it admits
a smooth transverse invariant Hermitian metric. It follows tHa¥') = @. Hence,
if we denote by the inclusion ofS® to CP? via C?, thent ~1(J(.%)) 2 J(F").

Example 5.12.Let X be a holomorphic vector field 062 defined byX = (z+

)d er6a where(z,w) are the standard coordinates. If we$et zﬁi +Wdiw

then[X,Y] = 0, andX(z,w) andY (z,w) are linearly independent a@? \ {w = 0}.

If we denote by the foliation of CP? induced byX, thenY induces a holonomy
invariant trivialization of the normal bundle aF"9 on F(.%) = CP?\ (LoULy),
wherelLg andL;, are as in Example 5.11. Hence we can find a transverse invariant
Hermitian metric orF(.%). SinceX is invariant under homothecies; ™9 induces

a foliation of Hopf manifolds. For example, I8t = (C?\ {0})/a, wherea is a
non-zero complex number amdz) = az If we denote by the induced foliation

of M, thenF (¢) = (C2\ {w=0})/a. SinceY is also invariant undear, we can

also find a transverse invariant Hermitian metric on the normal bundé of

Example 5.13.Let X be a holomorphic vector field oB® defined by

17} 17}
X= /\1210— —f—)\zZza—Z + )\323023

whereA;, A2 and Az are non-zero complex numbers. Thehjnduces a singular
foliation of CP® which we denote by”. We setpp=[1:0:0:0, py=[0:1:0:(0,
p2=[0:0:1:Qandpz=[0:0:0:1. If Ay =A2= A3, thenS(.F) =I(F) ={po},
where we conside€® = {[1:z : 2 : z3]}. If we setwj = zdz — zdz, |w; |2 =
wj ®a@j and

ool + angl® + |ansl®

(|22 + |22l + |23]%)?

theng is a transverse invariant Hermitian metric 8% ). Note thatg is bounded
from below, and induces an invariant volume form.

In that follows, we assume without generality that= 1. Suppose thai,, A3
andA,/Az do not belong tdR. ThenS(.%) = {po, p1, P2, P3}, and there are unique
real numbersr andf such thata A, + A3 = 1. According to Theorem 5.5, there
exist invariant volume forms oR (.%). In fact, if we set

_ hozdz —2dzl® | |Aszdz — Azdz)?
(122" | z3)P)2 223/

theng is a transverse invariant Hermitian metric @®2\ (Py U P, U Ps), where
Po={[0:x1 1 %21 X5]| [X1,X2,X3 € C}, Po = {[Xo 1 X1 1 0 : %3]}, P3={[X0 : X1 : %21 O] }.
Note that on the planglup : 1 :uy : us]}, we have
_ (A2 — L)upd g+ Ugdp|> Az (Ugd s — Updp) — AxUz (UpdUg — Usd uo)|
(Juo| PV jup| " ug|P)2 |uouzu3|*

Y
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Let A be the closed triangle formed By A, andAs. If 1is contained i\, thena >
0,3 > 0and0 < a + B < 1. This condition is equivalent to thgtis bounded from
below onCP3\ (PRUP,UP3). Indeed in this case we hat#é.% ) = CP3\ (RyUPU
P3). If A, andA3 do not satisfy the condition, théf(.#) = CP3\ (RyUPLUP, UP3),
whereP, = {[Xo: 0 : X2 : x3]}. Even in this case, the above metric is an invariant
metric onCP3\ (PRyU P, U P3) but not bounded from below. A bounded one on
F(.%) is given by
|)\222d Z — Zld22’2 |)\323d 2 — Zld 23’2 |)\3ng22 — )\2sz23|2
(Iza]|z2])? (Iza]|za]) (122 |za])

If in addition the convex hull ol, A, andA3 does not contaify, then.# is transver-
sal to the unit spher®. HenceZ induces a transversely holomorphic, non-singular
foliation of . If we denote this foliation byZ’, thenF (%') = F(#) NS and
J(F') = J(F)NS. Since the holonomy pseudogroups®f is compactly gener-
ated, we see that the conclusion of Proposition 4.24 fails if the metric is not bounded
from below.

Instead of exhausting all cases, we will examine the case whereR andA3 ¢
R. If A2 > 1, thenS(.F) = {po, p1, P2, p3} andJ(.%) = BhUP, UPs. An invariant
metric onF (.%) is given by

|/\222d21 — Zld22|2 |/\323d22 — )\2sz 23|2
(|22|1+l/)\2)2 |2223|2 :
If A2=1,thenS(.7) = {[0 :x1:%2: 0]} U{po, p3} andI(F) = {[%0:0:0:x3]} U
PoUPs. Note that{[0 : x1 : X2 : O]} = PyN Ps. An invariant metric orF (.%) is given
by

|)\222d21—21d22|2 |)\323d22—)\222d23|2
(1|24 2] T%2)2 (22?2 + |20) 2
If 0< A2 <1, thenS(.%) = {po, P1, P2, P3} andI(.F#) = RUPLUPRs. If A2 <0, then
S(.Z) = {po, P1, P2, p3} andJ(.¥) = PLUP, UPs. In these cases, invariant metrics
can be constructed as in the case where 1.

Remark5.14 Note thatl, L1 andL, are separatrices fof in Example 5.11, and
thatLg is also a separatrix fox in Example 5.12. Example 5.13 also suggests that
J(:#) has something to do with separatrices.
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